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Tag der mündlichen Prüfung: 01.09.2010
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Zusammenfassung

Das Ziel der hier vorgestellten Arbeit ist die Untersuchung von kapillardominierten Trans-

portprozessen in porösen Materialien und kleinen, zylindrischen Rohren. Von Relevanz ist dies

insbesondere für die raumfahrtbezogene Anwendung von porösen Metallgeweben (häufig Dutch

Twilled Weaves) in sogenannten Propellant Management Devices (PMDs) für Treibstofftanks.

So gilt es, bei der Konstruktion von Raketentanks für flüssige Treibstoffe sicherzustellen, dass

in einer Mikrogravitationsumgebung kein Gas in die Treibstoffleitungen gelangt. Diese Aufgabe

übernehmen die PMDs häufig dadurch, dass sie den Blasendurchbruchsdruck (bubble point)

von porösen Strukturen nutzen.

Der erste Teil der Arbeit beschäftigt sich mit einer grundlegenden Diskussion der theoretisch-

en Modellierung kapillarer Strömungen. Zunächst wird eine Einführung in relevante Grund-

gleichungen, wie beispielsweise die integrale Bilanz des Impulses, gegeben. Die im nächsten

Schritt vereinfachte Impulsbilanz stellt dann die Basis für die weiteren mathematischen Be-

trachtungen dar, die im Folgenden um sogenannte Pore Structure Parameters ergänzt werden,

um die kapillaren Strömungen in porösen Materialien umfassend beschreiben zu können. Durch

die Verwendung der Parameter statischer Radius (Beschreibung des Kapillardrucks), Perme-

abilität (Beschreibung des viskosen Druckverlustes in der porösen Struktur) sowie Porosität

(Beschreibung des Verhältnisses von Porenvolumen zu Gesamtvolumen) lässt sich eine Impuls-

bilanz für poröse Materialien aufstellen. Es zeigt sich, dass die Gleichungen für poröse Mate-

rialien bzw. für zylindrische Rohre ähnlich sind und somit eine Analogie zwischen kapillaren

Transportprozessen in zylindrischen Rohren und porösen Strukturen existiert. Folglich lassen

sich analytische Lösungen, die ursprünglich nur für Strömungen in Rohren entwickelt wurden,

auch für die Beschreibung von Transportprozessen in porösen Strukturen verwenden.

Unter Anwendung des Buckingham Pi Theorems werden in einer detaillierten Dimensionsana-

lyse die verschiedenen Skalierungsansätze vorgestellt und diskutiert. Anhand eines mathema-

tischen Vergleiches der verschiedenen analytischen Lösungen für einen trägheits- bzw. viskos

dominierten Transport kann eruiert werden, welche Kräfte zu welchem Zeitpunkt des Trans-
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portprozesses relevant sind. Die Erkenntnis, welche Terme berücksichtigt werden müssen, ist

eine wichtige Voraussetzung für eine präzise Beschreibung des Transportprozesses. Ein Ver-

gleich des Modells mit experimentellen Daten aus der fachspezifischen Literatur konnte hierbei

eine gute Übereinstimmung nachweisen.

Bei Transportprozessen, die unter Einfluss von Gravitation stattfinden, ist es darüber hinaus

jedoch notwendig, eben diesen Parameter in die Modellierung mit einzubeziehen. Häufig wurde

dies aufgrund fehlender analytischer Lösungen vernachlässigt und stattdessen auf bestehende,

vereinfachte Lösungen, wie beispielsweise die Lucas-Washburn Gleichung, zurückgegriffen. Durch

die mathematische Umformung einer impliziten t(h) Lösung von Washburn in eine explizite h(t)

Lösung soll für diesen Bereich nun eine neue, präzisere Lösung vorgestellt werden. Ein Ver-

gleich beider Gleichungen konnte hier zeigen, für welche Fälle die klassische Lucas-Washburn

Lösung zulässig ist und wo sie an ihre Grenzen stößt: So wird deutlich, dass bei der Anwendung

der herkömmlichen Gleichung bei einer Steighöhe von unter 10 % der Gleichgewichtshöhe (der

maximalen Steighöhe) ein Fehler von höchstens 3.5 % auftreten kann. Wird diese Höhe jedoch

überschritten, nimmt der Fehler erheblich zu und es empfiehlt sich, auf die neue h(t) Lösung

zurückzugreifen.

Die mit einem kommerziellen CFD tool erstellten makroskopischen Simulationen zeigen im Ver-

gleich eine sehr gute Übereinstimmung mit analytischen Lösungen. Somit kann die Anwend-

barkeit dieser Modelle auf die untersuchten Prozesse bestätigt werden. Anschließend wird auf

zwei Sonderfälle von kapillaren Strömungen eingegangen; die Gegenüberstellung von mathema-

tischem Modell und Experimentdaten steht hierbei im Mittelpunkt der Analyse. Untersucht

wurde zunächst der Einfluss von Verdampfung auf den kapillaren Anstieg in porösen Struk-

turen. Anhand von Experimenten konnte gezeigt werden, dass Verdampfung insbesondere bei

sehr dünnen porösen Materialien, wie beispielsweise Metallgeweben, eine starke Verlangsamung

des Prozesses sowie eine Reduktion der maximal erreichbaren Höhe bewirkt. Dieses kann

zusätzlich durch ein mathematisches Modell gestützt werden, welches mit den Experiment-

daten eine ausreichende Übereinstimmung aufweist (20 % Abweichung). Der zweite Sonderfall

bezieht sich auf den radialen Flüssigkeitstransport, wie er beispielsweise bei der Ausbreitung

eines Tropfens in einem Gewebe auftritt - im Hinblick auf die Untersuchung soll hier jedoch

von der Speisung durch ein unendlich großes Flüssigkeitsreservoir ausgegangen werden. Die

mathematische Beschreibung erlaubt es, analytische Lösungen für die aufgestellte Differential-

gleichung zu entwickeln, die für den Fall des radialen Transports von Flüssigkeit nach außen

eine gute Übereinstimmung mit den erzielten Experimentdaten zeigen.



v

Die Arbeit schließt mit einem Ausblick auf anwendungsbezogene Problemstellungen, die eine

weitergehende Beschäftigung mit dieser Thematik erlauben. In vielen Raketenoberstufen wird

Wasserstoff und Sauerstoff in tiefkalter (kryogener), flüssiger Form als Treibstoff eingesetzt.

Bei der Entwicklung von PMDs für eben diese Anwendungen müssen auch kapillare Transport-

prozesse in porösen Materialien berücksichtigt werden. Während im Rahmen der hier vorgestell-

ten Untersuchung nur auf isotherme Strömungen eingegangen werden konnte und thermale As-

pekte vernachlässigt wurden, besteht ein deutlicher Bedarf an weiteren mathematischen oder

numerischen Modellen sowie experimentellen Daten für nicht-isotherme Strömungen. In Bezug

auf die Raumfahrttechnik und die Konstruktion von Tanks und PMDs gilt dies insbesondere für

den kryogenen Bereich. Ein weiterer Schritt in diese Richtung wird derzeit am ZARM Institut

(Universität Bremen) in Anbindung an das Graduiertenkolleg PoreNet unternommen.
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Vb [m3] control volume b

V̇ [m3/s] liquid flow rate

w [m] specimen width see Fig. 8.9

W [J] work

W (x) [-] Lambert W function Eq. (5.17)

x [m] position

x0 [m] initial meniscus position in the strip experiments

xf [m] position of the front

z [m] height coordinate
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Greek symbols

βF [1/m] Forchheimer coefficient Eq. (2.4)

γ [1/s] parameter Eq. (7.22)

δ [-] parameter for initial height Eq. (5.54)

ε [-] parameter for allowed deviation Eq. (5.28)

φ [-] porosity of the structure

ϕ [◦] angle coordinate

Φ [-] dimensionless related maximum height Eq. (7.33)

μ [kg/(ms)] dynamic viscosity

ν [m2/s] kinematic viscosity

π [-] circle constant (3.14159...)

π1 [-] first dimensionless π parameter by Buckingham method

π2 [-] second dimensionless π parameter by Buckingham method

π3 [-] third dimensionless π parameter by Buckingham method

ρ [kg/m3] density

ρh [-] regression coefficient (horizontal strip exp.)

ρv [-] regression coefficient (vertical strip exp.)

σ [N/m] surface tension

θ [◦] contact angle

θd [◦] dynamic contact angle

θs [◦] static contact angle

Ω [-] dimensionless basic parameter, see Eq. (3.10)

Dimensionless numbers

Bo [-] Bond number, see Table 3.3

Ca [-] Capillary number, see Table 3.3

Fr [-] Froude number, see Table 3.3

Ga [-] Galileo number, see Table 3.3

Oh [-] Ohnesorge number, see Table 3.3
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Re [-] Reynolds number, see Table 3.3

Red [-] Reynolds number based on tube diameter

Indices to indicate dimensionless scaling

† Index for dimensionless variable: viscous effects and gravity as scaling forces, see Eq. (3.8)

‡ Index for dimensionless variable: inertia and gravity as scaling forces, see Eq. (3.15)

∗ Index for dimensionless variable: inertia and viscous effects as scaling forces, see Eq. (3.21)

� Index for dimensionless variable for radial wicking, see Eqs. (8.4 and 8.5)
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Chapter 1

Introduction

Liquid flows driven by capillary forces represent an important field of research as many ap-

plications in science, industry and daily life rely on this process. For example in technical

applications such as heat pipes or spacecraft Propellant Management Devices (PMDs) capil-

larity is of high importance. This also applies for average consumer products like marker pens,

candle wicks as well as sponges. In nature capillary transport can be found in plants, where

together with the osmotic pressure it facilitates the transport of water from the roots to the

tips, or in the field of hydrology where the movement of groundwater is influenced by capillary

transport as well. Typically, this transport occurs in complex shaped structures. However,

many flow or layout calculations adopt models for cylindrical tubes or simplified porous mate-

rials to match the flow in arbitrary shaped capillaries. Despite their reduction in complexity,

macroscopic approaches to capillary transport have been very successful in describing many of

the presented problems.

A large amount of literature is devoted to capillary transport but there is still a need for

fundamental research to fully understand the processes. Due to the described relevance for

technical applications experimental data, models, and numerical simulations are of importance

to engineers designing heat pipe systems or PMDs for instance. Besides these applications,

capillary transport processes are also a very interesting subject for fundamental research in a

sense of pure science. By analytical means theoretical modeling or dimensionless scaling can be

conducted - e.g. based on the momentum balance of a fluid inside a porous structure - and then

compared to experimental data for validation purposes. These processes also provide good test

cases for validation of CFD tools to enable a deeper insight into the fluid mechanics behind

capillary dominated problems.
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Figure 1.1: Liquid rise in a capillary tube of inner radius R. Gravity vector g is parallel to the

tube. The height of the liquid column is a function of time and denoted h(t).

1.1 Applications of capillary transport

As previously mentioned, there are numerous applications of capillary transport phenomena in

engineering, daily life and science. Two technical applications shall be introduced briefly in the

following section. The first one “Propellant Management Devices” describes the main motiva-

tion of this work, while the second one “Heat Pipes” concerns a system of major importance

to thermal management of spacecraft .

1.1.1 Propellant Management Devices

In many spacecrafts and rockets liquid propellants are used as they typically provide a much

higher specific impulse Isp than solid propellants. The specific impulse can be regarded as

change in momentum per mass of the propellant that is used. Consequently, a propulsion

system with a higher Isp is more efficient and will need less propellant to obtain the same Δv

(change in velocity). For many cases the increased complexity and costs of liquid propulsion

systems are more than balanced by their higher specific impulse.

However, the main problem in liquid spacecraft propellant tanks in orbit is the lack of gravity

to define “up” and “down”. When operating within microgravity, it can become difficult to

separate the liquid propellant from the pressurant gas in the tanks. Despite this, a constant

and gas free delivery of propellant to the engines has to be ensured during all acceleration

conditions of the mission. To handle this problem, Propellant Management Devices (PMDs)
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Figure 1.2: Total communication type Propellant Management Device (PMD) of the Auto-

mated Transfer Vehicle [8] including galleries with screen windows (slightly modified).

are utilized. These often feature a fine porous structure - like a metallic weave - which allows

liquid to permeate but blocks out gas below a critical differential pressure. This phenomenon

is known as the bubble point effect. Propellant Management Devices are designed to i) ensure

a constant connection between propellant and tank outlet (communication type) or ii) confine

the propellant at a designated location (control type) [1, 27, 82]. Fig. 1.2 shows a total com-

munication type PMD including galleries with porous screen windows. These screens are made

of metal weave and form passive surface tension devices. As mentioned they allow propellant

to penetrate but prevent gas from entering below a critical bubble point pressure. This mech-

anism requires the weave to be always saturated with propellant. If a screen is partially dry,

wicking can be regarded as a self healing mechanism to restore saturation. Here, the wicking

performance strongly depends on the degree of evaporation from the porous screen. Especially

for cases where the propellants are cryogenic liquids such as hydrogen and oxygen (as displayed

in Fig. 1.3), the PMD may fall dry during coast phases, and require appropriate refilling and

rewetting of the structure during subsequent chill down. This is the motivation for chapter 7

“Linear capillary rise and the effect of evaporation”.
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Figure 1.3: Draft of the proposed Propellant Management Device for the new, restartable upper

stage ESC-B for the European launcher Ariane 5 [7] (slightly modified).

Transport processes in porous materials are also of great interest to determine material prop-

erties which affect relevant parameters including cross flow pressure and bubble point pressure.

A better understanding of the occurring processes will enable engineers to identify better struc-

tures for usage in PMDs. These structures should provide several characteristics, e.g. have a

high bubble point, however feature a minimal resistance against fluid flow (= a high perme-

ability).

1.1.2 Heat Pipes

Heat pipes are passive devices designed to effectively facilitate the transport of heat from a hot

heat source to a colder heat sink [103]. To transport comparably large amounts of heat they

only require a fairly low temperature difference between the hot and cold interfaces. As shown

in Fig. 1.4, a heat pipe evaporates liquid at its hot end. The resulting vapor is transported

through the center cavity and condensates at the cold end, which provides heat transport due

to the latent heat of phase change. The liquid however must return back to the hot end to
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close the loop. For this process, porous materials or structured surfaces are used which - due to

capillary forces - transport the liquid back to the hot end to restore saturation (see Fig. 1.5).

The advantages of heat pipes in comparison to conventional heat transport systems are not

only the passivity and robustness. Due to their low thermal resistance they provide very high

heat fluxes [W/m2] based on their cross section. For a typical device length this results in a

smaller system diameter and mass when compared to a block of copper for example. Working

temperatures of heat pipes range from a few (5) Kelvin up to several thousand (2200) Kelvin.

The choice of the working fluid strongly depends on the operating temperature range [103].

The following list provides a brief, incomplete overview:

• Cryogenic temperatures down to a few K: liquified gases like e.g. Helium (He), Hydrogen

(H2), Nitrogen (N2).

• Cool temperatures below 250 K: Methane (CH4), Ethane (C2H6).

• Moderate temperatures up to 500 K: Freon, Ammonia (NH3), Water (H2O).

• High temperatures: molten metals like Mercury (Hg), Potassium (K), Sodium (Na),

Lithium (Li), Silver (Ag).

Due to their application in low temperature engineering, spacecraft thermal control, and elec-

tronic device cooling systems (see Fig. 1.5) - just to mention a few - heat pipes can probably

be considered to be the most important devices featuring porous structures with capillary

transport.

1.2 Embedment of this work in the frame of PoreNet

PoreNet is a Research Training Group (Graduiertenkolleg) funded by the German Research

Foundation DFG. Several institutes from different disciplines participate in a collaborative

and interdisciplinary effort to enhance the understanding of Nonmetallic Porous Structures for

Physical-Chemical Functions. The aim of the work conducted in the Multiphase Flow Group

at the ZARM is to investigate capillary dominated flows in porous materials to improve the

comprehension and knowledge of the occurring processes and effects. This is conducted with a

special focus on topics of relevance for the application of capillary flows in Propellant Manage-

ment Devices as introduced earlier in this chapter. The underlying rationale is that an enhanced

understanding of these topics will allow to design enhanced materials for these applications -
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Figure 1.4: Schematic drawing of a heat pipe. Liquid is evaporated at its hot end (left) and

condensed at the cold end (right). Capillary transport of liquid from cold to hot end.

which can be realized only in a design, production and testing loop in close cooperation with

the other participating institutes. This present work is part of the first generation of doctorates

in PoreNet and seeks to build the theoretical and experimental foundation concerning capillary

flows in porous media for the works to follow. Relevant pore structure parameters and analogies

to classic cylindrical capillaries are discussed in terms of analytical approaches and experiments

as will be explicated in the next section.

1.3 Questions and aims of this work

The first part of this study is dedicated to a fundamental discussion of capillary flows. The aim

is to enhance the understanding as well as the classification of capillary flows and the dominant

forces by an analytical approach based on the governing equations. In chapter two of this

work, the current “state of the art” of capillary driven flow is discussed and the main theoretical

models, pore structure parameters, analogies and governing equations are introduced. The third

chapter deals with a dimensionless scaling of the equation of motion. By this investigation the

fundamental physics can be examined. Furthermore, the process of capillary dominated flow

can be understood with a deeper insight than the dimensional consideration would allow. It

also allows the classification of the rise process into different time stages under the impact of

different corresponding forces. Chapter four investigates the transition from inertia dominated

flow stage to the viscous stage during capillary rise. This helps to identify a priori the dominant

forces that govern the flow. In the fifth chapter, analytical solutions including the gravity term,
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Figure 1.5: Cross section of a heat pipe used for cooling computer processors. Capillary trans-

port is obtained by application of a grooved surface and copper gauze [108].

based on the implicit Washburn equation, are introduced. The discussion of the results allows

to understand and predict capillary flows for an extended range of time. Some numerical

simulations (CFD) and a macroscopic model of capillary rise is presented in the sixth chapter.

The second part of this work investigates special cases of relevance to applications in spaceflight.

The aim is to conduct fundamental research and to develop verified mathematical models that

enable engineers to design enhanced PMDs. In chapter seven the linear capillary rise in thin,

porous, metallic structures and glass filter frits is investigated. Also the effect of evaporation

on capillary rise is determined. The interest arises particularly due to the actual development

of a cryogenic, restartable upper stage (ESC-B) for the European launcher Ariane 5 (see Fig.

1.3). The eighth chapter discusses radial capillary transport in porous structures. This is in

contrast to the previous chapters which all investigate linear transport. However, similar to the

previous chapters a mathematical model is derived to describe the flow. An experimental setup

for outward wicking is used to validate the analytical model. Thus, one is able to determine

the validity of the derived solution and to discuss the assumptions made during the derivation

of the model.
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Part I

Fundamental discussion of capillary

flow
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Chapter 2

Theory of capillary dominated flows -

State of the art

2.1 Literature review

2.1.1 Capillary rise

Due to the numerous applications of capillary transport - as described in the previous chapter -

there exist many publications dealing with this problem, the mathematical description as well

as the physical explanation. Since several hundred years, researchers (e.g. in 1712 Taylor [100],

1712 Hauksbee [42], 1717 Jurin [49], 1805 Young [111], 1806 Laplace [25] or 1908 Ostwald [76])

investigate capillary rise and try to develop equations for the maximum reachable height and

relations between height and elapsed time. In 1918 Lucas [61] and 1921 Washburn [104] provide

the first analytical explanation for the observed capillary rise velocity. They consider a flow

regime where the influences of inertia and gravity can be neglected. By omitting some terms

of the momentum balance, they derive an analytical solution providing the meniscus height as

a function of time. Comparison of the predicted values with experimental results shows good

agreement, however it also points out the limitations of the model. Thus, in following publi-

cations, many researchers tried to add missing or neglected terms to the momentum balance

to extend the validity of the derived solutions, or otherwise to determine the impact of the

neglected terms (e.g. in 1922 Rideal [81], in 1923 Bosanquet [11], and in recent years Siebold et

al. [89], Hamraoui and Nylander [41], and Lavi et al. [55]). Ichikawa and Satoda [47] describe

the interface dynamics of capillary flow and derive dimensionless variables.
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2.1.1.1 New experimental techniques and numerical approaches

Due to the advances in the power of computers in the 1960s it has become possible to numerically

solve differential equations (e.g. by a Runge-Kutta algorithm, 1971 Szekely et al. [99]) or to

conduct simulations (CFD) of capillary dominated processes. The improving measurement

technology available for the experiments has triggered several new approaches to investigate

the capillary rise in the very first moments after the contact using high speed cameras (Quéré

[78]). The behavior in microgravity environments is examined by Dreyer et al. [31] and Stange

et al. [96]. Details of the flow field at the meniscus are experimentally investigated using

Micro Particle Image Velocimetry (μPIV) by Nasarek et al. [73]. Influence of a phase change

(condensation, evaporation) at the meniscus in a capillary tube is examined by Ramon and

Oron [80].

2.1.1.2 Flow regimes

Based on the momentum equation, Stange [95, 96] claims that the capillary rise process can be

divided into four successive stages with i) an initial h ∼ t2 domain corresponding to the local

acceleration of the liquid, ii) a h ∼ t domain related to the convective losses, iii) a h ∼ √
t

domain related to viscous dissipation and finally iv) a h ∼ 1 − e−(1+t) domain due to the

gravity deceleration. These domains show transitions at specific, characteristic times which

are also addressed by Fries and Dreyer [36]. The inertia dominated flow regime in capillary

tubes is examined previously in depth by Quéré [78] and Quéré et al. [79]. They notice that

oscillations occur if the fluid viscosity is low enough. In contrast, for some cases - mostly very

small capillaries and setups with porous media - the inertial forces can be neglected. In the non-

inertial capillary flow regime many authors, for example Dodge [27], Symons [98] and Washburn

[104], apply a simple model in which the capillary pressure is balanced only by viscous friction

and hydrostatic pressure. Zhmud et al. [112] give a good overview to solutions for different

time regimes and derive short and long time asymptotic solutions. Siebold et al. [89] carry out

capillary rise experiments in glass capillaries and packed powder to investigate the effect of the

dynamic contact angle. Hamraoui and Nylander [41] provide an analytical approach for setups

with a highly dynamic contact angle. Chan et al. [18] provide factors affecting the significance

of gravity on infiltration of a liquid into a porous medium. Xue et al. [110] report on dynamic

capillary rise with hydrostatic effects. In a recent paper Chebbi [19] investigates the dynamics

of liquid penetration and compares numerical results with asymptotic solutions.
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2.1.2 Porous media

When a fluid enters a porous medium due to capillary effects, a complex flow field develops

within its pores. This wicking depends on geometrical and physical properties of the structure

(see Fig. 2.1) and the physical properties of the liquid. Many authors have considered this

capillary penetration of liquids into porous media: Van Oss et al. [102], for example, determine

contact angles and pore sizes of porous media by column and thin layer wicking. They demon-

strate that low-surface-energy liquids pre-wet the surface over which they subsequently spread.

Siebold et al. [89] focus on total wetting liquids in powders featuring a zero degree contact

angle at equilibrium. They show that during the rising process the contact angle is higher than

expected and propose a new method to re-calculate the constant terms in the Lucas-Washburn

equation. A review article written by Bachmann et al. [3] describes the available methods to

determine the wetting properties of porous media. Chibowski et al. [20] review existing litera-

ture on formulation and determination of free surface energy. Furthermore, they depict contact

angle problems that also involve spreading liquids. Delker et al. [26] and Lago and Araujo [54]

write about the rise of liquids in columns of glass beads and observe Lucas-Washburn behavior

for small time scales, however deviations for later times. Lockington and Parlange [59] find

an equation for the capillary rise in porous media. Marmur and Cohen [65], [67] characterize

porous media by analyzing the kinetics of capillary penetration. The extraction of pore struc-

ture parameters from capillary rise observations is also described by Fries et al. [39]. When

reviewing actual literature, many recent publications on the topic of porous media can be found.

This depicts the importance of the still unresolved questions. For instance, Lavi et al. [55] aim

to characterize porous media, Masoodi et al. [70] focus on liquid absorption in polymer wicks,

while Siddique et al. [88] investigate capillary rise in deformable porous media.

2.1.2.1 Bundle of capillary tubes approach

Many models describing porous media are based on the assumption that the pore spaces cor-

respond to a “bundle of capillary tubes”. In particular, this includes the previously mentioned

works of Lucas [61] and Washburn [104] who study dynamic invasion of fluid into a cylindrical

capillary or a porous medium. Levine et al. [57, 58] examine the momentum balance and inves-

tigate the departure from Poiseuille flow in the vicinity of an advancing meniscus in a vertical

cylindrical capillary. They investigate capillary rise in tubes as well as in parallel plate chan-

nels. Marmur [65] examines the thermodynamic and kinetic effects on capillary penetration in

systems of limited size. The capillary tube analogy is also the background for an approach that
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aims to improve the consistency with real porous media. Here, the capillary tube is assumed to

be non-uniform - for example sinusoidally constricted (varying in diameter) - which is proposed

by Hemmat and Borhan [44], Staples and Shaffer [97] and Patro et al. [77].

2.1.2.2 Darcy law approach

An alternative to using the capillary tube analogy is to apply the Darcy law to determine the

viscous friction losses. This approach is, for example, used by Symons [98] and Marmur [66].

Further details on the Darcy law are provided in sections 2.2 and 2.5. Symons [98] conducts a

study to determine the magnitude of wicking rates in various metallic screens, including the one

also investigated in chapter 7 of this work: Dutch Twilled Weave (DTW) 200× 1400. Symons

develops an analytical model for the wicking process which expresses the wicking velocity as a

function of liquid properties and geometrical parameters. His experimental results confirm the

validity of this model. However, due to the complexity of the pore geometry within the screen,

it is necessary to merge several screen geometry parameters into a single constant. Furthermore,

he investigates the effect of evaporation and local heat sources as well.

2.1.2.3 Green and Ampt approach and saturation issues

As recently pointed out by Barry et al. [4], the Green and Ampt [40] model represents a further

alternative to the above models. The Green and Ampt model, which is often used by soil science

researchers, describes the capillary rise or infiltration of water into soils. To describe the viscous

losses they consider - analogous to the Darcy law - the permeability, while the capillary pressure

is described using an empirical, integral constant determined by experiments. Barry et al. [4]

also point out that the models (capillary tube analogy, Darcy approach and Green and Ampt

model) all feature a sharp front between the dry and the wetted porous structure. Therefore,

“the weave’s saturation has only two states, completely saturated (all the pore space is filled

with liquid) or completely unsaturated (all the pore space contains no liquid)” [4]. In all the

models introduced before, the porosity φ (volume of pore space divided by total volume) is set

to equal the saturation, which is only the case if the pore space is completely filled with liquid.

The actual saturation depends on the local pressure and can be described using the “capillary

pressure function”, which often features a hysteresis for drainage and imbibition respectively.

This topic is extensively discussed by Dullien [32] page 132 ff. Thus, the actual saturation

must depend on the position within the porous structure (top or bottom when gravity forces

apply) and can be lower than the maximum possible saturation, which is determined by the
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porosity. Barry et al. [4] state: “The non-constant φ (author’s note: in this context the liquid

content) in the profile is largely due to the capillary diffusion of liquid in the weave. The

capillary diffusion coefficient in a porous medium can be approximated by a power law, ∼ φn,

with 4 ≤ n ≤ 8 [15] (a.n. by Brooks and Corey) (if n → ∞, φn approaches a delta function in

which case φ becomes uniform and, for imbibition, the two-state saturation model ... ensues).

The parameter n is an empirical, medium-dependent constant. ... the liquid content φ is a

function of position x given by Eq. (6) in [16] as x/xf = 1 − (φ/φ0)
n, where xf is the position

of the wetting front and φ0 is the value of φ at saturation. Then the average liquid content is

given by (xf φ0)
−1
∫ φ0

0
x dφ = n/(n+ 1).”

Though the physical considerations discussed above are correct their actual effect on capillary

transport will vary from case to case. For some setups no influence will be measurable as

demonstrated in the experimental chapters of this work. It can be assumed that at least two

parameters, the uniformity of the pore sizes and the difference in local pressures, will affect

how different the local degrees of saturation will be. For the theoretical models developed in

this work a sharp jump in saturation is assumed at the interface position, while for further

investigations microscopic simulations of the liquid within the pores may reveal further details

on this issue.

2.2 Pore structure parameters and analogies

2.2.1 Porosity

The porosity φ, relating the volume of pores to the total volume of the medium, is defined by

φ =
VPores

VPorousMedia

. (2.1)

For most cases this definition is sufficient but for porous media with closed pores, e.g. like

some foams, one has to distinguish between open porosity and closed porosity [83]. Open

porosity refers to the pore volume which is accessible by a test liquid, while closed porosity will

not influence wicking processes. However, it can be measured using the density of the porous

structure. The porous media investigated in this work, as schematically displayed in Fig. 2.1,

are all considered to have an open porosity only.
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Figure 2.1: a) Vertical capillary rise setup using a generic porous medium. The liquid is wicking

into the pore space formed between solid spheres. b) Scanning electron microscope image of

the actual structure of a filter frit P5 (pore diameter 1 - 1.6 μm; courtesy F. Krause).

2.2.2 The Darcy law and extensions

The Darcy law was developed by H. Darcy in 1856 [24]. By investigating the flow of water

through sand, it was found that the viscous pressure loss can be described by

∇p = − μ

K
�vs, (2.2)

where vs is the volume averaged velocity (superficial velocity). The factor K is a factor de-

pending on the pore geometry and pore size of the structure and is denoted permeability. The

higher the permeability is, the easier the liquid can pass the porous obstacle and the lower the

pressure drop will be. A comparison between the Hagen-Poiseuille law for the viscous loss in

a cylindrical tube (as introduced later in Eq. (2.45)) and the Darcy law Eq. (2.2) shows that

both equations are interchangeable with each other so that

R2 =
8K

φ
. (2.3)

The porosity φ is included as the laws are defined for the interstitial (Hagen-Poiseuille) and

the superficial velocity (Darcy) respectively. This analogy will be of interest again in the next

section.

The Darcy law, predicting a linear relation between pressure drop and flow velocity, is only

valid for small Reynolds numbers where convective terms can be neglected and viscous terms

dominate. Due to the different pore geometries no specific critical pore Reynolds number can

be provided for the validity of the Darcy law, as they vary between 0.1 and 75 ([32] page 245).
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To account for the convective terms the Forchheimer equation can be applied

Δp

L
=

μ

K
vs + βFρ v

2
s . (2.4)

Here βF , which has to be experimentally determined, is denoted “inertia parameter” [32] or

Forchheimer coefficient. There also exist various empirically or theoretically derived equations

like the Ergun equation, the Carman-Kozeny equation or the Brinkman equation [32] which

give K or βF as a function of φ and the average particle size if packed spheres are considered.

Due to their limitation to certain porous materials they will not be explicated here.

2.2.3 Static radius

In anticipation of later results the capillary pressure of a cylindrical tube is given by Eq. (2.27)

Δp =
−2σcos(θ)

R
. (2.5)

Considering porous materials the capillary pressure will be depending on the local pore size

and saturation as described in section 2.1.2.3. Despite this physical background the average,

macroscopic capillary pressure can be calculated using Eq. (2.5) with a slight modification

Δp =
−2σcos(θ)

Rs

. (2.6)

Here, R is replaced by the “static radius” Rs to emphasize that the porous structure does

not consist of capillary tubes with a specific radius R. One also assumes that the porous

medium features a uniform pore size, which actually applies for few cases only. Despite these

simplifications Rs still is a useful parameter to determine the capillary pressure as will be

shown in the experimental chapters of this work. The static radius Rs can be calculated from

the maximum obtainable “static” height heq, see Eq. (5.27)

heq =
2σ cos(θ)

Rsρg
, (2.7)

which can be measured experimentally. Further alternatives which are not applied in this work

are the radii measured by mercury intrusion porosimetry (as proposed by Washburn [105]),

radii determined by optical and tomography methods, or radii obtained from bubble point

considerations. It is important to notice that some of these methods will not provide a single

defined radius, but a pore size distribution that features a maximum and a minimum pore

size. This is of relevance if one seeks to microscopically simulate and understand the occurring

processes.
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With Rs the last pore structure parameter of great relevance for this work is introduced. The

three parameters K, Rs and φ will be applied in all mathematical models which are derived

and can be considered a central theme spanning the different chapters (e.g. see section 7.2 ff.

for a discussion of the experimental approaches to determine the parameters).

As previously mentioned an analogy exists between linear capillary transport in a cylindrical

tube and linear capillary transport in a porous structure. The advantage of the capillary tube

is that - in contrast to porous media - all of its “pore structure parameters” are known with

the tube radius R and φ = 1. Thus, as the physical processes occurring in both setups are

the same, capillary tubes can be considered to be a good model medium for theoretical and

experimental investigations of the flow in other porous structures. A further analogy can be

found to capillary rise between parallel plates as presented in Eq. (8.29). There also exists an

analogy between radial capillary transport in porous structures as studied in chapter 8 and the

radial capillary between two plates as investigated by Marmur [64], see Fig. 8.18.

2.3 Radial capillary transport

Radial capillary transport, as discussed in chapter 8, is a basic mechanism that works under

variable gravity conditions including weightlessness. Therefore, it is also of interest for space ap-

plications like Propellant Management Devices that ensure an undisturbed fuel supply. Within

these devices, the capillary force is bound to porous, mostly woven structures like stainless steel

weaves. If the liquid fuel comes in point contact with the porous structure for the first time,

it imbibes it radially outward. If due to evaporation a part of the porous structure has fallen

dry, it will be re-wetted by radially inward imbibition.

As previously discussed, linear capillary transport in a porous medium can be modeled by the

capillary bundle theory. Consequently, when it comes to radial capillary transport in a porous

medium, one might assume a radial capillary as done by Marmur [64]. He analytically studies

the radially outward movement of a meniscus between two parallel plates with a liquid supply

hole in the middle. This theory is experimentally supported by Danino and Marmur [23] who

use filter paper for their experiments. The similarity between Marmur’s hydrodynamic model

and the porous model presented here will be explained later on in the discussion. Numerical cal-

culations with Marmur’s model are presented by Hsu and Ashgriz [46]. Smiles [91] investigates

the connection between capillary suction time and filter properties of some papers. Capillary

spot spreading in textile assemblies is examined by Kissa [53] and Kawase et al. [51].
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In contrast to such flat radial geometries Bernet et al. [9] and Neacsu et al. [74, 75] describe

the problem of yarn impregnation. Here the yarn that consist of many single fibers is imbibed

from the outside inwards and can be modeled as an assembly of cylinders. A problem of such

a non-flat geometry is that the advancing meniscus traps the fluid in the core of the cylinder

assembly. This circumstance is also tackled by Standnes [94] and Mason et al. [68] who consider

imbibition of water into oil-wetted cylinders with different aspect ratios.

2.4 Linear flow in a tube: Governing equations

In this section the governing equations describing the dynamics of a liquid with a meniscus

in a capillary tube or a porous medium are derived. At first, the focus is on capillary rise

in cylindrical tubes. The control volume approach as proposed by Levine et al. [58], which

was later extended by Stange [95] and Dreyer [30] is applied. This integral method allows to

balance properties like mass, energy and momentum inside the control volume. Using these

balances - especially the momentum balance - the governing equation of motion can be derived.

However, attention must be given to the appropriate selection of boundary conditions, which

are introduced in the following section. Fig. 2.2 displays a schematic drawing of a capillary tube

in contact with a liquid including the applied control volumes. Here, the fill level is assumed

to be constant during the rise process as the size of the reservoir is much larger than the tube.

In the later part of this section, the applicability of the derived equation to porous media, and

the conversion to a viscous pressure loss described by the Darcy law is given.

2.4.1 Meniscus details

In this section some details of the geometric properties of the liquid meniscus are discussed. As

shown in Fig. 2.2, the liquid height h is defined as the volume effective height, not the absolute

maximum or minimum height of the liquid within a capillary tube. It relates the total volume of

liquid in the tube to a liquid column with radius R, height h and a flat surface. In setups under

the impact of gravity, the surface contour of the meniscus is not a spherical cap, but deformed

due to the hydrostatic pressure difference between upper and lower part of the meniscus. For

this section however, a spherical cap meniscus (valid for small Bond numbers; see Table 3.3

for definition) is assumed, which also implies that both principal radii of curvature (R1 and

R2 which lie perpendicular to each other) are identical for the entire surface. Despite these

assumptions, the approach allows to briefly examine the characteristic geometry and lengths of
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Figure 2.2: Schematic drawing of the geometry. The control volumes and the control surfaces

are shown.

a meniscus. Fig. 2.3 displays a sketch of a meniscus and the definitions used in this study. As

described by Stange [95] and Dreyer [30] the radius of curvature can be calculated using the

tube radius as well as the contact angle θ

R1 cos (θ) = R. (2.8)

In the following the equation given by Bronstein and Semendjajew [13] for a spherical cap is

applied

R2 = hm(2R1 − hm). (2.9)

and

V1 =
1

6
πhm(3R2 + h2

m) (2.10)

for the spherical cap volume. With Eqs. (2.8) and (2.9) and by canceling out an unphysical

solution, the meniscus height can be calculated to be

hm = R

(
1

cos (θ)
− tan(θ)

)
. (2.11)

To obtain the position of the volume effective height h (by using ht and hc), one can correlate

the volume of the spherical cap with the corresponding cylinder

πR2ht =
1

6
πhm(3R2 + h2

m). (2.12)
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Figure 2.3: Schematic drawing of a liquid meniscus and the relevant lengths. The meniscus

equals a spherical cap for small Bond numbers.

Finally the equations read

ht =
1

6
hm

(
3 +

h2
m

R2

)
, (2.13)

and (see Fig. 2.3)

hc = hm − ht. (2.14)

2.4.2 Mass balance

To investigate the flow velocities one can apply an integral approach (White [106]) for the mass

within the control volume Va (see Fig. 2.2)(
dm

dt

)
syst

= 0 =
d

dt

⎡⎣∫∫∫
Va

ρ dVa

⎤⎦+

∫∫
Sa

ρ (�vrel · �n)dSa. (2.15)

This equation can be rewritten more specified to Fig. 2.2 yielding

0 =
d

dt

⎡⎣ h∫
0

2π∫
0

R∫
0

ρ r dr dϕ dz

⎤⎦+

2π∫
0

R∫
0

ρ (�vrel · �n)r dr dϕ. (2.16)

Here, �vrel denotes the relative velocity with respect to the control volume boundary. If the

upper boundary is defined to move upwards with the meniscus velocity ḣ, the relative velocity

at the upper boundary is zero. Thus, the balance can be simplified to read

0 = πρR2ḣ+ πρR2(�vrel · �n). (2.17)

The last term of Eq. (2.17) refers to the inflow at the tube inlet. Therefore, the inflow velocity

at the tube bottom has to be equal to ḣ to satisfy the mass balance (note that �vrel · �n has a

negative algebraic sign due to the orientation of the surface).
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2.4.3 Energy balance

For the energy the integral conservation equation is given by

dE

dt
=
dQ

dt
− dW

dt
=

d

dt

⎡⎣∫∫∫
Va

(
v2

2
+ u+

p

ρ
+ gz

)
ρ dVa

⎤⎦+

∫∫
Sa

(
v2

2
+ u+

p

ρ
+ gz

)
ρ(�vrel · �n)dSa, (2.18)

which is a rearranged form of the equation given in [106]. Q denotes heat added to the system

while W denotes work done by the system. u refers to the inner energy of the fluid, which can

be often described by cvT . Analogous to the mass balance, the specific form of Eq. (2.18) for

the investigated control volume reads

dE

dt
=

d

dt

⎡⎣ h∫
0

2π∫
0

R∫
0

(
v2

2
+ u+

p

ρ
+ gz

)
ρ r dr dϕ dz

⎤⎦+

2π∫
0

R∫
0

(
v2

2
+ u+

p

ρ
+ gz

)
ρ(�vrel · �n)r dr dϕ. (2.19)

2.4.4 Linear momentum balance in z direction

Finally, the integral approach is applied to the momentum as well [106]. This balance is

probably the most fundamental and important one since it is the basis for many theoretical

approaches to capillary rise

d

dt
(mvz)syst =

∑
F =

d

dt

⎡⎣∫∫∫
Va

ρvzdVa

⎤⎦+

∫∫
Sa

ρvz(�vrel ·�n)dSa = Fpu +Fpl +Ffr +Fgr. (2.20)

Here, the boundary conditions (see Fig. 2.4) are given by the following forces where

• Fpu is the pressure force at the upper boundary

• Fpl is the pressure force at the lower boundary (the inlet)

• Ffr is the viscous friction losses at the tube wall

• Fgr is the volume force due to gravity.

These forces are discussed in more detail in the following sections. Again, one can provide Eq.
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Figure 2.4: Schematic drawing of the forces and boundary conditions acting on the liquid

column during the capillary rise process.

(2.20) in a more specific form

d

dt

⎡⎣ h∫
0

2π∫
0

R∫
0

ρ ḣ r dr dϕ dz

⎤⎦+

2π∫
0

R∫
0

ρḣ(−ḣ)r dr dϕ = Fpu + Fpl + Ffr + Fgr. (2.21)

By solving the integrals, one obtains[
πR2ρhḧ+ πR2ρḣ2

]
− πR2ρḣ2 = Fpu + Fpl + Ffr + Fgr, (2.22)

and

πR2ρhḧ = Fpu + Fpl + Ffr + Fgr. (2.23)

2.4.4.1 Pressure force at upper boundary

The force at the upper boundary can be calculated using the pressure integral over the upper

control surface

Fpu = −
2π∫
0

R∫
0

prdrdϕ = −
2π∫
0

R∫
0

(pa + Δp)rdrdϕ. (2.24)

Here, in addition to the ambient pressure pa, a pressure drop Δp across the upper liquid surface

has to be considered. It occurs due to the bending of the liquid surface due to capillary action,

and it can be calculated using the Young-Laplace equation

Δp = −σ
(

1

R1

+
1

R2

)
. (2.25)
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Here, R1 and R2 (which lies perpendicular to R1) denote the principal radii of the meniscus,

see Fig. 2.3. In case of a capillary tube where gravity is not distorting the spherical cap shape

of the meniscus (for small Bond numbers) the principal radii can be calculated using the tube

radius and the contact angle θd

R1 = R2 =
R

cos(θd)
. (2.26)

Thus, the capillary pressure reads

Δp =
−2σ cos (θd)

R
. (2.27)

For dynamic systems, one has to keep in mind that the contact angle may not have a static

value. Instead it can be shown to depend on the meniscus velocity (the Capillary number Ca).

Empirical equations are available for the dynamic contact angle θd; e.g. Jiang et al. [48] (based

on data by Hoffman [45]) give

cos(θd) − cos(θs)

cos(θs) + 1
= − tanh(4.94 Ca0.702), (2.28)

while Bracke et al. [12] find
cos(θd) − cos(θs)

cos(θs) + 1
= −2 Ca0.5. (2.29)

Here, the capillary number is defined as

Ca =
μḣ

σ
. (2.30)

In anticipation of later results the maximum theoretical value of ḣ can be obtained by differ-

entiation of Eq. (4.3), and herein considering θs as conservative assumption. Thus

Ca =
μḣ

σ
= μ

√
2 cos(θs)

σρR
, (2.31)

can be used as a rough estimate to calculate the maximum dynamic contact angle using

Eq. (2.28) or Eq. (2.29). However, one should keep in mind that this angle will only de-

velop within the initial moments with high rise velocity. The velocity slows down fairly fast

and assuming a constant contact angle becomes feasible for later time stages.

To take into account the time the meniscus takes to develop out of a flat liquid surface the

approach given by Stange et al. [96] is applied. Here, a factor s(t) defined by the exponential

function

s(t) = 1 − e−4.6t/tr (2.32)
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is used to retard the capillary pressure. tr denotes the reorientation time of a flat liquid surface

in a cylindric tube suddenly exposed to microgravity as described by Siegert et al. [90]. It is

developed from drop tower tests, and defined by

tr = 0.413

√
ρR3

σ
. (2.33)

Finally, the boundary condition for the upper control surface reads

Fpu = −πR2

(
pa − s(t)

2σ cos (θd)

R

)
. (2.34)

2.4.4.2 Pressure force at the lower boundary

Analogous to the upper boundary one can determine the force at the lower boundary by a

pressure integral

Fpl =

2π∫
0

R∫
0

p r dr dϕ =

2π∫
0

R∫
0

(pa − pVb
)r dr dϕ. (2.35)

Again, pa denotes the ambient pressure, which - in the momentum balance - later cancels out

the ambient pressure at the upper boundary. pVb
refers to the pressure losses in the control

volume Vb. This pressure loss is calculated by Levine et al. [58] while a refined calculation is

provided by Stange [95]. Here, the equation by Stange is used, however, without the terms that

are introduced to account for the special experiment design optimized for microgravity. As his

liquid reservoir featured a pinned free surface, a decrease in the reservoir pressure had to be

taken into account with decreasing fill level. Finally the boundary condition at the tube inlet

is given by

Fpl = πR2

⎛⎜⎝pa −

⎡⎢⎣11

12
ρRḧ︸ ︷︷ ︸
1

+ 2
μ

R
ḣ︸︷︷︸

2

+
23

24
ρḣ2︸ ︷︷ ︸
3

⎤⎥⎦
⎞⎟⎠ . (2.36)

Here the individual terms denoted 1 to 3, can be understood as follows:

1. Local acceleration of liquid below the tube

2. Viscous loss below the tube

3. Convective acceleration losses

Stange [95] notes, that the precision of the coefficients (e.g. 11/12) used in Eq. (2.36) should not

be overestimated. This uncertainty originates from the assumptions used for the determination

of pVb
, which also explain the slight deviations to the coefficients used by Levine et al. [58] who

use 37/36 for term 1 and 7/6 for term 3.
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It is important to mention that Eq. (2.36) is only valid for a rising column. For a falling column

- as it occurs in oscillating cases - the different flow characteristics at the tube inlet have to be

considered. While for the rising column it acts as a sink, a jet or vortex may be emitted for the

falling column. Here, for the descending case, the ḣ2 term (term 3) is omitted as discussed and

experimentally validated by Lorenceau et al. [60]. In this work however, most of the analysis

is restricted to cases with a rising column while a falling one is only explicated in chapter 3

where inertia dominated, oscillating cases are discussed.

2.4.4.3 Viscous friction losses at the tube wall

To estimate whether the flow is in the laminar or turbulent regime, the following approach can

be applied: The maximum flow velocity is estimated using the analytical solution by Quéré

[78], taking into account capillary and inertial forces. It gives a rise with constant velocity (see

Eqs. (4.2) and (4.3) for further detail)

vQ =

√
2σ cos(θ)

ρR
. (2.37)

In this example the fluid properties of silicone fluid SF 0.65 (see Table 2.1) are used, as it

features a low viscosity and thus is most critical to reach turbulent flow. The Reynolds number

is calculated based on the tube diameter

ReD =
Dḣρ

μ
=

2RvQρ

μ
. (2.38)

Applying the conservative assumption of a contact angle of 0◦ (perfect wetting), one can plot

the Reynolds number as a function of tube radius as displayed in Fig. 2.5. It can be observed,

that the Reynolds number for the range of radii relevant for this work (R ≤ 1 mm) is smaller

than 2300, so that the flow is in the laminar regime.

Table 2.1: Fluid properties of silicone fluid SF 0.65 (kinematic viscosity of 0.65 cSt) at 25 ◦C.

Source: product data sheet of Dow Corning.

σ [mN/m] ρ [kg/m3] μ [mPas]

15.9 758 0.49

For laminar flow the viscous pressure losses in a cylindrical tube with a fully developed flow

field can be described by the Hagen-Poiseuille law (see Eq. (2.45)). However, as the liquid

enters the tube at the lower boundary, this flow field has not yet developed. The length at



2.4. LINEAR FLOW IN A TUBE: GOVERNING EQUATIONS 27

Figure 2.5: Maximum Reynolds number for silicone fluid SF 0.65 as a function of capillary tube

radius.

which a fully developed flow can be observed, the entrance length Le, is given by White [106]

to be

Le ≈ 0.06DReD = 0.06
D2ḣρ

μ
. (2.39)

During the development of the laminar flow profile an excess pressure drop can be observed.

Stange et al. [96] used the model of Sparrow et al. [92] to calculate this excess pressure drop.

Including this model, the total viscous pressure losses are given by

Ffr = −πR2

(
8
μ

R2
hḣ+

1

2
ρKsḣ

2

)
. (2.40)

Here, Ks denotes a coefficient for the excess pressure drop given by Sparrow et al. [92] to be

Ks(ĥ) =
4

3
+

25∑
i=1

8

α2
i

(
e−4α2

i ĥ − 3
)
e−4α2

i ĥ, (2.41)

with ĥ = h/(D ReD) and αi as given by [92].

2.4.5 Gravity force and inclination

The volume force developing due to gravity can be accounted for using

Fgr = −
∫∫∫

Va

ρg dVa = −
h∫

0

2π∫
0

R∫
0

ρgr dr dϕ dz = −πR2ρgh, (2.42)
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Figure 2.6: Setup with a tube inclined by an angle ψ. Note that h denotes the distance covered

within the tube.

where g denotes the gravitational acceleration. In setups with gravity, ψ (see Fig. 2.6) is

defined to be the angle formed between the inclined tube and the horizontal free liquid surface.

It shall be mentioned that for an inclined setup the equations derived in this work keep their

validity except for two changes. First of all, the height h is not the absolute height in respect

to the horizontal liquid reservoir level but the distance covered within the tube (see Fig. 2.6).

The second change concerns the effective gravitational acceleration. Here the inclination has

to be considered and g in the equations will have to be replaced by an effective ge defined by

ge = g sinψ. (2.43)

2.4.5.1 The full linear momentum balance

By substituting Eqs. (2.34, 2.36, 2.40, 2.42) in Eq. (2.23), one obtains after dividing by (−πR2)

−ρhḧ︸ ︷︷ ︸
1

= −2σ cos(θd) s(t)

R︸ ︷︷ ︸
2

+
11

12
ρRḧ︸ ︷︷ ︸
3

+ 2
μ

R
ḣ︸︷︷︸

4

+
23

24
ρḣ2︸ ︷︷ ︸
5

+ 8
μ

R2
hḣ︸ ︷︷ ︸

6

+
1

2
ρKsḣ

2︸ ︷︷ ︸
7

+ ρgh︸︷︷︸
8

(2.44)

Here, the individual terms can be understood as follows:

1. Local acceleration of the liquid inside the tube

2. Capillary pressure

3. Local acceleration of the liquid below the tube
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4. Viscous losses below the tube

5. Convective flow losses at the entrance of the tube

6. Viscous losses in the tube (Hagen-Poiseuille)

7. Sparrow et al. entrance function

8. Hydrostatic pressure

One can compare Eq. (2.44) to the momentum balance used by Stange et al. [95, 96]. It is found

that both solutions are fairly similar, however, deviations can be traced back to the different

boundary conditions. Stange et al. include a deviation in height between the liquid surface

and the lower tube end (called h0) and have to account for retarding capillary pressure in the

liquid reservoir. These terms are not relevant for the cases investigated in this study. Contrary

to Stange et al., who used a reservoir featuring a pinned surface optimized for micro-gravity

environments, a mathematically infinite reservoir is applied [96].

2.4.6 Simplified linear momentum balance and corresponding as-

sumptions

The full momentum balance Eq. (2.44) contains all known terms to describe the movement

of the meniscus. However, due to its complexity it can only be solved numerically. Thus, a

common approach (as for example applied in [112]) is to simplify Eq. (2.44) by neglecting

certain terms. In this context, the solution is restricted to the cases where the neglected

terms are actually small compared to the other ones. In the following, some commonly made

assumptions are stated and a simplified momentum balance is presented.

• No entry effects: One can see that the entrance length Le decreases quadratically with

decreasing tube diameter d as introduced in Eq. (2.39). In conclusion, the entrance

length can be neglected when compared to the meniscus height h for small tube radii.

Thus, the Hagen-Poiseuille term in Eq. (2.40) dominates the excess pressure term. As

the focus of this work is the description of capillary rise in porous materials or capillary

tubes with pore / tube radii of less than one millimeter, the excess pressure term will

be - contrary to Stange et al. [96], who investigated tubes of up to 54 mm radius -

neglected in the following calculations. Thus the total viscous pressure loss is given by

the Hagen-Poiseuille law
Δp

Δz
= −8μ

R2
vz, (2.45)
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so that the viscous friction force reads

Ffr = −πR2 8μ

R2
hḣ. (2.46)

• Constant capillary pressure: For many analytical models the capillary pressure is assumed

to be constant. Hence, a static contact angle θ is used (for a discussion see section

2.4.4.1, Siebold et al. [89] or Fries and Dreyer [36]). Also, the coefficient s(t), describing

the development of the meniscus in the first initial moments - and thus the capillary

pressure - is dropped.

• Viscous and local acceleration (ḧ) terms in the liquid reservoir are neglected as they are

typically (for small capillaries) small compared to the losses in the tube itself. Also the

factor 23/24 of the convective acceleration term is dropped as its accuracy should not be

overestimated (see section 2.4.4.2).

With these assumptions the equation of motion is given by (e.g. Bosanquet [11] or Zhmud et

al. [112])

−ρhḧ− ρḣ2 = −ρd(hḣ)
dt

= −2σ cos(θ)

R
+

8μh

R2
ḣ+ ρgh. (2.47)

In this equation, the momentum change (local and convective, left hand side) is balanced by the

capillary pressure, the viscous forces and the hydrostatic pressure (left to right). An alternative

is to rearrange the terms of Eq. (2.47) to highlight their physical meaning

2σ cos(θ)

R
= ρ

d(hḣ)

dt
+

8μh

R2
ḣ+ ρgh. (2.48)

In Eq. (2.48) one can see that the capillary pressure (left hand side) is balanced by the sum of

inertial, viscous and hydrostatic forces. All terms on the right hand side are depending on h or

ḣ, whereas the left hand side remains constant during the entire rise process.

2.5 Equation for porous media using the Darcy law

To derive an equation for the capillary rise of liquid in a porous medium the pore structure

parameters and the analogy between capillary dominated flow in a cylindrical tube and in a

porous medium as introduced in section 2.2 are considered. With the pore structure parameters

K, Rs and φ the momentum balance Eq. (2.47) can be rewritten

−ρd(hḣ)
dt

= −2σ cos(θ)

Rs

+
φ

K
μhḣ+ ρgh. (2.49)
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Here, valid for small pore Reynolds numbers, the viscous losses are expressed by the Darcy

law neglecting the convective terms of the Forchheimer equation as done by Symons [98] and

Marmur [66] in this context. The radius R, used to calculate the capillary pressure in tubes, has

been replaced by the static radius Rs which can be calculated from the maximum obtainable

“static” height. One also assumes that the porous medium features a uniform pore size, which

actually applies for few cases only. Nevertheless, this simplified model can be successfully

applied to describe capillary rise in porous media (see chapter 7).

2.6 Radial flow in porous media: Governing equations

In the following the relations for a radial capillary setup are investigated. This section is

not considered being state of the art, yet it is placed within that chapter as it is a logical

extension to the previous work. The approach is fairly analogous to the method introduced in

the section for linear transport, however, there are some differences due to the radial motion

which is addressed in the following. Figure 2.7 displays a drawing of the basic geometry and

the boundary conditions.

2.6.1 Mass balance

Analogous to linear transport, the integral mass balance (White [106]) reads(
dm

dt

)
syst

= 0 =
d

dt

⎡⎣∫∫∫
Va

ρ dVa

⎤⎦+

∫∫
Sa

ρ(�vrel · �n)dSa. (2.50)

For the control volume Va as introduced in Fig. 2.7 (H denotes thickness of porous structure)

one can write

0 =
d

dt

⎡⎣ H∫
0

2π∫
0

rf∫
r0

ρ r dr dϕ dz

⎤⎦+

H∫
0

2π∫
0

ρ(�vrel · �n)r dϕ dz. (2.51)

Again, �vrel denotes the relative velocity with respect to the boundary. If the outer boundary

of the control system is defined to move with the wicking front velocity ṙf the relative velocity

at the outer boundary is zero, and the balance can be simplified to read

0 = 2πHρ rf ṙf + 2πHρ r0(�vrel · �n). (2.52)

From this, the following velocity distribution within the radial structure can be calculated

r0v0 = rvr(r) = rf ṙf . (2.53)
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Figure 2.7: Schematic drawing of the boundary conditions for radial flow.

2.6.2 Linear momentum balance in radial direction

To analyze the motion of the liquid front, the Navier-Stokes equation for cylindrical coordinates

in radial (r) direction can be used. It reads as follows [93]

ρ

[
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vz

∂z
+

1

r

(
vϕ
∂vr

∂ϕ
− v2

ϕ

)]
= ρgr − ∂p

∂r
− μ

φ

K
vr, (2.54)

where the last term is the Darcy law replacing the viscous momentum transport. Several

terms of Eq. (2.54) can be canceled out, as the problem described is one dimensional, and all

derivations and velocities in ϕ and z direction are zero. Also, for a horizontal setup, the gravity

force can be set to zero. One obtains

ρ

[
dvr

dt
+ vr

dvr

dr

]
+ μ

φ

K
vr = −dp

dr
. (2.55)

By multiplying with dr and integrating, the equation can be rearranged to

d

dt

∫ rf

r0

ρ vr dr +

∫ vf

v0

ρ vr dvr +

∫ rf

r0

μ
φ

K
vr dr = −

∫ pf

p0

dp = −pf + p0. (2.56)

2.6.2.1 Pressure at the wicking front

The pressure at the wicking front can be calculated using the Young-Laplace equation

pf = pa − s(t)
2σ cos (θd)

Rs

. (2.57)

Here, Rs denotes the static pore radius (or “capillary pressure effective radius”) of the medium,

and pa refers to the ambient pressure.
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2.6.2.2 Pressure at the inner boundary

Analogous to the outer boundary one can determine the pressure at the inner boundary by

p0 = pa − pwick. (2.58)

Here, pwick refers to viscous losses that may occur before the liquid enters the radial screen, e.g.

in a feeding wick (see Fig 8.1).

2.6.2.3 The final equation

By substituting Eqs. (2.57, 2.58) in Eq. (2.56), one obtains

d

dt

[∫ rf

r0

ρ vr dr

]
+

∫ vf

v0

ρ vr dvr + μ
φ

K

∫ rf

r0

vr dr = s(t)
2σ cos (θd)

Rs

− pwick. (2.59)

In the following the parameter s(t) describing the time for the meniscus to develop and the

dynamic behavior of the contact angle θ shall be neglected. By also neglecting the viscous losses

in the feeding wick - for this case its permeability has to be much higher than the permeability

of the porous screen - Eq. (2.59) can be rearranged to

2σ cos (θ)

Rs︸ ︷︷ ︸
capillary pressure

= μ
φ

K

∫ rf

r0

vr(r) dr︸ ︷︷ ︸
viscous term

+
d

dt

[∫ rf

r0

ρ vr(r) dr

]
︸ ︷︷ ︸

local acceleration

+

∫ vf

v0

ρ vr dvr︸ ︷︷ ︸
convective acceleration

. (2.60)

Due to the mass balance given in Eq. (2.53)

vr(r) =
1

r
rf ṙf , (2.61)

so one can substitute vr(r) and rearrange to obtain

2σ cos (θ)

Rs

− μ
φ

K
rf
drf

dt
ln

(
rf

r0

)
− ρ

(
d

dt

[
rf
drf

dt
ln

(
rf

r0

)]
+

(
drf

dt

)2 [
1

2
− r2

f

2r2
0

])
= 0. (2.62)
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Chapter 3

Dimensionless scaling methods for

capillary rise

3.1 Introduction

The following chapter is based on the publication “Dimensionless scaling methods for capillary

rise” by N. Fries and M. Dreyer [37]. To obtain a better understanding of a problem, its

dimensionless consideration is always of interest. Here, the Buckingham π theorem [17] can

be used to obtain appropriate dimensionless scalings. In literature there are several papers

applying dimensionless numbers to the problem of capillary rise. Ichikawa and Satoda [47]

focus on experiments with horizontal capillaries, Dreyer et al. [31] and Stange et al. [95, 96]

on capillaries in a microgravity environment. There also exist studies involving gravity, thus,

leading to different scaling approaches e.g. by Quéré et al. [78, 79], Marmur and Cohen [67],

Zhmud et al. [112], Lee and Lee [56] or Fries and Dreyer [35, 36]. McKinley [71] investigates

dimensionless groups for free surface flows with a focus on complex fluids. In this chapter

a systematic approach to dimensionless scaling of capillary rise is followed, and the different

derived options are compared.

The basis for the dimensionless scalings is the differential equation of motion of liquid inside

a capillary tube. It can be derived by solving an integral balance of the linear momentum in

an appropriate control volume as shown in chapter 2 “Theory of capillary driven flow”. The

simplified equation (see chapter 2.4.6) for a capillary tube reads as follows (see Eq. (2.47))

−ρd(hḣ)
dt

= −2σ cos(θ)

R
+

8μh

R2
ḣ+ ρgh (for ḣ > 0). (3.1)
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It is important to note that Eq. (3.1) is only valid for a rising column. For a falling column -

as it occurs in oscillating cases - the different flow characteristics at the tube inlet have to be

considered. While for the rising column it acts as a sink, a jet or vortex may be emitted for

the falling column. Here, for the descending case, the ḣ2 term included in the left hand side of

Eq. (3.1) is omitted to obtain

−ρhḧ = −2σ cos(θ)

R
+

8μh

R2
ḣ+ ρgh (for ḣ < 0) (3.2)

as shown by Lorenceau et al. [60].

For porous media the Darcy law can be used to describe the viscous pressure loss (see Eq.

(2.49))

−ρd(hḣ)
dt

= −2σ cos(θ)

R
+
φμh

K
ḣ+ ρgh (for ḣ > 0). (3.3)

3.2 Dimensionless scaling

In this section the different dimensionless scaling options will be discussed. The Buckingham

π theorem and the approach described by White [106] is used. The relevant definitions shall

be introduced briefly:

• Dimensional variables are the basic output of the experiment, and normally the ones to

be shown in a diagram. They vary during a given run. In the current case h and t.

• Dimensional parameters affect the variables and may vary from case to case, however,

remain constant during a given run. In the current case a, b and c, see Eqs. (3.4), (3.5)

and (3.6) below.

• Fundamental units are the units of the variables and parameters e.g. meter, kilogram,

second.

• Scaling parameters are chosen to convert the variables to a dimensionless form. In the

current case: two can be chosen.

• Basic parameter is the - in the current case one - remaining parameter.

• Dimensionless variables are the variables made dimensionless by the scaling parameters.

• Dimensionless basic parameter is the basic parameter made dimensionless using the scal-

ing parameters.
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In a graphic representation of the dimensionless solution the axes are the dimensionless vari-

ables, while the dimensionless basic parameter is varied to plot a set of curves [106] (e.g. see

Fig. 3.1). With varying dimensionless basic parameter the influence of the basic parameter

(and the corresponding force) can be observed. Regarding Eqs. (3.1) and (3.3) one may define

the following dimensional parameters

a =
ρR

2σ cos (θ)
=̂

ρRs

2σ cos (θ)
, (3.4)

b =
4μ

Rσ cos (θ)
=̂

μ

2σ cos (θ)

φRs

K
, (3.5)

c =
ρgR

2σ cos (θ)
=̂

ρgRs

2σ cos (θ)
. (3.6)

Due to the analogy, both the cylindrical capillary tube and the version using the pore structure

parameters K, Rs and φ is given. However, in favor of readability, the latter will not be

explicated in the further text. Please note that the parameters a, b and c are not identical to

those applied in [35, 36]. Using the introduced dimensional parameters one can rearrange Eqs.

(3.1) and (3.3) to obtain

a
d (hḣ)

dt︸ ︷︷ ︸
inertial

+ bhḣ︸︷︷︸
viscous

+ ch︸︷︷︸
hydrostatic

= 1. (3.7)

It can now be observed that the momentum balance is much more clearly arranged and that

each dimensional parameter corresponds to a single term: a - inertia, b - viscous effects and

c - hydrostatic effects. Table 3.1 summarizes the three different scaling options that will be

examined one by one in the next sections.

Table 3.1: The different dimensionless scaling options.

Option Basic parameter Scaling parameters

1 a (inertia) b (viscosity) and c (gravity)

2 b (viscosity) a (inertia) and c (gravity)

3 c (gravity) a (inertia) and b (viscosity)

3.2.1 Viscous effects and gravity as scaling forces (index †)
Here, b (viscous effects) and c (gravity) are used as scaling parameters, the remaining pa-

rameter a (inertia) is used as basic parameter. The resulting dimensionless variables and the
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dimensionless basic parameter are derived by applying the Buckingham π theorem as shown in

section 3.5

π†
1 = h† = ch =

ρgR

2σ cos (θ)
h, (3.8)

and

π†
2 = t† =

c2t

b
=

ρ2g2R3

16μσ cos (θ)
t. (3.9)

These two dimensionless variables have been used by Zhmud et al. [112] and Fries and Dreyer

[35]. The dimensionless basic parameter reads as follows

π†
3 = Ω =

√
b2

ac2
=

√
128σ cos (θ)μ2

ρ3g2R5
. (3.10)

According to Quéré et al. [79], the basic dimensionless parameter π†
3 is denoted as Ω. Here, Ω

can be used to measure the influence of inertia. Fig. 3.1 shows that for decreasing Ω (increasing

inertia, see arrow) the oscillations and the overshoot increase. This is consistent with Quéré

et al. who find oscillations to occur for Ω ≤ 2. It is interesting to note that for all three

scaling options presented in this article Ω (=π3) is mathematically equal, however, its meaning

changes from scaling to scaling [106]. Thus Ω always reflects the influence of the chosen basic

parameter. For example, as will be shown later in further detail, Ω can become infinite in two

limits which are physically very different: For a non inertial case (the Washburn limit) with

a = 0, and for the no gravity case (the Bosanquet limit) with c = 0.

The numerical solutions of the momentum balance as shown in Figs. 3.1, 3.2 and 3.3 have been

obtained by using an implicit Runge-Kutta algorithm with the initial conditions h(t = 0) = 0

and ḣ(t = 0) = 0. The case differentiation for ḣ > 0 and ḣ < 0 was programmed by including

an if() command into the code.

Applying the scalings presented above the resulting dimensionless momentum balances read

1

Ω2

d
(
h† dh†

dt†

)
dt†

+ h†
dh†

dt†
+ h† = 1 (for ḣ† > 0) (3.11)

and
1

Ω2

d2h†

dt† 2
+ h†

dh†

dt†
+ h† = 1 (for ḣ† < 0). (3.12)

For Ω → ∞ (no inertia), Eq. (3.11) can be solved analytically with the solution given in

implicit form by Washburn [104]

t† = −h† − ln (1 − h†), (3.13)
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Figure 3.1: Plot showing the dimensionless numerical solution of Eqs. (3.11) and (3.12). Vis-

cosity and gravity are the scaling forces, inertia is the basic parameter for the set of curves.

The points refer to the analytic solution Eq. (3.14) for Ω → ∞ by Washburn. Note that the

curve for Ω = 10 lies above the curve for Ω = 100 and is not visible.

and in explicit form by Barry et al. [5] and Fries and Dreyer [35]

h† = 1 +W (−e−1−t†). (3.14)

Here, W (x) denotes the Lambert W function (see section 5.3.1). By numerical means the

deviation between the analytic and the numerical solution is found to be smaller than 5 % for

Ω ≥ 7.9 and t† ≥ 0.1.

3.2.2 Inertia and gravity as scaling forces (index ‡)
For this case one obtains - analogous to the procedure as shown in section 3.5 - the following

dimensionless variables

π‡
1 = h‡ = ch =

ρgR

2σ cos (θ)
h, (3.15)

and

π‡
2 = t‡ =

√
c2

a
t =

√
ρg2R

2σ cos (θ)
t. (3.16)
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These dimensionless variables have been used by Quéré et al. [79]. The dimensionless basic

parameter reads

π‡
3 = Ω =

√
b2

ac2
=

√
128σ cos (θ)μ2

ρ3g2R5
. (3.17)

Here, Ω can be used to determine the influence of viscous effects. Thus, it can be observed that

the oscillations decrease with increasing Ω (increasing viscosity, see arrow in Fig. 3.2). The

dimensionless momentum balances read

d
(
h‡ dh‡

dt‡

)
dt‡

+ Ωh‡
dh‡

dt‡
+ h‡ = 1 (for ḣ‡ > 0) (3.18)

and
d2h‡

dt‡ 2
+ Ωh‡

dh‡

dt‡
+ h‡ = 1 (for ḣ‡ < 0). (3.19)

For Ω → 0 (no viscous effects), Eq. (3.18) can be solved analytically with the solution given

by Quéré [78] to be

h‡ = t‡
(

1 − t‡

6

)
, (3.20)

valid for 0 ≤ t‡ ≤ 3. By numerical means, the deviation between the analytic and the numerical

solution is found to be smaller than 5 % for Ω ≤ 0.11 and 0 ≤ t‡ ≤ 3.

3.2.3 Inertia and viscous effects as scaling forces (index ∗)
With this choice one obtains - analogous to the procedure as shown in section 3.5 - the dimen-

sionless variables as described in following: The first one reads

π∗
1 =

√
b2

a
h =

√
32μ2

ρR3σ cos (θ)
h. (3.21)

To be consistent with the scaling by Ichikawa and Satoda [47], and to obtain a more convenient

form of analytic solution (see Eq. (3.27)) one can divide π∗
1 by

√
2 to obtain

h∗ =
b√
2a

h =

√
16μ2

ρR3σ cos (θ)
h. (3.22)

The second dimensionless variable reads

π∗
2 = t∗ =

b

a
t =

8μ

ρR2
t, (3.23)

and the dimensionless basic parameter

π∗
3 = Ω =

√
b2

ac2
=

√
128σ cos (θ)μ2

ρ3g2R5
. (3.24)
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Figure 3.2: Plot showing the dimensionless numerical solution of Eqs. (3.18) and (3.19). Inertia

and gravity are the scaling forces, viscosity is the basic parameter for the set of curves. The

points refer to the analytic solution Eq. (3.20) for Ω → 0 by Quéré.

Here, Ω can be used to measure the influence of hydrostatic effects. Thus, it can be observed

that the oscillations increase and the maximum height decreases with decreasing Ω (increas-

ing hydrostatic effect, see arrow in Fig. 3.3). Using the presented scaling the dimensionless

momentum balances can be given as

2
d
(
h∗ dh∗

dt∗
)

dt∗
+ 2h∗

dh∗

dt∗
+

√
2

Ω
h∗ = 1 (for ḣ∗ > 0) (3.25)

and

2
d2h∗

dt∗ 2
+ 2h∗

dh∗

dt∗
+

√
2

Ω
h∗ = 1 (for ḣ∗ < 0). (3.26)

For Ω → ∞ (no hydrostatic effects), Eq. (3.25) can be solved analytically with the solution

given by Bosanquet [11] to be

h∗ =
√
t∗ − (1 − e−t∗). (3.27)

By numerical means the deviation between the analytic and the numerical solution is found to

be smaller than 5 % for Ω ≥ 96 and t∗ ≤ 100.
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Figure 3.3: Plot showing the dimensionless numerical solution of Eqs. (3.25) and (3.26). Inertia

and viscosity are the scaling forces, gravity is the basic parameter for the set of curves. The

points refer to the analytic solution Eq. (3.27) for Ω → ∞ by Bosanquet.

3.3 Discussion

In Table 3.2 the different dimensionless variables and Ω are examined further on. It can be

observed that they are related to the indicated forces and well known dimensionless numbers as

displayed in Table 3.3. In Table 3.2, cos (θ) appears as an independent dimensionless parameter.

Note that the three figures (Figs. 3.1, 3.2, 3.3) shown in the previous sections all represent

solutions of the same five cases (equal Ω). Due to the different scalings however, their shapes

bear no direct resemblance. From a general point of view, the three scaling options are all

equivalent for describing the problem of capillary rise. However, for some cases there can be

a benefit of choosing a certain scaling method. In the following, two of these cases shall be

discussed:

All forces are effective

To investigate the impact of a certain parameter one can choose it to be the basic parameter.

Then the two remaining parameters must act as scaling parameters. If, for example, viscous

effects and gravity are chosen to be scaling forces (parameters), then Ω, the basic parameter

for the set of curves, will reflect the influence of inertia.
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Table 3.2: Overview of dimensionless variables and Ω. See Table 3.3 for description of dimen-

sionless numbers.

Variable Dimensionless numbers ∼ Forces

h† ∼ Bo

cos (θ)

gravity

surface tension

t† ∼ Bo2

Ca cos (θ)

(gravity)2

viscous · surface tension

h‡ ∼ Bo

cos (θ)

gravity

surface tension

t‡ ∼
√

Bo

Fr2 cos (θ)

√
(gravity)3

(inertia)2 · surface tension

h∗ ∼ Oh√
cos (θ)

viscous√
inertia · surface tension

t∗ ∼ 1

Re

viscous

inertia

Ω ∼
√

cos (θ)

Bo Ga

√
surface tension · viscous

gravity

One of the forces can be neglected

For some cases it is possible to neglect the influence of a certain force, e.g. in microgravity

the hydrostatic term can be neglected. This also applies for experiments where only the initial

time period of the capillary rise is investigated, while for later time stages in small capillaries

one can usually neglect inertia. The neglected force can not be used as a scaling force, thus the

one remaining scaling option should be chosen. In this case the neglected force will act as basic

parameter for the set of curves. However, the plotted solution is reduced to a single curve as

the basic dimensionless parameter Ω will equal 0 or ∞.

3.4 Conclusion

This chapter has demonstrated that one can use the Buckingham π theorem to systematically

derive three different scaling options. Each option consists of a set of two dimensionless vari-
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Table 3.3: List of the relevant dimensionless numbers for capillary rise.

Abbrev. Name Equation Forces

Bo Bond number
ρgR2

σ

gravity

surface tension

Ga Galileo number
gR3ρ2

μ2

gravity

viscous

Ca Capillary number
μv

σ
∼ μR

σt

viscous

surface tension

Oh Ohnesorge number
μ√
Rρσ

viscous√
inertia · surface tension

Re Reynolds number
ρRv

μ
∼ ρR2

μt

inertia

viscous

Fr Froude number
v√
gR

∼
√

R

gt2
inertia

gravity

cos (θ) Contact angle - -

ables and one basic dimensionless parameter. The different options found are discussed and

numerical as well as analytic solutions of the momentum balance are shown in dimensionless

form. Generally, the different scaling options are absolutely equivalent in terms of describing

the problem. However, using the right scaling can help to identify the influence of a certain

parameter to be investigated. Also for some special cases (e.g. microgravity) the choice is

limited to a single scaling method. These findings can help to choose an appropriate scaling to

present experimental data of capillary rise, and they may also help to systematically plan an

experimental campaign in advance by defining the experimental matrix to be investigated.

3.5 Excursion - Applying the Buckingham π Theorem

The following section aims to clarify the procedure deriving the scalings. As an example the

choice has been made that a (inertia) shall be the basic parameter and b (viscosity) and c

(gravity) shall be the scaling parameters.
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One finds five (5) dimensional units:

a [ s2

m2 ]

b [ s
m2 ]

c [ 1
m

]

h [m]

t [s]

and two (2) fundamental units:

time [s]

length [m]

Thus one will obtain 5− 2 = 3 dimensionless π parameters that characterize the problem. The

table of fundamental units reads as given in Table 3.4.

Table 3.4: The fundamental units of the system.

- a b c h t

seconds 2 1 0 0 1

meters -2 -2 -1 1 0

According to the Buckingham π theorem the system of equations evolves as follows

⎛⎝ 2 1 0 0 1

−2 −2 −1 1 0

⎞⎠ .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ 0 0 0

0 0 0

⎞⎠ . (3.28)

This system is under-determined, and one is allowed to choose three parameters in each π

vector.

Viscous effects and gravity as scaling forces (index †)
Here a (inertia) shall be the basic parameter, while b (viscosity) and c (gravity) shall be the

scaling parameters. One can set for an appropriate scaling for h that π1,a = 0, π1,h = 1, and
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π1,t = 0. A parameter for t can be found by setting π2,a = 0, π2,h = 0, and π2,t = 1. To find the

basic dimensionless parameter one may use π3,a = −1/2 (this is chosen to be consistent with

Ω as defined by Quéré et al. [79], other choices lead to linearly dependent solutions), π3,h = 0,

and π3,t = 0. Now one can solve to obtain:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1/2

0 −1 1

1 2 −1

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.29)

Thus the Buckingham π theorem provides two dimensionless variables and one dimensionless

basic parameter.

π†
1 = a0b0c1h1t0 (3.30)

π†
2 = a0b−1c2h0t1 (3.31)

π†
3 = a−

1
2 b1c−1h0t0 (3.32)

Inertia and gravity as scaling forces (index ‡)
Here b (viscosity) shall be the basic parameter, while a (inertia) and c (gravity) shall be the

scaling parameters. One can set for an appropriate scaling for h that π1,b = 0, π1,h = 1, and

π1,t = 0. A parameter for t can be found by setting π2,b = 0, π2,h = 0, and π2,t = 1. To find the

basic dimensionless parameter one may use π3,b = 1, π3,h = 0, and π3,t = 0. Now one can solve

to obtain: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1/2 −1/2

0 0 1

1 1 −1

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.33)

Thus the Buckingham π theorem provides two dimensionless variables and one dimensionless

basic parameter.

π‡
1 = a0b0c1h1t0 (3.34)

π‡
2 = a−

1
2 b0c1h0t1 (3.35)

π‡
3 = a−

1
2 b1c−1h0t0 (3.36)

Inertia and viscous effects as scaling forces (index ∗)
Here c (gravity) shall be the basic parameter, while a (inertia) and b (viscosity) shall be the
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scaling parameters. One can set for an appropriate scaling for h that π1,c = 0, π1,h = 1, and

π1,t = 0. A parameter for t can be found by setting π2,c = 0, π2,h = 0, and π2,t = 1. To find

the basic dimensionless parameter one may use π3,c = −1 (this is chosen to be consistent with

Ω as defined by Quéré et al. [79], other choices lead to linearly dependent solutions), π3,h = 0,

and π3,t = 0. Now one can solve to obtain:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

π1,a π2,a π3,a

π1,b π2,b π3,b

π1,c π2,c π3,c

π1,h π2,h π3,h

π1,t π2,t π3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1/2 −1 −1/2

1 1 1

0 0 −1

1 0 0

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.37)

Thus the Buckingham π theorem provides two dimensionless variables and one dimensionless

basic parameter.

π∗
1 = a−

1
2 b1c0h1t0 (3.38)

π∗
2 = a−1b1c0h0t1 (3.39)

π∗
3 = a−

1
2 b1c−1h0t0 (3.40)
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Chapter 4

The transition from inertial to viscous

flow

4.1 Introduction

The following chapter is based on the publication “The transition from inertial to viscous flow in

capillary rise” by N. Fries and M. Dreyer [36]. When dealing with the problem of capillary rise

it is of great interest to know which forces (e.g. inertia, viscous forces, gravity) are dominant.

This is based on the fact that one has to make certain assumptions to obtain analytical solutions

for the momentum balance. These assumptions are mostly the neglect of certain forces (see

subsections of 3.2). This, however, limits the validity of the derived equations to certain time

intervals where these forces can actually be neglected [11, 61, 81, 104]. Stange et al. [95, 96]

separate the individual time stages by means of dimensionless numbers. Ichikawa and Satoda

[47] compare several previous works, present experimental results and conduct a dimensional

analysis. Quéré et al. [78, 79] investigate the inertia dominated flow period. Subsequent time

stages (t� 0) with influence of gravity are discussed in [35, 112].

In this chapter some light shall be shed on the different stages of capillary rise and the transitions

between them. The focus is on cylindrical tubes although all calculations presented in the

following are equally valid for porous media, as the pore structure parameters K, Rs and φ

can be included in the parameters a, b and c (see Eq. (3.4)). As previously introduced the

simplified momentum balance of a liquid inside a capillary tube reads (see Eq. (2.48))

2σ cos(θ)

R
=
d (ρhḣ)

dt
+

8μh

R2
ḣ+ ρgh. (4.1)
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4.2 Analytical solutions for defined time domains

In the following several approaches to obtain analytical solutions of the momentum balance are

discussed.

4.2.1 Purely inertial time domain

For the very first moments after the liquid contacts the tube Quéré [78] takes the following

approach: Neglecting the viscous and the gravity term in Eq.(4.1) gives

2σ cos(θ)

ρR
=
d (hḣ)

dt
= ḣ2 + hḧ. (4.2)

Quéré solves the differential equation (see section A.1) giving a capillary rise with constant

velocity

h = t

√
2σ cos(θ)

ρR
=

t√
a
. (4.3)

4.2.2 Visco-inertial time stage

Bosanquet [11] finds a solution featuring the inertial and viscous term resulting in the following

differential equation

d

dt

(
hḣ
)

+
b

a
hḣ =

1

a
. (4.4)

He obtains (see section A.2 for the derivation)

h2 =
2

b

[
t− a

b

(
1 − e

−b
a

t
)]
, (4.5)

which is also used by Ichikawa and Satoda [47] in dimensionless form. Note: For t → ∞ Eq.

(4.5) converges into the Lucas-Washburn equation which will be presented next.

4.2.3 Purely viscous time stage

For the intermediate flow period Lucas [61] and Washburn [104] neglect the influence of inertia

and the influence of gravity. They find (see Eq. 5.4 for the derivation)

h2 =
σR cos(θ)

2μ
t =

2

b
t. (4.6)
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4.2.4 Viscous and gravitational time stage

During the later stages of capillary rise gravity can no longer be neglected. This time stage shall

not be the focus of the current chapter, however it will be briefly discussed here for completeness.

As will be derived in chapter 5, where this topic is explicated, one can generalize that for h >

0.1 heq gravity has to be considered. Here, heq is the equilibrium height where the hydrostatic

pressure balances the capillary pressure (see Eq. (4.9)). Analytic solutions (neglecting inertia)

are given by Washburn [104] in implicit form (see section A.3 for the derivation)

t(h) = −hb
c

− b

c2
ln (1 − ch) , (4.7)

and by Fries and Dreyer [35] in explicit form (see Eq. (5.15) for the derivation)

h(t) =
1

c

[
1 +W

(
−e−1− c2t

b

)]
. (4.8)

Here W (x) is the Lambert W function. Finally one can calculate the equilibrium height (where

capillary pressure equals hydrostatic pressure) to be [61]

heq =
2σ cos(θ)

ρgR
=

1

c
. (4.9)

4.3 Separation of time stages

One can derive three transition times (see Fig. 4.3):

• t1 is the transition time between the purely inertial and the visco-inertial stage,

• t2,S is the time when the solution by Quéré and the Lucas-Washburn equation provide

the same rise rate [96],

• t2,Q is the time when the solution by Quéré and the Lucas-Washburn equation provide

the same height [78],

• t3 is the transition time between visco-inertial and the purely viscous stage.

As stated, the purely inertial flow period shows a rise with constant velocity. Both solutions

by Quéré Eq. (4.3) and Bosanquet Eq. (4.5) show this linear behavior in the beginning. At

some point - in contrast to the solution by Quéré - Eq. (4.5) deviates to lower values as viscous

effects become more important. One can find the point where viscous effects have to be taken
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into account by the following approach: To obtain the time when both solutions reach a certain

level of disagreement (e.g. 3% deviation) one may write

0.03 =
hQuere(t1) − hBosanquet(t1)

hQuere(t1)
. (4.10)

To solve this equation numerical methods have to be applied as no analytical form could be

found. This is also the reason why the calculations are explicated here for a single level of

deviation (3%) only. Numerical calculation yields

t1 =
0.0232R2ρ

μ
=

0.1856a

b
, (4.11)

and using Eq. (4.5) provides

h1 = 0.0318

√
R3ρ σ cos(θ)

μ2
=

0.1800
√
a

b
. (4.12)

Stange et al. [96] find the time when the rise rates of the equation by Quéré and Lucas-Washburn

are equal (ḣQuere = ḣLucas−Washburn) to be

t2,S =
R2ρ

16μ
=

a

2b
. (4.13)

Quéré [78] calculates the time when the heights of his solution and the Lucas-Washburn equation

intersect so that hQuere = hLucas−Washburn (as shown in Fig. 4.1). By equating the heights, he

obtains

t2,Q =
R2ρ

4μ
=

2a

b
, (4.14)

and Eq. (4.3) or (4.6) give

h2,Q = 0.3536

√
R3ρ σ cos(θ)

μ2
=

2
√
a

b
. (4.15)

Quéré denotes this t2,Q as t∗. Here, however, t2,Q shall be used to prevent confusion with the

dimensionless time introduced in the previous chapter. t2,S and t2,Q are feasible, “general”

indicators for the transition from the inertial to the viscous time period. However, they do

not provide information on when the influence of inertia is negligible and the Lucas-Washburn

equation is sufficient to describe the capillary rise. To obtain such a measure one can take

the equation given by Bosanquet [11] (visco-inertial stage) and the Lucas-Washburn solution

(purely viscous). For t→ ∞ both solutions converge into each other. The time of 3% deviation

in the predicted heights is defined by

0.03 =
hLucasWashburn(t3) − hBosanquet(t3)

hLucasWashburn(t3)
. (4.16)
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Figure 4.1: Comparison of analytic solutions with experimental results by Siebold et al. [89]

using pentane in a glass tube with 191 μm radius. A constant contact angle of 73◦ (as found

by Siebold et al.) has been used for the calculations. Note: This angle differs from the static

contact angle.

In analogy to the derivation of t1 only numerical methods were found to solve this equation, so

one obtains

t3 =
2.1151R2ρ

μ
=

16.921a

b
. (4.17)

Using Eq. (4.5) gives

h3 = 0.9975

√
R3ρ σ cos(θ)

μ2
=

5.6429
√
a

b
. (4.18)

Fig. 4.2 displays the development of the pressures involved in the capillary rise process plotted

over time. It can be observed that in the beginning the convective acceleration pressure (ḣ2)

dominates, while the local acceleration (hḧ) pressure is negative. However, the viscous pressure

builds up fairly fast and overtakes the convective acceleration. For setups with gravity, which

are not considered here, the hydrostatic pressure would rise and eventually dominate. Finally

it would become equal to the capillary pressure.
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Figure 4.2: Plot of the pressures normalized by the capillary pressure versus time. The case

displayed in Fig. 4.1 is considered. Note that the effect of gravity is neglected and thus is set

to zero, as also done by all equations plotted in Fig. 4.1.

4.4 Discussion in dimensionless form

In the following the dimensionless scaling provided by Ichikawa and Satoda [47], as described

in section 3.2.3 is used. In rearranged form it reads

t∗ =
8μ

ρR2
t =

b

a
t, (4.19)

and

h∗ =

√
16μ2

ρR3σ cos (θ)
h =

b√
2a

h. (4.20)

For an expression of this terms in dimensionless numbers see Table 3.2. This scaling can be

used to transform the analytical solutions into a dimensionless form. The solution by Quéré

[78] Eq. (4.3) then reads

h∗ =
t∗√
2
. (4.21)

The equation by Bosanquet [11] Eq. (4.5) changes to

h∗ =
√
t∗ − (1 − e−t∗), (4.22)
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Figure 4.3: Dimensionless diagram showing an overview of the initial time stages of capillary

rise. The same case as shown in Fig. 4.1 is considered.

and the Lucas-Washburn equation [61, 104] Eq. (4.6) reads

h∗ =
√
t∗. (4.23)

In Fig. 4.3, these equation are plotted in logarithmic scale. The points of transition between

the time periods are shown. Using the presented scalings the points of transition, determined by

Eqs. (4.11-4.18), can be given in dimensionless form, see Tables 4.1 and 4.2. The two tables each

represent different levels of allowed deviation (1% and 3%). For 1% deviation the transition

from purely inertial to visco-inertial flow (index 1) occurs earlier, while the transition from

visco-inertial to purely viscous flow (index 3) occurs later when compared to the 3% deviation

case. Thus, restricting the allowed deviation expands the time range where both forces have to

be accounted for.



56 CHAPTER 4. THE TRANSITION FROM INERTIAL TO VISCOUS FLOW

Table 4.1: Dimensionless values of the transition points. Note that for index 1 and 3 a deviation

of 3% is assumed.

t∗1 h∗1 t∗2,S t∗2,Q h∗2,Q t∗3 h∗3
0.1856 0.1273 0.5000 2.0000 1.4142 16.921 3.9901

Table 4.2: Dimensionless values of the transition points for 1% deviation (index 1 and 3).

t∗1 h∗1 t∗2,S t∗2,Q h∗2,Q t∗3 h∗3
0.0606 0.0424 0.5000 2.0000 1.4142 50.251 7.0179

4.5 Conclusion

In this chapter the different time stages during the early stages of capillary rise have been

dscussed. It is concluded that the purely inertial and the purely viscous flow period are sep-

arated by a visco-inertial stage where both effects have to be considered. By means of math-

ematical rearrangement the times and heights where the transition between the time periods

occur have been derived. This provides a tool which allows to calculate which terms of the mo-

mentum balance have to be taken into account to obtain a solution of sufficient precision. Up

to now, the time where the solution for the inertial and the viscous rise provide the same height

has been used as a measure. However, it can now be stated that it takes about eight times as

long for the flow to become independent of inertial effects (8 t∗2,Q ≈ t∗3 for 3% deviation).
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Chapter 5

Analytical solutions including the

gravity term

5.1 Introduction

The following chapter is based on the publication “An Analytic Solution of Capillary Rise

Restrained by Gravity” by N. Fries and M. Dreyer [35]. Regarding the behavior of a liquid

brought into contact with a vertical, small tube as shown in Fig. 1.1, it can be seen that at

first a fairly fast flow into the structure develops. Later the rise of the liquid will continuously

slow down until finally a static state is reached. The basis for the calculations presented in

this chapter shall be the simplified momentum balance of liquid within a capillary tube as

introduced previously in Eq. (2.48)

2σ cos(θ)

R︸ ︷︷ ︸
1

= ρgh︸︷︷︸
2

+
8μh

R2
ḣ︸ ︷︷ ︸

3

+ ρ
d(hḣ)

dt︸ ︷︷ ︸
4

. (5.1)

In Eq. (5.1), the individual terms from left to right refer to:

1. The capillary pressure

2. The gravity term (hydrostatic pressure)

3. The viscous pressure loss (Hagen-Poiseuille)

4. The inertia terms (local and convective)

When porous media are investigated the Darcy law as introduced in section 2.5 can be used

2σ cos(θ)

Rs

= ρgh+
φμh

K
ḣ+ ρ

d(hḣ)

dt
. (5.2)
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To experimentally obtain the two parameters Rs and K one can do a first evaluation of the

equilibrium height in the static case to obtain the radius Rs for the capillary pressure. Later

the permeability K can be obtained by fitting the calculated liquid rise curve to experimental

values.

The differential equations (5.1) and (5.2) cannot be easily solved analytically, instead numerical

methods may be used. However, as sometimes an analytical solution is favorable, solutions can

be found for certain flow regimes where individual terms of Eqs. (5.1) and (5.2) can be neglected.

Stange [95] claims that there are four time regimes. For small times the inertia term dominates,

later the convective losses in the entry region (not modeled here), then the viscous term and

finally the hydrostatic term. For infinite times a static state is reached where the hydrostatic

pressure balances the capillary pressure. As applications of capillary flow or experiments are

often bound to certain time regimes, it is feasible to neglect the corresponding terms in Eq.

(5.1) to obtain analytical solutions. In the following two of these are presented.

5.2 Viscous dominated flow

Lucas [61] and Washburn [104] consider a flow regime where the influence of inertia as well as

the influence of gravity can be neglected. Thus, Eq. (5.1) simplifies to

2σ cos(θ)

R
=

8μhḣ

R2
. (5.3)

Rearranging gives

h
dh

dt
=
σR cos(θ)

4μ
. (5.4)

Solving this ordinary differential equation with the initial condition h(0) = 0 by means of

separation of variables leads to the well-established Lucas-Washburn equation as previously

introduced in section 4.2.3:

h2 =
σR cos(θ)

2μ
t =̂

4σ cos(θ)

μ

K

φRs

t =̂
2

b
t. (5.5)

The Lucas-Washburn solution is probably the most used equation when it comes to the charac-

terization of capillary transport or “wicking” in capillary tubes, porous media or the capillaries

in packed powder. However, the fairly simple - and thus nice to handle - Eq. (5.5) has some

limitations. For small times the fluid velocity is approaching infinity, which is not feasible. This

discrepancy can be explained with the neglect of the inertia term. Also when flow is occurring

in a vertical capillary under gravity there is no limit for the maximum reachable height which
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originates from neglecting the gravity term. In the following sections the gravity term shall not

be neglected which still allows to give an analytical solution in terms of t(h) - as already shown

by Washburn in 1921 - and in terms of h(t) as will be presented later.

5.3 Viscous and hydrostatic dominated flow regime

To extend the Lucas-Washburn equation to flows where gravity and thus hydrostatic pressure

has to be taken into account only the inertia term of Eqs. (5.1) or (5.2) is neglected giving for

Eq. (5.2):
2σ cos(θ)

Rs

= ρgh+
φ

K
μhḣ. (5.6)

Rearranging gives

ḣ =
2σ cos(θ)

φμ

K

Rs

1

h
− ρg

μ

K

φ
, (5.7)

valid for h �= 0 as there is a singularity. To simplify the equation one may introduce the

previously introduced constants a, b and c (capillary tube and Darcy version) reducing Eq.

(5.7) to

ḣ =
1

bh
− c

b
. (5.8)

As mentioned above, an analytical solution to this differential equation is given by Washburn

[104] or Lukas and Soukupova [62]. It is calculated as following: Eq. (5.8) is rewritten to

dt =
bh dh

1 − ch
. (5.9)

After integration as shown in section A.3 one obtains

t = −bh
c

− b

c2
ln(1 − ch) + C. (5.10)

To find the unknown constant C the initial condition

h(t→ 0) = 0 (5.11)

can be used to give

C = 0. (5.12)

This leads to the following implicit analytical form

t = −bh
c

− b

c2
ln(1 − ch), (5.13)

which is the result of Washburn [104] or Lukas and Soukupova [62] in terms of t = t(h). Ham-

raoui and Nylander [41] find this solution to diverge as the liquid approaches the equilibrium
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height. Zhmud et al. [112] evolve a long term asymptotic solution in terms of h(t), as shown

here in rearranged form

h(t) =
1

c
(1 − e−

c2t
b ). (5.14)

To obtain a more accurate solution for h(t) a new approach is followed. Eq. (5.13) is multiplied

by −c2/b, and 1 is subtracted on both sides

−1 − c2t

b
= ch− 1 + ln(1 − ch), (5.15)

which by taking it to the power of e gives after rearrangement

−e−1− c2t
b = (ch− 1)ech−1. (5.16)

At this point, the Lambert W function W (x) named after Johann Heinrich Lambert, and

defined by an inverse exponential function

x = W (x)eW (x) (5.17)

can be used to solve for h. It can be seen that Eq. (5.16) follows the form

y(t) = x(h)ex(h). (5.18)

By definition the W function can be written as

y(t) = W (y(t))eW (y(t)). (5.19)

Relating Eq. (5.18) and Eq. (5.19) gives

x(h)ex(h) = W (y(t))eW (y(t)). (5.20)

From this it can be seen that

x(h) = W (y(t)). (5.21)

Coming back to Eq. (5.16) the inverse properties of the Lambert W function can be used to

give

ch− 1 = W
(
−e−1− c2t

b

)
. (5.22)

After rearranging, one obtains

h(t) =
1

c

[
1 +W

(
−e−1− c2t

b

)]
, (5.23)

which is a full analytical solution in terms of h = h(t), and can be verified as shown in section

A.4. In the following it is referred to this solution as the “extended solution”. In Fig. 5.1
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Figure 5.1: Different analytical and numerical solutions for silicone fluid (SF 0.65) in a 0.1 mm

radius borosilicate glass capillary. Height h is plotted versus time t. Extended solution denotes

Eq. (5.23).

this extended solution is calculated and plotted for a setup using silicone fluid (SF 0.65) in a

0.1 mm radius borosilicate glass capillary. The liquid properties given in table 7.2 are used,

and a contact angle of θs = 16.3◦ as found by Stange [95] is applied. The other lines in Fig.

5.1 refer to the Lucas-Washburn equation in Eq. (5.5) and the long time asymptotic solution

by Zhmud et al. [112] in Eq. (5.14). The two numerical simulations are calculated with

constant contact angle and dynamic contact angle as done by Chebbi [19], respectively. For the

numerical simulations inertia is neglected and for the dynamic contact angle the equation given

by Jiang et al. [48] (see section 2.4.4.1) is used. Fig. 5.2 displays a plot of the effective pressures

for the same case as discussed above. Note that the convective and local acceleration terms

(inertia) are shown, although these terms are neglected in the extended solution Eq. (5.23). It

can be observed from Fig. 5.2 that the inertial terms - for the time stage considered - are small

compared to the other terms and disappear for longer times. In the beginning the capillary

pressure is mainly balanced by viscous friction, while with increasing height the hydrostatic

pressure becomes dominant.

Further information on the Lambert W function as defined in Eq. (5.17) and its application is

given in [22], [43] and [101]. Its solutions are partly in the complex plane, but switch to real
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Figure 5.2: Plot of the pressures normalized by the capillary pressure versus time. The case

displayed in Fig. 5.1 is considered.

values for −1/e ≤ x as shown in Fig. 5.3. Also, the Lambert W function has been used to solve

differential equations before. For example Barry et al. [5] use the Lambert W function to give

an analytical solution to a transcendental equation related to this present work. To calculate

water movement in unsaturated soil they use the following differential equation

α∗A
dA

dt
= 1 − A. (5.24)

Here α∗ denotes a constant with dimension [s] and A a dimensionless “function of time t” [5].

Solving for the initial condition A(t → 0) = 0 gives an equation featuring the Lambert W

function

A(t) = 1 +W
(
−e(−t

α∗−1)
)
. (5.25)

Barry et al. [5] mention that it can be used to calculate infiltration as well as capillary rise of

moisture in soils. The solution is - besides the different notations used in soil science - identical

to the dimensionless version of the extended solution as given in Eq. (5.40). This is feasible

as both models describe the same physical processes, one describing the motion of moisture in

soils, the other describing the capillary rise in porous media and capillary tubes.
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Figure 5.3: Characteristics of the upper branch of the Lambert W function for −1/e ≤ x ≤ 5.

5.3.1 Practical evaluation of the Lambert W function

When applying Eq. (5.23) to practical problems it is important to be able to calculate the

numerical value of the Lambert W function. In many commercial mathematical programs

the Lambert W function is already included to be found as W[x] or ProductLog[x]. It is also

possible to use spreadsheet calculation programs that don’t feature Lambert W. In this case it is

required to write a macro using the “goal seek feature” or use other iterative solvers. Otherwise

an approximation expression for W (x) that covers the relevant range can be applied. For this

work such an approximate function is given by Barry et al. [5] (slightly rearranged) as

W (x) ≈ −1 +

√
2 + 2ex

1 + 4.13501
√

2+2ex
12.7036+

√
2+2ex

. (5.26)

For the upper branch this equation accounts for the relevant range of −e−1 ≤ x ≤ 0 with a

maximum relative error of 0.1%. Further details on both branches of the Lambert W function

are provided in section 8.1, Fig. 8.2 or [22].

5.3.2 Time to reach the equilibrium height

Regarding Eq. (5.23) one may notice that for infinite time the height h converges into a

maximum value heq. This is the point where the hydrostatic pressure equals the capillary
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pressure, or mathematically W (0) = 0. This gives

heq = h(t→ ∞) =
1

c
=

2σ cos(θ)

Rρg
. (5.27)

As h approaches heq at some point the height increase is so small that one may speak of a static

state. To find the time needed to reach this point, a static state time ts is here defined where

h reaches (1− ε) times heq. E.g. if ε = 0.01, h would have to reach 99% of heq. One may write

h(ts) = (1 − ε)heq. (5.28)

Using Eq. (5.27) and Eq. (5.23) gives

(1 − ε)
1

c
=

1

c

[
1 +W

(
−e−1− c2ts

b

)]
. (5.29)

After rearranging one obtains

−ε = W
(
−e−1− c2ts

b

)
, (5.30)

and with Eq. (5.17)

−εe−ε = −e−1− c2ts
b . (5.31)

To obtain ts

−1 − c2ts
b

= ln(ε) − ε, (5.32)

and finally

ts =
b

c2
[− ln(ε) + ε− 1] . (5.33)

This may also be written with all variables to give (for ε = 0.01, corresponding to h = 99% of

heq)

ts ≈ 3.62 b

c2
=̂ 3.62

16σμ cos(θ)

ρ2g2

1

R3
=̂ 3.62

2σμ cos(θ)

ρ2g2

φ

RsK
. (5.34)

5.3.3 Flow velocity

To obtain the flow velocity ḣ(t) it is necessary to differentiate the height h(t). For the Lucas-

Washburn equation one obtains

ḣ(t) =

√
1

2b t
, (5.35)

while using the extended solution including gravity yields

ḣ(t) = −c
b

W
(
−e−1− c2t

b

)
1 +W

(
−e−1− c2t

b

) . (5.36)

Both velocity functions are only defined for t > 0. Further details on differentiating the Lambert

W function can be found in section A.4.
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5.3.4 Dimensional analysis

To generalize the obtained solutions, the introduction of dimensionless numbers is always of

interest. The following calculations use the dimensionless scaling introduced in chapter 3.

Viscous effects and gravity are applied as scaling forces to obtain h† and t† as shown in section

3.2.1. Thus,

h† = ch =
h

heq

=
ρgR

2σ cos (θ)
h =̂

ρgRs

2σ cos (θ)
h, (5.37)

and

t† =
c2t

b
=

3.62t

ts
=

ρ2g2R3

16μσ cos (θ)
t =̂

ρ2g2

2μσ cos(θ)

RsK

φ
t. (5.38)

h† can be regarded as the height normalized by the equilibrium height. t† normalizes the time

with the time to reach the static state and a factor of 3.62 (calculated using ε = 0.01). Thus,

from Eq. (5.34) it can be derived that if t† is larger than 3.62 a static state is reached as shown

in Fig. 5.4.

Using these dimensionless numbers the Lucas-Washburn equation in Eq. (5.5) as well as the

extended solution in Eq. (5.23) can be made dimensionless providing

h† =
√

2 t†, (5.39)

for the Lucas-Washburn equation and

h† = 1 +W
(
−e−1−t†

)
(5.40)

for the extended solution including the gravity term. Fig. 5.4 shows that in the beginning the

Lucas-Washburn solution fits good to the extended solution in Eq. (5.23), however tends to

deviate to higher values for longer times since gravity is neglected. In anticipation of later

results Fig. 5.6 displays a close up of the relevant region. For t† > 3.62 the extended solution

reaches a static state. Regarding the velocity of the extended solution in Eq. (5.36) one may

derive a dimensionless number for the flow velocity, the “capillary velocity number” v†

v† =
b ḣ

c
=

8ḣμ

ρgR2
=̂
φḣμ

ρgK
. (5.41)

v† can be interpreted as viscous forces in relation to gravity forces

v† =
Ca

Bo
. (5.42)

Using t† and v† the flow velocity can be rewritten as

v† =

√
1

2t†
(5.43)
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Figure 5.4: Dimensionless representation of the Lucas-Washburn equation and the extended

solution Eq. (5.23). The static state is reached for t† ≥ 3.62.

for the Lucas-Washburn equation and

v† =
−W

(
−e−1−t†

)
1 +W

(−e−1−t†
) (5.44)

for the extended solution including the gravity term. These results are plotted in Fig. 5.5.

5.4 Validity of the Lucas-Washburn equation

When comparing the Lucas-Washburn equation Eq. (5.5) and the extended solution Eq. (5.23)

one may notice that the Lucas-Washburn equation is preferable due to its simplicity, however, it

is not valid for increasing time. The following chapter discusses a method for deciding to which

time tw the Lucas-Washburn equation may be used when taking into account an acceptable

error. For times t > tw the extended solution including gravity has to be considered. This

chapter intends to give more insight to this question. If the acceptable discrepancy is - for

example - 1% one may write:

(100% − 1%)hLucas Washburn = hextended solution (5.45)
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Figure 5.5: Dimensionless representation of the flow velocity calculated by differentiating the

Lucas-Washburn equation and the extended solution Eq. (5.23).

equal to

(1 − 0.01)

√
2

b
tw =

1

c

[
1 +W

(
−e−1− c2tw

b

)]
, (5.46)

with √
2

b
t =

√
σR cos(θ)

2μ
t (5.47)

representing the Lucas-Washburn equation Eq. (5.5). To solve the transcendental equation Eq.

(5.46) for tw the following approach is used. Considering the dimensionless number t† one may

assume that the solution tw of Eq. (5.46) can be expressed by means of this number

tw = t†w
b

c2
, (5.48)

with t†w being the unknown value. Substituting tw in Eq. (5.46) gives

0.99

√
2t†w = 1 +W

(
−e−1−t†w

)
. (5.49)

This transcendental equation can now be solved by means of numerical methods giving t†w =

0.0004523. Thus the Lucas-Washburn equation can be used up to t = 0.0004523 a/b2 if an error

of 1% is accepted. At this point, the height reached may again be expressed in terms of h†

h†w =
hw

heq

= 1 +W
(
−e−1−t†w

)
, (5.50)
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Figure 5.6: Dimensionless representation of the Lucas-Washburn equation and the extended

solution Eq. (5.23). The mark represents 10% deviation.

giving h†w = hw/heq = 0.029775 for an error of 1%. Values for further errors are given in Table

5.1. Generalizing, it can be concluded that under gravity the Lucas-Washburn equation can be

used up to about 10% of the equilibrium height. At this height an error of 3.54% is made. In

anticipation of later results the criterion is applied to experimental data in Fig. 7.7.

Table 5.1: Further values for different errors.

error t†w = tw c
2/b h†w = hw/heq

1% 0.0004523 0.029775

3.54% 0.0053605 0.1

5% 0.0115465 0.144366

10% 0.0475088 0.277424

5.5 Experimental evidence

To verify the obtained results the investigation done by Stange [95] can be used as a benchmark.

He examines the fluid rise in capillary tubes made of borosilicate glass with different radii.
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Figure 5.7: Dimensionless experimental results (ψ �= 0) by Stange [95] as described in Table

5.2. Extended solution denotes Eq. (5.23).

Also the angle of inclination ψ, as introduced in section 2.4.5, is varied. Two different liquids,

silicone fluid (SF 1.0) and Fluorinert engineering fluid (FC 77) are used. The liquid properties

given by Stange [95] for the corresponding experiment temperatures are applied. The height

recordings are performed by optical means and are plotted in dimensionless form in Fig. 5.7.

The previously introduced dimensionless capillary height number h† and the capillary time

number t† are used.

Table 5.2: Experimental data by Stange.

Name Inner radius Fluid Inclin. ψ θ

Exp1 0.088 mm SF1 32.3◦ 16.3◦

Exp2 0.104 mm FC77 32.3◦ 28.0◦

Exp3 0.1405 mm SF1 88.7◦ 16.3◦

From the dimensionless plot it can be seen that the experimental data by Stange matches the

values predicted by the extended solution Eq. (5.23). Especially for the static state values a

good consistency can be observed. For t† between 0.2 and 1.4 some deviation to lower results
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can be seen. This may be explained by the assumptions taken, e.g. the neglect of entry effects

or assuming a constant contact angle.

5.6 Evaluation for a general initial condition

In this section, the phenomenon of a falling capillary meniscus is investigated. This occurs if

the initial position of the meniscus is above the equilibrium height. The equilibrium height is

defined as the level where all forces are balanced and thus no movement of the meniscus occurs,

e.g. the capillary pressure is equal to the hydrostatic pressure. A scenario for capillary fall in

a tube could be a sudden increase of acceleration: If a capillary tube is filled with liquid in

weightlessness (e.g. onboard a spacecraft) a hydrostatic pressure will build if the spacecrafts

thrusters fire during a maneuver and the setup is exposed to acceleration. Depending on the

tube diameter and the acceleration, the resulting equilibrium height may be “below” the actual

meniscus position and a downward motion will evolve. The following brief literature review

shall give an overview of some of the research done on capillary fall and drainage: In 1955

Batel [6] investigates the humidity remaining after drying in a centrifuge, but also gives an

equation describing the dynamics of liquid drainage. Nenniger and Storrow [33] present an

analytical model and a comparison with experimental results of the drainage of packed beds.

Mason and Mellor [69] use simulations to investigate drainage and imbibition in a random

packing of spheres. Schaefer et al. [84] experimentally determine the drainage of sand columns,

further work by other authors is given in [10, 34, 63]. In 2002 Lorenceau et al. [60] focus on

vertical pipes and gravitational oscillations. It is concluded that the viscosity of the fluid is of

major importance and several mathematical models are presented. The problem of capillary

fall has also been addressed by Schäffer and Wong [85], however mainly to investigate the

stick-slip behavior on rough surfaces. In 1998, they investigate the dynamics of contact line

pinning in capillary rise and fall. In glass capillaries with a rough surface they find stick-slip

behavior, however for smooth surfaces no pinning is observed. In 2000, Schäffer and Wong

[86] give further results on this topic and discuss differences between theory and experimental

observations. They conclude that the dynamics of capillary fall and capillary rise differ due

to the invisible liquid film coating the surface during capillary fall [109]. In a recent paper

Fries and Dreyer [35] use the 1D momentum balance of a liquid in a porous medium to derive

an analytical solution to the problem of capillary rise affected by gravity. In this section the

application of the solution to a broader set of capillary flows such as rise, fall and drainage is

discussed.
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The basis for the calculations presented in the following is Eq. (5.8)

ḣ =
1

bh
− c

b
. (5.51)

Here it is important to mention again that the assumptions described in section 2.4.6 are taken.

Also, in this chapter on the gravitational regime, all inertial forces (local and convective) are

neglected. For certain cases it might be of interest to consider a more general definition of the

previously used initial condition (h(t→ 0) = 0) like (see Fig. 5.8)

h(t0) = h0. (5.52)

This leads to

h(t) =
1

c

{
1 +W

[
(−1 + ch0)e

−1+c(− c
b
(t−t0)+h0)

]}
, (5.53)

as is shown in section A.5. Regarding Eq. (5.53) it can be seen that for t0 = 0 and h0 = 0

the expression is equal to Eq. (5.23), the extended solution derived before. Varying t0 will

simply shift the begin of the motion on the time axis. It is more interesting to determine the

effect of varying initial height h0, and therefore to find a dimensionless parameter reflecting

this variable. Concerning the parameter h0 one may define

δ = c h0 =
h0

heq

. (5.54)

Thus, as h0 refers to the initial height, the following interpretation can be given: as 1/c is the

equilibrium height, δ is the initial height normalized by the equilibrium height. When δ is equal

to zero the initial height is zero and “normal” capillary rise occurs. If δ is 0.5 the initial height

is already 50% of the equilibrium height and the liquid only has to rise by another half to reach

equilibrium state. When δ = 1 the liquid is already at equilibrium and no further movement

will occur. Finally, when the initial liquid height is above the equilibrium height (δ > 1) the

fluid will move downwards and approach the equilibrium height from above.

With the parameters introduced above, Eq. (5.53) can be rewritten as

h† = 1 +W
[
(δ − 1)eδ−1−t†

]
. (5.55)

Again, viscous effects and gravity are applied as scaling forces to obtain h† and t† as shown in

section 3.2.1. The implicit t(h) solution of Eq. (5.53) has been used in dimensional form by

Washburn [104] and Batel [6]. Wong and Schäffer [109] also evaluate the experimental results in

smooth capillary tubes with this equation. Printing Eq. (5.55) with varying normalized initial

heights δ yields Fig. 5.9. The lower part of the diagram (δ < 1) refers to capillary rise, while
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Figure 5.8: Schematic drawing of an experiment with initial position above the equilibrium

height. At t = 0 the upper seal is opened. h0 denotes the initial height while heq is the

equilibrium height.

the upper part refers to capillary fall. It is notable that the upper part is not just a simple

reflection of the lower one. This is physically accounted for in a longer liquid column for the

upper case than for the lower one. This results in higher viscous effects and thus the meniscus

will take longer time to reach the equilibrium height.

For completeness it shall be mentioned that for the rising and falling case different inflow

and outflow conditions may occur at the tube end. Besides the fact that inertia (local and

convective) are not considered in the presented model, for the descending case the ḣ2 term in

the momentum balance Eq. (2.44) may be neglected as discussed in section 2.4.4.2.

5.6.1 Time to reach the equilibrium height

As the meniscus approaches the equilibrium height, its velocity decreases. Finally the movement

is so slow, that one may consider this a static state. In this chapter the time necessary for the

liquid to reach 99% (capillary rise), or 101% (fall) of the equilibrium height is determined.

Setting h† in Eq. (5.55) to 0.99 or 1.01 gives

t†s = δ − 1 − ln
−0.0099005

δ − 1
, (5.56)

for 0 ≤ δ ≤ 0.99 (capillary rise), and

t†s = δ − 1 − ln
0.0101

δ − 1
(5.57)
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Figure 5.9: Dimensionless analytical solution plotted for different dimensionless initial heights

δ. The lower part of the diagram refers to capillary rise while the upper one describes capillary

fall.

for 1.01 ≤ δ (capillary fall), respectively. These solutions are plotted in Fig 5.10. Again, due

to the reasons given at the end of the previous section there is no symmetry axis at δ = 1.

5.6.2 Comparison with experimental results from literature

In this section the analytical solution Eq. (5.55) is compared to experimental results taken

from literature [85]. Fig. 5.11 shows the dynamic behavior of water in a 250 μm diameter

smooth surface glass tube. The dots refer to values obtained by Schäffer and Wong from

image recordings, while the lines depict the calculated movement with the presented analytical

solution. Two different cases are plotted, one featuring an initial position below the equilibrium

height (capillary rise) and one starting above the equilibrium height (capillary fall). As can be

seen from Fig. 5.11, the calculated lines match the experimental results fairly well. Especially

for capillary fall, good consistency is observed, while there are some deviations for capillary rise.

These deviations may be explained by the assumption made, especially choosing a constant

contact angle of θ = 0. The receding contact angle for the capillary fall may match this

assumption well, however the dynamic advancing contact angle for the capillary rise may differ.
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Figure 5.10: Dimensionless time t†s to reach static state as a function of dimensionless initial

height δ.

Wong and Schäffer [109] also discuss the deviations. They find that an invisible liquid film

coating the surface during capillary fall can explain the difference between the rise and fall

process. Good agreement is eventually reached in the comparison for the final equilibrium

height for both cases.

5.7 Conclusion

A method for deriving an analytical solution to the momentum balance of a liquid in a capillary

tube or porous medium is presented. The well-established Lucas-Washburn equation is shown

as well as an extended solution introduced which is obtained by mathematical rearrangement of

the implicit Washburn solution. The extended solution includes the gravity term (hydrostatic

pressure) and enables the calculation of the liquid rise behavior for longer times. The time

necessary to reach a static state is examined and several relevant dimensionless numbers are

found. By means of these numbers, a dimensionless plot of the Lucas-Washburn equation and

the extended solution including gravity is plotted. The flow velocity is obtained by differenti-

ating the height and a dimensionless number for its description is found. Also the error made

when neglecting gravity and using the Lucas-Washburn equation is determined. Furthermore,



5.7. CONCLUSION 75

Figure 5.11: Comparison of experimental results by Schäffer and Wong [85] (water in 250 μm

diameter glass capillary) and the presented analytical solution.

an analytical solution for a more general initial condition is introduced which allows to evaluate

the capillary fall of liquids. This is also discussed by means of dimensionless numbers and a

plot showing the rise and fall regime is presented. A comparison of the derived mathematical

solution with experimental literature values shows fairly good agreement.
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Chapter 6

A basic macroscopic numerical

simulation with FLOW-3D

To analyze the wicking of liquids into porous materials one can either perform experiments,

use analytical models, or perform numerical simulations. Prior to considering a simulation tool

reliable, a simple test case should be simulated for testing the model. Comparing the numerical

results with experimental results allows to verify the model including the corresponding param-

eters. In this chapter the commercial CFD software FLOW-3D is used for a brief description

and verification of its implemented porous media model. This solver is able to run a direct

microscopic simulation of the wicking process as it occurs in porous media. For this kind of

setup it is necessary to import the exact geometry of the porous structure with the individual

pores and to define the surface tension, surface contact angle, density and viscosity of the liquid.

Using free surface calculation methods the solver can simulate the wicking in every single pore.

This technique, however, has some limitations, in particular when it comes to the simulation

of a complete porous medium and not just an elementary cell. Due to the small size of the

pores (some μm) in comparison to the typical relevant size of a porous medium (∼50 mm),

high numbers of meshing cells are necessary to resolve the individual pores and their charac-

teristic geometry. Even when using new computer hardware the available calculation power is

not sufficient to simulate wicking within reasonable time (e.g. several days calculation time).

A first option to solve this problem is to conduct a microscopic numerical simulation of only a

small, representative volume of the structure. The pore structure parameters K, Rs and φ can

be extracted from this microscopic simulation and then be used in a macroscopic simulation.

The second option, which will be applied in the following, is to use experimental data to extract

these parameters. FLOW-3D features a macroscopic porosity model, which does not simulate
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Figure 6.1: Digital representation of a DTW 200x1400 weave showing its microscopic structure.

the wicking of the liquid into the individual pores, but it uses integral (macroscopic) capillary

pressure and flow resistance models to calculate the overall behavior of a porous medium in

contact with a wetting liquid. Therefore much less cells are necessary when compared to a

microscopic simulation, which drastically decreases the required calculation time. FLOW-3D

solver 9.0.2 and interface 9.0.3 are used, applying the incompressible one fluid model with grav-

ity effects (when desired). As the interface between wetted and dry medium is assumed to

be sharp, no unsaturated flow occurs. So, choosing the volume fraction dependent model is a

possible option for wicking simulation. This model uses the following drag correlation: In the

modified Navier-Stokes equations solved by FLOW-3D (see FLOW-3D user manual v93 section

3.3.12) a term −Kf vi is added to the right hand side to account for flow losses in porous media

or baffles. Here vi is the interstitial flow velocity and Kf is a drag coefficient. For the volume

fraction dependent model:

Kf = aFV
−bF . (6.1)

Setting bF to 0 renders Kf independent of the volume fraction V and thus gives a constant

factor Kf = aF . When using the Darcy drag model

Δp = μhvs
1

K
= μhvi

φ

K
(6.2)

leads to

aF =
μ

ρ

φ

K
= ν

φ

K
. (6.3)

Here, h is not needed in the factor whereas density ρ is required. The capillary pressure is

calculated in analogy to Eq. (2.27), whereas in FLOW-3D it is defined to be positive

Δp =
2σcos(θ)

Rs

. (6.4)

Considering these coefficients, the porosity and the capillary pressure can be entered in the

porous media folder under “meshing and geometry”. In the following some simulation results
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Figure 6.2: Fluid mass / width inside the weave plotted versus elapsed time. The points refer

to the solutions by FLOW-3D, lines to the analytical solutions Eqs. (5.5) and (5.23). See Table

6.1 for simulation settings.

of HFE-7500 liquid wicking into a DTW 200x1400 metallic weave (warp direction) shall be

presented. Here, two different cases with and without gravity are considered. The material

properties like permeability etc. are taken from the experimental results presented in the next

chapter (Table 7.8, mass method). The numerical results by FLOW-3D are compared to

solutions of the momentum balance to verify the porous media model. The initial condition is a

dry porous structure, where the boundary condition includes one boundary with a fluid fraction

that is set to one to simulate the contact with the liquid reservoir. It is worth noting that the

fluid volume which enters the weave is the main output parameter as it can be related to the

wicking height and the fluid mass. It can be obtained in the postprocessing from the probe /

general history / volume of fluid data. Fig. 6.2 shows a mass vs. time plot of the FLOW-3D

simulations in comparison to the predicted values of the Lucas-Washburn equation, Eq. (5.5),

neglecting gravity and the extended solution Eq. (5.23) including gravity.

A very good consistency with the simulated values of FLOW-3D can be seen, although the

CFD data deviates minimally to lower values. This may be traced back to the inertia term

which is considered in the FLOW-3D setup, while the analytical equations neglect it.
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Table 6.1: Settings of the simulated wicking of HFE-7500 into a DTW 200x1400 metallic weave

(warp direction) as presented in Fig. 6.2.

Fluid properties (see Table 7.2)

Density ρ 1610 [kg/m3]

Viscosity μ 1.24 [mPas]

Surface tension σ 16.2 [mN/m]

Porous solid properties (see Table 7.8)

Static radius Rs 13.7 [μm]

Contact angle θ 0◦ [-]

Capillary pressure Δp 2365 [Pa]

Porosity φ 0.24 [-]

Permeability K 0.73 [μm2]

Coefficient aF 253212 [1/s]

Coefficient bF 0 [-]

Geometry

Sample size in x axis 25 [mm]

Number of cells in x axis 74 [-]

Sample size in y axis 0.149 [mm]

Number of cells in y axis 1 [-]

Sample size in z axis 50 [mm]

Number of cells in z axis 149 [-]

Boundary conditions

Condition at “z min” Specified pressure with F fraction = 1

Other boundaries Default symmetry

Solver settings

Pressure solver Implicit SOR

Viscous stress solver Explicit

VOF advection Automatic

Momentum advection First order

Fluid flow solver Solve momentum and continuity eq.



81

Part II

Special investigated cases
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Chapter 7

Linear capillary rise and the effect of

evaporation

7.1 Introduction

The following chapter is based on the publication “The Effect of Evaporation on the Wicking

of Liquids into a Metallic Weave” by N. Fries, K. Odic, M. Conrath and M. Dreyer [38]. As

presented in the introduction (chapter 1.1), spacecraft Propellant Management Devices often

use metallic screens to provide gas free delivery of propellant during all acceleration conditions

of the flight. The screens are made of metal weaves and form passive surface tension devices.

They allow propellant to penetrate but prevent gas from entering below a critical bubble point

pressure. This mechanism requires the weave to be always saturated with propellant. If the

screen is partially dry, wicking can be regarded as a self healing mechanism to restore saturation.

Here, wicking performance strongly depends on the degree of evaporation from the porous

screen. This is the motivation for this chapter, which shows how properties like the permeability

of the weave are experimentally investigated, and which presents a new evaporation model that

allows to predict the effect of evaporation on the capillary rise process. In addition to the

investigation of a metallic weave, the capillary rise in porous filter frits is examined.

7.2 Applicable equations (no evaporation)

When a liquid encounters a solid medium (as shown schematically in Figs. 7.3 and 7.4), and the

surface energies provide a contact angle smaller than 90◦, a meniscus will rapidly form on the

external surface of the structure. This process is called wetting and is applied in the Wilhelmy
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plate method to measure surface tension. Here, the force acting on a plate in contact with a

liquid is given by

F = Pb σ cos (θ), (7.1)

with Pb = 2(w + T ) being the perimeter, w the width and T the thickness of the plate. If the

solid medium is porous there will be also an internal wicking in addition to the external wetting.

Both processes rely on the capillary pressure, but in contrast to the wetting process the internal

menisci that drive the wicking are bound to the pore radius Rs. The internal wicking process

has been discussed in the previous chapters, and the momentum balance featuring the Darcy

law as introduced in section 2.5 is applied

−ρd(hḣ)
dt

= −2σ cos(θ)

Rs

+
φμh

K
ḣ+ ρgh. (7.2)

To extract the pore structure parameters K, Rs and φ (see section 2.2) from capillary rise

measurements some of the equations derived in the theoretical chapters of this book will be

applied. For the convenience of the reader these shall be briefly reviewed in the following. As

the structures investigated here typically feature pore sizes in the range of some μm inertial

forces (local and convective) can be neglected for the relevant time stages (see section 3.2.1 for

an evaluation of the influence of inertia). As discussed in chapter 5 on cases including gravity,

an analytical solution to the momentum balance including capillary, viscous and hydrostatic

forces can be given (see Eq. (5.23))

h(t) =
1

c

[
1 +W

(
−e−1− c2t

b

)]
. (7.3)

From this the equilibrium height for t→ ∞ can be calculated (see Eq. (5.27))

heq =
1

c
=

2σ cos(θs)

ρgRs

. (7.4)

This equation allows to determine the static radius Rs if the liquid properties and heq are

known. To determine the parameter K, Eq. (7.3) may be fitted to the experimental rise data

(see Fig. 7.12). However, a more convenient way is to use experimental data with h < 0.1heq.

For this case, as discussed in section 5.4, gravity can be neglected accepting a minor error

(3.54%). Thus a solution to the momentum balance including only capillary and viscous forces,

the famous Lucas-Washburn equation Eq. (5.5), can be applied

h2 =
4σ cos(θs)

μ

K

φRs

t. (7.5)

This equation shows that, for its area of validity, there is a linear correlation between h2 and

t, which easily allows to extract the conglomerate of parameters K/(φRs). A further method
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to determine K is to apply a defined pressure difference to a porous structure and measure the

resulting flow rate. This was proposed by Darcy [24] as described in section 2.2.2.

To relate the imbibed fluid mass to the observed wicking height the following linear relation is

assumed to hold

m = φ ρAbh. (7.6)

Here, Ab = wT denotes the cross sectional area of the specimen. This equation can be applied

to extract the porosity φ as discussed in section 7.3.4. With Eq. (7.6) the Lucas-Washburn

equation Eq. (7.5) can be modified to give the mass gain m instead of the height h, resulting

in

m2 = (Abφρ)
2 4σ cos(θs)

μ

K

φRs

t. (7.7)

Finally all pore structure parameters can now be extracted from experimental data. Rs from

the maximum height, φ using a mass measurement (see Fig. 7.9), and K using the capillary

rise rate and the other parameters.

7.3 Experiments

7.3.1 Porous materials and fluid properties

Experiments were performed with a Dutch Twilled Weave (DTW) screen (see Fig. 7.1) typical

for the use within PMDs, and filter frits with a chalk like appearance made of borosilicate glass

(see Fig. 2.1 b). Filter frits are commercially available porous materials, which can be supplied

with different pore sizes ranging from some μm (class P5) to several hundred μm (class P0). As

they are standardized (P0-P5), inexpensive and can be machined into different specimen sizes

and forms they can be regarded as an ideal material for capillary rise examinations in porous

structures. Some parameters for the different classes are shown in Table 7.1.

Test liquids with similar physical properties as typical propellants for satellites (see Table 7.2)

are used. All liquids used in the experiments feature a near zero contact angle with respect

to the weave material, but different vapor pressures which allows to investigate the effect of

evaporation. As the static contact angle θs between all test liquids and the weave is near zero,

cos(θs) is assumed to be equal to one for all experiment evaluations. Contrary to this, for the

borosilicate glass frits and SF 0.65 test liquid a contact angle of θs = 16.3◦ as found by Stange

[95] is applied.

The porous screen is a Dutch Twilled Weave (DTW) 200 × 1400 supplied by Spörl KG, Ger-

many (Fig. 7.1 and Table 7.3). The samples are laser-cut to rectangular shapes with precise
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Table 7.1: Characterization of the glass filter frits. The data is extracted from diagrams

provided by the supplier (ROBU Glasfilter GmbH, Germany). R50 denotes the pore radius

where 50 % of the pores are smaller (or larger) compared to this radius.

Filter frit type pore diameter [μm] R50 [μm] φ [-]

P0 160-250 95 0.33

P1 100-160 65 0.34

P2 40-100 35 0.36

P3 16-40 12 0.41

P4 10-16 5.5 0.42

P5 1-1.6 0.675 0.48

Table 7.2: Fluid properties at 25 ◦C. Source: product data sheet of the listed liquids (3M for

HFE 7500, FC-77, FC-72, FC-87 and Dow Corning for Silicone Fluid 0.65).

σ ρ μ pv

10−3 [N/m] [kg/m3] 10−3 [Pas] 103 [Pa]

SF 0.65 15.9 758 0.49 4.4

HFE-7500 16.2 1610 1.24 2.1

FC-77 15.0 1780 1.28 5.6

FC-72 12.0 1680 0.64 30.9

FC-87 9.0 1650 0.45 81.1

dimensions (H = 50 mm by w = 10, 14, 16 or 18 mm). They either have the warp wires or

the weft wires running perpendicular to the screen width. If the wicking process is occurring

parallel to the warp wires the flow is defined to be in warp direction, if parallel to the weft wires

in weft direction. The microstructure quality of each specimen is checked using a microscope

to detect any defects at the edges of the sample. Subsequently, the selected weave undergoes

a cleaning protocol that removes any dust or grease left on the surface or in the interstices.

This is performed using an ultrasonic bath with the metal cleaner Turco (supplier: Henkel AG,

Germany).
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Figure 7.1: Drawing of the microstructure (left) and photograph (right) of the Dutch-Twilled

weave (DTW) 200 × 1400.

Table 7.3: Properties of the weave.

weave material AISI 304 L

(stainless steel)

type Dutch Twilled Weave

200 × 1400 200 warp wires/inch

1400 weft wires/inch

warp wire diameter [μm] 70

weft wire diameter [μm] 40

H: weave height [mm] 50 ±0.01

T : weave thickness [μm] 149 ±1

w: weave width [mm] (10,14,16,18) ±0.01
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Figure 7.2: Photography of the wicking experimental setup.

7.3.2 Experimental setup and data acquisition

Fig. 7.2 displays an overview of the wicking experimental setup. Basically the setup consists of

• a rectangular test chamber (50x50 mm2 base area, 90 mm height) that contains the test

liquid and the specimen suspended above the liquid surface,

• a video camera to record the wicking liquid front height versus time,

• an electronic balance with an accuracy of ±0.3 mg to which the specimen is attached by

threads.

Fig. 7.3 shows a sketch of the arrangement. The weave is positioned for 1 hour above the

test liquid surface prior to the experiment start. During this time no increase in the sample

mass is recorded for all test liquids which means no significant capillary condensation occurs

in the weave. For experiments with filter frits the waiting period is less important as due to

their higher thickness evaporation is of less importance when compared to the very thin weaves.

Again, for filter frits no increase in mass was observed before contact with the liquid.

The test chamber is closed, however there are two holes in the cover to attach the specimen to

the balance. Vapor diffusion through these holes can be adjusted as the size of the holes can
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Figure 7.3: Sketch of the test chamber prior to wicking experiments.

Figure 7.4: Coordinates applied to the weave sample.

be varied to investigate different evaporation rates. To further increase the evaporation rate

the sealing top can be left open. The gaseous environment is therefore composed of air and

vapor of the test liquid. The recording of the wicking front is done with a camera at 25 Hz.

The resolution of the camera and the lens is 0.07 mm/pixel. The balance can be precisely and

continuously moved up and down by means of an automated lift in order to sink the specimen

into the test liquid with a constant velocity of 1 mm/s. Data acquisition is controlled using the

commercial software LabVIEW. The applied coordinate system is illustrated by Fig. 7.4 where

the weave is immersed in the test liquid. Here, hwi is the height due to the wicking process. hl

is the immersion depth of the weave in the liquid, a safety length to ensure contact with the

test liquid: hl ≈ 0.55 mm. h0 is the height up to which the specimen is covered with liquid due
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Figure 7.5: Subsequent series of images showing wicking of HFE-7500 into the weave.

to the wetting phenomenon. The overall height of the liquid front is the sum of two heights

h = hwi + h0, (7.8)

while hl contributes to a decrease in measured mass due to buoyancy.

7.3.3 DTW: capillary rise experiments - height approach

By measuring the equilibrium wicking height heq that occurs due to the balance between the

capillary and the gravity forces (see Eq. (7.4)), the static radius Rs can be calculated and

thus, knowing K/Rs from an other experiment, the permeability K. The equilibrium height

is typically reached after about five days of liquid rise. In order to measure heq, an additional

larger scale setup is used as heq (depending on the liquid) is higher than the test chamber. The

larger setup did not feature a balance but was sealed to provide a saturated environment. Due

to their high volatilities no experiments were conducted with FC-72 and FC-87. Also, as noted

by Kaya [52] (p.83) the experimental setup and the weave was not high enough to determine

the maximum height using SF 0.65 as a test liquid. The experimental results and the calculated

values of Rs are presented in Table 7.4. Note that in [52] Kaya obtains a slightly different Rs

value for FC-77 due to usage of different liquid properties. On the right hand side of Table 7.4

a mean value for bubble point measurements performed with HFE-7500, SF 0.65 and Turco

[72] is shown. The data is obtained using a commercially available pore size meter PSM 165

by Topas GmbH, Germany. This device determines the bubble point pressure and allows to

calculate the maximum pore size from that measurement. It can be seen that the obtained

value fits in between the Rs data obtained by the maximum height method.

From Table 7.4 it can be seen that the calculated value of Rs can deviate significantly from

measurement to measurement. In anticipation of a later comparison with literature values
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Table 7.4: Measured equilibrium heights for different test liquids in a closed large test chamber.

The second line displays the corresponding calculated values of Rs using the liquid properties

of Table 7.2. For comparison, on the right hand side data from bubble point measurements [72]

is presented.

Fluid HFE-7500 (exp1) HFE-7500 (exp2) [52] FC-77 [52] R (bubble point) [72]

heq [mm] 150 ± 10 210 ± 2.1 180 ± 1.8 -

Rs [μm] 13.7 ± 0.95 9.77 ± 0.1 9.54 ± 0.1 10.08 ± 0.8

(see Table 7.8) it can be stated that even larger deviations of this value occur in the literature,

which can be traced back to the significant impact of evaporation [38]. Though the experiments

presented here (Table 7.4) were conducted in a closed test chamber, evaporation may still occur

due to local temperature gradients. In the following, to be consistent with [38], a value of

Rs = (13.7± 0.95) μm will be used. To extract the permeability K out of experimental results,

the linear part of h2(t) and m2(t) graphs can be used. In this domain of the wicking process

the influence of gravity is negligible. Using Eq. (7.5) the parameter K/Rs is extracted from

the slope of the h2(t) curve. An image series of the wicking process is presented in Fig. 7.5.

The single frames of an image series are then processed with the commercial software MatLab

to extract the actual wicking height. At the liquid front line, a mean height out of all pixel

along the total width of the weave is calculated with a standard deviation of ±5 pixel.

Fig. 7.6 shows the resulting time dependencies of the wicking height for three test liquids and a

16 mm wide screen. As expected the slope is much steeper in the beginning of the measurement

and decreases in time.

In Fig. 7.7, the squared height is plotted versus time. Near the origin a constant slope can be

seen where a linear regression curve is calculated using the method of least squares to extract

the pore parameters. For the linear regression the experimental values between the origin of

the curve and h up to about 10% of the equilibrium height heq are used. This is consistent

with the analytical considerations presented in section 5.4, where it is predicted that for h up

to 10% of heq gravity can be neglected accepting a minor error (3.54%). For SF 0.65 heq = 312

mm is calculated using Rs = 13.7 μm. It is visible in Fig. 7.7 that for h > 0.1heq the meniscus

heights of SF 0.65 deviate to lower values than predicted by the linear regression. This is in

agreement with the analytical models and can be traced back to the influence of gravity.
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Figure 7.6: Wicking height raw data (w = 16 mm, warp direction) with error bars (standard

deviation is ±5 pixel).

Figure 7.7: Squared height over time (w = 16 mm, warp direction) with linear fitting (no error

bars for graph clarity). Mark at h = 0.1heq for SF 0.65. For higher values of h gravity has to

be taken into account, the linear regression overestimates the values.
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Table 7.5: K/Rs calculated from height measurements (w = 16 mm, warp direction). Number

in brackets is the correlation coefficient r2, ± refers to the standard deviation. K calculated

with Rs = 13.7 μm.

K/Rs (experimental) [μm] K [μm2]

SF 0.65 0.0589 (0.995) 0.81

HFE-7500 0.0448 (0.997) 0.61

FC-77 0.0506 (0.992) 0.69

Average 0.0514 ±0.0071 0.70 ±0.10

Table 7.5 contains the K/Rs results for different fluids and their correlation coefficient. The

values from Table 7.5 reveal that there is a small deviation between the measurements made with

different liquids. The average is K/Rs = 0.0514 μm with a standard deviation of 0.0071 μm.

Further measurements were also conducted using weaves with different widths ranging from 10

to 18 mm but a comparison of the results showed no significant influence of the width.

7.3.4 DTW: capillary rise experiments - mass approach

The chronology of a mass measurement is shown in Fig. 7.8. The curve is divided into six

parts, describing the weave from the imbibition to the drying. At first, the weave is brought

into contact with the test liquid inducing the wetting process. The liquid will then start to wick

into the weave, while the mass will increase to finally reach a plateau value. In the absence

of evaporation this corresponds to the equilibrium state between capillary and hydrostatic

pressure. During the de-wetting the contact between weave and liquid is lost and the outer

meniscus detaches. Finally, the last step belongs to liquid evaporation out of the weave which

will only take place in unsaturated environments (e.g. open test chamber). This part of the

curve is of great interest to evaluate the evaporation rate and will be described in further detail

later. The result of a wicking mass versus wicking height measurement is shown in Fig. 7.9. It

verifies the linear behavior and furthermore allows to calculate the “wicking effective porosity”.

Other methods to measure or predict the porosity of a weave are discussed in section 2.2.1 or

by Armour and Cannon [2]. Using Eq. (7.6) the porosity can be calculated out of the slope

(see Fig. 7.9) to be φ = 0.24 ± 0.03. Kaya [52] (p.88) applied a different method to determine

the porosity, however, with fairly similar results. The weight of a completely dry specimen was

measured, then the specimen submerged into HFE-7500 (known density, see Table 7.2) until it
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Figure 7.8: Mass versus time curve (open test chamber). Imbibition of a weave (50x16 mm)

by HFE-7500. The “de-wetting mass” is measured to be 0.0613 g, while the Wilhelmy plate

method Eq. (7.1) predicts 0.0533 g.

was saturated. Finally the mass of the wet specimen was determined. The difference in mass

can be accounted to the liquid in the pores and by knowing the dimensions of the specimen

Eq. (2.1) was used to obtain φ = 0.247 ± 0.006 based on three experiments with different

specimen sizes. Comparing these results with the data provided by the supplier (Spörl KG,

Germany), φ = 0.33, shows that the measured, effective values are considerably lower than

the value provided by the supplier. However, the supplier does not state how the porosity was

measured or estimated and mark their value as approximate.

According to Eq. (7.7) mass measurements can be used to calculate pore structure parameters

like the permeability of the weave. The advantage of this “mass method” is that no image

processing is necessary to evaluate the wicking height from video recordings. When considering

experimental investigations using cryogenic liquids the mass method is an attractive alternative.

This results from a tendency of cryogenic liquids to render optical methods unpracticable due

to condensation on lenses. However, the mass method also features some disadvantages when

compared to the optical measurement. As the weave is basically a two dimensional medium

(0.15 mm thickness compared to 16 mm width) its wetted circumference is large compared to its
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Figure 7.9: Measurement of φ: Liquid mass inside the weave versus wicking height (HFE-7500

in 16 mm wide sample, warp direction). Prediction using Eq. (7.6).

volume. Thus the initial effect of wetting, the attachment of an outer meniscus to the weave, is

a significant rise in mass when compared to the mass gain due to the wicking effect. As Fig. 7.8

illustrates, the wetting mass gain within a fraction of the first second is a significant portion of

the total mass gain. Also, when the weave is brought into contact with the liquid, both effects

occur at the same time. To obtain the “real wicking mass” the “de-wetting mass” (see Fig. 7.8)

is subtracted from the mass raw data, as the initial jump in mass (in Fig. 7.8 measured to be

0.0644 g) refers to both the wetting and wicking process. For the same case the “de-wetting

mass” is measured to be 0.0613 g. Using the Wilhelmy plate method Eq. (7.1) for an identical

setup gives a predicted force of 0.5232 mN, which is equal to a mass of 0.0533 g. Comparing

the predicted mass and the measured “de-wetting mass” shows that both are in fairly good

agreement. Analogous to the height method, Fig. 7.10 shows the squared wicking mass gain

plotted versus time. From the slope of the m2(t) curves the weave parameters presented in

Table 7.6 were calculated using Eq. (7.7). The values of Table 7.6 show good agreement with

the ones calculated with the height method (Table 7.5).

The results presented in Table 7.7 refer to the capillary rise in weft direction. It is assumed that
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Figure 7.10: Squared mass over time (warp direction) with linear fitting (no error bars for

graph clarity).

the static radius Rs that defines the capillary pressure is equal for warp and weft direction. The

mass and height curves for the weft direction are fairly similar to the ones in warp direction,

however the liquid rises more slowly. This is due to the higher flow resistance in the weft

direction. This can also be seen by the permeability K in Table 7.7 which is about half the

value of K for the warp direction. An overview of the experimental findings is provided by

Table 7.8. It also shows a comparison of the obtained results with literature which verifies the

presented results to some extent. In his work [28] Dodge uses his experiments [29] - where

evaporation is not suppressed - as a reference. Thus, the higher evaporation rate may explain

the deviation. Dodge [28] does not use the pore parameters used in this work but his parameters

can be converted by the following correlations

Φw

DBP

=
2

Rs

(7.9)

and
Cw

B2
s

=
φ

K
. (7.10)

Dodge [28] defines Φ as a screen characteristic parameter (not the porosity), DBP as the effective

pore diameter, Cw as a wicking friction parameter and Bs as the screen thickness. Symons [98]
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Table 7.6: K/Rs for the warp direction calculated from mass measurements (w = 18 mm).

Number in brackets is the correlation coefficient r2, ± refers to the standard deviation. K

calculated with Rs = 13.7 μm.

K/Rs, warp [μm] K, warp [μm2]

SF 0.65 0.0565 (0.993) 0.77

HFE-7500 0.0544 (0.996) 0.75

FC-77 0.0496 (0.999) 0.68

Average 0.0535 ±0.0035 0.73 ±0.05

uses a correlation constant c. For the static radius in warp direction Dodge obtains Rs =

88.1 μm and 124.4 μm for the weft direction. Symons uses Rs = 7.0 μm for warp and weft

direction alike, however this value is based on the manufacturer’s rated pore size. Altogether

it can be seen that there is fair agreement between the K/Rs values, however discrepancies for

the Rs results which may be explained by the sensitivity of the experiment to evaporation.

Table 7.7: K/Rs for the weft direction calculated from mass measurements (w = 16 mm).

Numbers in brackets are correlation coefficients r2, ± refers to the standard deviation. K

calculated with Rs = 13.7 μm.

K/Rs, weft [μm] K, weft [μm2]

SF 0.65 0.0255 (0.987) 0.35

HFE-7500 0.0283 (0.996) 0.39

FC-77 0.0259 (0.998) 0.35

Average 0.0266 ±0.0015 0.36 ±0.02
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Table 7.8: Overview - experimental results for DTW 200x1400 and comparison with literature

(Dodge [28] and Symons [98]).

This work Dodge Symons

φ: porosity 0.24 ±0.03 0.272

Rs[μm], warp 13.7 ±0.95 88.1 7.0

Rs[μm], weft 13.7 ±0.95 124.4 7.0

By height method Dodge Symons

K[μm2], warp 0.70 ±0.10

By mass method Dodge Symons

K[μm2], warp 0.73 ±0.05

K[μm2], weft 0.36 ±0.02

K/Rs[μm], warp 0.0535 0.0408 0.0462

K/Rs[μm], weft 0.0266 0.0132 0.0150

7.3.5 Filter frits: capillary rise experiments - mass approach

In the following text some experiments conducted with glass filter frits (introduced previously

in section 7.3.1) are presented. The first aim is to derive their pore structure parameters K,

Rs and φ for possible future applications of these materials. The second aim is to apply some

of the previously derived equations to the capillary rise of SF 0.65 in these structures.

In Fig. 7.11 some raw data from mass recordings are presented. Two different types of filter

frits are used, while SF 0.65 is the test liquid. The numbers denote: 1) The initial increase in

mass due to external wetting. It is, in proportion to the overall mass increase, considerably

smaller when compared to the thin, metallic weaves. 2) A plateau is reached: at this point

the complete specimen is filled with liquid, thus the wicking comes to a sudden stop. Note

that for the frit class P1 the plateau is not reached with a kink. Here it is the hydrostatic

pressure which limits the capillary rise. 3) At this point the porous specimen is lowered out of

the liquid. After an initial increase in mass the mass drops when the contact is lost. After this,

a very slow decrease in mass which can be attributed to evaporation can be observed (compare

to Fig. 7.8, which displays a much thinner weave). Table 7.9 displays the sizes of the samples

used for the capillary rise test. It also presents the actual measured de-wetting mass (plateau

to plateau) and the theoretical mass predicted by the Wilhelmy plate equation Eq. (7.1). It can
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Figure 7.11: Raw mass data recording for filter frits class P1 and P4 in SF 0.65. The numbers

denote stages of the experiment as described in the text. The precision of the balance is ±0.3

mg, thus no error bars are visible. However, the error of repeatability is found to be ∼10 %.

be seen that the actual mass is about two times the mass predicted by the Wilhelmy method.

It is assumed that this increase in mass is contributed by liquid below the porous sample raised

above mean liquid level, and not by the outer meniscus itself. This would also explain why this

additional mass is missing for the very thin metallic weaves previously investigated.

Table 7.10 presents some parameters extracted from the experimental data. The porosity φ

is calculated using the mass inside the wetted structure and the volume of the structure. For

type P0 the specimen is beforehand completely submerged in test liquid to ensure that it is

fully saturated, as the equilibrium height is lower that the height of the specimen. For the

other frit types the mass after the normal rise process is taken. The obtained value is in fairly

good agreement with the supplier specification, see Table 7.1. The value K/Rs is determined

from the linear part of the capillary rise as previously introduced for metallic weaves (section

7.3.4). Two different types of radii are shown. The first is the static radius Rs, for P1 - P3

obtained from fitting Eq. (7.3). The second one is a radius denoted R (bubble point), which is

obtained from a different experimental setup. Here a commercially available device, the PSM
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Table 7.9: Specimen size of the used glass filter frit specimen.

Filter frit type height [mm] w [mm] T [mm] de-wetting m [g] Wilhelmy m [g]

P0 50 15.97 6.85 0.14 0.074

P1 50 14 6.33 0.14 0.066

P2 50 14 7.33 0.15 0.069

P3 50 14.8 5.5 0.09 0.066

P4 50 14.5 6 0.13 0.067

P5 49.5 14.75 5 0.09 0.064

165 by Topas GmbH, Germany, is used to determine the bubble point, see Meistering [72].

From this bubble point the radius of the largest pore can be extracted. Here, the mean value of

measurements using HFE-7500 and Topor test liquid [72] are used. For P0 no value is provided

as the bubble point is lower than the allowed sensor reading of the device. Note that for class

P4 and P5 Rs is not determined by fitting of Eq. (7.3), as for these the curves using R from the

bubble point measurement already provides a fairly good agreement. Finally, Fig. 7.12 displays

the height calculated using the mass measurement and Eq. (7.6). Note that the capillary rise

always stops at h = 50 mm as this is the height of the specimen. The lines are a fit of the

analytical solution Eq. (7.3) including the Lambert W function. Fairly good agreement can be

observed.

Table 7.10: Overview of experimental results and the estimated errors for filter frits calculated

from mass measurements.

Filter frit type φ [-] K/Rs [μm] Rs [μm] R (bubble point) [μm] [72]

P0 0.28 ±0.03 0.215 ±0.031 - -

P1 0.35 ±0.04 0.235 ±0.036 50 ±10 76.7 ±7.6

P2 0.42 ±0.04 0.187 ±0.029 10 ±2 37.7 ±3.8

P3 0.41 ±0.04 0.116 ±0.018 7.4 ±1.5 15.3 ±1.5

P4 0.46 ±0.05 0.083 ±0.012 - 4.44 ±0.44

P5 0.50 ±0.05 0.0594 ±0.0089 - 3.74 ±0.37
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Figure 7.12: h calculated from mass measurements of different filter frits in SF 0.65 (no error

bars for graph clarity). The lines denote a fit of Eq. (7.3), which includes capillary, viscous and

hydrostatic forces.

7.3.6 DTW: The effect of evaporation

Looking at Fig. 7.8, evaporation affects the periods 4 and 6. It is the only and therefore crucial

mechanism for the drying period 6, which is used for its measurement. It is characterized by

the evaporation rate ṁe which is the mass of evaporated liquid per area and time [kg/m2 s].

ṁe has to be calculated individually for each experiment as it depends on the used test liquid,

temperature and saturation of the surrounding air. To obtain different values of the evaporation

rate the size of a ventilation hole on top of the test chamber was varied. Assuming evaporation

from both sides of the weave the total mass flow due to evaporation is

Ṁe = 2ṁeh(w + T ). (7.11)

The evaporation mass curves can roughly be divided into two drying periods. The first part of

the curve is linear and corresponds to the drying when the weave is completely saturated. The

second part which is nonlinear reveals a reduction of the drying rate when the amount of liquid

is reduced below a certain level in the weave structure. As given by Kaviany [50], the liquid is
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Figure 7.13: Height calculated from mass recordings of HFE-7500 wicking into the weave. The

evaporation rate affects the reached height significantly. See Table 7.11 for further details.

trapped at this drying stage due to capillary forces. The effective evaporation rate which is of

interest to understand the capillary rise under the effect of evaporation is the linear part. It is

assumed that the weave, once the wicking front has passed, is completely saturated and thus

refers to this evaporation regime. As already mentioned by Symons [98], the wicking of a liquid

into a weave can be effected by evaporation or local heat sources. In this study no external heat

sources were applied. However, the experimental setup allowed to investigate the influence of

different evaporation rates on the capillary rise in warp direction. The evaporation occurs due

to the vapor pressure of the test liquids that leads to a layer of vapor over the weave surface.

Due to diffusion and convection the vapor is distributed in the surrounding air so that more

liquid can evaporate. It is assumed, since only relatively small amounts of liquid evaporate,

that the enthalpy of evaporation can be neglected when compared to the heat capacity of the

saturated weave and heat conduction from the gaseous species. Thus the structure is assumed

to be at constant temperature. As the weave is basically a two dimensional medium its outer

surface is large compared to its volume which transports the liquid internally. Thus, although

the evaporated amount of liquid may be comparably small, the effect of evaporation on the rise

process may be large. In Fig. 7.13 the different wicking heights of the test liquid HFE-7500
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are presented. The influence of evaporation is clearly visible. The experiments were either

performed by Odic, Kaya [52] or the author.

Knowing about the strong effect of evaporation it is of interest to develop a model capable of

explaining the process and allowing to predict the deviations from unaffected capillary rise.

7.4 Applicable equations (evaporation)

While the liquid rises in the metal weave it is exposed to the ambient atmosphere at the outer

pores. If the surrounding gas is not saturated with the vapor of the liquid, evaporation out

of these pores can occur. Due to the continuous loss of liquid due to evaporation the advance

of the liquid front line will be slower than in a setup without evaporation. In this chapter

the theoretical model given by Symons [98] is extended, which can then be used to explain

the experimental findings. For the model presented below the assumption has been made

that the evaporation is uniformly distributed and is given by the area normalized evaporation

rate ṁe [kg/m2 s]. The evaporation rate is assumed to be constant ṁe = const. �= f(h, z).

This assumption is valid if no point heat sources are affecting the local evaporation and if the

transport of the gaseous (evaporated) species away from the weave is not restricted by the build

up of a boundary layer (constant concentration gradient). Finally, the total evaporation mass

flow Ṁe is given by Eq. (7.11) as stated in the previous chapter. Fig. 7.14 displays the integral

and differential mass balance of the weave. It can be seen that the total mass inflow Ṁ(z = 0)

is made up of two components - the mass flow necessary to supply the movement of the liquid

front Ṁḣ and the total evaporation mass flow Ṁe. Ṁḣ is given by

Ṁḣ = φAbρḣ. (7.12)

Here, φAb refers to the effective bottom area of the weave. Regarding Fig. 7.14, the differential

mass balance can be expressed as

dṀ(z) = Ṁ(z + dz) − Ṁ(z) = −ṁePbdz. (7.13)

When integrating and using the boundary condition that the total mass inflow at z = 0 must

be equal to Ṁḣ + Ṁe, one obtains

Ṁ(z) = Ṁḣ + ṁePbh
(
1 − z

h

)
. (7.14)

The local mass flow Ṁ(z) can now be given in form of a flow velocity which is then used to

calculate the viscous pressure loss. The flow velocity in the weave is composed of two parts. The
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Figure 7.14: Schematic drawing displaying the mass balance of a wicking process with evapo-

ration.

first part corresponds to the liquid front velocity ḣ, which is constant over the weave height

as is Ṁḣ. The second is the refill velocity vr to refill the evaporated liquid, which is height

dependent. Where the weave is in contact with the liquid surface (z = 0) the refill velocity

reaches its maximum value of

vr,0 =
Ṁe

ρφAb

=
ṁePbh

ρφAb

. (7.15)

The assumption of a constant evaporation rate at the outer weave surface leads to a linear

dependence of the refill velocity (see Eq. (7.14)) reading

vr(z) = vr,0

(
1 − z

h

)
, (7.16)

thus it can be seen that vr linearly reduces to zero at the actual height h(t). Fig. 7.15 displays

the velocity distribution of the liquid inside the weave. The total velocity, made up by the front

line movement and the refill velocity can be given as

vt(z) = ḣ+ vr(z). (7.17)
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Figure 7.15: Velocities involved in a wicking process with evaporation. The total velocity

consists of two components: a velocity ḣ (constant over z, not constant over t) and a refill

velocity vr which depends on the height z and t.

The momentum balance for the case without evaporation is given in Eq. (2.49) as

−ρd(hḣ)
dt

= −2σ cos(θ)

Rs

+
φμh

K
ḣ+ ρgh. (7.18)

As the investigated process is a fairly slow one, inertia can be neglected, however, one has to

take into account that the flow velocity in the wetted weave does not remain constant over

height. Thus the viscous term (Darcy law) has to be modified to read

φ

K
μ

∫ h

0

vt(z) dz =
φ

K
μh
(vr,0

2
+ ḣ
)
. (7.19)

Thus, including the effect of evaporation, the final differential equation becomes

2σ cos(θs)

Rs

= ρgh+
φ

K
μhḣ+

ṁe

2

Pb

Ab

μ

ρK
h2. (7.20)

Comparing this equation to the momentum balance for porous media without evaporation (e.g.

Eq. (2.49)) shows that Eq. (7.20) neglects the local and convective acceleration terms, however,
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a term is added to the right hand side which takes into account the losses due to evaporation.

This equation can be transformed to the following form

ḣ =
1

bh
− c

b
− γh, (7.21)

which equals Eq. (5.8) with an additional term for the losses due to evaporation. The coefficients

b and c as previously defined are used, where γ (representing the evaporation term) is defined

as

γ =
ṁe(w + T )

ρwTφ
. (7.22)

Setting ḣ = 0 in Eq. (7.21) one finds maximum (equilibrium) heights for the following different

cases: i) No evaporation occurs (γ = 0) and only gravity restricts the maximum reachable

height, given by

heq,b,c =
1

c
. (7.23)

ii) No gravity (c = 0) is affecting the liquid rise, however evaporation has an effect resulting in

heq,b,γ =

√
1

b γ
. (7.24)

iii) Both terms (gravity and evaporation) have to be considered leading to

heq,b,c,γ =
−c
2b γ

+

√
c2

4b2γ2
+

1

b γ
. (7.25)

iv) Finally no gravity and no evaporation restrict the capillary rise, hence there is no limit in

the maximum reachable height, as is also predicted by the Lucas-Washburn equation.

7.5 Analytical solution

Starting from Eq. (7.21) one can derive an analytical expression for the time needed to reach

a certain height of the liquid front t(h), accounting also for evaporation and gravity. Rewriting

Eq. (7.21) gives ∫
bh

−b γh2 − ch+ 1
dh =

∫
1dt. (7.26)

The solution to the first integral is given by Bronstein and Semendjajew [13] using the following

definition

Ψ = −4γ

b
− c2

b2
. (7.27)
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Figure 7.16: Dimensionless height over time for different values of Φ. The 0.99 heq line is

introduced in the next section.

For Ψ < 0 the total solution in terms of t = t(h) is

t =
−1

2γ
ln

(
−γh2 − c

b
h+

1

b

)
− c

2b γ
√−Ψ

·

ln

(−2b γh− c− b
√−Ψ

−2b γh− c+ b
√−Ψ

)
+ C. (7.28)

To calculate the unknown constant C, the initial condition h(t→ 0) = 0 can be used to give

C =
1

2γ
ln

(
1

b

)
+

c

2b γ
√−Ψ

ln

(−c− b
√−Ψ

−c+ b
√−Ψ

)
. (7.29)

Thus the final solution is

t =
1

2γ

[− ln
(−bγh2 − ch+ 1

)]− c

2b γ
√−Ψ

·

ln

[
(−2b γh− c− b

√−Ψ)(−c+ b
√−Ψ)

(−2b γh− c+ b
√−Ψ)(−c− b

√−Ψ)

]
. (7.30)

7.5.1 Dimensional analysis

To compare the experimental data obtained with different fluids or under different conditions

it is of great interest to have a set of dimensionless numbers to describe the problem. The
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method presented in chapter 3 is used, and by applying the scaling using viscous effects and

gravity as scaling forces gives h† and t† (see section 3.2.1, Eqs. (3.8) and (3.9))

h† = ch =
ρghRs

2σ cos(θ)
, (7.31)

and

t† =
c2t

b
=

ρ2g2

2μσ cos(θ)

KRs

φ
t. (7.32)

However, h† and t† are not able to reflect the influence of evaporation on the wicking behavior.

This can be done by relating the maximum reachable height with gravity and evaporation

(Eq. (7.25)) to the maximum reachable height without evaporation (Eq. (7.23)). Using this

approach a dimensionless “related maximum height” Φ is obtained

Φ =
heq,b,c,γ

heq,b,c

= c

(
−c
2b γ

+

√
c2

4b2γ2
+

1

bγ

)
. (7.33)

If Φ is equal to zero no height is gained at all, the evaporation effect is so strong that it prevents

any capillary rise (ṁe → ∞). If Φ is equal to one, no evaporation occurs to restrict the capillary

rise (ṁe = 0). For values of Φ in between, say 0.5, evaporation diminishes the reachable height

to half the value that could be gained without evaporation.

With these parameters one can draw a dimensionless plot of the numerical solutions of Eq.

(7.20) as shown in Figs. 7.16 and 7.17. The numerical solution of Eq. (7.20) is consistent with

the analytical one (Eq. (7.30)).

7.5.2 Time needed to reach 0.99 heq

For infinite times the gained height converges to a maximum value heq. From Figs. 7.16 and 7.17

it can be seen that after a certain time depending on the evaporation rate, the height reaches a

quasi steady state where no further increase in height occurs. For high evaporation rates (low

values of Φ) this state is reached earlier than for low evaporation rates (high values of Φ). This

raises the question at what time the liquid stops rising and reaches 0.99 times its equilibrium

value heq. Using numerical methods, namely a tool written in C++, the dimensionless time t†0.99

is found. It is defined as that time when 99% of the final height heq is reached. t†0.99 depends

on the parameter Φ as can also be seen in Figs. 7.16 and 7.17. A polynomial function of fourth

order is fitted to the numerically generated points which gives

t†0.99 = 1.2682Φ4 + 0.2157Φ3 + 2.122Φ2 − 0.0102Φ. (7.34)
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Figure 7.17: Close up of the solution displayed in Fig. 7.16 for shorter times.

The “0.99 heq line” in Figs. 7.16 and 7.17 refers to the inverted value Φ0.99(t
†
0.99) assuming that

Φ is equal to h† when 99% of it is reached. Another interpretation of the steady state line is as

follows: If a liquid inside the weave is on the left hand side of the 0.99 heq line in the diagram,

it is still rising. If it is on the right hand of the line, it has already reached its final height heq

and remains static.

7.5.3 Evaluation of the model with experimental data (DTW)

In this section the evaporation model introduced on the previous pages shall be compared to

the experimental results obtained with the Dutch-Twilled-Weave 200x1400. The experiments

were either performed by Odic, Kaya [52] or the author. Figs. 7.18 and 7.19 show a compari-

son of experimental results and predicted values obtained with the presented model. Here the

experiments are abbreviated by the liquid used and numbers as explained in Table 7.11.

Figs. 7.18 and 7.19 show that in general the experimental results qualitatively follow the pre-

dicted values. However, there seems to be a trend that the mathematical model overestimates

the height. Table 7.12 displays the measured and predicted values of Φ (Eq. (7.33)) to compare

the deviation between model and experiment. Apparently the calculated values are larger than

the measured ones as was seen from the comparison of the height curves. The average deviation

is found to be in the range of 20%. There are several parameters which could be the source of
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Figure 7.18: Dimensionless plot (small t†) of experimental results (symbols) in comparison to

the values predicted by the model (lines). The Φ = 1 line depicts the rise for both liquids with

no evaporation. See Table 7.11 for further details.

these deviations. A high influence can be assigned to the assumption of a constant evaporation

distribution all over the wet weave. If by some means the evaporation rate would be higher at

the top of the weave the refill velocity vr(z) would not be a linear function of z and thus more

liquid would have to be transported to the top. This would lead to a higher pressure loss and

may thus explain the discrepancy between theory and experimental findings. As can be seen

in Table 7.11 the measured values of ṁe also deviate for similar chamber apertures and test

liquids. Though the deviation is not found to be in the range of some orders of magnitude, it

still shows that the experimental environment (e.g. convection) is not fully reproducible and

understood. Also the different levels of saturation are not considered in the presented model,

and the exact determination of the local evaporation rate and the effective evaporation surface

is not possible. In addition the contact angle is assumed to be constant and inertial forces (local

acceleration and convective) are neglected. This, however, should only be of importance for the

very early stages of the capillary rise. Despite the deviations the presented evaporation model

gives a far better prediction for the capillary rise than solutions neglecting evaporation (e.g.

Lucas-Washburn) and explains the experimental observations qualitatively. Also can be seen
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Figure 7.19: Dimensionless plot (large t†) of experimental results (symbols) compared to the

analytical model (lines). See Table 7.11 for further details. The model tends to overestimate

the height.

that realistic evaporation rates may have a major impact on the reachable wicking height. For

example the last experiment shown in Table 7.12 (SF 0.65 exp1) has a measured Φ of about 0.06.

This means the liquid reaches only 6% of the height that would be gained without evaporation!
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Table 7.11: Experiments performed using various test liquids.

specimen width w chamber aperture ṁe (measured) Φcalc.

[mm] [mm2] [kg/m2s] [-]

SF 0.65 exp1 16 2500 7.40 × 10−4 0.071

SF 0.65 exp2 18 55 4.68 × 10−6 0.593

SF 0.65 exp3 18 2500 6.58 × 10−4 0.075

HFE-7500 exp1 16 55 7.10 × 10−6 0.740

HFE-7500 exp2 16 2500 4.36 × 10−4 0.169

HFE-7500 exp3 18 55 1.81 × 10−6 0.902

HFE-7500 exp4 18 2500 4.68 × 10−4 0.164

FC-77 exp1 16 2500 2.01 × 10−3 0.098

FC-77 exp2 18 55 4.54 × 10−6 0.847

FC-77 exp3 18 2500 1.21 × 10−3 0.124

FC-72 exp1 16 55 7.52 × 10−5 0.529

FC-87 exp1 16 55 1.66 × 10−4 0.494

Table 7.12: Experimental values of Φ compared to calculated ones.

Φexp. Φcalc. Φexp./Φcalc.

SF 0.65 exp1 0.057 0.071 80.3 %

HFE-7500 exp2 0.12 0.169 71.0 %

FC-77 exp1 0.059 0.098 60.2 %

FC-72 exp1 0.43 0.529 81.3 %

FC-87 exp1 0.40 0.494 80.9 %

average - - 74.7 %
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7.6 Conclusion

The wicking behavior of perfectly wetting liquids in metallic weaves is studied. By means

of the momentum balance the Lucas-Washburn equation and further analytical solutions are

introduced. An experimental setup using a vertically positioned weave is used to investigate

the wicking behavior of different liquids. The results are compared to analytical solutions and

good agreement between the Lucas-Washburn equation and the experimental data is found for

flow regimes where gravity and evaporation effects are negligible. From the measurements one

can determine the permeability and static radius (for the capillary pressure) of the structure.

No significant influence of the screen width onto the wicking process is found. However, the

capillary rise in warp direction occurs about twice as fast as in weft direction as the perme-

abilities also differ by about this factor due to the different thicknesses of the wires and the

weave structure. The results for the slope parameter K/Rs are validated by previous literature,

but there are discrepancies for the static radius which may occur due to the sensitivity of the

experiment to evaporation. Therefore the effect of evaporation is investigated in more detail

and a model is developed to explain the observed effects. An analytical solution is presented

which includes both gravitational and evaporation effects in dimensionless form. Using the

introduced dimensionless parameters it is possible to plot all experimental data in a single di-

agram to compare different fluids and evaporation rates. The experimental data supports the

theoretical model, although it shows that the model tends to overestimate the reached height

by about 20%.

Future investigations on this topic call for an experimental environment with variable but

known ambient conditions to provide better insight into the effect of evaporation, but also to

understand the impact of convection. By comparing microscopic and macroscopic numerical

simulations (CFD) of two-species, two-phase systems to the obtained experimental data the

models can be validated. This is one of the proposed aims for the next generation of projects

within the framework of the Research Training Group PoreNet.
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Chapter 8

Radial capillary transport

Note on the following chapter

The following chapter is based on the joint publication “Radial capillary transport from an

infinite reservoir” by M. Conrath, N. Fries, M. Zhang and M.E. Dreyer [21]. The analytical

derivation and the dimensional analysis has been conducted by N. Fries while the experiments

and the data analysis has been realized by the coauthors. Still the experimental data will be

presented in the following chapter, as it provides a very useful validation of the theoretical

considerations. Furthermore, the author likes to express his thanks to his colleagues for the

fruitful cooperation and the interesting discussions.

8.1 Applicable equations

In this chapter a theoretical and experimental study on liquid wicking radially within a porous

filter paper from an (assumed) infinite reservoir is presented. The theoretical model predicts

both outward and inward radial transport and is based on Darcy’s law. Nevertheless, the

resulting solution for the position of the wetting front bears a strong resemblance to the radial

capillary solution by Marmur [64]. The experiments are conducted with filter paper to ensure

good observability and to avoid the displacement problem. With the setup described here

one can examine horizontal wicking i) radially outward, and ii) linear. Using a second setup

already described in the previous chapter iii) vertical linear wicking by mass method is added.

All results are compared and discussed.

For the theoretical considerations two basic assumptions are made: isotropic pore distribution

and absence of evaporation. An isotropic pore distribution ensures a purely circular wicking
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Figure 8.1: Experiment configuration and lengths for outward capillary transport.

front line. Evaporation is superimposed to the underlying mechanism of capillary transport

and therefore would complicate the basic understanding. That is why it is excluded here by

using a nonvolatile test liquid.

The configuration considering an outward capillary transport fed by a circular wick in the center

- as illustrated in Fig. 8.1 - is investigated.

When liquid wicks within a porous material there is a driving capillary pressure along the

meniscus at the edge of the spreading spot. It has to balance the viscous pressure loss inside

the material itself, the viscous pressure loss in the feeding device and the inertial pressure. In

this section the influence of the wick is neglected as its permeability was chosen to be much

higher than the permeability of the filter paper. Hence - as introduced in the theoretical

chapter of this work (Eq. (2.60)) - the momentum balance for radial capillary flow through

porous structures reads as

2σ cos (θ)

Rs︸ ︷︷ ︸
surface tension

= μ
φ

K

∫ rf

r0

vr(r)dr︸ ︷︷ ︸
viscosity

+
d

dt

[∫ rf

r0

ρvr(r)dr

]
︸ ︷︷ ︸

inertia

+

∫ vf

v0

ρvrdvr︸ ︷︷ ︸
convective

. (8.1)

Due to the mass balance Eq. (2.53)

vr(r) =
1

r
rf ṙf , (8.2)

so one can substitute vr(r) and rearrange to obtain

1 − μφRs

2σ cos (θ)K︸ ︷︷ ︸
b

rf
drf

dt
ln

(
rf

r0

)
− ρRs

2σ cos (θ)︸ ︷︷ ︸
a

(
d

dt

[
rf
drf

dt
ln

(
rf

r0

)]
+

(
drf

dt

)2 [
1

2
− r2

f

2r2
0

])
= 0.

(8.3)
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To ease the handling of the following calculations the previously introduced parameters a and b

are used. Note that these parameters are differently defined in [21]. Applying the Buckingham

π-Theorem, see [17] and [107], with the five (5) dimensional units a[s2 m−2], b[s m−2], rf [m],

t[s], r0[m] and the two (2) fundamental units time [s] and length [m] one obtains 5 − 2 = 3

dimensionless π parameters that characterize the problem. Thus the Buckingham π theorem

provides us with three dimensionless scalings. First one has a dimensionless radius

π1 = r	
f =

rf

r0
, (8.4)

which is an aspect ratio. The second scaling is a dimensionless time

π2 = t	 =
4

br2
0

t =
8σ cos (θ)

μr2
0

K

φRs

t ∼ 1

Ca(t)
. (8.5)

Here Ca denotes the capillary number - relating viscous forces to surface tension forces - which

is given by

Ca ∼ μr0

σt
. (8.6)

Since a transient phenomenon is investigated, the capillary number is time-dependent. Eq.

(8.5) also provides a characteristic time

tc =
t

t	
=
br2

0

4
=

μr2
0

8σ cos(θ)

φRs

K
. (8.7)

The third dimensionless parameter reads

π3 =
b2

a
r2
0 =

μ2r2
0

2σ cos (θ)ρ

φ2Rs

K2
∼ Oh2. (8.8)

This parameter is useful for scaling the inertia term, Oh denotes the Ohnesorge number -

relating viscous forces to surface tension and inertial forces

Oh =
μ√
σρL

. (8.9)

Using r	
f , t

	 and π3 in the momentum equation Eq. (8.3) gives the problem in a dimensionless

form

1

4
− r	

f

dr	
f

dt	
ln
(
r	
f

)− 4

π3

(
d

dt	

[
r	
f

dr	
f

dt	
ln
(
r	
f

)]
+

(
dr	

f

dt	

)2 [1 − (r	
f )

2

2

])
= 0. (8.10)

As will be shown later in Table 8.8, in the experiments π3 � 1 (or Oh � 1, respectively),

and therefore the inertial term can be neglected. Thus one seeks an analytical solution of the

dimensionless equation
1

4
− r	

f

dr	
f

dt	
ln r	

f = 0. (8.11)
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To find it the method of separating the variables is used to obtain

r	2
f (ln r	2

f − 1) = t	 + C. (8.12)

Assuming that the spot has the initial radius r0 at the time t = 0, the boundary condition to

find C reads as

r	
f (t

	 = 0) = 1, (8.13)

giving a special solution in terms of t	(r	
f ), namely

t	(r	
f ) = r	2

f

(
ln r	2

f +
1

r	2
f

− 1

)
. (8.14)

A solution in terms of r	
f (t

	) can be obtained with the Lambert W function. It is defined as

the inverse of y = xex where x = W (y). In a first step Eq. (8.14) is rearranged to

t	 − 1 = r	2
f (ln r	2

f − 1). (8.15)

Since 1 = ln e and the inversion y = x lnx↔ x = y/W (y) applies, one finds that

r	2
f

e
=

e−1 (t	 − 1)

W (e−1 (t	 − 1))
. (8.16)

This equation is quadratic. Therefore, two different solutions r	
f (t

	) are possible. These are

r	
f (t

	) = ±
√

t	 − 1

W (e−1(t	 − 1))
. (8.17)

Due to its unphysical nature, the “-” solution is omitted. The Lambert W function is well

explained in [22]. One of its properties is that it is generally complex. There are only two

branches with real values which are shown in Fig. 8.2. These branches are denoted W (0, x)

and W (−1, x), respectively. In light of this fact, the analytical solutions according to Eq. (8.17)

become

r	
f (t

	) =

√
t	 − 1

W (0, e−1(t	 − 1))
outward transport, 0 ≤ t	 ≤ ∞ (8.18)

r	
f (t

	) =

√
t	 − 1

W (−1, e−1(t	 − 1))
inward transport, 0 ≤ t	 ≤ 1 (8.19)

These solutions are also depicted in Fig. 8.3.

The liquid flow rate that occurs in the porous medium is also of interest. It is important to
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Figure 8.2: The two real-valued branches of

the Lambert W function.

Figure 8.3: The analytical solutions for inward

and outward capillary transport.

know because the model is idealized by neglecting the flow losses in the wick. As a consequence,

the initial flow rate is infinite. In dimensional form, the flow rate is

V̇ (rf , t) = ±2πTrf
drf

dt
. (8.20)

Introducing r	
f and t	 one finds that

V̇ (r	
f , t

	) = ±8πTr	
f

b

dr	
f

dt	
. (8.21)

Here, the plus sign applies for outward and the minus sign for inward transport. With dt	/dr	
f =

2r	
f ln r	2

f one obtains

V̇ = ± 4πT

b ln r	2
f

, (8.22)

by setting Vc = 4πT/b for the characteristic flow rate one finally arrives at

V̇ 	 =
V̇

Vc

=
1

ln r	2
f

, (8.23)

which is plotted in Figs. 8.4 and 8.5.

8.2 Experimental Apparatus

Parallel to the development of a mathematical model an experiment was built up as shown

in Fig. 8.6 to investigate the radial outward wicking process. Here, an aluminum ring clamp
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Figure 8.4: Flow rate in outward wicking. Figure 8.5: Flow rate in inward wicking.

Figure 8.6: Schematics of the test setup. The distance s between camera and the observed

paper is about 10 times the paper diameter. The wick radius is r0.

made of two parts that are joined together by screws allows to firmly suspend a filter paper.

The ring clamp along with the paper is fixed horizontally, the usable paper radius being 75

mm. The height difference Δh between paper and reservoir, see also Fig. 8.1, ranges from

5 to 8 millimeters. As porous materials four different kinds of filter paper whose properties

according to the supplier are listed in Table 8.1 are used. All four papers are circular with

a diameter of 185 mm and supplied by Omnilab (Bremen, Germany). While the first three

papers consist of cellulose fibers that are porous itself (double porous) the fourth paper is

made of borosilicate glass fibers. Paper is chosen for the experiments as it is disposable in

a variety of parameters, easily purchased and most important it provides circular spots due

to the isotropic fiber orientation, at least in a macroscopic point of view. The filtration time
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in Table 8.1 is given by the suppliers using the Herzberg method1. These properties can

be used to calculate the missing pore structure parameters K and φ of the papers: using

filtration time tHz and paper thickness d, the permeability K can be calculated with the relation

K = (Qμd)/(ΔpA) where Q = 100 ml/tHz is the flow rate, μ = 10−3 Pas the dynamic viscosity

of water, d the paper thickness, Δp = 1000 Pa the hydrostatic pressure of the water column

and A = 10 cm2 the filter area. The porosity φ is calculated by setting φ = (Vtotal−Vsolid)/Vtotal

where Vtotal = Ad and with the paper grammage Vsolid = mpaper/ρsolid, for the densities ρsolid

one sets ρsolid(cellulose) = 1.5 g/cm3 and ρsolid(borosilicateglass) = 2.23 g/cm3, respectively.

In the last line of Table 8.1 the wicking constants b are calculated. To do so cos θ = 1 has been

assumed, and the liquid properties in Table 8.2 have been applied.

Table 8.1: Properties of the papers that were used for the experiments according to the data

sheets of supplier and producers (Omnilab, Sartorius, Whatman). Here, Rs is an average pore

size (Sartorius) or a particle retention size (Whatman).

Sartorius 391 Whatman 589/2 Whatman 40 Whatman GF/B

by suppliers:

thickness d [mm] 0.21 0.19 0.21 0.83

grammage [g/m2] 84 85 95 141

pore size Rs [μm] 10 2-6 4 0.5

filtration tHz [s] 180 140 340 not specified

calculated:

permeability K [μm2] 0.117 0.136 0.062 -

porosity φ 0.733 0.702 0.698 0.924

wicking c. b [s/mm2] 7.508 1.236-3.717 5.394 -

The test liquid that wicks in the paper is silicon oil AK5 (supplier Wacker AG, Germany)

that exhibits a negligible evaporation rate. Chemically, this is Dimethylpolysiloxane with the

structure (CH3)3 Si − [O − Si(CH3)2]n − O − Si(CH3)3 with n being around 5 since it is a blend.

Its properties according to the supplier are listed in Table 8.2.

As reservoir for the test liquid a flat cylinder-shaped glass dish with 80 mm diameter and 8

mm height is used. Contrary to the assumption this is a finite reservoir, however it can be

1Given by the supplier to be the time for 100 ml deaerated water to pass 10 cm2 filter area at a constant

height of the water column being 10 cm. Different definitions using a column of 5 cm also exist.
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Table 8.2: Properties of AK5 silicone oil according to the product data sheet of the supplier

(Wacker AG, Germany); no errors are provided.

kinematic viscosity dynamic viscosity density surface tension

ν [mm2/s] μ [mPas] ρ [kg/m3] σ [mN/m]

5 4.6 920 19.2

regarded as infinite since the amount of liquid needed to completely wet a thin paper causes no

perceptible loss in its fill height. The liquid transport from the reservoir to the paper is enabled

by different kinds of wicks. For the experiments on outward transport (see left-hand picture of

Fig. 8.1) cylindrical wicks made of glass frits (Por.0, pore radius 80−125 μm, supplier Robu

Glas, Hattert in Germany) are used. They feature an appearance that is similar to sandstone.

Three glass frit wicks with radii r0 of 2.05 mm, 2.5 mm and 10 mm are used. The radii of the

outward wicks were checked with a sliding caliper giving an accuracy of ±12.5 μm.

The liquid reservoir with the wick is placed on top of a small lifting jack. Therefore, to initiate

contact, the jack is manually operated until the wick touches the paper and liquid is observed

to spread. A digital camera is positioned about 150 cm above the paper to record the wicking

process in the paper. The camera is a B/W-CCD video camera module (CM8, Intravision)

with a resolution of 768 x 576 pixel and a Nikkor 24 mm lens that is linked to a personal

computer. Screenshots are recorded every 10 s which gives several hundred or thousand images

for the whole wicking process. These image series are processed by Matlab routines using

the Canny-algorithm to detect the wicking front line, see Fig. 8.7. More precisely, the single

frames are transformed into grey-scale matrices. All the pixels outside the observation radius

are overwritten with an average grey-scale value of the dry area to avoid the detection of wrong

edges. Now, the Canny method finds edges by looking for local maxima of the grey-scale

gradient. This gradient is calculated using the derivative of a Gaussian filter. The method uses

two thresholds, to detect strong and weak edges, and includes the weak edges in the output

only if they are connected to strong edges. This method is therefore less likely than others

to be fooled by noise, and more likely to detect true weak edges. As Fig. 8.7 demonstrates,

the detected front lines are overlaid on the original images to check its accuracy. Because the

detected front line must always be closed it can be filled to obtain a binary spot as shown in

the last picture of Fig. 8.7. The amount of pixels contained in the binary spot gives the spot

area Aspot, the average spot radius rf is found by setting Aspot = πr2
f .
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Figure 8.7: Evaluation with Matlab. Left picture: original. Center picture: detected wicking

front line overlaid on the original. Right picture: binary spot.

Error estimation Errors in the measured data are expected due to the 1) inhomogeneity of

the papers and the uncertanity in the liquid properties, 2) pixel resolution, 3) edge detection,

4) fluctuations of height difference Δh between paper and reservoir, 5) wick radius r0 and 7)

contact conditions between wick and paper.

1. The magnitude of paper inhomogeneity is estimated by evaluating the azimuthal fluctua-

tions in rf (t). It is found to be less than 10 % of the actual mean radius. In addition, the

liquid properties presented in Table 8.2 include an error of unknown magnitude. For the

following calculations it is assumed to be 5 %. Thus, for these two points an uncertainty

of 15 % is assigned.

2. The recorded images of the wicking process have a resolution of 0.3 mm/pixel. Hence,

the error due to limited resolution is about 0.15 mm.

3. Edges in cellulose paper (Sartorius 391, Whatman 589/2 and Whatman 40) are found to

be rather sharp independent of the wetted spot size. Here, the greyscale value between

wetted and dry area drops within 2 pixels which makes an accuracy of ±0.3 mm. In

contrast, the spots in glass paper exhibit a diffuse edge that becomes even more diffuse

as the spot size increases. Here, the edge detection has an accuracy of 15 %.

4. Fluctuations of the reservoir height lead to additional or decreased hydrostatic pressure

that has to be balanced by the surface pressure at the meniscus. Using the liquid prop-

erties provided by Table 8.2, a one millimeter fluctuation of Δh provides a pressure

difference of 9.2 Pascal. Using the averaged pore or particle retention size of the papers

as given by the suppliers, see Table 8.1 (and assuming that it is of same size order as
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the wicking pores), one can estimate the capillary pressure pσ = 2σ/Rs ≈ 4000 Pascal.

During the experiments, a maximum height fluctuation of below 5 mm occured which

yields 1 % of the surface pressure. Hence, the expected error is ±0.5 %.

5. The wick radii for outward wicking are 2.05 μm, 2.5 μm and 10 μm with a tolerance of

±12.5 μm. With the theoretical solution, see Eq. (8.18), one can determine the impact

of these tolerances. By setting r	
f → r	

f [1 ± (tolerance/r0)]
−1 one finds the expected

errors to depend on the wick size. They will be +1.21/ − 1.23 % for the 2.05 mm wick,

+1.01/− 0.99 % for the 2.5 mm wick and ±0.25 % for the 10 mm wick.

6. For the variations of the contact conditions between wick and paper no error has been

assigned. Nevertheless, this issue is addressed in the “discussion” section.

An overview of the expected errors is provided by Table 8.3.

Table 8.3: Overview on the expected errors in the experiments.

r0 of wick paper & liq. pixel res. edge d. Δh var. r0 var.
∑

cellulose p.

2.05 mm 15% 0.15 mm 0.3 mm 0.5% 1.22% ±(16.72% + 0.45 mm)

2.50 mm 15% 0.15 mm 0.3 mm 0.5% 1.00% ±(16.50% + 0.45 mm)

10.0 mm 15% 0.15 mm 0.3 mm 0.5% 0.25% ±(15.75% + 0.45 mm)

glass p.

2.05 mm 15% 0.15 mm 15% 0.5% 1.22% ±(31.72% + 0.15 mm)

2.50 mm 15% 0.15 mm 15% 0.5% 1.00% ±(31.50% + 0.15 mm)

10.0 mm 15% 0.15 mm 15% 0.5% 0.25% ±(30.75% + 0.15 mm)

8.3 Results

The described setup was used to conduct experiments on horizontal i) linear and ii) radially

outward transport. Moreover, reference data for iv) vertical linear transport were obtained in

another setup that is described in [35]. The reference data from the two linear experiments

(horizontal and vertical strip) provide us with a basis to predict the radial outward wicking

process.
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Figure 8.8: Evolution of the wetted area in horizontal wicking. The strip width is w = 20 mm,

the initial distance x0 = ±3 mm.

8.3.1 Reference measurement - linear transport

Wicking into a horizontal strip From a theoretical point of view, capillary transport in

a horizontal strip is the most simple compared to other arrangements because it is linear and

independent of gravity. Hence, as early as 1921, Washburn [104] found that the covered distance

xf (t) of the front line should evolve as

x2
f =

2

b
t, (8.24)

as previously introduced in Eq. (5.5). Again, images of the imbibed strips are recorded every

10 seconds to obtain image series as displayed in Fig. 8.8. These images are submitted to

Matlab image processing routines to transform them analogously to Fig. 8.7. Here, the area

of the binary spot is Aspot = 2wxf (t) yielding xf (t). The ring clamp in the setup is used to

diametrally suspend a paper strip of w = 20 mm width. It is fed by a bar wick of 40 mm width

that extends on both sides of the strip as illustrated by Fig. 8.9. As soon as contact between

wick and strip is established the liquid imbibes the porous material in both directions starting

from xf (t = 0) = ±x0. The resulting data for all four papers in terms of x2
f over t according

to Eq. (8.24) is shown in Fig. 8.10. That exposition enables a linear fit to find the parameter

b. As one would expect, all four curves are straight lines. This fact is also supported by the

regression coefficients ρh (see for example [14] for definition) of the fits provided for all papers

in Table 8.4.

Wicking into a vertical strip The course of action here resembles the horizontal case. One

difference is that the specimen is not fed by a wick but dipped into the liquid and a mass
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Figure 8.9: Experimental arrangement for

the horizontal strip experiments (top view).

Figure 8.10: Reference measurement in horizon-

tal strips of the four test papers. Steeper slopes

indicate faster wicking.

measurement is recorded. Consequently, a wetting jump occurs in the beginning. It is followed

by a capillary rise period which is mainly governed by capillarity and viscous flow losses alone

before hydrostatics becomes important. Only the linear initial part of the x2
f (t) plot is used for

the fit. Detailed information of the procedure is given in [35]. The regression coefficients ρv for

the linear fits in the vertical case are also provided by Table 8.4.

From both strip experiments the parameter b is extracted, which can be regarded as a wicking

constant. This combination of material, liquid and porous properties applies for wicking prob-

lems unaffected by the particular geometry. Its mean value b is calculated as well as its error

Δb, see Table 8.4. Here, the mean value is defined as b = (bh + bv)/2 and the error is defined

as Δb =
√

(bh − b)2 + (bv − b)2.

8.3.2 Radial outward wicking

Each of the four different filter papers was investigated with the three different wick sizes, thus

providing 12 outward wicking experiments. In preliminary experiments the reproducibility of

the data presented has been checked. This was done by measuring the total duration of the

wicking process several times. It was found that these durations are within the error margins due

to paper anisotropy which were discussed in the error estimation above. In favor of clarity only

one representative run per parameter set was picked which was then recorded and evaluated.
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Table 8.4: Reference data for the wicking parameter b, gained from strip wicking experiments

in horizontal and vertical direction.

Sartorius 391 Whatman 589/2 Whatman 40 Whatman GFB

Horizontal bh [s/mm2] 3.559 1.297 2.004 1.134

Regression coeff. ρh 0.9996 0.9998 0.9396 0.9999

Vertical bv [s/mm2] 3.425 1.473 1.637 1.167

Regression coeff. ρv 0.9999 0.9997 0.9991 0.9992

Mean value b [s/mm2] 3.492 1.385 1.821 1.151

Error Δb [s/mm2] ±0.095 ±0.125 ±0.259 ±0.023

Figure 8.11: Evolution of the wetted area in radially outward transport using cellulose paper.

Figs. 8.11 and 8.12 give an impression on how the observed spots evolve in cellulose paper and

glass fiber paper, respectively. Obviously, cellulose paper provides a sharp edge while it is a

blurred edge in glass paper. The reasons for this very different edge contrast might be due to

i) the porosity of the cellulose fibers itself while the glass fibers are non-porous, ii) different

wetting conditions, iii) the higher thickness of the glass paper. Nonetheless, this effect which

makes the Matlab evaluation of the wetted spots more difficult is not anticipated.

Both the experimental data points rf (t) and the model predictions rf (t) that are based upon

the linear reference data are presented in Figs. 8.13 - 8.16. The predictions are obtained by

rearranging Eq. (8.14) into its dimensional form

t(rf ) =
b r2

f

4

[
ln

(
r2
f

r2
0

)
+
r2
0

r2
f

− 1

]
, (8.25)

applying for b the b-value provided by the linear reference experiments, see Table 8.4. In all

four figures the experimental data-curves are within the expected error margins. Therefore, one

can state that the linear reference experiments are useful to predict the outward radial wicking

process.
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Figure 8.12: Evolution of the wetted area in radially outward transport using glass fiber paper.

Although hard to perceive, there is a distinct front line on the outer rim of the diffuse spot on

which the edge detection algorithm is attuned.

Table 8.5: The wicking parameter b, gained from fits of Eq. (8.25) to the outward wicking

experiments with 3 different wicks. To compare with the linear experiments see Table 8.4.

Values for b [s/mm2] Sartorius 391 Whatman 589/2 Whatman 40 Whatman GFB

r0 = 2.05 mm 3.493 1.180 1.967 0.784

r0 = 2.5 mm 3.463 1.114 1.665 1.012

r0 = 10 mm 3.708 1.244 2.028 0.881

Mean value b 3.555 1.179 1.887 0.892

Error Δb ±0.134 ±0.065 ±0.194 ±0.114

Analogous to Table 8.4, the values of b gained by fitting Eq. (8.25) to the data of the out-

ward wicking experiments are provided in Table 8.5. Here, b = (b1 + b2 + b3)/3 and Δb =√
0.5
[
(b1 − b)2 + (b2 − b)2 + (b3 − b)2

]
. However, throughout the four figures not a single data-

curve actually coincides with the prediction. Instead, it can be observed that the data-curves

sometimes intersect the prediction-curves. This cannot be explained by a mismatching value of

b alone because shifting b would lead to prediction-curves completely above or below the data.

This issue is addressed in the ’discussion’ section.
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Figure 8.13: Diagram showing radius versus time for outward wicking in Sartorius 391 filter

paper. The predictions are based on linear reference experiments (more exactly on the b-value

in Table 8.4).

Figure 8.14: Diagram showing radius versus time for outward wicking in Whatman 589/2 filter

paper.
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Figure 8.15: Diagram showing radius versus time for outward wicking in Whatman 40 filter

paper.

Figure 8.16: Diagram showing radius versus time for outward wicking in Whatman GFB filter

paper.
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Table 8.6: The wicking parameter b, as gained from theoretical prediction and three experi-

ments.

Values for b [s/mm2] Sartorius 391 Whatman 589/2 Whatman 40 Whatman GFB

paper properties 7.508 1.236-3.717 5.394 -

horizontal strip 3.559 1.297 2.004 1.134

vertical strip 3.425 1.473 1.637 1.167

radially outward 3.555 1.179 1.887 0.892

Mean value b 4.512 1.296 2.731 1.064

Error Δb ±1.998 ±0.127 ±1.782 ±0.150

8.3.3 Overview on obtained wicking constants

Knowledge of the wicking constant b allows to predict how fast a wetted spot will grow. Here,

b has been derived by four different ways: i) theoretically from paper properties, ii) from

linear wicking experiments in horizontal strips, iii) from linear wicking experiments in vertical

strips and iv) from radially outward wicking experiments in horizontal screens. Table 8.6

provides a summary of these results. It shows that especially the theoretical prediction from

the manufacturer information deviates from the mean value, and it often appears to be crude

and fragmentary.

8.3.4 Dimensionless presentation

To expand the comprehension of the problem it is depicted in dimensionless form by plotting

r	
f = f(t	). This is accomplished by applying Eqs. (8.4), (8.5) to the data points. The

dimensionless master curve is given by Eqs. (8.14) and (8.18) for outward wicking.

Fig. 8.17 displays all 12 outward wicking experiments along with the theoretical prediction,

see Eq. (8.18), in dimensionless form r	
f (t

	). After all, the four papers used in the experiments

are just a means to study the radial wicking process that applies to porous media in general.

Because the observation radius in the experiments is restricted to 75 mm, see Fig. 8.6, the four

experiments with 10 mm-wick (triangle signs) are depicted in the r	
f = 0...7.5 region and are

therefore barely visible. Nevertheless, one recognizes that the thin error margin lines do not

separate from the other curves what means that the data points are within the expected area.

The four experiments with 2.5 mm-wick (square signs) and the four experiments with 2.05

mm-wick (circle signs) are easier to distinguish. Apparently the mastercurve lies well within
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Figure 8.17: Dimensionless presentation of the outward wicking experimental data and the pre-

diction mastercurve Eq. (8.18). Here, the data curves are complemented by its corresponding

error margin curves as betoken by the vertical solid lines at the end of each data curve. The

b value for the dimensionless scaling is based on the linear reference experiments (b-value in

Table 8.4).

the experimental data. All data curves collapse with the mastercurve within the expected error

margins. One can see that the spot which spread farthest reached r	
f = 26.4 and t	 = 3300.

Therefore, these values mark the limit of the experimental corroboration.

8.4 Discussion

The model developed is simplified insofar that it neglects the viscous pressure drop in the

feeding wick, the hydrostatic pressure between paper and liquid reservoir as well as inertial

effects. These are the same presuppositions like Marmur [64] has chosen for the radial capillary,

see Fig. 8.18.
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Figure 8.18: Axially symmetric geometry of the radial capillary that was studied by Marmur

[64].

In fact one finds the theoretical solution to resemble that of the radial capillary:(
rf

r0

)2
[
ln

(
rf

r0

)2

+

(
r0
rf

)2

− 1

]
=

2σ cos(θ)d

3μr2
0

t Eq. (25) in [64] rearranged (8.26)

(
rf

r0

)2
[
ln

(
rf

r0

)2

+

(
r0
rf

)2

− 1

]
=

8σ cos(θ)K

μφRsr2
0

t Eq. (8.14) rearranged (8.27)

Hence, the two models are compatible. This is interesting because Marmurs derivation con-

tains no porous medium, however deals with the same physical effects. His only geometrical

parameters are plate distance d and initial radius r0. The presented solution instead is based

on the Darcy law in porous media. Canceling out the right-hand terms of both equations gives

for the corresponding distance d between the parallel plates

d =
12K

φRs

. (8.28)

This equation clearly shows the analogy between radial flow in porous media and radial flow

between parallel plates. As previously discussed (see section 2.2.2) an analogy for linear flow

in a porous medium and a cylindrical capillary tube is given by Eq. (2.3), which displays a

remarkable similarity to Eq. (8.28). For linear capillary transport between capillary plates the

same approach and assumptions as applied for the Lucas-Washburn equation [104] can be used

to obtain [87]

x2
f =

σ cos(θ) d

3μ
t. (8.29)

Here, a viscous pressure drop of

Δp = −12xf ẋfμ

d2
, (8.30)

and a capillary pressure of

Δp = −2σ cos(θ)

d
(8.31)

is applied. Note that, contrary to cylindrical tubes, only one principal radius of curvature has

to be considered.
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The hydrostatic pressure neglect is contained in the error estimation. The neglect of pressure

drop in the feeding wick, on the other hand, is not. But apparently, it visibly disturbs the

comparison between experimental data and model prediction. According to the model, the

liquid flow rate that the porous material draws from the reservoir, is infinite in the beginning.

This holds for both outward and inward wicking, see Eq. (8.23) and Figs. 8.4 and 8.5. Naturally,

the wick cannot support an infinite flow rate and will retard the delivery of liquid. Hence in the

beginning the observed wetted spot will grow more slowly in the experiment than predicted.

The neglect of the inertial effects is justified as the inertial parameter π3, see Eqs. (8.10) and

(8.8), is very high for all performed experiments, see Table 8.8.

Another issue to be clarified is the contact between feeding wick and reservoir. As the exper-

iments show the first contact is pointwise. But once happened, complete contact is suddenly

established aided by liquid bridges. The elapsed time for this liquid bridging was much smaller

compared to the whole duration of the wicking process.

The characteristic times of all experiments calculated by Eq. (8.7) are listed in Table 8.7.

In dimensionless terms, the coverage of the experiments extends to 0 ≤ r	
f ≤ 27 and 0 ≤ t	 ≤

3300. The outward wicking process is boundless in space and time, therefore the experimental

basis is limited here.

Table 8.7: Characteristic time tc [s] of the wicking process for all experiments.

tc [s] Sartorius 391 Whatman 589/2 Whatman 40 Whatman GF/B

r0 = 2.05 mm 3.67 1.45 1.89 1.21

r0 = 2.5 mm 5.45 2.16 2.82 1.80

r0 = 10 mm 87.26 34.48 45.04 28.75

Table 8.8: Value of the inertial parameter π3 [-] for all experiments.

π3 [−] Sartorius 391 Whatman 589/2 Whatman 40 Whatman GF/B

r0 = 2.05 mm 0.21 · 109 0.08 · 109 0.14 · 109 0.46 · 109

r0 = 2.5 mm 0.32 · 109 0.12 · 109 0.21 · 109 0.69 · 109

r0 = 10 mm 5.08 · 109 1.98 · 109 3.39 · 109 11.0 · 109
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8.5 Conclusion

A theoretical study is presented on capillary transport in radial direction, supported by exper-

iments investigating outward transport. The model is based on Darcy’s law in porous media

and assumes a viscous dominated flow regime. It can well predict the evolution of the wetted

area and is compatible to the radial capillary model of Marmur. Experiments are performed

with filter paper and three cylinder-wicks for outward flow. The recorded images are evalu-

ated with Matlab. In addition to the radial wicking experiments linear wicking experiments in

both horizontal and vertical strips are considered. These linear experiments serve as reference,

which also allows to obtain the necessary constants to predict the radial wicking process. Thus,

the pore structure parameters K, Rs and φ (in lumped form of b) are obtained by different

experimental methods which provide reasonable agreement (Table 8.6). The impact of the

observations made is also discussed in section 9.7.

So overall, this study covers a spectrum of three different wicking experiments along with an

appropriate theory. For the outward wicking processes the agreement between experiments and

prediction is within the specified error margins.
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Chapter 9

Summary

The aim of the presented work is to investigate capillary dominated transport processes in

porous materials and small tubes. The first part of the work is devoted to a fundamental dis-

cussion of the theory of capillary rise. Here, a detailed dimensional analysis and an introduction

to the different time stages and analytical approaches to this phenomenon are presented. The

second part of the work shows two experimental setups. The corresponding chapters describe

the experiments performed to investigate capillary dominated flows of particular interest to

space propulsion systems. They provide relevant experimental data to verify the mathematical

models.

9.1 Dimensionless scaling methods

In the chapter “Dimensionless scaling methods for capillary rise”, three different scaling options

using the Buckingham π theorem are systematically derived. It is shown that three forces -

identified as inertial, viscous and hydrostatic forces - can be used to obtain these three scaling

sets, each consisting of two dimensionless variables and one dimensionless basic parameter.

From a general point of view the scaling options are all equivalent and valid for describing the

problem of capillary rise. Contrary to this for certain cases - depending on the time scale and

the dominant forces - one of the options can be favorable. For example, using the appropriate

scaling can help to identify the influence of a certain parameter to be investigated. Also for

some special cases, for example including microgravity, the choice is limited to a single scaling

method. The three different sets are discussed systematically. It is evaluated which scaling

is most useful for certain cases. Furthermore, numerical as well as analytical solutions of

the momentum balance are shown in dimensionless form. Their ranges of applicability when
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compared to numerical solutions of the differential equation of motion are determined. Based

on this data an appropriate scaling to represent experimental data of capillary rise can be

chosen. This can help to systematically plan an experimental campaign in advance by defining

which dimensionless basic parameter shall be varied.

9.2 Transition between different time regimes

It is found that the capillary rise process can be separated into different time stages where

different forces dominate. In the chapter “The transition from inertial to viscous flow” the

early stages of capillary rise of a liquid in a tube are investigated. In this period, both inertia

and viscous flow losses balance the pressure generated by the meniscus curvature (capillary

pressure). It is known that the very first stage is dominated purely by inertial forces, but

subsequently the influence of viscosity increases (visco-inertial flow). From the calculations,

one can conclude that the purely inertial and the purely viscous flow period are separated by a

visco-inertial stage where both effects have to be considered. Finally the effect of inertia vanishes

and the flow becomes purely viscous. The times and meniscus heights at which the transition

between the time periods occur are derived. This provides a method to determine a priori

which terms of the momentum balance are relevant for a given problem, as only these terms

have to be taken into account to obtain a solution of sufficient precision. Analytical solutions

known from literature [11, 61, 78, 104] are discussed and the time intervals of their validity

compared. The predicted transition times and the calculated heights show good agreement

with experimental results from literature [89]. The results are also discussed in dimensionless

form and the limitations of the calculations are pointed out. Up to now, typically the time

where the solution for the inertial and the viscous rise provide the same height has been used

as a measure for the separation between the time stages. However, it is shown that it takes

about eight times as long for the flow to become independent of inertial effects.

9.3 Analytical solutions including the gravity term

For a setup not in a microgravity environment, gravity begins to become a dominating force in

the later time stages of capillary rise. The chapter “Analytical solutions including the gravity

term” focuses onto this domain. An analytical solution for the capillary rise of liquids in a

cylindrical tube or a porous medium is derived in terms of height h as a function of time t.

The implicit t(h) solution by Washburn is the basis for these calculations and the Lambert
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W function is used for its mathematical rearrangement. The original equation is derived from

the 1D momentum conservation equation and features viscous and gravity terms. Thus, in

contrast to the Lucas-Washburn equation, the presented h(t) solution includes the gravity term

and enables the calculation of the liquid rise behavior for longer time scales. Based on the new

equation, it is possible to derive several parameters including the time necessary to reach a

static state. Also the error made by neglecting gravity and using the Lucas-Washburn equation

is determined. The results are also discussed in dimensionless form and a dimensionless plot of

the Lucas-Washburn equation and the extended solution including gravity is shown. The flow

velocity is obtained by differentiating the height and a dimensionless number for its description

is found. In the second part of this chapter the analytical solution is extended to describe the

dynamics of a broader set of initial conditions such as varying the initial height. These may

involve capillary rise, capillary fall or drainage. Capillary fall refers to a meniscus starting from

a position above the equilibrium height and subsequently moving down towards the equilibrium

height. In the introduced model capillary, viscous, and gravity effects are considered. This is

also discussed by means of dimensionless numbers, which enable to plot a characteristic diagram

showing rise and fall regimes. Good agreement is observed between the experimental results

taken from literature [85] and the prediction by the presented model.

9.4 Macroscopical numerical simulation

In the chapter “A basic macroscopic numerical simulation with FLOW-3D”, a numerical method

to simulate capillary rise in porous media is briefly presented. Here a macroscopical approach

is used, which implies the application of an integral model to represent both the effects of

the capillary pressure and the effect of viscous flow resistance. If one provides the code with

the capillary pressure and an integral permeability of the porous material, the code (FLOW-

3D) then applies the correct boundary condition at the fluid interface (capillary pressure)

and the viscous flow resistance is modeled in each grid cell using the Darcy law. With this

fairly simple approach wicking of liquids into porous materials can be simulated. Comparison

to mathematical models shows excellent agreement. As a disadvantage has to be considered

that the material properties such as the permeability must be known a priori to set up the

simulation. This issue can only be solved by microscopic approaches or experiments. For small

structures (e.g. a representative volume), a microscopic simulation will provide useful data

within reasonable time. This allows to extract the pore structure parameters K, Rs and φ from

the microscopic simulation to use them in a macroscopic simulation.
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9.5 Capillary rise and the effect of evaporation

As previously mentioned, the second part of this work focuses on experimental work. In the

chapter “Linear capillary rise and the effect of evaporation” the wicking of different liquids into

a dry Dutch Twilled Weave (DTW 200 × 1400) is analyzed by combining experimental and

analytical approaches. Experiments using a vertically positioned weave are performed under

isothermal, terrestrial conditions. The results are compared to analytical solutions showing

good agreement between the Lucas-Washburn equation and the experimental data for flow

regimes where gravity and evaporation effects are negligible. From the measurements, the

permeability and static radius for the capillary pressure of the structure can be determined.

No significant influence of the screen width onto the wicking process is found. However, the

capillary rise in warp direction occurs about twice as fast as in weft direction. This results

from a difference in the permeabilities by about this factor due to the thicknesses of the wires

and the weave structure. The results for the slope parameter K/Rs are validated by previous

literature [28, 98], but there are discrepancies for the static radius which may occur due to the

sensitivity of the experiment to evaporation.

To investigate the influence of evaporation on the capillary rise process, experiments with

volatile liquids are conducted. Significant deviations from classical models are observed. Thus,

an enhanced form of the standard wicking model from Lucas and Washburn is introduced to

account for evaporation and gravity effects. By comparing the experimental results with the

enhanced wicking model, good qualitative agreement is found. Using dimensionless parameters

it is possible to plot all experimental data in a single diagram to compare different fluids and

evaporation rates. The experimental data supports the theoretical model, although it shows

that the model tends to overestimate the reached height by about 20%. It is noted that

evaporation may have a major retarding impact on the wicking process.

9.6 Radial capillary transport

Finally, in the chapter “Radial capillary transport”, radial liquid movement is studied in con-

trast to linear movement as investigated in the previous chapters. Application of radial trans-

port is also under consideration for propellant management in space. A theoretical and experi-

mental study on the more basic situation when liquid spreads radially from an infinite reservoir

is presented. Based on Darcy’s law in porous media and assuming a viscous dominated flow

regime, the theoretical model predicts both outward and inward radial transport in a porous
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screen. It can well predict the evolution of the wetted area and is compatible to the radial

capillary model of Marmur [64]. For both cases (outward and inward transport) an analytical

solution is obtained in terms of time versus radius as well as radius versus time aided by the

Lambert W function. In the experiments four different filter papers are used combined with

three cylindrical wicks for outward wicking. In addition to the radial wicking experiments

linear wicking experiments in both horizontal and vertical strips are considered. These linear

experiments serve as reference to obtain the necessary material parameters. Therefore a pre-

diction of the radial wicking process is enabled. Overall, a spectrum of three different wicking

experiments along with an appropriate theory is covered. The agreement between experiments

and prediction is within the specified error margins for the outward wicking processes.

9.7 Pore structure parameters

In conclusion it can be stated that the pore structure parameters K, Rs and φ have proven

to be a very useful tool to macroscopically describe capillary transport in porous structures.

The values obtained by different experimental approaches are in reasonable agreement, e.g. see

Table 8.6. However, it was found that the values provided by the suppliers of porous samples

may sometimes be rough estimates. Also, due to different definitions and models for special

applications, e.g. the Herzberg filtration time, they may be hard to correlate to the parameters

used here. In the context of PoreNet this means that the pore structure parameters for the

porous samples used should be measured experimentally to compare them to the values provided

by the suppliers. For validation purposes it should be considered to apply different experimental

methods for each parameter. For example, the porosity φ could be determined from mercury

intrusion, capillary rise mass recordings and the weight of a completely wetted specimen. For

the determination of K cross flow pressure drop measurements and the capillary rise rate can be

applied, while for Rs the bubble point method, the maximum height heq or mercury intrusion

are useful. The same applies for advanced methods like computer tomography which allows to

obtain a microscopic three dimensional image of the pore structure. This data could be used

in a microscopic numerical simulation to obtain the pore structure parameters. Linking and

comparing the values obtained by different methods will allow to determine the pore structure

parameters with more precision, but will also allow to understand the processes in more depth.

For example, using glass filter frits the difference between Rs and the radius determined by

the bubble point method (see Table 7.10) may be traced back to the fact that the bubble

point method determines the largest pore. However, as Rs is smaller, it seems that the wicking
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effective capillary pressure is not only influenced and restricted by the largest pores, but also

by the smaller ones.

Capillary dominated flows still prove to be a challenging, however, interesting and relevant field

for research in fluid mechanics. This work is intended to be a contribution to the fundamental

understanding and classification of capillary flows, and a foundation for further work on capil-

lary flows in PoreNet. Although no specific geometries have been discussed here, the research

also aims to provide guidelines and models for engineers designing Propellant Management

Devices in space applications. As an outlook it can be stated that especially for non-isothermal

setups many problems remain to be addressed. While this work is restricted to isothermal cases

with storable liquids some rockets use cryogenic propellants such as oxygen and hydrogen due

to their higher specific impulse. The realization of Propellant Management Devices for this type

of liquids involves many fields that have been addressed in this work - however with isother-

mal setups. As preliminary experiments show, cryogenic capillary rise can be demonstrated

and measured using liquid nitrogen and porous materials like metallic screens or filter frits.

The next step within the framework of PoreNet will be to experimentally investigate relevant

non-isothermal setups and to extend the known analytical and numerical models of capillary

dominated flows to these cases. Especially for cryogenic setups the effect of evaporation and

other heat transfer issues will be of major importance.
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Appendix A

Mathematical derivations

The first three calculations (A.1 - A.3) presented in the following are not originally calculated by

the author, but recalculated from the available information provided in the original publications.

A.1 Derivation of the Quéré solution

To solve the differential equation Eq. (4.2)

d (hḣ)

dt
=

2σ cos(θ)

ρR
, (A.1)

one may separate the variables to obtain∫
d (hḣ) =

∫
2σ cos(θ)

ρR
dt. (A.2)

By integrating it reads

h
dh

dt
=

2σ cos(θ)

ρR
t+ C, (A.3)

and due to boundary condition h(t = 0) = 0, C can be calculated to be zero. By repeating the

previous steps again, one finally obtains

1

2
h2 =

1

2

2σ cos(θ)

ρR
t2 + C2, (A.4)

and due to the initial condition one arrives at the solution of constant velocity by Quéré [78]

h = t

√
2σ cos(θ)

ρR
. (A.5)
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A.2 Derivation of the Bosanquet solution

To solve the differential equation Eq. (4.4)

d

dt

(
hḣ
)

+ b1hḣ = b2, (A.6)

the following approach may be used. Note that due to the historical context the coefficients

b1 =
8μ

ρR2
=
b

a
, (A.7)

and

b2 =
2σ cos θ

ρR
=

1

a
. (A.8)

used by Bosanquet [11] are applied. By substituting

hḣ = u, (A.9)

one obtains
du

dt
+ b1u = b2. (A.10)

The homogeneous solution has to be found first∫
1

u
du =

∫
−b1dt (A.11)

provides

ln(u) = −b1t (A.12)

and finally

uh = e−b1t C1 (A.13)

and

u̇h = −b1e−b1t C1 + e−b1t Ċ1. (A.14)

The inhomogeneous case can be used to find the unknown constant

e−b1t Ċ1 − b1e
−b1t C1 + b1e

−b1t C1 = b2, (A.15)

where C1 is calculated from Ċ1 to be

C1 =
b2
b1
eb1t. (A.16)

Therefore u (bringing together the homogeneous and the special solution) reads

u = uh + usp = e−b1t b2
b1
eb1t + e−b1t C2. (A.17)
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Due to the initial condition u(t=0)=0 one obtains

C2 = −b2
b1
, (A.18)

and

u =
b2
b1

(
1 − e−b1t

)
(A.19)

Resubstitution of h provides ∫
hdh =

∫
b2
b1

(
1 − e−b1t

)
dt (A.20)

and
1

2
h2 =

b2
b1
t+

b2
b21
e−b1t + C3. (A.21)

As h(t=0)=0

C3 = −b2
b21
. (A.22)

One finally arrives at the solution by Bosanquet [11] reading

h2 =
2b2
b1

[
t− 1

b1
(1 − e−b1t)

]
. (A.23)

A.3 Derivation of the implicit Washburn equation

To solve the integral of Eq. (5.9) the following approach may be used:

t =

∫
bh

1 − ch
dh =

∫
(ch− 1) + 1

c
b
(1 − ch)

dh. (A.24)

This may be rearranged to

t =

∫
−b
c
dh+

∫
b

c

1

1 − ch
dh. (A.25)

Preparing the substitution

y = 1 − ch (A.26)

by

dy = −c dh (A.27)

gives

t =

∫
−b
c
dh−

∫
b

c2
1

y
dy. (A.28)

Solving and reversing the substitute gives Eq. (5.10)

t = −bh
c

− b

c2
ln(y) = −bh

c
− b

c2
ln(1 − ch) + C, (A.29)

which finally provides Eq. (5.13), the implicit equation by Washburn [104].
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A.4 Mathematical verification of the extended equation

To show that the extended solution Eq. (5.23) fulfills the differential equation Eq. (5.8) one

may use the derivative of the solution and insert it into the initial differential equation. By

differentiating the defining Eq. (5.17) for W (x) [22] one obtains

dx

dW (x)
= eW (x) +W (x)eW (x). (A.30)

Rearranging gives

W ′(x) =
1

eW (x) +W (x)eW (x)
, (A.31)

further

W ′(x) =
1

eW (x)(1 +W (x))
, (A.32)

and

W ′(x) =
W (x)

W (x)eW (x)(1 +W (x))
. (A.33)

By definition:

x = W (x)eW (x) (A.34)

and finally

W ′(x) =
W (x)

x(1 +W (x))
. (A.35)

To ease the handling of Eq. (5.23) a coefficient z can be defined:

z = −e−1− c2t
b , (A.36)

the derivative is
dz

dt
= z

−c2
b
. (A.37)

Inserting Eq. (A.35), Eq. (A.37) (the inner derivative) and Eq. (5.23) into Eq. (5.8) gives

1

c

W (z)

z(1 +W (z))
z
−c2
b

=
c

b(1 +W (z))
− c

b
. (A.38)

After some rearrangement one obtains

−W (z) = −W (z) (A.39)

which proves that Eq. (5.23) is a solution to Eq. (5.8).
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A.5 Derivation for a general initial condition

In following the derivation of the analytical solution for the general initial condition h(t0) = h0

shall be explained in more detail. Starting from Eq. (5.10)

t = −bh
c

− b

c2
ln(1 − ch) + C (A.40)

one can use the initial condition to obtain

t = −bh
c

− b

c2
ln(1 − ch) + t0 +

bh0

c
+

b

c2
ln(1 − ch0). (A.41)

Rearranging gives
c2t0
b

+ ch0 − c2t

b
− ch = ln[(1 − ch)(ch0 − 1)], (A.42)

and
c2t0
b

+ ch0 − c2t

b
− ch = ln[(ch− 1)(1 − ch0)], (A.43)

which gives

ln(−1 + ch0) − 1 + c
(c
b
t0 + h0 − c

b
t
)

= ln(ch− 1) + ch− 1. (A.44)

After some further rearrangement

(−1 + ch0)e
−1+c( c

b
t0+h0− c

b
t) = (ch− 1)e(ch−1) (A.45)

and applying the inverse properties of the Lambert W function as shown before one finally

obtains

h(t) =
1

c

{
1 +W

[
(−1 + ch0)e

−1+c(− c
b
(t−t0)+h0)

]}
. (A.46)

This is Eq. (5.53).
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[78] D. Quéré. Inertial capillarity. Europhys. Lett., 39(5):533–538, 1997.
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[85] E. Schäffer and P. Wong. Dynamics of Contact Line Pinning in Capillary Rise and Fall.

Physical Review Letters, 80(14):3069–3072, 1998.

[86] E. Schäffer and P. Wong. Contact line dynamics near the pinning threshold: A capillary

rise and fall experiment. Physical Review E, 61(5):5257–5277, 2000.

[87] M.K. Schwiebert and W.H. Leong. Underfill flow as viscous flow between parallel plates

driven by capillary action. IEEE Transac. on Components, Packaging and Manufacturing

Tech., 19(2):133–137, 1996.



156 BIBLIOGRAPHY

[88] J.I. Siddique, D.M. Anderson, and A. Bondarev. Capillary rise of a liquid into a de-

formable porous material. Phys. Fluids, 21(013106):1–15, 2009.

[89] A. Siebold, M. Nardin, J. Schultz, A. Walliser, and M. Oppliger. Effect of dynamic

contact angle on capillary rise phenomena. Colloids and Surfaces A, 161(1):81–87, 2000.

[90] C.E. Siegert, D.A. Petrash, and E.W. Otto. Time response of liquid-vapor interface after

entering weightlessness. Technical Report NASA TN D-2458, Lewis Research Center,

Cleveland, Ohio, 1964.

[91] D.E. Smiles. Water flow in filter paper and capillary suction time. Chem. Eng. Sci.,

53(12):2211–2218, 1998.

[92] E. M. Sparrow, S. H. Lin, and T. S. Lundgren. Flow development in the hydrodynamic

entrance region of tubes and ducts. Phys. Fluids, 7(3):338–347, 1964.
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diameter glass capillary) and the presented analytical solution. . . . . . . . . . . 75

6.1 Digital representation of a DTW 200x1400 weave showing its microscopic structure. 78

6.2 Fluid mass / width inside the weave plotted versus elapsed time. The points

refer to the solutions by FLOW-3D, lines to the analytical solutions Eqs. (5.5)

and (5.23). See Table 6.1 for simulation settings. . . . . . . . . . . . . . . . . . . 79

7.1 Drawing of the microstructure (left) and photograph (right) of the Dutch-Twilled

weave (DTW) 200 × 1400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Photography of the wicking experimental setup. . . . . . . . . . . . . . . . . . . 88

7.3 Sketch of the test chamber prior to wicking experiments. . . . . . . . . . . . . . 89

7.4 Coordinates applied to the weave sample. . . . . . . . . . . . . . . . . . . . . . 89

7.5 Subsequent series of images showing wicking of HFE-7500 into the weave. . . . . 90

7.6 Wicking height raw data (w = 16 mm, warp direction) with error bars (standard

deviation is ±5 pixel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



162 LIST OF FIGURES

7.7 Squared height over time (w = 16 mm, warp direction) with linear fitting (no

error bars for graph clarity). Mark at h = 0.1heq for SF 0.65. For higher values

of h gravity has to be taken into account, the linear regression overestimates the

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8 Mass versus time curve (open test chamber). Imbibition of a weave (50x16 mm)

by HFE-7500. The “de-wetting mass” is measured to be 0.0613 g, while the

Wilhelmy plate method Eq. (7.1) predicts 0.0533 g. . . . . . . . . . . . . . . . . 94

7.9 Measurement of φ: Liquid mass inside the weave versus wicking height (HFE-

7500 in 16 mm wide sample, warp direction). Prediction using Eq. (7.6). . . . . 95

7.10 Squared mass over time (warp direction) with linear fitting (no error bars for

graph clarity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.11 Raw mass data recording for filter frits class P1 and P4 in SF 0.65. The num-

bers denote stages of the experiment as described in the text. The precision of

the balance is ±0.3 mg, thus no error bars are visible. However, the error of

repeatability is found to be ∼10 %. . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.12 h calculated from mass measurements of different filter frits in SF 0.65 (no er-

ror bars for graph clarity). The lines denote a fit of Eq. (7.3), which includes

capillary, viscous and hydrostatic forces. . . . . . . . . . . . . . . . . . . . . . . 101

7.13 Height calculated from mass recordings of HFE-7500 wicking into the weave.

The evaporation rate affects the reached height significantly. See Table 7.11 for

further details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.14 Schematic drawing displaying the mass balance of a wicking process with evap-

oration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.15 Velocities involved in a wicking process with evaporation. The total velocity

consists of two components: a velocity ḣ (constant over z, not constant over t)

and a refill velocity vr which depends on the height z and t. . . . . . . . . . . . 105

7.16 Dimensionless height over time for different values of Φ. The 0.99 heq line is

introduced in the next section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.17 Close up of the solution displayed in Fig. 7.16 for shorter times. . . . . . . . . . 109

7.18 Dimensionless plot (small t†) of experimental results (symbols) in comparison to

the values predicted by the model (lines). The Φ = 1 line depicts the rise for

both liquids with no evaporation. See Table 7.11 for further details. . . . . . . . 110



LIST OF FIGURES 163

7.19 Dimensionless plot (large t†) of experimental results (symbols) compared to the

analytical model (lines). See Table 7.11 for further details. The model tends to

overestimate the height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1 Experiment configuration and lengths for outward capillary transport. . . . . . . 116

8.2 The two real-valued branches of the Lambert W function. . . . . . . . . . . . . . 119

8.3 The analytical solutions for inward and outward capillary transport. . . . . . . . 119

8.4 Flow rate in outward wicking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.5 Flow rate in inward wicking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.6 Schematics of the test setup. The distance s between camera and the observed

paper is about 10 times the paper diameter. The wick radius is r0. . . . . . . . . 120

8.7 Evaluation with Matlab. Left picture: original. Center picture: detected wicking

front line overlaid on the original. Right picture: binary spot. . . . . . . . . . . 123

8.8 Evolution of the wetted area in horizontal wicking. The strip width is w =

20 mm, the initial distance x0 = ±3 mm. . . . . . . . . . . . . . . . . . . . . . . 125

8.9 Experimental arrangement for the horizontal strip experiments (top view). . . . 126

8.10 Reference measurement in horizontal strips of the four test papers. Steeper

slopes indicate faster wicking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.11 Evolution of the wetted area in radially outward transport using cellulose paper. 127

8.12 Evolution of the wetted area in radially outward transport using glass fiber paper.

Although hard to perceive, there is a distinct front line on the outer rim of the

diffuse spot on which the edge detection algorithm is attuned. . . . . . . . . . . 128

8.13 Diagram showing radius versus time for outward wicking in Sartorius 391 filter

paper. The predictions are based on linear reference experiments (more exactly

on the b-value in Table 8.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.14 Diagram showing radius versus time for outward wicking in Whatman 589/2

filter paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.15 Diagram showing radius versus time for outward wicking in Whatman 40 filter

paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.16 Diagram showing radius versus time for outward wicking in Whatman GFB filter

paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



164 LIST OF FIGURES

8.17 Dimensionless presentation of the outward wicking experimental data and the

prediction mastercurve Eq. (8.18). Here, the data curves are complemented by

its corresponding error margin curves as betoken by the vertical solid lines at

the end of each data curve. The b value for the dimensionless scaling is based

on the linear reference experiments (b-value in Table 8.4). . . . . . . . . . . . . . 132

8.18 Axially symmetric geometry of the radial capillary that was studied by Marmur

[64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



LIST OF TABLES 165

List of Tables

2.1 Fluid properties of silicone fluid SF 0.65 (kinematic viscosity of 0.65 cSt) at 25

◦C. Source: product data sheet of Dow Corning. . . . . . . . . . . . . . . . . . . 26

3.1 The different dimensionless scaling options. . . . . . . . . . . . . . . . . . . . . . 37

3.2 Overview of dimensionless variables and Ω. See Table 3.3 for description of

dimensionless numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 List of the relevant dimensionless numbers for capillary rise. . . . . . . . . . . . 44

3.4 The fundamental units of the system. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Dimensionless values of the transition points. Note that for index 1 and 3 a

deviation of 3% is assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Dimensionless values of the transition points for 1% deviation (index 1 and 3). . 56

5.1 Further values for different errors. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Experimental data by Stange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Settings of the simulated wicking of HFE-7500 into a DTW 200x1400 metallic

weave (warp direction) as presented in Fig. 6.2. . . . . . . . . . . . . . . . . . . 80

7.1 Characterization of the glass filter frits. The data is extracted from diagrams

provided by the supplier (ROBU Glasfilter GmbH, Germany). R50 denotes the

pore radius where 50 % of the pores are smaller (or larger) compared to this radius. 86

7.2 Fluid properties at 25 ◦C. Source: product data sheet of the listed liquids (3M

for HFE 7500, FC-77, FC-72, FC-87 and Dow Corning for Silicone Fluid 0.65). . 86

7.3 Properties of the weave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



166 LIST OF TABLES

7.4 Measured equilibrium heights for different test liquids in a closed large test cham-

ber. The second line displays the corresponding calculated values of Rs using

the liquid properties of Table 7.2. For comparison, on the right hand side data

from bubble point measurements [72] is presented. . . . . . . . . . . . . . . . . . 91

7.5 K/Rs calculated from height measurements (w = 16 mm, warp direction). Num-

ber in brackets is the correlation coefficient r2, ± refers to the standard deviation.

K calculated with Rs = 13.7 μm. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.6 K/Rs for the warp direction calculated from mass measurements (w = 18 mm).

Number in brackets is the correlation coefficient r2, ± refers to the standard

deviation. K calculated with Rs = 13.7 μm. . . . . . . . . . . . . . . . . . . . . 97

7.7 K/Rs for the weft direction calculated from mass measurements (w = 16 mm).

Numbers in brackets are correlation coefficients r2, ± refers to the standard

deviation. K calculated with Rs = 13.7 μm. . . . . . . . . . . . . . . . . . . . . 97

7.8 Overview - experimental results for DTW 200x1400 and comparison with liter-

ature (Dodge [28] and Symons [98]). . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.9 Specimen size of the used glass filter frit specimen. . . . . . . . . . . . . . . . . 100

7.10 Overview of experimental results and the estimated errors for filter frits calcu-

lated from mass measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.11 Experiments performed using various test liquids. . . . . . . . . . . . . . . . . . 112

7.12 Experimental values of Φ compared to calculated ones. . . . . . . . . . . . . . . 112

8.1 Properties of the papers that were used for the experiments according to the

data sheets of supplier and producers (Omnilab, Sartorius, Whatman). Here, Rs

is an average pore size (Sartorius) or a particle retention size (Whatman). . . . . 121

8.2 Properties of AK5 silicone oil according to the product data sheet of the supplier

(Wacker AG, Germany); no errors are provided. . . . . . . . . . . . . . . . . . . 122

8.3 Overview on the expected errors in the experiments. . . . . . . . . . . . . . . . . 124

8.4 Reference data for the wicking parameter b, gained from strip wicking experi-

ments in horizontal and vertical direction. . . . . . . . . . . . . . . . . . . . . . 127

8.5 The wicking parameter b, gained from fits of Eq. (8.25) to the outward wicking

experiments with 3 different wicks. To compare with the linear experiments see

Table 8.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.6 The wicking parameter b, as gained from theoretical prediction and three exper-

iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



LIST OF TABLES 167

8.7 Characteristic time tc [s] of the wicking process for all experiments. . . . . . . . . . . 134

8.8 Value of the inertial parameter π3 [-] for all experiments. . . . . . . . . . . . . . . . 134








