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Zusammenfassung

Der nachwachsende Rohstoff Holz und hieraus hergestellte holzbasierte Bauproduk-
te (HBP) werden weithin als tragende Säule des nachhaltigen Bauens anerkannt.
Aufgrund einer stark wachsenden Nachfrage und der mechanischen Vorteile ge-
winnt die bisher im Vergleich zu Nadelhölzern weniger genutzte Ressource Laubholz
für HBPs zunehmend an Bedeutung. Gegenstand der durchgeführten Untersu-
chungen ist die Spezies Weißeiche (Quercus robur, Q. petraea), die nach der Buche
(Fagus sylvatica) den zweitgrößten Laubholzbestand in Europa darstellt. Diese Ar-
beit adressiert die Erfordernis eines verbesserten Verständnisses und einer besseren
Modellierung der Variabilität von Steifigkeit und Festigkeit entlang und zwischen
Brettern sowie die daraus resultierenden Auswirkungen auf den Größeneffekt von
Eichen-Brettschichtholz (BSH).

Für die Untersuchungen zur Variation der mechanischen Eigenschaften entlang
der Hauptachse der Bretter wurde ein Satz von 53 Eichen-Brettern (Quercus robur)
verwendet. Bei jedem Brett wurde die Position und Geometrie der Äste detailliert
erfasst; diese Informationen wurden sodann zur digitalen Rekonstruktion der Äste
verwendet. Die Elastizitätsmodul (E-Modul) parallel zur Faser wurde bei Zugbe-
anspruchung an 15 aneinander anschließenden 100 mm langen Brettsegmenten
gemessen. Die Bretter wurden bis zum Zugversagen geprüft Die Bruchstücke wur-
den sodann, wenn möglich, in weiteren Zugprüfungen getestet. Auf diese Weise
wurden mehrere Zugfestigkeitswerte pro Brett ermittelt.

Auf der Grundlage der E-Modul-Ergebnisse wurde ein autoregressives Mo-
del erster Ordnung [AR(1)] für die Simulation lokaler E-Modul-Profile entlang
eines Brettes entwickelt. Das Model berücksichtigt die Nicht-Stationarität der E-
Modul-Profile mittels einer zweistufigen Methode. Zunächst wird ein Gaußscher
AR-Prozess durchgeführt, der dann in einer normalisierten E-Modul-Verteilung
abgebildet wird. In einem zweiten Schritt wird das Ergebnis so skaliert, dass es
einem vorgegebenen globalen E-Modul entspricht. Die Zugfestigkeitswerte wurden
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mittels Ereigniszeitanalyse (Survival Analysis) analysiert, wobei unterschiedliche
parametrische und regressive statistische Modelle angepasst wurden. Die modellier-
ten Zugfestigkeiten wurden sodann mittels eines Kreuz-Korrelationskoeffizienten
mit den lokalen E-Modul-Werten gekoppelt, womit ein modifiziertes Vektor-Auto-
regressives Model (VAR) für den lokalen E-Modul und die Zugfestigkeit erhalten
wurde. Nummerische Simulationen mit den angepassten Zugfestigkeitsmodellen
ergaben einen vergleichsweise hohen Größen-, d.h. Längeneffekt, der durch einen
Größenexponenten von rd. 0.23 für das 5%-Quantil charakterisiert wird.

Es wurde ein stochastisches Finite-Element-Model zur Analyse von BSH-Trägern
entwickelt. Das Model berücksichtigt die mittels eines VAR-Models generierte loka-
le Variation der mechanischen Eigenschaften entlang jeder einzelnen Lamelle sowie
die stochastische Verteilung der Keilzinkenverbindungen aneinander anschließen-
de Bretter. Zur Berücksichtigung der Schädigungsentwicklung in den Holz- und
Keilzinkenelementen, wurde ein einfacher Energie-basierter bruchmechanischer
Ansatz verwendet. Das Model wurde an Versuchen mit Eichen-BSH-Trägern mit
drei unterschiedlichen Querschnittsgrößen, die an der MPA Universität Stuttgart
durchgeführt wurden, kalibriert. Nachfolgend wurde das Modell auf einen zwei-
ten bei FCBA, Frankreich, geprüften Datensatz von Eichen-BSH angewandt. Die
durch das Model vorhergesagten Ergebnisse stimmen gut mit den Experimen-
ten überein. Insbesondere wird hierbei der Größeneffekt der Trägerhöhe richtig
dargestellt. Der Einfluss der Materialmodelle für Holz und Keilzinkungen wurde
parametrisch untersucht. Es wurde gezeigt, dass die untere Verteilungsregion
der lokalen Zugfestigkeitsverteilung die Biegefestigkeitsverteilung des BSH am
meisten beeinflusst. Dies ist vorteilhaft, da die untere Verteilungsregion mittels
Ereigniszeitanalyse vergleichsweise präzise abgeschätzt werden kann, während
die obere Verteilungsregion weitere Annahmen erfordert.

Der Autor hofft, dass die vorliegende Arbeit dazu beiträgt, die Diskussion zur
Modellierung von tragenden Bauprodukten aus Laubholz zu befördern.
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Abstract

Scope

The renewable material wood and hereof derived structural engineered wood
products (EWPs) is widely acknowledged as being the major pillar of sustainable
building construction. Due to the strongly increasing demand and technical assets
the wood resource hardwoods, previously less used as compared to softwoods, is
gaining a high momentum for EWPs. Here, the species white oak (Quercus robur,
petraea) representing beside beech (Fagus sylvatica) the largest hardwood stocks
in Europe is investigated. This work addresses the need of improved understanding
and modeling of the variability of stiffness and strength along and between boards
and the resulting impact on the size-effect of glued laminated timber (GLT) made
of oak.

Experimental

A set of 53 oak boards (Quercus robur) was used to study the variation of mechanical
properties along the board’s main axis. For each board, detailed information
regarding size and position of knots was obtained, which was then used to digitally
reproduce the geometry of the knots. The modulus of elasticity (MOE) parallel to
the fiber was measured in tension along each board in 15 consecutive segments of
100mm in length. The boards were tested in tension until failure and the remnants
were then tested in secondary tension tests, when possible. Thus, multiple values
for tensile strength were obtained per board.

Based on the MOE results, a first order autoregressive [AR(1)] model for the
simulation of local MOE profiles within board was developed. The model considers
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the non-stationarity of the MOE profiles by means of a two step method. Firstly,
a Gaussian AR process is conducted and then mapped to the normalized MOE
distribution. In a second step, the result in scaled to fit a specified global MOE
value. The tensile strength data was analyzed by means of survival analysis, where
different parametric and regression type statistical models were fitted. The tensile
strength models were coupled to the localized MOE AR(1) model by means of
a cross-correlation coefficient, thus obtaining a modified vector autoregressive
(VAR) model for the local MOE and tensile strength along board. Numerical
simulations with the fitted tensile strength models predicted a relatively high size
effect, i.e. length effect, characterized by a size-effect exponent of around 0.23 at
the 5%-quantile level.

Stochastic FE model for GLT

A stochastic finite element model for the analysis of GLT beams was developed. The
model considers the local variation of mechanical properties within each lamination,
simulated by the derived VAR model, as well as the stochastic distribution of finger-
joints connecting adjacent boards. A simple energy-based failure mechanism is
considered for the evolution of tensile damage in wood and finger-joint elements.
The model was calibrated with experiments of oak GLT beams of three different
cross-sections tested at the MPA, University of Stuttgart, and then applied to
simulate a second database of oak GLT beams tested at FCBA, France. The results
obtained with the model are in good agreement with the experiments. In particular,
the size effect of beam depth is correctly represented. The influence of the used
material models for wood and finger-joints was analyzed parametrically. It is shown
that the lower tail of the local tensile strength distribution, which can be estimated
rather accurately by survival analysis dominates the GLT bending strength.This is
fortunate, as the lower tails can be estimated by means of survival analysis in a
rather accurate manner, while the upper tails require further assumptions.

Vision

The author hopes that the presented work contributes to stimulate the discussion
on modelling of structural timber elements made of hardwoods.

12
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“I do not know why a certain event
occurs; I think that I cannot know it;
so I do not try to know it and I talk

about chance.”

— Lev Tolstoy, War and peace
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Introduction

1.1 European forests in the 21st century

Forests in Europe are currently in the midst of a significant change in their tree-
species distribution (Cheaib et al., 2012; Delzon et al., 2013). The increase in
global temperatures in the last century and the changes in local weather conditions
deriving from it (e.g. rain patterns, drought periods and winds) have already
started showing some effects (Lindbladh et al., 2000). The consequences that the
current climate change will ultimately bring to the European forests are largely
unknown; the amount of variables that play a relevant role is considerable (Lindner
et al., 2014)—alone the prediction of future temperatures depends on highly
sensible parameters like estimated greenhouse gases emissions. In spite of these
uncertainties, enough scientific evidence points to major changes in the forest,
characterized by steady geographical shifts, as well as expansions and contractions
of the habitable regions of species (Meier et al., 2011). This dynamic changes
the distribution of species in the forests, and consequently affects the silviculural
activity in a direct manner.

Under the current and projected conditions, the habitable ranges of deciduous
species (hardwoods) are expected to shift far northern with respect to their current
boundaries. Field studies by Delzon et al. (2013) have confirmed a steady coloni-
sation of Holm oak (Quercus ilex) northwards from its natural range in the last
century, and simulations predict a probable ongoing of this development during

17

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



this century (Cheaib et al., 2012). Meanwhile, coniferous species ranges will be
confined to higher altitudes (Lexer et al., 2002) and latitudes (Delzon et al., 2013),
where more suited climatic conditions are to be expected.

Although important, global warming is not the only driving force reshaping
the forests. The silvicultural and forestry activity of the last century is largely
accountable for the observed increase in disturbance impact in the European
forests, mainly due to restructurations of the distribution of species (Seidl et al.,
2011). The favoring of fast-growing species, e.g. Norway spruce (Picea abies)
or Scots pine (Pinus sylvestris), which ensure small rotation periods, led to a
displacement of native species from their natural environments and gave place to
large monocultural forests all over Europe (Felton et al., 2010). This presents its
own set of associated problems, e.g. an increased probability of large, concentrated
die-backs of species due to a higher vulnerability to both biotic (pest outbreaks)
and abiotic (winds, droughts) factors (Felton et al., 2010). The predicted climate
change can only amplify these problems (see e.g. Lexer et al., 2002).

The understanding of the consequences of these two driving forces marked a
turning point in the management of European forests regarding its economical,
environmental and social uses (CEC, 2007). It became evident that forests need
to adapt to the future climatic conditions, yet the natural process to achieve this—
through natural dispersion of seeds—would not be enough to keep up with the
predicted speed of climate changes (Meier et al., 2011; Delzon et al., 2013). Thus,
the adaptation process needs to be assisted. Different guidelines exist to transit
to more climate resilient forests in Europe (see e.g. LFBW, 2014). In general,
mixed-species stands are now strongly encouraged, with the objective of reducing
the vulnerability to diverse risks and promote biodiversity (CEC, 2007), while
at the same time maintaining an economical competitiveness with respect to e.g.
spruce monocultures (Agestam et al., 2006).

The interaction of climate change and these new forestry strategies will lead
to a much higher share of hardwoods in the European growing stock, including
oaks, beech and birch species, among others (Cheaib et al., 2012). In fact, in
the last decades European forests have seen a steady increase in their share of
deciduous species, which can be quantitatively observed i.a. in national forest
inventories of different countries. For example, between the first and second
German National Forest Inventory (1987–2002) Norway spruce has lost about 7%
of its total area to deciduous species in south-west Germany (Lindner et al., 2014).
For the timber building industry, up until now clearly dominated by softwood
species, this development presents many challenges and a need for adaption.
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1.2 Hardwoods in the building industry

The described gradual transition to a higher proportion of deciduous species in the
forests has motivated a small, yet steadily increasing proportion of the European
timber industry to incorporate more hardwood products into their catalogs. This
trend is further reinforced by additional factors, such as (i) the fact that often
the mechanical properties of hardwoods are significantly superior to those from
softwoods (Aicher and Stapf, 2014), and (ii) that from an aesthetical point of view
many hardwoods are typically considered to be more visually appealing. In order
to harvest the full potential of hardwoods, improvements at both technical and
regulatory levels are required.

Consequently, the research output dealing with different aspects of the value
chain of hardwoods has shown a steady increase in recent times. The topics
are multiple and include e.g. in-depth studies of material availability, improved
classification methods, determination of mechanical properties and development
of engineered products such as glued laminated timber (GLT) and, to a minor
degree, cross-laminated timber (CLT), too. In this context, the project “European
hardwoods for the building sector” (EU Hardwoods, 2017)—where the origins of
the present work can be found—was tasked with analyzing these topics in a holistic
manner. The focus was then placed on a subset of the most relevant European
hardwood species, consisting on beech (F. sylvatica), oak (Q. robur, Q. petraea),
chestnut (C. sativa) and ash (F. excelsior). There, an assessment of the suitability
of these species for structural applications in the form of engineered products was
made.

The past decade has seen an increase in the efforts of bringing hardwood
engineered structural timber products to the market. In Germany and Austria,
special attention has been given to beech, being this the most abundant deciduous
species in these countries, where both GLT and CLT have been an important
research subject (see e.g. Frese, 2006a; Aicher et al., 2016; Ehrhart, 2020). For
the case of oak wood, being the primary hardwood species in France and second
most important in Germany, an increased interest has been observed, too (Aicher
and Stapf, 2014; Faydi et al., 2017). Although oak was initially limited to GLT
members with rather small cross-sections—mainly used as post and beam window
façade elements—it quickly evolved to include larger cross-sections for structural
applications (Aicher et al., 2014).

Further research has shown that an efficient way to incorporate hardwoods into
structural elements is by means of so-called hybrid elements, where both softwoods
and hardwoods—currently mostly beech—are used together, taking advantage
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of the superior mechanical properties of hardwoods where it is needed. For GLT
beams this concept is applied by replacing the material of the outer laminations
with hardwoods of high tensile strength (e.g. Blaß and Frese, 2006). In CLT
plates, more interestingly, the middle cross-layers, where the failure mechanism is
dominated by rolling shear, can be substituted by e.g. beech material that would
normally be regarded of low quality, yet presents a much higher resistance to
rolling shear (e.g. Aicher et al., 2016).

Although these concepts present a high relevance for the future of engineered
timber elements, the landscape of hardwood products in the coming years will
probably continue to be dominated by the more simple single-species products,
especially in the form of glued laminated timber.

1.3 Glued laminated timber

Glued laminated timber (GLT) is currently one of the most used wood-derived
engineered products in the world when considering beam-like applications. It is
produced by connecting a series of boards lengthwise by means of finger-joints to
form a so-called endless lamella. This lamella is cut at regular intervals, defined
by the length of the beam to be produced. The obtained parts are stacked on
top of each other, applying glue between each layer (see Fig. 1.1). A constant
pressure is then applied normal to the wide lamella faces throughout the so-called
minimum pressing time. This ensures a sufficient bond strength and enables a
further curing of the adhesive without the need of additional pressure, including
careful transportation.

lamination 1

lamination 𝑖
lamination 𝑁

⋮

⋮

Finger-joint

endless lamella

Figure 1.1. Description of the engineered timber product glued laminated timber
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Compared to solid timber, the build-up of GLT allows for higher flexibility in
terms of possible geometries and maximum spans, the latter being commonly
limited to about 25m due to transportation constraints. A further advantage is
commonly referred to as homogenization of the material, which is associated with
a reduction in the variability of the mechanical properties; e.g. low stiffness of one
board is compensated by possible higher stiffness of adjacent laminations, thus
the variation of stiffness at the beam level is reduced. A further relevant concept is
known as the lamination effect. This corresponds to the positive mechanical effect
obtained from vertically stacking lamellas, and originates mainly from two aspects:
(i) the restraining of lateral deformations of individual laminations (see Fig. 1.2)
due to local defects—thus preventing what would otherwise mean a reduction of
tensile resistance (Foschi and Barrett, 1980)—and (ii) the redundant nature of a
parallel system, where local failures in one lamination can be compensated to some
degree by the adjacent laminations. The direct consequence of the lamination
effect is the fact, that the observed bending strength of GLT beams is higher than
that of the individual laminations.

knot

≈Restrained:

𝑒𝐹 𝐹

𝜎𝑥

Unrestrained:

𝐹 𝐹

𝜎𝑥

Δ𝑀 𝑀

Figure 1.2. Lateral deformation of board in tension due to the presence of a knot on an edge (see
also Foschi and Barrett (1980))

The degree of utilization of the material can be further increased by using
so-called composite build-ups, characterized by the allocation of laminations of
different strength grades—from the same species—throughout the cross-section.
This is illustrated by the different colors of the laminations in Fig. 1.1. Specifically,
boards of higher grades are placed in the outer zones (subjected to higher bending
stresses), whilst lower grades can be used in the central part. The presence of
lower grade boards in the central region of the cross-section has no negative impact
in the shear resistance of the beam, as the shear strength remains practically the
same for the different board grades. In this manner, an under-utilization of the
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higher quality material is reduced, and the usage of the material is optimized. The
mechanical properties of such composite, as well as for homogeneous build-ups
are specified in EN 14080 (2013).

1.3.1 Characterization of mechanical properties of glulam ac-
cording to EN 14080

For the European market the build-up, strength features and minimum production
specifications of GLT products is regulated by EN 14080 (2013). This standard
defines minimum requirements on finger-joints and boards for the production of
GLT with specific mechanical characteristics, defined as GL classes. GL classes are
defined by their characteristic, i.e. 5% quantile bending strength, 𝑓𝑚,𝑔,𝑘, meaning
e.g. that a GLT beam of the class “GL24” presents a 𝑓𝑚,𝑔,𝑘 value of 24N/mm2.
Homogeneous build-ups are marked by appending the letter “h” to the GLT class
(e.g. GL24h), whilst composite build-ups, consisting of up to three lamination
strength-grades, are denoted by the letter “c” (e.g. GL24c). The characteristic
value attributed to each class is defined for a cross-sectional depth of 600mm.

In order for the producer to declare the appropriate GL class, EN 14080 (2013)
defines three possibilities:

1. The first option comprises the classification of the build-ups and their lami-
nation properties according to tabulated values.

2. The second option is based on the use of a simulation-based, empirically
adjusted equation relating the mechanical properties of finger-joints and
boards to obtain the characteristic bending strength of the GLT.

3. The third alternative consists on the experimental determination of the GLT
characteristic properties.

It is rather clear that the producers would strongly prefer either of the first
two alternatives, as the realization of experimental tests is rather expensive. The
equation mentioned in the second option relates the strength of both, finger-joints
and boards with 𝑓𝑚,𝑔,𝑘 as

𝑓𝑚,𝑔,𝑘 = −2.2 + 2.5 ⋅ 𝑓0.75𝑡,0,𝑘 + 1.5 ⋅ (
𝑓𝑚,𝑗,𝑘

1.4 − 𝑓𝑡,0,𝑘 + 6)
0.65

, (1.1)

where 𝑓𝑡,0,𝑘 and 𝑓𝑚,𝑗,𝑘 are the characteristic values for tensile strength of the boards
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and flat-wise bending strength of the finger-joints, respectively. In addition, the
following restriction is specified for the finger-joints:

1.4 ⋅ 𝑓𝑡,0,𝑘 ≤ 𝑓𝑚,𝑗,𝑘 ≤ 1.4 ⋅ 𝑓𝑡,0,𝑘 + 12 . (1.2)

Since the relation 𝑓𝑚,𝑗,𝑘 = 𝑓𝑡,𝑗,𝑘 ⋅ 1.4 is implicitly assumed, the condition (1.2)
means that the characteristic tensile strength of the finger-joint, 𝑓𝑡,𝑗,𝑘, must be
higher than the characteristic tensile strength of the boards. In essence, the first
alternative is nothing more than the application of Eq. (1.1) to a set of specific
combinations of finger-joint and board strength values, and build-ups.

Although CE-marking of GLT beams according to EN 14081-1 (2016) is only
possible for softwood GLT, the foreword of the standard mentions a principle of
applicability to hardwood GLT, too. Regarding hardwood GLT, however, concerns
on the validity of Eq. (1.1) have been raised, especially when considering the
restriction of Eq. (1.2). This is owed to the empirical fact, that hardwoods, reaching
in general much higher tensile strength values than the usual softwoods, often
present problems at achieving the required (rather high) strength values for the
finger-joints (Aicher and Stapf, 2014). As a consequence, for such cases, finger-
joints represent the weakest region of the GLT, altering the statistical characteristics
of the measured bending strength values. However, this does not mean that such
GLT is not apt for structural use.

1.3.2 Towards standardization of hardwood GLT

Since the requirements specified in EN 14080 (2013) for softwoods cannot always
be fulfilled by hardwoods (see above), alternative procedures have to be used to
certify hardwood GLT. Currently the only available options consist in obtaining
either a National Technical Approval or a European Technical Assessment (ETA)
on the basis of a European Assessment Document (EAD)1 (EU, 2014). Recently,
a few producers have used these options to certify their production of GLT, e.g.
for oak (Z-9.1-704, 2012; Z-9.1-821, 2013; ETA-13/0642, 2013) and chestnut
(ETA-13/0646, 2013). However, the relative high costs associated with such a
certification process, mainly due to a large number of required experimental full-
scale tests, pose a clear barrier for many glulam producers. Engineered products
from hardwoods, with all their structural advantages, can only become relevant if

1Up to the year 2015, i.e. to the end of the European Building Products directive (EEC, 1988), the
basis of an ETA, then called European Technical Approval, was the Common Understanding Approval
Procedure (CUAP)
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the proper regulations are adapted for their use, which points to the need for a
standardization.

Therefore, the European Committee for Standardization has mandated the
Technical Committee 124, Working Group 3, Task Force 1, with the development of
a first standard for the regulation of the production of hardwood GLT. The idea is to
create a document with provisions analogous to EN 14080 (2013) but considering
the specifics of the different hardwood species and the limitations of the current
adhesives. This is easier said than done, as the differences within hardwood
species is known to be far larger than in softwood species. These differences span
from the cellular level to the observed growth-bound defects, such as knots and
fiber deviations, and have a direct influence in how the material behaves. Thus
GLT made of hardwood might require slightly adapted models for each species.
Although this is a difficult task, inspiration can be found in the process that lead to
the standardization of softwood GLT.

1.3.3 The example of softwoods: strength models

The research pathway that led to the empirical model between strength properties
of boards and finger-joints, and the bending strength of the glulam beam defined
in EN 14080 (2013) has a long trail that dates back to the early 1980’s. The first
reported glulam strength model that used computer simulations to consider the
stochastic variability of the material was introduced by Foschi and Barrett (1980).
This model divided each lamination into cells of a determined length and assigned
a MOE and strength value to each of them, which were correlated to generate
knot and density values by means of a function. Although the influence of finger-
joints was not considered, the stochastic essence of the variation of mechanical
properties along the boards defined the nature of the models to come. Of high
relevance for the European standardization was the model presented by Ehlbeck
et al. (1985), the so-called “Karlsruher Rechenmodel”, based on an extensive study
of the variation of the mechanical properties of boards and finger-joints of Norway
spruce (Picea abies). There, several correlations between strength, modulus of
elasticity (MOE) and grading criteria were established, allowing the simulations to
better represent the distribution of properties in glulam beams. After a long period
of calibration, the numerical model was finally implemented as Eq. (1.1), relating
GLT bending strength with strength values of both, finger-joints and boards in
Section 5.1.5 of EN 14080 (2013).

Further models have been developed since then, i.a. by Hernandez et al. (1992)
and more recently by Fink (2014), both calibrated with softwood species. Blaß
et al. (2005) presented the first adaptation of the “Karlsruher Rechenmodel” to
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a hardwood species (beech) and later applied it to a hardwood-softwood hybrid
build-up (Blaß and Frese, 2006), manifesting the utility and versatility of a stochas-
tic FE-based strength model. In all these models the correct characterization of
the material properties of the boards and finger-joints plays an essential role to
correctly simulate the behavior of the studied GLT material. Substantial research
has been dedicated to this aspect, i.a. Showalter et al. (1987), Taylor and Bender
(1991), Lam and Varoglu (1991a), Isaksson (1999), and Fink (2014), gather-
ing large empirical databases and developing different methods to simulate the
observed variation of properties within boards. The present work is inspired by
these investigations and presents a new approach to analyzing and modelling
the variation of properties within board, using oak as an example material. The
simulated mechanical properties can then be applied to a softening-based glulam
strength model in order to study the bending behavior of the simulated GLT.

1.4 Objectives

This thesis presents the implementation of a new glulam strength model for hard-
woods. For this, experimental results on boards and finger-joints are described and
analyzed in order to obtain correlations between different properties at a global
level. A method to generate the needed properties considering the correlations
between them and their statistical distributions is presented. Investigations on the
variation of properties within single boards are analyzed as well, and a method to
simulate the observed variation is developed.

A finite element model with fracture mechanics capabilities is implemented
using the software Abaqus. The input data is generated using a combination of
the global and local material models mentioned above. Characteristic bending
strengths are obtained for different build-ups by the application of the Monte Carlo
method, and the results are compared to experimental investigations, for which
the distributions of material properties are known. Finally, the sensitivity of the
model to different parameters is assessed by means of a parametric analysis.

To summarize, the objectives of this thesis are:

• Analyze the distribution of defects in oak boards,

• Analyze the variation of density, modulus of elasticity (MOE) and tensile
strength within oak boards,

• Characterize the autocorrelation parameters of MOE along board,
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• Characterize the variation of tensile strength within board and its dependence
with localized MOE values,

• Develop a simulation model capable of generating MOE and tensile strength
profiles, representing oak boards with specific characteristics, and

• Develop a finite element simulation model for the prediction of bending
strength, considering softening behavior.

1.5 Scope

The present study investigates the mechanical properties of boards and glulam
beams made of oak (Quercus robur, Quercus petraea). In this sense, the parameters
obtained for the material model are limited to the studied species. However, the
material and finite element models presented in this work should be generally
applicable to other wood species—assuming that the required calibration has been
performed.

1.6 Outline and overview

The structure of the thesis is designed to follow the development of the strength
model in a logical manner. It starts with a review of the state of the art in Chapter 2,
where previous glulam strength models are reviewed and the needed statistical
background is presented. Chapter 3 introduces the materials used for both the
glulam testings and the study on variation of properties along boards. The distri-
bution of knots in boards is studied in Chapter 4. The variation of properties along
boards is analyzed in Chapter 5. A model for the simulation of the properties along
boards is presented in Chapter 6. The finite element model for the determination
of bending strength is introduced in Chapter 7, where the different components
and parameters are explained. The calibration of the model with the experimental
data is done in Chapter 8, where also diverse parameters of the strength model
are studied in order to observe the susceptibility of the model with regard to the
parameters. Final conclusions and an outlook are presented in Chapter 9.
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2
State of the art

2.1 General remarks

This chapter introduces the most relevant models present in the literature for the
analysis and simulation of the mechanical properties for boards and GLT beams. It
starts by revealing the diverse sources of variation for the mechanical properties of
wood, especially for the case of hardwoods. Then, some general statistical concepts
and methods are introduced, which are needed to understand some of the models
described later. Existing models to simulate the variation of mechanical properties
along boards are then presented. Finally, the application of these models to the
stochastic simulation of GLT beams is shown, where the different strength models
are explained in detail.

2.2 A look at the variation in wood: sources of un-
certainty

Wood is a natural-grown material, characterized by a marked anisotropy in its
mechanical properties that can be traced down to the cellular level, to the shape
of the individual cells and their growing pattern. The latter is characterized by the
yearly growth of concentric layers of earlywood and latewood in temperate climate
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zones. Wood cells present different shapes and sizes depending on their specific
task withing the tree. Nevertheless, the chemical composition of their cellular
walls is very similar, primarily composed of layers of cellulose strands (microfibril),
lignin and hemicellulose. For the case of softwoods, mainly two cell types are
present: (i) string-like cells called tracheids being many times longer than wide
(about 5–7mm in length), and (ii) rays, presenting a rectangular prismatic shape.
These two cell types are arranged in a rather simple structure, where the tracheids
are aligned in longitudinal direction (i.e. parallel to the stem axis), delivering
structural stability and vertical transport, while the rays are oriented radially and
provide mainly storage and synthesis of biochemicals. The tracheids amount rather
consistently to about 90% of the wood volume in all softwoods (Ross, 2010),
meaning that at the microstructure level all softwoods are very alike.

Hardwoods, in contrast, present a much wider spectrum of cell types, and
their arrangements and proportions related to total volume greatly vary between
species. Compared to softwoods, hardwoods exhibit a higher level of specialization
in the structural and conductive functions (Rao et al., 1997), which are mainly
provided by the fibers and vessels, respectively. For the particular case of Quercus
robur—a European oak representing a ring-porous hardwood species—the cellular
diversity comprises vessels, libriform fibers, tracheids, fiber-tracheids and ray/axial
parenchyma cells (Gričar et al., 2013). Their proportions and arrangements differ
clearly for earlywood and latewood, and their ratios in each new ring change as the
tree grows older. Specifically, the proportion of vessels in latewood of newer rings
increases while the proportion of libriform fibers (source of strength) decreases.
This leads in theory to a reduction of the mechanical properties of the younger
rings (Rao et al., 1997), producing a negative strength gradient from the stem’s
center to the cambium, defined as the region between the last grown ring and the
inner bark. Experiments on oak boards sawn from trunks of different diameters
presented by Lanvin and Reuling (2012) clearly show this effect.

As the tree grows, diverse environmental and genetic factors affect the precise
arrangement and chemistry of the wood cells. For example, as the years pass,
the older cells in the inner rings begin transitioning from sapwood to heartwood,
process whereby the cells slowly loose their protoplasts and die, generally leading
to an improvement of the mechanical properties of wood. Furthermore, for pro-
nouncedly inclined trees—due to high loads or topographical reasons—localized
changes at the cellular level can develop, producing reaction wood. In hardwoods
this occurs in the form of tension wood, a region characterized by the development
of strong gelatinous fibers in the upper side of an inclined tree, i.e. in the bending
tension zone (Kollmann and Côté, 1968). Considering the proportions of different
cell types in each ring of hardwoods, they can be affected e.g. by the growth rate
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(Rao et al., 1997).

The high anisotropy exhibited by wood, where the mechanical properties
parallel to the main axis of the fiber cells (grain) are considerably higher than
in the other two orthogonal directions (radial and tangential), produces a high
sensitivity of the material to local and global perturbations of the grain. Deviations
of the grain occur for different reasons, and can span a rather large region or be
very localized. For example, long-standing or cyclical loads applied to a tree, e.g.
by wind action, can induce deviations in the grain direction throughout the entire
trunk due to an excessive torsion of the stem. The orientation of fibers can further
be altered by the growing of branches—commonly known as knots in structural
timber. These deviations have a local character and the study of its effects in the
mechanical properties of timber has a high relevance, reason for which it has been
extensively investigated by means of different approaches e.g. by Foschi and Barrett
(1980), Ehlbeck and Colling (1987), Lam et al. (2005), Fink et al. (2011), Olsson
et al. (2018), Lukacevic et al. (2019), and Wright et al. (2019). At a macroscopic
level this constitutes the most evident source of variation in timber.

Within the frame of industrial processing of structural lumber for engineered
wood products additional sources of variation develop, increasing the variability of
mechanical properties. Examples are the chosen sawn pattern and the so-called
seasoning, process by which the moisture content of wood is brought to an equilib-
rium with its surroundings—this can be done e.g. by natural or kiln-drying. Thus,
the boards finally obtained for structural use are the product of multiple processes,
resulting in a rather large uncertainty in the structurally relevant mechanical
properties.

Diverse classification methods have proved to reduce this uncertainty at the
board level. Statistical methods have been applied to different variables, effectively
increasing the yield of the material. However, the variation of mechanical properties
along a board will always be present and needs to be accounted for in the production
of glued timber products.

The study of the variation of mechanical properties along boards implies spe-
cially designed tests and a deep statistical analysis of empirical results. This has
been done mostly for softwood species i.a. by Ehlbeck et al. (1984), Foschi and
Barrett (1980), and Fink (2014) and for hardwoods (beech) by Frese (2006a),
which are presented below. For oak, work on the variation of material properties
has been done based on laser scans by Olsson et al. (2018), however with a focus
on the global behaviour by defining new indicator properties.
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2.3 General statistical concepts and methods for the
analysis of wood properties

2.3.1 Weibull theory of weakest link

The theory of the weakest link can be better explained with the canonical problem
of studying the load capacity of a chain consisting of 𝑛 links. The probability
of failure of each link at a certain load 𝑥 is defined by the distribution function
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥). Due to the serial nature of the system, the failure of the chain is
determined by the failure of its weakest link.

With each newly added link to the chain, the probability of having a weaker
link rises. As a consequence, the distribution for the load capacity of the chain
depends on the number 𝑛 of links. This simple concept constitutes the basis for
the so-called size effect observed in the failure of (mostly brittle) solids.

Weibull (1951) derived a statistical distribution function that takes into account
this issue. The main insight was to find a distribution 𝐹(𝑥) that can be represented
as

𝐹(𝑥) = 1 − 𝑒−𝜑(𝑥) . (2.1)

The probability of survival (not failure) of a chain with 𝑛 links can be repre-
sented as

𝑆𝑛 = 1 − 𝑃𝑛, (2.2)

with 𝑃𝑛 the probability of failure of the chain. Since the probability of survival is
equal to the simultaneous survival of each link, the following equation holds:

1 − 𝑃𝑛 = (1 − 𝑃)𝑛 . (2.3)

Assuming that Eq. 2.1 holds, the following expression for 𝑃𝑛 is obtained:

𝑃𝑛 = 1 − 𝑒−𝑛𝜑(𝑥) . (2.4)
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The most simple mathematical expression that satisfies the needed conditions
is 𝜑(𝑥) = (𝑥 − 𝑥ᵆ)𝑚/𝑥0, thus obtaining

𝐹(𝑥) = 1 − exp [− (
(𝑥 − 𝑥ᵆ)

𝑥0
)
𝑚

] . (2.5)

This is commonly known as the “Weibull distribution” and is not constrained to
mechanical problems. As pointed out by the original author, it is a distribution of
wide applicability (Weibull, 1951). This theory can be considered as a particular
case of the theory of extreme value, which is introduced later in this chapter.

2.3.2 Order statistics and extreme value theory

Order statistics can be regarded as a generalization of the weakest link theory, and
deals with the statistical analysis of the 𝑟-th smallest value in a sample of size 𝑛.
More formally, if 𝑋1, 𝑋2, … , 𝑋𝑛 constitute a sample drawn from a given distribution
𝐹(𝑥) and are sorted in ascending order, such that 𝑋1∶𝑛 ≤ … ≤ 𝑋𝑛∶𝑛, then the 𝑟-th
element of this sequence is defined as the 𝑟-th order statistic of the sample (Castillo
et al., 2005). Of special interest are the first and the last elements (minimum and
maximum of 𝑋1, … , 𝑋𝑛, respectively), generally referred to as the extreme values.

For any given parent distribution, 𝐹(𝑥), the distribution of the minimum value
for a total of 𝑛 elements, 𝐹(𝑛)min(𝑥), can be simply derived from 𝐹(𝑥) as (Castillo
et al., 2005)

𝐹(𝑛)min(𝑥) = 1 − [1 − 𝐹(𝑥)]𝑛 . (2.6)

As it can be noticed, this is the same expression as derived by Weibull (1951).

2.3.3 Survival analysis

Survival analysis is a field in statistics that deals with the assessment of what is
commonly known as censored data. Traditionally, it has been used in medical
statistics to analyze the survival rates of patients to different treatments and
conditions—from where the name comes from. Censoring arises when the data
is analyzed while some patients are still alive, and also when a patient is lost to
follow-up during the course of the study for some reason (Miller, 1976). The same
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Figure 2.1. Illustration of the concept of (right) censored data in an experimental test

concepts apply in different disciplines. For example, in engineering, the time to
failure (𝑡𝑓) of a component in a duration-of-load test setup is the relevant observed
variable. If the data is analyzed at a time 𝑡obs before the end of the test, then
censored data will need to be considered (see Fig. 2.1). In the field of timber
structures, survival analysis has been used e.g. by Klöck (2005), where censoring
occurred in shear testings of GLT beams due to some specimens failing in bending
instead of shear.

In general, the problem consists on estimating the set of parameters 𝜃 of the
candidate distribution function, 𝐹(𝑥), that describes the studied variable. For this,
maximum likelihood estimation (MLE) is used, where the usual likelihood function
(ℒ(𝜃)) is modified to consider the censored data (Odell et al., 1992) according to

ℒ(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖)
𝛿𝑖 ⋅ (1 − 𝐹(𝑥𝑖))

(1−𝛿𝑖) , (2.7)

where 𝑓(𝑥) is the probability density function (PDF) and 𝛿𝑖 is an indicator pa-
rameter, i.e. a binary variable, signalizing whether the data was observed or not
(censored):

𝛿𝑖 = {
1 , if 𝑥𝑖 is an observed data point

0 , if 𝑥𝑖 is a censored data point.
(2.8)

The main characteristic of this likelihood function is the use of the survival
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function 𝑆(𝑥) = [1 − 𝐹(𝑥)] for the censored data instead of the PDF. Normally, it is
easier to work with the logarithm of the likelihood function, (ℓ(𝜃)), which in this
case is represented by

ℓ(𝜃) = logℒ =
𝑛

∑
𝑖=1

𝛿𝑖 ⋅ log(𝑓(𝑥𝑖)) + (1 − 𝛿𝑖) ⋅ log(1 − 𝐹(𝑥𝑖)). (2.9)

Maximizing this function yields the maximum likelihood estimates, ̂𝜃, for the
tested distributions.

2.4 Probabilistic methods for the simulation of cor-
related variables

In the context of stochastic simulations, e.g. by applying the Monte-Carlo method,
it is often necessary to preserve observed correlations between variables in order to
better represent possible random states of a given system. The literature presents
diverse methods to this end, which are applicable the simulation of variables
belonging to a wide variety of statistical distributions. This section introduces
several generally applicable methods, relevant for the understanding of the models
described later in this chapter. They are further relevant for the following chapters,
which deal with the variability of mechanical properties of boards.

2.4.1 Simulation of correlated normally distributed variables

The simulation of correlated normally distributed variables is needed in stochastic
analyses when the interaction of different variables needs to be considered. One
of the most commonly applied methods is based on the fact that any positive
definite matrix 𝚺 of dimensions 𝑛 × 𝑛 can be decomposed in a matrix 𝐂, such that
𝐂𝐂𝐓 = 𝚺 (Tong, 1990). The matrix 𝐂 can be easily found applying the Cholseky
decomposition. Thus, if 𝝁 is the vector of length 𝑛 containing the mean values of 𝑛
different normal distributions, 𝚺 is the covariance matrix, and 𝐙 is a multivariate
Standard Normal distribution,𝒩𝑛(𝟎, 𝐈𝐧), then the matrix 𝐗 resulting from applying
the following equation

𝐗 = 𝐂 ⋅ 𝐙 + 𝝁 (2.10)

2.4 | Probabilistic methods for the simulation of correlated variables 33

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



correspond to an 𝒩(𝝁, 𝚺) distribution.

The following algorithm—slightly modified from (Tong, 1990)—is then used
to generate the correlated random variates 𝑿1, … , 𝑿𝑵:

1. Compute the matrix 𝐂 by applying Cholseky decomposition;

2. Generate 𝒩(0, 1) distributed random variates for each variable and place
them in the rows of a matrix 𝐙;

3. Generate correlated random variates, 𝐗, by applying Eq. (2.10).

The resulting matrix 𝐗 contains the correlated random variates of each variable
in each row.

2.4.2 Simulation of correlated non-normally distributed vari-
ables

In many situations the variables that need to be simulated do not follow normal
distribution. For such cases, the previous method can still be applied, however, with
an additional step at the end, consisting in mapping the normal random variates
into the needed distributions. If random variates, 𝑍, from a 𝒩(0, 1) are generated
(e.g. by the previous method), then the mapping process can be concisely described
by the following equation:

𝑌 = 𝐹−1 [Φ(𝑍)] , (2.11)

where 𝐹−1(⋅) is the inverse CDF, or percent point function of the needed distribution,
and Φ(⋅) is the CDF of the standard normal distribution, 𝒩(0, 1). This process is
illustrated in Fig. 2.2.

This concept is sometimes referred to as Gaussianization (Chen and Gopinath,
2000) and is a commonly used method to translate variables from one distribution
into a different distribution (e.g. Taylor and Bender, 1988; Grigoriu, 1998; Deodatis
and Micaletti, 2001).

2.4.3 Autoregressive models

Autoregressive models (also known as Markov processes) are widely used across
different science fields to model series of data where a correlation between each
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Figure 2.2. Illustration of the process of mapping a variable 𝑦𝑖 from a normal distribution (left) to
the corresponding value 𝑦𝑖 of an arbitrary distribution (right), maintaining the same
value on their respective cumulative distribution functions Φ and 𝐹.

element and the previous 𝑝 data points can be established. In its most basic form
an autoregressive model of order 𝑝, AR(p), is defined as:

𝑥𝑖 =
𝑝

∑
𝑗=1

𝜑𝑗𝑥𝑖−𝑗 + 𝜀𝑖 , (2.12)

where 𝜑𝑗 are the model parameters and 𝜀𝑖 is a white noise term, generally assumed
as a zero-centered normally distributed random variable, 𝒩(0, 𝜎). The white noise
needs to be a stationary process. Each AR model possesses an autocorrelation
function (ACF), which shows the correlation for the 𝑘-th lag, e.g. the 𝑘-th time
or location interval. In general, the ACF, 𝜌(𝑘), is a function of the autocovariance
function (𝛾(𝑘) = Cov (𝑥𝑖−𝑘, 𝑥𝑖)), as

𝜌(𝑘) = 𝛾(𝑘)
𝛾(0) . (2.13)

For the particular case of an AR(1), the ACF is defined as:

𝜌(𝑘) = 𝜑𝑘1 , (2.14)

where 𝜑1 is the model parameter and 𝑘 is the 𝑘-th lag. This describes a geometrical
progression, which is characteristic for AR(1) models.

The ACF serves as a theoretical reference point when fitting a dataset to an AR
model, as it can be compared to the serial correlations computed directly from the
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studied data. This is known as the sample autocorrelation function (SACF), 𝜌𝑘, and
is defined as (Brockwell and Davis, 2002):

̂𝜌(𝑘) = ̂𝛾(𝑘)
̂𝛾(0) , (2.15)

with the sample autocovariance function

̂𝛾(𝑘) = 1
𝑁

𝑁−𝑘

∑
𝑖=1

(𝑥𝑖−𝑘 − ̄𝑥) (𝑥𝑖 − ̄𝑥) , (2.16)

where ̄𝑥 is the mean of the sample and 𝑁 is the total number of observations.
Since the objective is to compute the SACF that will later be used to fit an AR
model, it is necessary to make sure that the data describes a stationary process. If
this is not the case, a common solution is to apply a transformation to the data,
which produces the needed stationarity. A typical case of this is, for example, the
consideration of seasonality (Brockwell and Davis, 2002).

2.5 Models for the simulation of material properties
along boards

Timber boards, being an organic-grown material, present large variability in their
material properties, both between different boards, as within a single board.
Material properties such as modulus of elasticity and density vary continuously
throughout the volume of the board, being influenced i.a. by fiber orientation, knots
and year rings, producing a complex three-dimensional scalar field. However, for
most applications, a board can be considered as a one-dimensional element, where
a given property along the board’s main axis (length direction) correspond to the
aggregation of the property over the cross-sectional plane (width and thickness
direction) at each position over the length. This is schematically illustrated by the
solid line of the upper diagram of Fig. 2.3 for modulus of elasticity, 𝐸𝑡,0.

For the tensile strength, the reduction from three dimensions to one dimension
cannot be achieved in the same manner. For in this case the load redistribution
between wood fibers within a given volume has to be considered, too (see e.g.
Dill-Langer et al., 2003). Thus, at most, the material strength reduced to one
dimension can be represented by a step-function (semi-continuous variation), as
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Figure 2.3. Illustration of the variation ofmechanical properties along a lumber board and the effect
of growth-bound defects (knots and grain deviation). The continuum variation of MOE
and 𝑓𝑡,0 is represented by the solid lines in the upper and lower diagrams, respectively.
The dashed line corresponds to the mechanical properties in discrete windows of length
ℓcell.

shown by the solid line of the lower diagram of Fig. 2.3.

In reality, however, highly localized tensile strength profiles are impossible to
determine—owed to obvious practical limitations—, and continuous tensile MOE
profiles of boards were not practical to measure until rather recently, with the
wider availability of different optical systems. Thus, the common approach to the
study of “localized” mechanical properties of boards has been the consideration of
discrete segments over which the different properties are measured (see dashed
lines in Fig. 2.3), and build a mathematical model based on this information. The
segments vary in size and regularity, depending on the model.

The literature presents numerous models that apply this concept for different
properties (e.g. MOE and tensile or bending strength), varying in complexity and
needed input variables. These models have, in many cases, been applied to existing
glulam strength models (Foschi and Barrett, 1980; Ehlbeck and Colling, 1987;
Showalter et al., 1987; Blaß et al., 2005), whilst others (to the knowledge of the
author) were mainly used to investigate the size effect associated to the length of
the boards (Lam and Varoglu, 1991b; Taylor and Bender, 1991).

In the following, different models developed for the segment-wise simulation
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of board properties are presented.

2.5.1 Predictor-based stochastic models

Regression models have been extensively used in material models for glulam
simulations, i.a. by Ehlbeck et al. (1984), Colling (1990b), Blaß and Frese (2006)
and Fink (2014). They are composed of two parts: one for the allocation of
predictor parameters (like knot area ratio, KAR, and density 𝜌), and second part,
where the mechanical properties are computed for each cell/segment, based on the
previously generated values. The uncertainties are taken into account by means of
a random component, associated to the standard deviation of the residual terms of
the fitted equations. The evolution of this kind of model is presented here, starting
with the original model from Foschi and Barrett (1980).

Foschi and Barrett (1980) developed a highly detailed material model for their
glulam strength model (see Sec. 2.6.1). The approach is based onWeibull’s weakest
link theory and considers the effect of knots in a fairly detailed analytical manner.
It contemplates the simulation of MOE (𝐸𝑐) and tensile strength (𝑓𝑐) values for
clear wood segments by means of the following two-parameter Weibull model:

𝐸𝑐 = 𝑀𝑒𝑓𝑔 (
𝐺
𝐺𝑚

)
1.25

[− ln(1 − 𝑝)]1/𝑘𝑒 (2.17)

𝑓𝑐 = 𝑀𝑠𝑓𝑔 (
𝐺
𝐺𝑚

)
1.5
[
− ln(1 − 𝑝𝑓)

𝑉 ]
1/𝑘𝑠

, (2.18)

where 𝑝 is the probability level, 𝑀𝑠, 𝑀𝑒, 𝑘𝑠, 𝑘𝑒 and 𝑓𝑔 correspond to model param-
eters to be calibrated, and 𝐺 and 𝑉 are the density and volume, respectively. The
MOE equation from Eq. (2.17) is modified according to the knot size diameter as

𝐸𝑡,0 = 𝛼𝐸𝑐, (2.19)

where 𝛼 is a fracture-mechanics-based factor that takes into account the effect of
the knot, which for the sake of brevity is not presented in detail here (for the exact
equation of 𝛼 refer to Foschi and Barrett (1980)). The tensile strength, 𝑓𝑡,0, of
each cell is subjected to the same correction for the case of pure tension. However,
when the cell is considered as being part of a glulam beam, further modifications
factors are applied to consider non-uniform loading (𝜃) and lamination effect due
to the lateral restraining of deflections (𝜓):

𝑓𝑡,0 = 𝛼𝜃𝜓𝑓𝑐. (2.20)

38 2 | State of the art

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



The model then considers a randomly generated density 𝐺 (obtained from a
normal distribution 𝒩(𝐺𝑚, 𝜎𝐺)) and a knot size 𝐷 (obtained from frequency data)
for each cell. Then, the values 𝐸𝑐 and 𝑓𝑐 are computed according to Eqs. (2.17)
and (2.18) for a random probability (failure) level 𝑝 (𝑝𝑓), and the values MOE
and tensile strength are then computed with Eqs. (2.19) and (2.20), respectively.

Ehlbeck and Colling developed a model for the simulation of MOE parallel to the
grain (𝐸𝑡,0) and tensile strength (𝑓𝑡,0) by means of linear regressions, considering
the knot area ratio (KAR) and density (𝜌). According to their model, the properties
are computed as

ln(𝐸𝑡,0) = 𝛽0 + 𝛽1KAR + 𝛽2𝜌0 + 𝑆(0, 𝜎) (2.21)

ln(𝑓𝑡,0) = 𝛽0 + 𝛽1 ln(𝐸𝑡,0) + 𝛽2KAR ⋅ ln(𝐸𝑡,0) + 𝑆(0, 𝜎), (2.22)

where the values 𝛽𝑖 correspond to the parameters to be calibrated, KAR and 𝜌0
are the knot area ratio and density at 0% moisture content (MC), and the values
𝑆(0, 𝜎) correspond to the normally distributed residuals of the fitted regression. The
calibrated parameters for these and the followingmodels are given in Table 2.1. The
model also contemplates regression equations for the compression MOE (𝐸𝑐,0) and
compressive strength (𝑓𝑐,0), for which additionally the moisture content is regarded
(see Ehlbeck et al. (1984), Table 3.2 for the rest of the regression equations and
fitted parameters).

The KAR-values are taken from the respective statistical distribution and as-
signed to each 150mm long cell along the boards. Density is assumed constant
throughout each board with a value taken randomly form the corresponding sta-
tistical distribution. This means that the variation within clear wood (KAR =
0) is exclusively determined by the residual term 𝑆(0, 𝜎), as both predictors are
constant for these segments (KAR = 0; 𝜌0 = const.). This model was used by
Colling (1990b) for his simulations of glulam of softwoods, too.

The adaptation of the “Karlsruher Rechenmodel” to beech glulam added modi-
fications to the original regression equations (Blaß et al., 2005; Blaß and Frese,
2006), where the term 𝜌20 (density squared) was included:

ln(𝐸𝑡,0) = 𝛽0 + 𝛽1KAR + 𝛽2𝜌0 + 𝛽3𝜌20 + 𝑆(0, 𝜎) (2.23)

ln(𝑓𝑡,0) = 𝛽0 + 𝛽1𝐸𝑡,0 + 𝛽2𝐸𝑡,0 ⋅ KAR + 𝑆(0, 𝜎). (2.24)

These regressions were calibrated with a beech dataset (see Table 2.1), for
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which an R-value of 0.76 and 0.88 was obtained for 𝐸𝑡,0 and 𝑓𝑡,0, respectively (Blaß
et al., 2005). Regression equations for 𝐸𝑐,0 and 𝑓𝑐,0 were developed, too, but are
omitted here (for details refer to Blaß et al., 2005).

Experimental investigations by Fink (2014) led to the identification of the
predictors with highest correlation with 𝐸𝑡0, and 𝑓𝑡,0 for Norway spruce specimens.
The variables found were the dynamic modulus of elasticity, 𝐸dyn,F, (obtained from
eigenfrequency measurements) and the total knot area ratio, tKAR (here refered
to simply as KAR). Equations were developed for the MOE separately for clear
wood segments (CWS) and weak sections (WS) as

ln(𝐸𝑡,CWS) = 𝛽0 + 𝛽1𝐸dyn,F + 𝑆(0, 𝜎) (2.25)

ln(𝐸𝑡,WS) = 𝛽0 + 𝛽1𝐸dyn,F + 𝛽2KAR + 𝑆(0, 𝜎), (2.26)

whilst for the tensile strength, 𝑓𝑡,0, equations for the entire board and for WS were
fitted:

ln(𝑓𝑡,board) = 𝛽0 + 𝛽1𝐸dyn,F + 𝛽2KAR + 𝑆(0, 𝜎) (2.27)

ln(𝑓𝑡,WS) = 𝛽0 + 𝛽1𝐸dyn,F + 𝛽2KAR + 𝑆(0, 𝜎). (2.28)

Fink argues that the equation to simulate 𝐸𝑡,WS (Eq. (2.26)) can be used in
the CWS as well, using KAR = 0. However, for the case of 𝐸𝑡,0, this leads to an
underestimation of about 3% (Fink, 2014). The tensile strength of weak sections
(𝑓𝑡,WS) is computed with Eq. 2.28, which was calibrated by means of a linear
regression analysis for censored data. This method was used to fill the missing
values (𝑓𝑡,WS) of the rest of the WS in each board (see details in Fink, 2014, Chapter
5). Similar as for the MOE, this equation—originally fitted using weak sections
only—can be used for the simulation of CWS, too. However, the generated values
𝑓𝑡,CWS are slightly underestimated in this case. The model implicitly considers a
size effect due to the presence of knots: if the board is longer, then the probability
of having a higher KAR value increases, which leads to a lower global 𝑓𝑡,0.

2.5.2 Pure stochastic models

An alternative approach to simulate the variability of mechanical properties within
boards consists in the direct use of statistical information available for each variable.
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Table 2.1. Summary of the presented regression models and their corresponding parameters for a
given species, as reported in the respective literature

Species Model Parameters

Spruce Karlsruher Rechenmodel: (Ehlbeck and Colling, 1987)

ln(𝐸𝑡,0) = 𝛽0 + 𝛽1KAR + 𝛽2𝜌0 + 𝑆(0, 𝜎)

𝛽0 = 8.2
𝛽1 = −1.17
𝛽2 = 3.13
𝜎 = 0.180

ln(𝑓𝑡,0) = 𝛽0 + 𝛽1 ln(𝐸𝑡,0) + 𝛽2KAR ⋅ ln(𝐸𝑡,0) + 𝑆(0, 𝜎)

𝛽0 = −4.22
𝛽1 = 0.876
𝛽2 = −0.093
𝜎 = 0.187

Beech Karlsruher Rechenmodel: (Blaß et al., 2005)

ln(𝐸𝑡,0) = 𝛽0 + 𝛽1KAR + 𝛽2𝜌0 + 𝛽3𝜌20 + 𝑆(0, 𝜎)

𝛽0 = 3.36 × 10−1
𝛽1 = 2.64 × 10−2
𝛽2 = −1.56
𝛽3 = 1.87 × 10−5
𝜎 = 0.182

ln(𝑓𝑡,0) = 𝛽0 + 𝛽1𝐸𝑡,0 + 𝛽2𝐸𝑡,0 ⋅ KAR + 𝑆(0, 𝜎)

𝛽0 = 3.09
𝛽1 = 9.76 × 10−5
𝛽2 = −1.54 × 10−4
𝜎 = 0.239

Spruce Model by Fink (2014):

ln(𝐸𝑡,CWS) = 𝛽0 + 𝛽1𝐸dyn,F + 𝑆(0, 𝜎)
𝛽0 = 8.52
𝛽1 = 7.12 × 10−5
𝜎 = 5.47 × 10−2

ln(𝐸𝑡,WS) = 𝛽0 + 𝛽1𝐸dyn,F + 𝛽2KAR + 𝑆(0, 𝜎)

𝛽0 = 8.41
𝛽1 = 7.69 × 10−5
𝛽2 = −9.02 × 10−1
𝜎 = 1.0 × 10−1

ln(𝑓𝑡,board) = 𝛽0 + 𝛽1𝐸dyn,F + 𝛽2KAR + 𝑆(0, 𝜎)

𝛽0 = 2.14
𝛽1 = 1.13 × 10−4
𝛽2 = −1.08
𝜎 = 2.77 × 10−1

ln(𝑓𝑡,WS) = 𝛽0 + 𝛽1𝐸dyn,F + 𝛽2KAR + 𝑆(0, 𝜎)

𝛽0 = 2.96
𝛽1 = 8.5 × 10−5
𝛽2 = −2.22
𝜎 = 1.5 × 10−1
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This type of models are not intended to estimate the specific properties of a board—
as it is the case of the previously presented models—, but rather reproduce the
observed general behavior of a given population of boards. For this, a commonly
used concept is the serial correlation, or autocorrelation, which indicate the degree
of variation from one position on the board to the next.

The first application of the serial correlation concept to simulate the variation
of MOE along boards was developed by Kline et al. (1986), where a second order
AR process (see Section 2.4.3) was used to simulate the properties of South pine
lumber in segments of 762mm (30 in) in length. The model proposed by Kline
et al. (1986) takes the following form:

𝐸𝑖 = 𝜑1𝐸𝑖−1 + 𝜑2𝐸𝑖−2 + 𝜀𝑖, (2.29)

where the random term 𝜀𝑖 is defined as follows (if data normality is assumed)

𝜀𝑖 = 𝜎𝐸 ⋅ 𝑡𝑖 ⋅ √1 − 𝑅2. (2.30)

Here, 𝑡𝑖 corresponds to a random observation from a normal distribution𝒩(0, 1),
𝜎𝐸 is the standard deviation of the observed MOE data, and 𝑅 is the coefficient of
correlation resulting from fitting the experimental data to Eq. (2.29). This model
was calibrated with data obtained from bending tests in adjacent segments of
length equal to 762mm.

Showalter et al. (1987) applied the same principles to the development of a
strength model, after noticing that serial correlation models gave better results
for the simulation of tensile strength. The proposed model considers two parallel
Markov processes: (i) one being the MOE simulated according to Kline et al. (1986)
(Eq. 2.29), (ii) and the other coming from the serial correlation of the residuals
of the tensile strength. The residuals, are computed according to the first order
Markov process as

𝜀𝑖 = 𝑟1
√𝑘 ⋅ 𝐸𝑖
√𝑘 ⋅ 𝐸𝑖−1

⋅ 𝜀𝑖−1 + 𝑡𝑖√𝑘 ⋅ 𝐸𝑖 ⋅ √1 − 𝑟21 , (2.31)

where the product (𝑘 ⋅ 𝐸𝑖) represents the variance of the tensile strength at the
segment 𝑖, 𝑘 is a model parameter, and 𝑟1 is the lag-1 correlation of the strength
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residuals. This model assumes then that the standard deviations of the residuals
of the MOEs (represented by the term √𝑘 ⋅ 𝐸𝑖) vary for each segment, making it a
non-stationary process.

Both ARmodels are then used in the following weighted least squares regression
model to obtain the strength at each segment:

𝑓𝑡,𝑖 = exp(𝛽0 + 𝛽1𝐸𝑖 + 𝜀𝑖) , (2.32)

where 𝛽𝑖 are model parameters, 𝐸𝑖 is obtained with Eq. (2.29), and 𝜀𝑖 is computed
according to Eq. (2.31).

Taylor and Bender (1988) extended the previous concept to allow for the
simulation of correlated, non-normally distributed variables. It was originally
used for the simulation of modulus of elasticity and strength values for lumber.
The developed procedure uses the multivariate normal distribution to generate
correlated data according to a covariance matrix 𝚺. The random variates are then
mapped to the statistical distributions corresponding to each random variable by
means of the inverse of the cumulative distribution function. The method can be
described as follows:

1. The random variables 𝑋1, 𝑋2,…, 𝑋𝑁 are fitted to suitable distribution func-
tions 𝐹𝑋1, 𝐹𝑋2,…, 𝐹𝑋𝑁.

2. The covariance matrix, 𝚺, for the different variables is computed according
to

𝚺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎2𝑋1
𝜎𝑋1,𝑋2 ⋯ 𝜎𝑋1,𝑋𝑁

𝜎2𝑋2
𝜎𝑋2,𝑋3 ⋯ 𝜎𝑋2,𝑋𝑁

𝜎2𝑋3
⋯ 𝜎𝑋2,𝑋𝑁

Sym. ⋱ ⋮
𝜎2𝑋𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.33)

where 𝜎2𝑋𝑖
is the variance of 𝑋𝑖 (for 𝑖 = 1, 2, … ,𝑁) and 𝜎𝑋𝑖,𝑋𝑗 is the covariance

of the random variables 𝑋𝑖 and 𝑋𝑗 (for 𝑖, 𝑗 = 1, 2, … ,𝑁, 𝑖 ≠ 𝑗).

3. Generate the needed number of random variates 𝑌𝑖 using a multivariate
normal distribution and the covariance matrix 𝚺 (see Sec. 2.4.1).
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4. Evaluate the cumulative distribution function Φ(𝑦𝑖) for each generated value
in each random vector. This generates correlated random vectors, 𝐔𝑖, uni-
formly distributed between 0 and 1 (𝑈(0, 1)).

5. Apply the inverse of the cumulative distribution function 𝐹−1𝑋𝑖
to the corre-

sponding values 𝑢𝑖 computed in the previous step. This yields the correlated
vectors 𝒙

𝑖
correlated according to 𝚺.

The correlation between the variables is inherited from the observations gen-
erated from the multivariate normal distribution, and are thus expressed in the
generated vectors 𝒙

1
, 𝒙

2
,…, 𝒙

𝑁
, too.

Taylor and Bender (1991) applied their previously developed method to simu-
late correlated global properties of boards to the simulation of properties within
Douglas-fir boards on 2 ft long segments. To achieve this, a vector of length 2𝑁
is generated, where 𝑁 is the number of segments for which material properties
should be simulated; The first 𝑁 terms represent the MOE and terms 𝑁 + 1 to 2𝑁
are the tensile strength values:

𝐗 = [
1 2 … 𝑁 𝑁+1 𝑁+2 … 2𝑁

𝐸𝑡,0,1 𝐸𝑡,0,2 … 𝐸𝑡,0,𝑁 𝑓𝑡,0,1 𝑓𝑡,0,2 … 𝑓𝑡,0,𝑁 ] (2.34)

The covariance matrix 𝚺 is in this case a 2𝑁 × 2𝑁 matrix, where the serial and
cross-correlations of both properties are specified:

𝚺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 ⋯ 𝑁 𝑁+1 ⋯ 2𝑁

1 𝜎2𝐸1 𝜎𝐸1,𝐸2 ⋯ 𝜎𝐸1,𝐸𝑁 𝜎𝐸1,𝑓1 ⋯ 𝜎𝐸1,𝑓𝑁
2 𝜎2𝐸2 ⋯ 𝜎𝐸2,𝐸𝑁 𝜎𝐸2,𝑓1 ⋯ 𝜎𝐸2,𝑓𝑁
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑁 𝜎2𝐸𝑁 𝜎𝐸𝑁,𝑓1 ⋯ 𝜎𝐸𝑁,𝑓𝑁

𝑁+1 𝜎2𝑓1 ⋯ 𝜎𝑓1,𝑓𝑁
⋮ Sym. ⋱ ⋮
2𝑁 𝜎2𝑓𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.35)

Thus, the problem is transformed into a simulation of 2N correlated variables,
where the first𝑁 variables and the last𝑁 variables follow the statistical distributions
corresponding to the modulus of elasticity and tensile strength, respectively.

Although serial-correlation data for lags higher than three were not available
(specimens were composed of four segments), these values were computed and
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included according to the autocorrelation function (ACF) of and AR(3) model for
the case of the MOE, according to

𝜌𝑘 = 𝛽1 ⋅ 𝜌𝑘−1 + 𝛽2 ⋅ 𝜌𝑘−2 + 𝛽3 ⋅ 𝜌𝑘−3, (2.36)

where 𝜌𝑘 is the lag-𝑘. An AR(1) was assumed for the case of the tensile strength
(where only the lag-3 correlation was known)

𝜌𝑘 = 𝜌𝑘/33 . (2.37)

Lam and Varoglu (1991b) presented a serially correlated model for the tensile
strength on 610mm long segments of Spruce-Pine-Fir specimens. Based on experi-
mental results, a Moving Average process of order 3 [MA(3)] was developed (Lam
and Varoglu, 1991a). The method consists on two stages: in a first step, (1) uncor-
related data taken from a log-normal distribution is generated for each 610mm
segment (𝑓𝑡,𝑖), then (2) the data is correlated with the MA model. The parameters
for the log-normal distribution (mean and COV) are described as functions of the
minimum tensile strength of each board (𝑓𝑡,min), which in turn is generated from a
two-parameter Weibull distribution. The mean value, 𝜇, of the uncorrelated data
is then used in the MA model as:

𝑓𝑡,𝑖 = 𝜇 +
𝑞=3

∑
𝑗=1

𝑎𝑗𝜀𝑖−𝑗, (2.38)

where the parameters 𝑎𝑖 are the weighting factors of the moving average model.
The values 𝜀𝑖 correspond to the difference between the strength data generated in
the first step, 𝑓𝑡,𝑖, and their mean 𝜇, i.e. it is the variation around its mean value:

𝜀𝑖 = 𝑓𝑡,𝑖 − 𝜇. (2.39)

Monte-Carlo simulations of the boards with different lengths performed by
Lam and Varoglu (1991b) show a size effect comparable to that of experimental
results.

A different approach was presented later by Lam et al. (1994), where a method

2.5 | Models for the simulation of material properties along boards 45

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



to simulate continuous MOE profiles was introduced based on the analysis of
bending profiles of spruce-pine-fir boards, obtained with a continuous bending
grading machine (Cook-Bolinder type). The method was based on the previous
work performed by Bechtel (1985), Foschi (1987) and Lam et al. (1993), where
the localized bending MOE was approximated by means of a Fourier series. The
rather long boards of 4.9m studied in Lam et al. (1994) presented a clear trend in
the MOE along the length of the board, making it a nonstationary process. Once
the trend was removed, the process was assumed to be stationary and normally
distributed.

The simulation of MOE profiles was composed of two parts: (i) the generation of
a stationary process by means of a sum of cosines with empiric spectral amplitudes
and (ii) the addition of a trend component to reproduce the observed nonstation-
arity. The key insight of this approach is the understanding that for the usual
autoregressive analyses to work—including in this case the Fourier analysis—a
stationary process is needed.

Isaksson (1999) developed a stochastic bending strength model considering
weak and strong sections of Norway spruce. Here, the distance between consecutive
weak sections is represented by a gamma distribution and the length of each weak
section can be either constant (150mm), randomly generated from a from a beta
distribution, or equal to the sum of half the distance between two adjacent weak
sections (no strong sections assumed in this case). However, the influence of these
three options showed no noticeable effect in the results of simulations to study load
and length effects (Isaksson, 1999). The bending strength of the strong sections is
considered to be equal to the strongest weak section of the board. The strength
values are generated for each weak segment 𝑗 of a board 𝑖 as

𝑓𝑡,𝑖,𝑗 = exp(𝜇 + 𝛿𝑖 + 𝜀𝑖,𝑗), (2.40)

where 𝜇 is the mean strength of all weak sections in all boards, 𝛿𝑖 represents the
difference between the mean 𝜇 and the mean of the weak sections in the board 𝑖,
and 𝜀𝑖,𝑗 is the variation with respect to the mean value of the board. The values
𝛿𝑖 and 𝜀𝑖,𝑗 are obtained from normal distributions of zero mean and standard
deviations 𝜎𝑖 and 𝜎𝑗, respectively. The serial correlation was determined to be
𝑅 = 0.54 and is equal for all the five investigated lags. To preserve it, the terms 𝜎𝑖
and 𝜎𝑗 must satisfy the following condition:
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𝑅 =
𝜎2𝑖

𝜎2𝑖 + 𝜎2𝑗
. (2.41)

The size effect is captured by generating 5.5m long boards and then cutting
them down to the needed size.

2.5.3 Simulation of KAR values along the boards

As some of the mentioned models for MOE and strength along boards depend
on the local KAR information, simulation models for KAR along the board have
been developed for this purpose, i.a. by Ehlbeck and Colling (1987), Isaksson
(1999), and Blaß et al. (2005). Ehlbeck and Colling (1987) considered the KARs
to be multiples of a per-board characteristic KAR (KAR𝑖 = KARchar ⋅ 𝑘𝑖), for which
a statistical distribution was determined. The variable 𝑘𝑖 was allowed to move
between the limits 𝑘min and 𝑘max (different for every board). The simulation starts
by sampling a random variate from the KARchar distribution and then generating a
value 𝑘𝑖 for each KAR that needs to be generated in the board, respecting the limits
𝑘min and 𝑘max. The distances between the knot-affected cells was determined by
means of a similar process, where the distance between two adjacent knot-affected
cells, ℓ𝑖 was determined as ℓ𝑖 = ℓchar ⋅ 𝑡𝑖. Here, 𝑡𝑖 is bounded by the limits 𝑡min and
𝑡max.

The model implemented by Blaß et al. (2005) (explained in detail by Frese
(2006b)) is based in the work done by Görlacher (1990), where a KARmax value is
assigned to each board, and is then multiplied by a factor between 0 < 𝑘𝑖 ≤ 1 to
obtain the rest of the KAR ratios. No special consideration regrading the distances
between knot-affected cells was done, meaning that the positions of the knot-
affected cells was randomly selected for each KAR value.

KAR𝑖 = KARmax ⋅ 𝑘𝑖. (2.42)

In his study, Fink (2014) described the KAR values as a hierarchical model with
two levels: one for the between board variation, and the second one for the within
board variation:

KAR𝑖,𝑗 = exp(𝜇 + 𝜏𝑖 + 𝜀𝑖,𝑗), (2.43)
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with

𝜏𝑖 + 𝜀𝑖,𝑗 ≤ ln(KARlimit) − 𝜇. (2.44)

Compared to the model by Blaß et al. (2005), Fink considers a board length
size effect intrinsically, as the probability to produce larger KAR values (larger 𝜀𝑖,𝑗
in Eq. (2.43)) increases with the number of generated KAR values. In contrast,
taking the KARmax value per board requires the KARmax distribution to be manually
adapted for different lengths. The model presented by Ehlbeck and Colling (1987)
considers a length size effect too, although not explicitly mentioned.

2.6 Probabilistic strength models for glulam beams

Glued laminated timber, being composed of boards with an inherent variation of
mechanical properties, exhibits a marked variation in mechanical properties such
as stiffness and, especially, strength. Experimental tests constitute the most direct
method to describe the statistical characteristics of said properties. However, due
to the pronounced costs associated to such tests, diverse computational models
have been developed to simulate the mechanical behavior of GLT beams. Most
of these models are based on Monte-Carlo simulations, consisting on a series of
simulations, where different variables are varied for each configuration according to
given statistical distributions. The method has been the standard in the numerical
analysis of GLT beam elements since the 1980’, where different models have made
use of its concept. In the following, a review of the most relevant glulam strength
models is presented.

2.6.1 Model by Foschi and Barrett (1980)

The first reported glulam strength model to consider the stochastic distribution
of mechanical properties of laminations throughout the beam was introduced by
Foschi and Barrett (1980). It consisted of a finite element (FE) model where
laminations were divided into equally spaced cells of 6 in (152mm), as shown in
Fig. 2.4. The FE mesh considered each one of these segments as one element.
Densities and knot diameters were assigned to each cell in a random manner,
taking their values from experimental statistical distributions. Moduli of elasticity
(MOEs) and strength data were generated according to Eqs. (2.23) and (2.24),
and analogous equations for the compressive properties. Finger-joints were not
considered, due to a lack of representative data. The failure criterion was based
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Figure 2.4. Mesh used by Foschi and Barrett (1980) for their finite element glulam strength model.
Different mechanical properties are assigned to each element (cell)

on the weakest link assumption, i.e. the cell that fails first at a given applied load
determines the ultimate load of the beam.

Although the results obtained from the model were satisfactory, the non-con-
sideration of finger-joints left space for improvements. The reason for the omission
of finger-joints in the analysis was mainly due to a lack of available data for finger-
joints. Furthermore, no consideration regarding the spacial distribution of knots
was made. Irrespective of this, the novel approach given by the stochastic nature of
this model, and its potential for further enhancement, influenced the development
of the models to come.

2.6.2 Karlsruher Rechenmodel

The “Karlsruher Rechenmodel” (Karlsruhe computation model) was initially devel-
oped by Ehlbeck et al. (1984), following the concept of defining localized material
properties on equally sized cells of 150mm along laminations, as done by Foschi
and Barrett (1980). However, different as in previous models, the influence of the
finger-joints was considered explicitly by assigning finger-joint material properties
at cells joining two different boards. For this, regression equations relating the
density of the jointed boards with their mechanical properties (MOE and tensile
strength) were applied. The data for this came from an extensive experimental
campaign. The distance between finger-joints is determined by the length of the
boards, which are randomly generated from a statistical distribution determined by
Larsen (1980). The mechanical properties of the timber elements were generated
with regression equations based on the density and knot area ratio according to
Eqs. (2.23) and (2.24), and analogous equations for the compressive properties.

A dedicated finite element programwas implemented, where the mesh was built
based on the principle of one element per cell, as done by Foschi and Barrett (1980).
Plasticity was taken into account for the laminations subjected to compressive
stresses (bending compression zone), and a refined failure criterion allowed for
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the failure of more than one cell before the ultimate load was achieved. The
criterion was defined in the following manner: after one cell reaches its assigned
strength at a given applied load (𝑃 ,1) the element is removed (𝐸𝑡,0 ≈ 0) and a
new computation of the model is carried out. If the next cell to fail does so at
a lower load than the first one (𝑃 ,2 < 𝑃 ,1), then the first load is taken as the
ultimate load of the beam (crack propagation is assumed); if, on the other hand,
the next cell fails at a higher load (𝑃 ,2 ≥ 𝑃 ,1), then this cell is also removed and
the previous condition is checked again. Thus, this criterion is able to account for
the redistribution of internal load sharing between the different laminations after
one of them locally fails (so-called lamination effect) and represents an important
addition in comparison with previous models.

Improvements to the model were made a few years later by Ehlbeck and
Colling (1987), where new correlation equations for the generation of the material
properties were developed (see also Colling, 1990b). Most important, a better
representation of the size and distribution of knots (in terms of the knot area
ratio, or KAR) was implemented. The failure criterion was extended to include, in
addition to the previous one, the following three points: (i) failure of a finger-joint
located in the lowest lamination (tension zone) would immediately deliver the
ultimate load of the glulam beam (no redistribution of stresses allowed); however,
(ii) the failure of a finger-joint in any other lamination would be allowed, as long
the stress redistribution disregarding the failed element leads to a further increase
in the ultimate load. Finally, (iii) the failure of a board element at a knot location
does not lead immediately to failure, if the beam showed enough reserve (capacity
of redistributing the stresses).

This model is the current benchmark when talking about glulam strength
models. The results obtained with it have helped in the development of the current
state of the European standardization for the determination of characteristic
strength values of glued laminated timber elements in EN 14080 (2013), and
updates at more-or-less regular intervals ensure its validity in time.

2.6.3 PROLAM model

In the early 1990’s a newmodel was proposed by Hernandez et al. (1992), which in-
stead of using the finite element method, applied a “transformed section” approach.
This method divides the glulam beam in segments of 2 ft (610mm) along its length
and transforms the width of each lamination in the composite cross-section, so that
basic beam theory can be used on it. Similar as in the “Karlsruher Rechenmodel”,
the position of finger-joints is determined by randomly generated board lengths,
and their mechanical properties are generated according to regression equations.
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The material properties (MOE and 𝑓𝑡,0) varied within each board composing the
glulam according to the model proposed by Taylor and Bender (1991), where the
spacial correlation and cross-correlation of both variables is considered.

The failure criterion was similar to that presented originally by Ehlbeck and
Colling (1987), where more than one cell was allowed to fail, until no further
increase in the ultimate load (moment) was possible. This was done by analyzing
each cross-section segment along the board and looking for the one where one of
the laminations would first reach its assigned tensile strength—the stresses were
measured at the mid-height of each lamination.

The proposed computational method (transformed sections) can deliver results
in a much shorter time, as compared to the finite element method (especially for
large cross-sections), but the gain in speed comes at the cost of considering less
(or no) interaction between the different cells. In other words, since cross-sections
segments are analyzed independently, there is no manner in which the effect of the
adjacent segments can be taken into account for the computation of stresses in each
cell. The results obtained with the model tend to underestimate the characteristic
bending strength by 5% and overestimate the MOE of the beam by 14.5%, for
which correction factors are applied. Nevertheless, no further studies are presented
to show whether the correction factors apply to different configurations as well.

2.6.4 Karlsruher Rechenmodel (latest implementation)

In the context of the mentioned change in the growing stock of European forests
in favor of hardwoods species, an adaptation of the “Karlsruher Rechenmodel” to
glulam beams made of beech wood (Fagus sylvatica) was developed (Frese, 2006b;
Blaß et al., 2005). To this end, an extensive experimental campaign was designed
in order to obtain the needed statistical data for the material properties of boards
and finger-joints, including statistical distributions and diverse correlations. In
general, most of the original aspects of the model were preserved, e.g. random
generation of board lengths (finger-joint separation), material properties variation
along boards or the meshing used (see Fig. 2.4). However, some minor adjustments
were made to the form of the regression equations for the material properties.

Further changes came on the software side, where the originally in-house
developed FE-software was dropped in favor of the commercial software Ansys.
The reimplementation of the model also came with a redefinition of the failure
criterion, now defined as the load at which any cell located at the tensile outer edge
of the beam fails—it is not clear whether failure of cells in e.g. the second lamination
was allowed. Thus, this criterion does not consider the possible redistribution of

2.6 | Probabilistic strength models for glulam beams 51

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



internal forces after local cell failures occur as previous versions did. For this
reason according to Blaß et al. (2005) the obtained results can be regarded to be
conservative.

2.6.5 Model by Fink (2014)

Fink (2014) presented a strength model that differs in many aspects to the pre-
viously presented, while still maintaining the general principles. One of the dif-
ferences consists in the used material model, which is centered in the differences
between clear wood and weak sections (see Eqs. (2.25) to (2.28)). The material
properties are then generated accordingly. The variation along the boards is mainly
determined by the presence of knots (KAR-values), and the properties of segments
between weak sections remain constant. Finger-joints are defined as segments
with KAR-values between 0.2 and 0.3.

A FE-program was written in Matlab and the same mesh used in the previous
models was applied (one element per cell/segment, see Fig. 2.4). The material
was defined as isotropic, arguing that for the predominant bending situation no
large errors are introduced. No ductility on the bending compression zone was
considered. The failure criterion contemplated the possibility of more than one cell
failing before ultimate load was reached. This was done by extending the original
failure criterion of the “Karlsruher Rechenmodel” to account for noticeable changes
in bending stiffness. After a cell has failed and the loads 𝑃 ,1 and 𝑃 ,2 are compared
(see Sec. 2.6.2) a further comparison is made for the case when 𝑃 ,2 ≤ 𝑃 ,1. Namely,
the bending stiffness of both systems (with and without removing the first failed
element) are compared. If the new stiffness decreases by less than 1%, then 𝑃 ,2

is accepted, otherwise 𝑃 ,1 is taken.

The model was validated with a set of experiments on glulam beams, where
the location of each knot cluster and finger-joint, as well as 𝐸dyn, were known. A
very good agreement with the experiments was observed.

This model was extended by Blank et al. (2017) to include fracture mechanics
by means of the consideration of a fracture energy, 𝐺𝑓, for the wood material.
(Note: the model does not contemplate finger-joints explicitly, but rather they are
considered as a wood section with a constant KAR value, which is calibrated to
deliver strength values meeting the requirements specified in EN 1194 (1999).)
For this, a smeared crack concept was applied, where the damage was descried by a
stress-displacement relation in order to minimize mesh dependencies. Satisfactory
results were obtained with a fracture energy 𝐺𝑓 = 10N/mm, which was back-fitted
to the experimental results. The rather high 𝐺𝑓 value was justified by arguing that
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this fracture energy, representing the behavior of a smeared crack, incorporates
additional effects as those observed in normal experiments of small, clear wood
specimens.

2.6.6 Model by Kandler et al. (2018)

More recently, Kandler and Füssl (2017) presented a model to study the effects
of the variability of wood on the linear behavior of GLT beams. Although, strictly
speaking, this model does not qualify as a strength model—no prediction of failure
is made—, two main aspects make it a very interesting model: Firstly, the model
considers the generation of MOE data for boards based on the Karhunen-Loève
expansion (Stefanou and Papadrakakis, 2007), which was calibrated on the base of
high-resolution laser scans of fiber orientation in a grid of 1.2×4mm (Kandler et al.,
2015b). Secondly, and more relevant, it implements three different stochastic finite
element methods: (1) the usual Monte-Carlo simulation, (2) the perturbation
approach, and (3) the polynomial chaos projection scheme. The last two methods
entail the potential of greatly reducing the computation time needed to obtain the
same reliability as with the Monte-Carlo approach.

However, the consideration of advanced failure mechanisms under these simu-
lation schemes is not trivial to implement, thus severely limits the practical appli-
cability of the model. It also does not consider finger-joints, which in many cases
is an crucial factor in the mechanical behavior of GLT beams, e.g. in hardwoods of
oak, as shown by Aicher and Stapf (2014).
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3
Materials

3.1 General remarks

As mentioned above, this thesis pursues two main objectives, (i) the study of the
variation of properties within oak boards, and (ii) the development of a finite
element based glulam strength model. Here, the results of (i) used in (ii) in the
form of a mathematical model that accurately represents the material variation.
In order to calibrate and validate both models, experimental data are needed,
which, ideally, should stem from the same material sample. In this case, however,
three different material datasets had to be employed employed: (1) Dataset A is
used for the investigations on material properties variation throughout the boards,
whilst (2) Dataset B is used for the validation of the glulam strength model; (3) the
third dataset (C) is used to assess the applicability of the previously obtained
parameters to a different dataset. All samples correspond to oak (Q. robur, Q.
petraea) originating from France.

Since all datasets correspond to the same tree species and origin region, their
growth-bound characteristics, such as knots and fiber orientation (as well as the
properties influenced by these, e.g. MOE and 𝑓𝑡,0) should be comparable. Therefore,
the simulation model for the variation of material properties along the boards,
developed with the dataset A, is assumed to be suitable to simulate the board
properties in the glulam strength model, which is validated with the dataset B.
The following sections present the mechanical characterization of these datasets.
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Table 3.1. Grading results for KAR and slope of grain for all investigated boards, and allocation to
structural grades specified in DIN 4074-5 (2008)

Grading limits according to
DIN 4074-5

Grading results (mean ± std.)

Grade KAR-S
(single)

KAR-G
(group)

slope
of

grain

% of
boards*

KAR-S
(single)

KAR-G
(group)

slope of
grain

LS7 1/2 2/3 16% 8.5 0.21 ± 0.16 0.28 ± 0.18 14.12 ± 0.63
LS10 1/3 1/2 12% 36.2 0.14 ± 0.09 0.19 ± 0.11 7.30 ± 2.24
LS13 1/5 1/3 7% 46.8 0.10 ± 0.05 0.15 ± 0.09 3.52 ± 1.91

* The missing percentage (8.5%) corresponds to the rejected boards

3.2 Dataset A: Material used for the study of within
board variation

The investigations on the variation of grading parameters, e.g. density, knots,
modulus of elasticity and tensile strength, were performed in a batch of oak boards,
originating from the south-western part of France. The sample consisted of 52
boards and contained a mixture of appearance grades QF2 and QF3, according
to EN 975-1 (2009). The nominal dimensions (length ℓ ×width 𝑏 × thickness 𝑡) of
the planed boards were 2500 × 175 × 24mm, respectively; the moisture content
measured with a pin-type resistance meter was in average 10.2% (COV = 4.6%).
The different QF-appearance grades intentionally allowed for a wide range of
knotiness and grain deviation in the sample, leading presumably to a high variation
in the properties of the respective boards. The boards were then visually graded
at the MPA, University of Stuttgart, in hardwood strength grade classes LS7, LS10
and LS13 specified in the German structural hardwood grading standard DIN
4074-5 (2008), which conforms to EN 14081-1 (2016).

The strength grading with respect to knot-related variables and grain devia-
tion was performed according to DIN 4074-5 (2008) with the needed variables
obtained as described below. Great care was taken in order to allow for an exact
quantification and allocation of the growth defects of each board. The results of the
grading and defect quantification (KAR-values and slope of grain) are summarized
in Table 3.1. The portions of the obtained different hardwood strength grades
(LS7, LS10 and LS13) were: 8.5%, 36.2% and 46.8%, respectively (8.5% were
rejected).
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3.2.1 Segmentation of boards

Previous to the investigations on the variation of properties along boards, the central
region of the specimens was divided into 15 equally-sized cells of ℓcell = 100mm,
as shown in Fig. 3.1. These segments (or cells) are used later to investigate the
variation of material properties along the length of the boards. These segments are
also used to study the relevant knot characteristics, such as inter-knot distances
and frequency of knot sizes, which helps in the characterization of the studied
material.

Different segment lengths have been used in previous similar studies; Ehlbeck
and Colling (1987) and Blaß et al. (2005) used 150mm, Kline et al. (1986) and
Showalter et al. (1987) worked with 762mm (30 in), and Lam and Varoglu (1991b)
took 610mm (2 ft) long segments, while Isaksson (1999) and Fink (2014) chose
a variable length that depends on the inter-knot distances (clear wood). Such a
diversity in studied segment lengths is not only a consequence of the preferred
units systems of each author, but it depends on a variety of factors, such as the test
configuration (bending or tensile tests), measurement technique, and the desired
resolution. Furthermore, the species-dependent inter-knot distances are important.
For this case, it was deemed desirable to obtain as many discrete values of the
material properties throughout the boards as possible, given the measuring device
available (see Chapter 5).

For the study of knot characteristics along the boards, four additional segments
(also of length 100mm) were considered at each side, i.e. before the cell No. 1
and after the cell No. 15, denoted by the superscripts “+/–” in Fig. 3.1. These

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151−2−3−4− 1+ 2+ 3+ 4+

ℓcell = 100mm

cell 1

ℓ𝐸,glob = 1500mm

ℓknots = 2300mm

ℓboard ≈ 2500mm

Cells used for the knot analysis

Cells used for MOE and density measurements

Figure 3.1. Illustration of the segmentation of the boards for the measurement of knot related
variables and later measurement of MOE and tensile strength
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additional cells help capturing the statistical characteristics of knots in the boards
in a better, more reliable manner. A throughout analysis on the knot characteristics
is presented in Chapter 4. The analysis of the mechanical properties corresponding
to the central 15 cells is performed in Chapter 5.

3.2.2 Grain deviation

The maximum grain deviation along board length, i.e. the global slope of grain
Δ𝑦/ℓ𝑔 ⋅ 100, was measured manually for each board by means of a special scriber.
The slope measurement was performed according to DIN 4074-5 (2008) with a
base length of ℓ𝑔 ≈ 300mm. The determination of the grain deviation stepwise
along the board length is out of the scope of this investigation, but would certainly
give additional, relevant information for the modulus of elasticity-tensile strength
model predictions (see e.g. Kandler et al., 2015b or Olsson et al., 2018).

3.2.3 Knot-related variables

The position and dimensions of each knot larger than 5mm was recorded using
a digital caliper gauge. For each knot, three dimensions were measured: the
minimum and the maximum diameter of the assumed ellipse, and the width taken
perpendicular to the length axis of the board. These three variables allow for the
later determination of the rotation angle of the knot, represented by an ellipse.
These measurements were used to compute the KAR values according to DIN
4074-5 (2008). A detailed analysis of the knot variables along board is presented
in Chapter 4.

3.2.4 Dynamic modulus of elasticity measurements

Eigen-frequencies measurements in the longitudinal direction were performed
on each board previous to the testings with an impulse excitation measurement
instrument of the type MK5i, from the company GrindoSonic. This device has a
frequency range of 40Hz–100 kHz and a precision better than 0.005%. For the
measurements, the boards were placed horizontally on a rubber-like surface to
allow for an undisturbed vibration of the specimens, which were excited by means
of a hammer of appropriate size. The dynamic MOE, 𝐸dyn, was computed according
to
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Table 3.2. Statistical information on the measured dynamic MOE, 𝐸dyn, separately for the different
grades

Dynamic MOE, 𝐸dyn
N Mean Std COV Min. Max.

Grade [–] [GPa] [GPa] [%] [GPa] [GPa]

Reject 4 10.4 1.1 10 8.9 12.0
LS7 4 11.3 2.6 23 8.1 15.1
LS10 17 12.2 2.1 18 8.9 16.4
LS13 22 12.1 2.0 17 9.2 17.0

All 47 12.0 2.1 18 8.1 17.0

𝐸dyn = 4 ⋅ ℓ2board ⋅ 𝜈2 ⋅ 𝜌, (3.1)

where ℓboard is the length of the board, 𝜈 is the eigen-frequency and 𝜌 is the density.
The measurement results are shown in Table 3.2 separately for each grading class
and the whole sample.

3.3 Dataset B: Glulam experimental data: Gamiz

The material corresponding to Dataset B comprises white oak boards (Q. robur,
Q. petraea) originating from the mid-eastern part of France (region Bourgogne
Franche Comté), tested in the frame of a European Technical Approval for glulam
beams of oak (ETA-13/0642, 2013) at the MPA, University of Stuttgart (Aicher and
Stapf, 2014). The experimental campaign included tensile tests of boards, as well
as tensile and bending tests of finger-jointed boards of cross-sections 100 × 20mm
and 140 × 20mm. For the present study, only the boards with cross-sectional
widths of 100mm are considered.

Glued laminated timber specimens were produced from the same boards and
were tested in bending, compression, tension and shear. More importantly, three
different cross-sectional depths of 120mm, 200mm and 300mm were produced.
This allows for a later quantification of the size effect associated to the glulam
made of this material. For each glulam beam the length of each board (distance
between adjacent finger-joints) was recorded. These data have been previously
analyzed and used for a simplified statistical glulam strength model by Aicher and
Stapf (2014).
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Table 3.3. Summary of the results for the tensile strengths of boards and finger-joints, and MOE
parallel to the fiber of boards for grades LS10 and LS13 (Aicher and Stapf, 2014); Dataset B

N Mean Std Min. Max. COV 𝑥05
Variable Grade

𝐸𝑡,0 [GPa]
LS10 10 12.7 2.0 8.7 15.9 16% 8.7
LS13 10 13.4 3.1 9.1 19.5 23% 8.1
LS10+LS13 20 13.1 2.6 8.7 19.5 20% 8.7

𝑓𝑡,0 [MPa]
LS10 50 45.1 14.3 23.1 83.8 32% 24.6
LS13 50 55.2 16.8 25.3 105.6 30% 29.6
LS10+LS13 100 50.1 16.4 23.1 105.6 33% 26.8

𝑓𝑐,0 [MPa] LS13 14 50.1 2.3 46.0 55.1 5% 45.3

𝑓𝑡,j [MPa]
LS10 49 44.6 9.9 26.5 66.9 22% 29.0
LS13 49 42.4 9.9 29.4 79.9 23% 27.9
LS10+LS13 98 43.5 10.0 26.5 79.9 23% 28.8

3.3.1 Mechanical properties of boards

Boards corresponding to the grading classes LS10 and LS13 (DIN 4074-5, 2008)
were tested. The mean density was 675 kg/m3 and 641 kg/m3 for grades LS10
and LS13, respectively. A total of 100 boards (50 LS10 and 50 LS13) were
tested in tension, resulting in characteristic tensile strengths, 𝑓𝑡,0,𝑘, of 24.6N/mm2

and 29.6N/mm2 for grades LS10 and LS13, respectively. For both grades, MOE
measurements were performed on a total of 14 specimens (7 LS10 and 7 LS13)
according to EN 408 (2012). The mean values obtained for 𝐸𝑡,0,mean were 12.7GPa
and 13.4GPa for grades LS10 and LS13, respectively.

For the finger-jointed boards, a total of 98 boards (49 LS10 and 49 LS13) were
tested in tension, yielding characteristic tensile strength values of 29.0N/mm2

and 27.9N/mm2 for grades LS10 and LS13, respectively. The finger-joint profile
employed is termed 10/3.8 (EN 14080, 2013), where the first number denotes the
finger length and the second number relates to the pitch. The compressive strength
parallel to grain, 𝑓𝑐,0, was only tested for grade LS13. Here, a characteristic value
of 𝑓𝑐,0,𝑘 = 45.3N/mm2 was obtained. A summary of all the relevant statistics of the
boards is presented in Table 3.3. Here, it is worth noticing the rather low values
for the tensile strength of finger-joints as compared to the boards, which has direct
consequences in the mechanical performance of the produced GLT beams, as the
finger-joints will constitute the weak regions.
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(a) LS13

LS13

LS10

𝑤 = 100mm

𝑡lam = 20mm

(b) LS13

LS13

LS10

𝑤 = 100mm

(c)
LS13

LS13

LS10

𝑤 = 100mm

Figure 3.2. Cross-sections corresponding to the experiments of Table 3.4

Table 3.4. Mechanical properties measured for the glulam beams of dataset B. Characteristic values
computed according to EN 14358 (2016)

N Mean Std Min. Max. COV [%] 𝑥05

Variable
Cross-section

[mm2]

𝐸𝑚,𝑔 [GPa]
100 × 120 10 10.8 0.8 9.2 12.3 8 9.1
100 × 200 10 14.9 0.7 13.9 16.3 5 13.4
100 × 300 10 14.7 0.8 13.2 15.7 5 13.1

𝑓𝑚,𝑔 [MPa]
100 × 120 10 54.4 5.4 48.5 63.3 10 43.7
100 × 200 10 47.9 4.9 39.3 53.9 10 37.7
100 × 300 10 43.4 4.3 35.0 48.6 10 34.3

3.3.2 Mechanical properties of glulam beams

Inhomogeneous glulam beams with LS10 boards in the inner part and LS13
boards in the outer regions of the beam were tested. The dimensions of the cross-
sections (and the number of boards in each section) are: 100 × 120mm (1-4-1);
100 × 200mm (2-6-2); 100 × 300mm (3-9-3). The details can be seen in Fig. 3.2.

The mean bending stiffness were 10.8GPa, 14.9GPa and 14.7GPa for the
depths 120mm, 200mm and 300mm, respectively. Meanwhile, the characteristic
bending strength, computed according to EN 14358 (2016), were 43.7N/mm2,
37.7N/mm2 and 34.3N/mm2 for depths of 120mm, 200mm and 300mm, re-
spectively. All the relevant statistics of the studied glulam beams can be taken
from Table 3.4.

3.3 | Dataset B: Glulam experimental data: Gamiz 61

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



3.3.3 Distribution of board lengths in glulam

The length of the boards constituting the glulam beams was measured by deter-
mining the distance between adjacent finger-joints in each lamination. The results
are presented in Table 3.5, where the rather short length of the boards is made
evident (ℓ𝑏,mean ≈ 500mm).

Table 3.5. Statistics for the length of the boards constituting the glulam beams

N Mean Std Min. Max. COV 𝑥05
[mm] [mm] [mm] [mm] [%] [mm]

618 497 166 170 1280 33 277

3.4 Dataset C: FCBA experimental campaign

3.4.1 Mechanical properties of boards and finger-joints

Within the frame of the project “European hardwoods for the building sector”
(EU Hardwoods, 2017), an exhaustive experimental campaign was performed on
boards and GLT of oak by the research partners at FCBA, Bordeaux, France (Faye
et al., 2017). The sample considered here consists on boards processed from logs
of large diameters—excluding butt logs— and a cross-section of 27 × 160mm.
The moisture content fluctuated between 10% and 12%. Visual grading was done
according to NF B 52-001-1 (2011), yielding mostly D24 grades (70%), followed
by D30 (24%) and D18 (4%), while 2% was rejected. For the present study
only the D24 grade is relevant, as that corresponds to the material used for the
production of the here regarded GLT beams.

The MOE was determined for each board by means of dynamic excitation, using
amechanical timber grader. A total of 40 boards and 41 finger-joints, corresponding
to the grade D24, were tested in bending following the specifications of EN 408
(2012). Due to lack of material, no tensile tests were performed on this set. The
results are presented in Table 3.6 along with the results for compressive strength
and MOE. However, tensile tests were later performed on a second sample of D24
boards, which should have similar characteristics as the first set. These results are
shown in Table 3.6, too.
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Table 3.6. Statistics for the tensile strengths of boards and finger-joints, and MOE parallel to the
fiber of boards for the regarded sample of grade D24; Dataset B

N Mean Std Min. Max. COV 𝑥05
Variable Grade

𝐸dyn,0 [GPa] D24 1637 11.5 2.1 6.0 19.9 18% 8.4
𝐸𝑚,0 [GPa] D24 40 11.0 2.4 7.1 17.3 22% 7.2

𝑓𝑚,0 [MPa] D24 40 80.4 20.0 46.2 124.9 25% 48.5
𝑓𝑡,0 [MPa]1) D24 30 31.2 10.5 10.3 59.2 34% 14.3

𝑓𝑚,j [MPa] D24 41 52.6 13.5 21.2 79.0 26% 30.2

𝑓𝑐,0 [MPa] D24 20 46.3 2.6 40.0 50.7 6% 41.4
1) Tensile tests performed on different dataset with similar characteristics
(see 3.4.1)

Table 3.7. Mechanical properties measured for the glulam beams of dataset C. Characteristic values
computed according to EN 14358 (2016)

N Mean Std Min. Max. COV 𝑥05
Variable Cross-section

𝐸𝑚,𝑔 [GPa] 160 × 160 20 11.2 0.9 10.1 13.0 8% 9.6
160 × 300 20 10.9 0.4 10.0 11.9 4% 9.9

𝑓𝑚,𝑔 [MPa] 160 × 160 20 47.6 8.0 33.6 65.2 17% 33.9
160 × 300 20 40.8 4.5 34.2 50.7 11% 32.7

3.4.2 Mechanical properties of glulam beams

The material corresponding to the D24 grade was used to produce a total of 40
GLT beams with two different cross-sections (width × height): 160 × 160mm and
160 × 300mm (eight and 15 laminations 20mm in thickness, respectively); each
configuration comprises 20 beams. Bending tests were performed according to
EN 408 (2012), where a beam length of 18 ⋅ 𝑑 (𝑑 = beam depth) was used. The
statistics of the results of both depths are given in Table 3.7. The statistics of the
length of boards composing the GLT beams are presented in Table 3.8.

Table 3.8. Statistics for the length of boards used for the production of the tested GLT beams

N Mean Std Min. Max. COV 𝑥05
[–] [mm] [mm] [mm] [mm] [%] [mm]

1638 1832 400 1106 2826 22 1248
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4
Analysis of knots in oak

boards

4.1 General Remarks

A knot is caused by the inclusion of a branch in the wood of a tree stem (Kollmann
and Côté, 1968), producing a highly localized fiber deviation around it. The
detrimental effect of knots in the mechanical properties of timber boards is a
known fact. This effect has been studied in numerous studies, mostly on softwoods
(i.a. Isaksson, 1999; Foley, 2003; Fink, 2014; Olsson et al., 2013), but also for
hardwood species, such as beech (Blaß et al., 2005). In general, regression analyses
against some measure of knot size are used to quantify the influence of knots
for modulus of elasticity (MOE) and strength. For the purpose of classification,
simple regression analyses with global board properties are typically sufficient,
as the localized properties are normally not needed. However, for the analysis
and simulation of mechanical properties along board, additional parameters are
usually considered, such as inter-knot distance or relative knot size within board.

The methods for the measurement of knot dimensions can be roughly divided
in three groups: (i) direct measurement of visible knot dimensions, which can be
done either manually or automatically by means of image processing algorithms;
(ii) inference of knot dimensions by analyzing the orientation of fibers on the
surface of the board, most commonly accomplished by means of laser scans that
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leverage the so-called tracheid effect; and (iii) the use of tomographic scans, which
uses the differences in density of clear wood and knot material to reconstruct the
geometry of knots.

For the characterization of knots of the oak boards studied here, the knot
dimensions were manually measured and then digitally processed in order to esti-
mate the true three-dimensional geometry. These data is then used to statistically
analyze different knot-related parameters, which can be used to compare the knot
characteristics of oak boards to those of previously studied species.

4.2 Knot area ratios (KAR)

The knot area ratio (KAR) is an indicating property (IP) used normally for the
grading of boards according to DIN 4074-5 (2008). It gives a measure of the
disturbance produced by a knot or a cluster of knots within a window of length 𝐿
along the main axis of the board. It is defined as the projection of the knots within
the mentioned window onto the cross-section of the board, as illustrated in Fig. 4.1.
According to DIN 4074-5 (2008), the length shall be taken as 𝐿 = 150mm, and the
KAR must be evaluated at the most unfavorable section of each board. Formally,
the KAR is defined as (DIN 4074-5, 2008):

KAR =

𝑛
∑
𝑖
𝑎𝑖

2 ⋅ 𝑏 , (4.1)

where 𝑎𝑖 are the measured knot projected dimension on the surface of the board,
as shown in Fig. 4.1.

A directly related variable is the clear wood area ratio (CWAR), defined as

CWAR = 1 − KAR, (4.2)

which is normally used for illustrative purposes, as it visually correlates better with
changes in mechanical properties along boards, such as MOE. A drop in CWAR
(higher KAR, more or larger knots) is normally associated with a drop in stiffness
(see e.g. Isaksson, 1999). Furthermore, the KAR has been used in multiple analyses
assessing the stiffness and strength properties on sections along boards by Ehlbeck
and Colling (1987), Isaksson (1999), Blaß et al. (2005), and Fink (2014) (see
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Figure 4.1. Determination of the knot area ratio (KAR) in a section of a board with length L. The

black surface on the cross-section are the projections of the knots

Table 2.1).

4.2.1 Digitally reconstructing the 3D knot geometry of boards

Measurement of knots dimensions

The position and dimensions of each knot larger than 5mm was recorded using
a digital caliper gauge. For each knot, assumed to have an elliptical geometry,
three dimensions were measured: the minimum and the maximum diameter of
the assumed ellipse, and the width taken perpendicular to the length axis of the
board. These three variables allow for the determination of the rotation angle of
the knot. After this, the ellipses were plotted in a 2D graph at their respective
position on the board, and the surfaces most probably corresponding to the same
knot volume were manually assigned an identification number.

Reconstruction of knots

For the computation of the KAR values—both for grading purposes and assessment
of property variation along board—a program was developed using the Python
library pythonOCC (Paviot, 2018), which provides advanced 3D modelling func-
tionality. The implemented algorithm can reconstruct the 3D geometry of each
knot within each board, provided the position and dimensions of each knot on the
four surfaces along the longitudinal axis of the board are given.

The algorithm used to reconstruct the knots is relatively simple compared to
more advanced methods (e.g. Foley, 2003; Lukacevic et al., 2019) and can be
summarized by the following steps:
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1. The 3D geometry of the board is created as a rectangular box with sides
ℓboard × 𝑏 × 𝑡;

2. For each registered pair of surfaces belonging to the same knot, the cor-
responding ellipses are drawn at their respective location, and a volume
passing through both ellipses is created (lofting);

3. For the case of knots defined only by a single surface on the board, a conic
shape is assumed. Two cases are distinguished here: (i) if the knot occurs in
a wide face, then the cone has a depth of 𝑡/2, (ii) if the knot is on a narrow
face, then the cone has a depth 𝑏/4.

The third point represents a clear simplification of the real geometry of the knots,
since the direction of the knot is in reality aligned with the LR-plane (longitudinal-
radial) of the board directed towards the pith axis. Additional information regrad-
ing the pith location could be used to more accurately represent the direction of
the cone simulating the knot, as done by Kandler et al. (2016). However, since
the model will be used exclusively for the computation of KAR values, the errors
that can be attributed to this simplification are expected to be small, as knots
appearing only on one side are generally very small. The consideration of the pith
location can be regarded for future improvements of the model, in order to better
represent the knot orientation and allow for more complex analyses, such as the
one presented in Lukacevic et al. (2019).

The KAR and corresponding clear wood area ratios (CWAR) were then numeri-
cally computed for each cell. This was done by projecting the knot volumes on
the cross-section of each cell. The resulting areas were then used to compute the
needed ratios.

Figure 4.2 illustrates a virtually reconstructed board using the described algo-
rithm. The black surfaces on the front of each cell correspond to the clear wood
area, whilst the white region corresponds to the area of the projected knot(s) within
each cell. The latter area is obtained by firstly meshing the 3D surface of each
knot (or part of knot) within each cell and then projecting the mesh elements onto
the cross-section. For the cases where more than one knot lays within the same
window, the projected areas are intersected to account for overlapping projections.

4.2.2 Comparison of different KAR definitions

As illustrated in Section 3.2.1, the studied boards were virtually subdivided in
segments of 100mm in length. The main purpose for this subdivision is the analysis
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Figure 4.2. Post-processing of the gathered knot data, illustrated for board No. 50. Black areas in
front of each of the cells correspond to the respective clear wood area ratio.

of localized MOE values along board (see Chapter 5). Since knots are known to
negatively affect the MOE, it is reasonable to consider a knot variable in each cell,
typically the KAR value, as this might help to explain the measured MOE variation.
These data can then be used in conjunction with the MOE in further analyses.

However, the KAR values, measured in fixed discrete cells, do not satisfy the
definition of KAR specified in DIN 4074-5 (2008) as (i) the used cell length is
100mm instead of 150mm and (ii) because the cells have a fixed location. The
latter means that it is not assured that the regarded cells contain the largest possible
KAR value in the board for the given window size. For example, if two adjacent
cells have one knot each, then it might be possible to consider a shifted window
that contains both knots, thus producing a higher KAR value. This argument was
used by Fink (2014) to decide against the use of a fixed position of cells and
consider a variable length for KAR and clear wood instead. Therefore, the KAR
values obtained for the fixed cells of 100mm in length have to be compared to the
results obtained by a moving window that captures the maximum KAR value along
the board. Also, the differences between using a window of 100mm in length
versus using a window of 150mm in length should be assessed.

In the following, the KAR values computed at each cell, KARcell (CWARcell), are
compared to the KARs obtained from a moving window of constant length along
the board in a quasi continuous manner (steps of 10mm). Here, two different
window lengths are used: 100mm, being the same size of the studied cells, and
150mm, used i.a. by Ehlbeck and Colling (1987) and Blaß et al. (2005), and
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specified in DIN 4074-5 (2008) for grading purposes. The KAR (CWAR) values
computed with these windows are denoted as KAR100 (CWAR100) and KAR150

(CWAR150), respectively.

Figures 4.3a–d show the three KAR definitions for a subset of five boards,
displayed as CWAR for consistency with the analysis presented later in Chapter 5.
It can be observed that the KARcell tend to underestimate the KAR of the weak zone,
better represented by KAR100 and KAR150. These two values show some differences
as well, which is owed to the larger window length of the latter, allowing it to span
more knots within its limits, thus yielding in general higher KAR values.

Comparisson of KARcell and KAR100

The three KAR definitions are compared on the basis of weak zones (WZ), repre-
senting a region containing one or more knots. Specifically, a WZ starts when the
KAR100 or KAR150 changes from zero to any value > 0, and ends when KAR100 or
KAR150 returns to zero. The previous definition is illustrated in Fig. 4.4, where the
identified WZs are represented by the shaded areas. The KARs to be compared
correspond to the maximum values within the weak zones for each KAR definition
(for instance, the red circles in Fig. 4.4 for KAR100). The same concept is applied
later to compare KAR100 and KAR150.

Figure 4.5a shows the comparison between KARcell and KAR100, where mostly
a good agreement can be observed, denoted by approximately 85% of the values
matching almost exactly (difference under 5%). This is illustrated in Fig. 4.5b,
where the histogram of the relative difference between KARcell and KAR100 (termed
ΔKARcell-100) is presented, showing that 15% of the KAR100 differ by up to around
40% from the KARcell values.

For the case that only the maximum KARs of each board are considered, the
percentage of exact matches slightly reduces to 70%. This means that ΔKARcell-100

tends to be larger when larger KARs are considered. At the same time, the
maximum ΔKARcell-100 decreases to 30%.

Comparison of KAR100 and KAR150

Figure 4.6a shows an analogous comparison for KAR100 and KAR150, where a
level of agreement of 78% can be observed. Similar as before, Fig. 4.6b presents
the histogram of ΔKAR100-150, showing a range reaching up to 60%. If only the
maximum KAR per board is considered, then the agreement is slightly reduced to
70%, as well as the range of ΔKAR100-150 which drops down to 40%.
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Figure 4.3. Comparison between different definitions of KAR values for a subset of the studied
boards. Continuous line (100mmfix): computation of KAR inwindows of 100mmat fixed
steps of 100mm; dashed line (100mmcont.): computation of KAR inwindows of 100mm
continuously over the board length; dash-dotted line (150mm cont.): computation of
KAR in windows of 150mm continuously over the board length
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Figure 4.4. Definition of weak zones (shaded areas), CWARmin (KARmax), and clear wood and weak
zone distances

It has to be mentioned that these two analyses are comparing two different
things: the former gives an insight into the effect of considering fixed windows
of constant length for the KAR computation, and the latter compares the effect
of the used window size. The analysis of the ΔKARcell-100 in Fig. 4.5 indicates
that the KAR100 should be preferred for simulation purposes due to the better
representation of local maximum KAR values. The analysis of ΔKAR100-150 serves
mostly for comparison reasons, as most of the KAR-related analyses made in similar
studies are computed considering windows of 150mm length.

4.2.3 KAR distributions

Absolute KAR values

Having illustrated the differences between the different KAR definitions, it is
now of interest to determine the statistical distributions representing the KAR
values. Although the KAR100 is to be the most appropriate variable for the purpose
simulations, some the following analyses are performed for KARcell data as well.
This helps in further illustrating the differences of considering KAR values obtained
from adjacent windows of constant size versus a more flexible positioning of cells
that capture the largest possible KAR values.

The distribution of KARcell values is presented in Fig. 4.7a separately for grades
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Figure 4.5. Comparison of KARcell and KAR100. (a) all weak zones; (b) histogram of the residues
ΔKARcell−100 = (KARcell − KAR100)/KAR100
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Figure 4.6. Comparison of KAR100 and KAR150. (a) all weak zones; (b) histogram of the residues
ΔKAR150−100 = (KAR150 − KAR100)/KAR100
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Figure 4.7. Statistical distributions for KAR values, separately for LS10 and LS13 grades. (a) KARcell;
(b) KAR100

LS10 and LS13. Visual inspection of the data suggested an exponential distribution
as a good candidate to properly represent the data. The same holds true for
the KAR100 data presented in Fig. 4.7b. For the case of KARcell, the distribution
presents a larger number of relatively small values, thus decreasing more rapidly
compared to the KAR100 values. This is more clearly expressed by the 𝜆 parameters
of the respective fitted exponential distributions: For KAR100 the parameters are
𝜆10 = 10.3 and 𝜆13 = 13.0, whilst for KARcell values of 𝜆10 = 13.3 and 𝜆13 = 17.8
hold. Hence the exponential decay is stronger for the KARcell data.

Relative KAR values within board

The next analysis considers the relative KAR values within a board, i.e. given a
KARmax in a board, how does the 𝑛-th highest KAR value (KARmax,n) relate to
KARmax. In Fig. 4.8a and Table 4.1 the ratio KARmax,n/KARmax is presented for the
first five KARmax,n values in each board for KARcell, as usual separately for grades
LS10 and LS13. The individual datapoints are also depicted with the circle markers
over each bar. Figure 4.8b illustrates the respective results for KAR100.

The KAR100 values tend to decrease at a higher rate as compared to KARcell,
which can be better observed in Table 4.1, where mean and standard deviation
values for the 𝑛-th relative KARs are presented. It can be seen that a considerable
difference is present, starting from the third highest KAR, where in average, the
relative magnitude of KAR100 is 38%, whilst for KARcell it is 48%. In addition,
the scatter for the ratios of KAR100 tend to be lower, expressed in lower standard
deviations.
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Figure 4.8. Relative KAR values within board for the five n-th largest KARs. (a) Computed with
KARcell; (b) computed with KAR100

Table 4.1. Relative value of the n-th largest KAR within each board as percentage of KARmax

All [%] LS10 [%] LS13 [%]

Data 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Second highest KAR KARcell 66.2 ± 20.0 61.0 ± 21.3 72.3 ± 17.1
KAR100 58.7 ± 22.7 58.0 ± 24.6 59.6 ± 20.8

Third highest KAR KARcell 48.4 ± 18.0 51.3 ± 22.4 44.9 ± 10.4
KAR100 35.7 ± 15.2 35.3 ± 18.8 36.1 ± 9.3

Fourth highest KAR KARcell 34.9 ± 17.0 39.4 ± 18.3 29.0 ± 13.6
KAR100 15.9 ± 9.3 15.5 ± 9.8 16.3 ± 9.1

Fifth highest KAR KARcell 25.7 ± 15.4 26.5 ± 16.3 24.3 ± 14.4
KAR100 11.0 ± 7.1 12.7 ± 8.2 8.9 ± 5.8
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Figure 4.9. N-th largest KAR (KARmax,n) relative to the previous largest KAR (KARmax,n–1): (a) Com-
puted with KARcell; (b) computed with KAR100.

In general, the 𝑛-th largest relative KAR value within a board follows roughly a
geometric progression. This can be corroborated by inspecting the ratios between
each KAR value with the previous largest KAR value within a board. This is shown in
Figs. 4.9a and 4.9b for both analyzed grades. It can be seen that the ratio oscillates
around 70% and 60% for KARcell and KAR100, respectively (see Table 4.2). This
means that a geometric progression of the form

KAR𝑛 = 𝑟𝑛 (4.3)

with 𝑟 = 0.7 can represent the evolution of the 𝑛-th largest KARcell value in a
reasonable manner. In an analogous manner, a value 𝑟 = 0.6 represents the 𝑛-th
largest KAR100 value.

Maximum KAR value per board

The final step of this section consists on the analysis of the KARmax values, exclusively.
Owed to the rather small number of boards, a separate analysis for both grades
LS10 and LS13 is not possible. Hence, the boards belonging to the LS10 and LS13
grades are analyzed together. The Gamma distribution was chosen to represent
these data based on the findings of Isaksson (1999) and Fink (2014). Figure 4.10
shows the probability density of the KAR100,max values along with a fitted Gamma
distribution and its respective shape (𝛼) and rate (𝛽) parameters.
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Table 4.2. Relative value of the n-th largest KAR with respect to the previous largest KAR (KARmax,n–1)

All [%] LS10 [%] LS13 [%]

Data 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Second highest KAR KARcell 66.2 ± 20.0 61.0 ± 21.3 72.3 ± 17.1
KAR100 58.7 ± 22.7 58.0 ± 24.6 59.6 ± 20.8

Third highest KAR KARcell 71.1 ± 16.6 77.4 ± 17.9 63.4 ± 11.1
KAR100 64.8 ± 21.5 67.8 ± 26.8 60.7 ± 11.1

Fourth highest KAR KARcell 68.9 ± 21.2 74.6 ± 19.3 61.5 ± 22.0
KAR100 45.0 ± 23.0 45.3 ± 25.4 44.7 ± 20.8

Fifth highest KAR KARcell 72.3 ± 26.3 71.6 ± 27.4 73.5 ± 25.7
KAR100 62.6 ± 33.4 68.4 ± 37.0 55.2 ± 31.9
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Figure 4.10. Cumulative probability distribution for KAR100,max values of combined grades LS10
and LS13

4.3 Length of clear wood segments

In this section an analysis of the segment lengths of clear wood is presented. The
intention of this is to obtain the necessary statistical information regarding the
inter-knot distances, which is needed for the simulation of knots (KAR values)
along virtually generated boards.

4.3.1 Definition of clear wood length

The clear wood length (ℓcw), or inter-knot distance, is defined in Fig. 4.4 as the
distance between the center points of two consecutive weak zones, according to
KAR100 data. The distance between the start (end) and the first (last) WZ are
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considered here as clear wood segments as well. For the latter case, 50mm are
added (half the length of the window) for consistency reasons with the other
measurements. If no knots are present on the length of board, then ℓcw is equal
to the length of the board. This definition is comparable to the one used by Fink
(2014).

For the case that the KARcell data is used, then the distance ℓcw is defined as the
distance between the center of two consecutive WZs, or the distance between the
start (end) of the board and the first (last) WZ plus 50mm (for the same reasons
as above). Knot-free boards are also considered in the analysis, as explained in the
case of KAR100 data.

4.3.2 Clear wood length analysis

The clear wood length was computed for each board considering different minimum
KAR values as thresholds (KARthres). This approach is meant to give a more in-
depth insight into the distribution of distances between WZs of KARs with different
magnitudes. Such information potentially allows for a more accurate simulation
of the positions of WZs along boards. The used KARthres values are 0.0, 0.05,
0.10, 0.15 and 0.20, which are used to define the groups of different ℓcw specified
in Table 4.3. The analysis was performed with both KARcell and KAR100 data to
illustrate the effect of the KAR definition on the ℓcw distributions.

Figure 4.11a presents the ℓcw results separately for LS10 and LS13 grades
for the KARcell data. For the case that all WZs are considered (KARthres = 0), the
average distance ℓcw is about 320mm for both grades, with a standard deviation,
𝜎 of 330mm (see Tab. 4.4 for more details). As the threshold KARthres is increased,
ℓcw also grows. An interpretation for this is that larger KAR values are in general
more amply spaced between each other. There are clear differences between the
grades LS10 and LS13.

For small KARthres both grades show similar values for ℓcw. However, for higher
KARthres values, larger clear wood distances are observed for LS10 as compared to
LS13 boards. This difference is most probably bound to the classification criteria
used (DIN 4074-5, 2008), since the presence of higher KARs (LS10) could be
related to more WZs in general. Additionally, the observed difference might be

Table 4.3. Definition of the KAR values considered for each clear wood length group ℓcw,𝑘

ℓcw group: ℓcw,0.0 ℓcw,0.05 ℓcw,0.10 ℓcw,0.15 ℓcw,0.20
Definition: 0 < KAR 0.05 < KAR 0.1 < KAR 0.15 < KAR 0.2 < KAR
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Figure 4.11. Clear wood length (ℓcw) for different KAR thresholds. (a) computed with individual
cells; (b) computed with knot clusters identified with the KAR100 values. Note: The
lower tables in both figures give the number of clear wood segments used in each bar.

linked to the presence of a higher number of knot-free boards among the LS13
grade, increasing the average ℓcw.

Figure 4.11b shows the ℓcw results obtained using the KAR100 data. The general
trend is the same as for KARcell, except for the slightly higher values of ℓcw for lower
KARthres (520mm for KARthres = 0, compared to 320mm for the KARcell data; see
Tab. 4.4 for detailed results). This is to be expected, as KARcell considers each cell
with KAR > KARthres individually, whilst the definition of WZ using KAR100 tends
to merge adjacent cells with KAR > 0 into one larger weak zone, thus preventing
the very small distances associated to such cases.

4.4 Final remarks

This chapter presented an analysis of different knot-related parameters of the
studied oak boards. Specifically, the distribution of KAR values, maximum and
relative KAR values per board, as well as clear wood length were determined and
discussed. All these parameters could be combined to produce a simulation model
for KAR values within board, e.g. similar as done by Blaß et al. (2005) or Fink
(2014). However, in this thesis, the KAR values are mainly used for the analysis of
the variation of MOE along boards, described in the next chapter. Although the
development of a simulation model for KAR was one of the original objectives of
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Table 4.4. Clear wood length (ℓcw) for individual cells (KARcell) and with the knot clusters identified
with the KAR100 values

All [mm] LS10 [mm] LS13 [mm]

Data 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

ℓcw,0.0
KARcell 318 ± 300 349 ± 323 296 ± 281
KAR100 506 ± 290 510 ± 309 502 ± 275

ℓcw,0.05
KARcell 569 ± 459 546 ± 437 590 ± 476
KAR100 749 ± 412 726 ± 397 768 ± 422

ℓcw,0.10
KARcell 700 ± 511 679 ± 483 719 ± 535
KAR100 862 ± 442 798 ± 442 919 ± 435

ℓcw,0.15
KARcell 994 ± 529 905 ± 438 1106 ± 606
KAR100 1115 ± 420 1017 ± 387 1242 ± 427

ℓcw,0.20
KARcell 1131 ± 474 1046 ± 488 1500 ± —
KAR100 1208 ± 396 1103 ± 415 1495 ± 24

this analysis, further insights gained during the course of this work shifted the
focus to an alternative approach, where the explicit consideration of knots is not
needed.
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5
Variation of mechanical
properties in oak boards

5.1 General

The study of the variation of mechanical properties between and within boards is
an inevitable step in any attempt at developing a glulam strength model. A deep
understanding of the variation of MOE, tensile strength and density of the boards,
and the relationships between them, enables the development of a more accurate
material simulation model for the boards. Once included in a glulam strength
model these material models, simulates in a realistic manner the distribution of
strength and stiffness throughout the simulated beams. The correct representation
of the lamination effect depends in great part on this.

The main objective of this chapter is to characterize and quantify the degree
of variation of MOE, tensile strength and density between and within oak (Q.
petraea, Q. robur) boards, and to analyze the relationships that might exist between
them. In particular, the variation of MOE will be analyzed within the frame of
autoregressive models, giving a notion of the spatial correlation within a board.
Then, the localized (cell-wise) tensile strength will be studied by means of censored
analysis. All the data presented in this chapter are available in Tapia and Aicher
(2020) and Tapia and Aicher (2021).
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5.2 Description of the experimental campaign

The 47 boards form the Dataset A were used for a comprehensive experimental
campaign with the objective of analyzing the variation of different material prop-
erties between and within boards. Objects of this investigation were the MOE,
tensile strength and density. In the following, the experimental procedure used
for the determination of each of these variables is presented.

5.2.1 Variation of modulus of elasticity along board

A central aspect of the experimental campaign concerned the measurement of
localized values of MOE along the main axis of the oak boards. To this end,
the central region of each board, with a total length of 1500mm (ℓ𝐸,glob), was
considered (see Fig. 5.1). This region was subdivided into 15 consecutive cells
(segments) with equal lengths of ℓ𝑖,cell = 100mm (same cells as used for the
analysis of knot variables).

For each cell the axial elongation was measured by means of a specific ex-
tensometer, illustrated in Figs. 5.2a,b. The device consists of two U-shaped steel
frames, attached to the board by means of special screws. The frames are equipped
with two linear variable displacement transducers (LVDTs), placed at diagonally
opposite sides of the cross-section of the board (see Figs. 5.2a,b). The used LVDTs
correspond to the model D6/0500ARA-L25, company RDP Electronics, Great
Britain. For the experimental determination of global MOE, 𝐸𝑡,0,glob = 𝐸test

𝑡,0,glob, the
gauge length was ℓ𝐸,glob, spanning over the 15 cells of 100mm in length.

The tensile tests were performed with a servo-hydraulic universal testing ma-
chine (max. load 700 kN), equipped with a pair of special hydraulic-controlled grips,
which enable a rather smooth stress transmission from the grips into the board. The
boards were placed in the testing machine as shown schematically in Fig. 5.1. The

clamped regionclamped region

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Extensometer

𝐹 𝐹

ℓ𝑖,cell = 100mm

cell 1

ℓ𝑠

ℓ𝐸,glob60mm 60mm

≈350mm ≈350mm

Figure 5.1. Experimental setup used for the determination of the variation of modulus of elasticity
along the length of the boards
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(a) (b)

Figure 5.2. Extensometer used for the measurement of the deformations in the 100mm long cells.
(a) rear-side view; (b) lateral view. The used LVDTs can be seen in both figures.

free length between the grips was throughout ℓ𝑠 = ℓ𝐸,glob + 2 ⋅ 60mm = 1620mm.
This resulted in clamping lengths at both ends of the boards of about 350mm.

The loading protocol of the boards consisted of a series of loading-unloading
cycles. In each cycle the axial elongation of one cell of the board was measured
within the linear elastic range up to a tensile load of 30 kN, equivalent to a nominal
tensile stress of 𝜎𝑡,0 = 7.1N/mm2. The loading was performed in displacement
control, at a stroke rate of 0.04mm/min, while unloading to zero load in each
cycle was done load-controlled at a rate of 5 kN/s. After each loading-unloading
cycle, the extensometer was shifted to the next cell and the described sequence of
loading, displacement measurement and unloading was repeated for each of the
15 cells within ℓ𝐸,glob (see Fig. 5.1).

In a subsequent step, the global MOE, 𝐸test
𝑡,0,glob, was measured over the gauge

length ℓ𝐸,glob. The objective of the 𝐸test
𝑡,0,glob measurement consisted in both: (i)

experimental determination of the global member stiffness and (ii) verification of
the overall quality of the MEO measurements at the individual cells. If the local
measurements are correct, then the difference between the measured global MOE
and the global MOE computed from the local measurements (cell data) should be
small in relative terms.

5.2.2 Multiple tensile strength measurements

The measurement of the variation of tensile strength (𝑓𝑡,0) along the board presents
its own challenges, mainly due to the impossibility of testing consecutive cells in

5.2 | Description of the experimental campaign 83

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



tension until failure due to the needed clamping length. Taking this into consider-
ation, the following approach was chosen to maximize the amount of meaningful
information obtained from each board. The boards were tested in tension paral-
lel to the grain direction until failure at a constant piston displacement rate of
0.04mm/min with a computer-controlled servo-hydraulic testing machine. Both
ends of each board were fixed by hydraulically actuated grips, which gradually in-
troduce the clamping pressure along the clamping length (≈ 350mm), minimizing
stress concentrations at the transition of free length to the clamps. Each board’s
first testing to failure delivered the global tensile strength, 𝑓𝑡,0,glob, corresponding
to a free length, ℓ𝑠, of 1620mm = 9.25 ⋅ 𝑏, which conforms closely to the provisions
of EN 408 (2012) and EN 384 (2016), where ℓ𝑠 = 9 ⋅ 𝑏 is stipulated. As the em-
ployed free length is slightly (3%) longer as specified in the European standards,
the obtained global tensile strength values can be regarded being conservative to
a very small degree, which means that the obtained strength values tend to be
slightly lower (about 1%) as compared to the standard approach1.

The two remaining parts of each broken board left after the first global failure
test were tested, if possible, in a second and occasionally third and forth tensile
test, similar as done by Lam and Varoglu (1991a), then for Spruce-Pine-Fir boards
of 6.1m in length. The location, i.e. the number of the cell responsible for the
failure was recorded. The procedure of sampling multiple tensile strength values
from one board is illustrated in Fig. 5.3. The outlined procedure was fostered by
the predominant occurrence of blunt failures of the tested oak boards, producing
two remaining parts separated at the first (global) failure by fracture planes rather
perpendicular to the board’s length axis (see Figs. 5.14a,b). The free lengths
(ℓ𝑠,2,𝑖) between the grips of these secondary tensile tests were significantly lower
as compared to the primary global test. The values for ℓ𝑠,2,𝑖 were in average (±
std.) (3.2 ± 1.7) ⋅ 𝑏 with a minimum length of 0.6 ⋅ 𝑏. The reduced lengths of the
remnants, however, do not constitute a methodological problem, as the secondary
tests are intended to detect the strengths of the stronger parts of the boards in
relation to the weakest section in the board, in order to obtain a larger database
for local MOE, density and strength correlations.

1The mentioned strength decrease results from the fact that there exists a higher probability of
more, larger growth-bound defects (within the limits of the respective grading/strength class) in an
increased free test-length, as compared to shorter ones. The stated quantification of the tensile strength
reduction as a result from the increased free test length is based on the below presented length effect
simulation results.
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clamped regionclamped region

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

first (global) failure

𝐹 𝐹
(a)

1 2 3
𝐹 𝐹

second failure

ℓ𝑠,2,1
(b)

9 10 11 12 13 14 15

(c)
𝐹 𝐹

third failure

ℓ𝑠,2,2

ℓ𝑖,cell = 100mm

cell 1

ℓ𝑠
ℓ𝐸,glob

60mm 60mm

≈350mm ≈350mm

Figure 5.3. Test methodology employed for the gathering of multiple tensile strength values per
board

5.2.3 Density measurements along boards

After the tensile tests, the variation of the density along the length of each board was
determined. For this purpose, each board was segmented/sawn into its individual
cells with a nominal length of 100mm by means of a circular saw (blade thickness
of 4mm). Clearly, the determination of the density of each of the 15 cells per
board was not possible, since the boards were broken in as many as four pieces,
depending on the number of secondary tensile tests that each board was subjected
to.

In many cases, the cells contained one or two cracks rather parallel to the fiber.
These cells were secured by an adhesive tape before cutting. By the described
process an average of 11±3 cells was obtained per board for the local cell density
measurements. The minimum and maximum number of cells per board suitable for
local density measurements was 3 and 15, respectively. The density measurement
was performed by weighing and measuring the dimensions of each cell. The neces-
sary determination of the moisture content (MC) for adjustment to the reference
density at 12%MC was done by the oven dry method with two cross-sectional
slabs of dimensions 175 × 50 × 25mm cut from both ends of each board (in the
clamped region); the distance from the ends of the boards was throughout 100mm.
The MC of each board was then taken as the average of both measurements.
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Table 5.1. Statistics for the global densities normalized to a 12% (𝜌glob,12) MC, separated by strength
grade

Global density, 𝜌glob,12 [kg/m3]
N Mean Std COV Min Max 𝑥05

Grade

Reject 4 725 34 4.6% 698 783 670
LS7 4 709 69 9.7% 631 818 597

LS10 17 701 48 6.8% 634 812 622
LS13 22 691 40 5.8% 634 762 626

LS10+LS13 39 695 44 6.3% 634 812 623

All 47 699 47 6.7% 631 818 623

Table 5.2. Statistics for the local densities normalized to a 12% (𝜌cell,12) MC, separated by strength
grade. Computed for all the cells of all the boards together

Local density, 𝜌cell,12 [kg/m3]
N Mean Std COV Min Max 𝑥05

Grade

Reject 53 712 33 4.7% 640 812 657
LS7 34 715 75 10.4% 606 825 592

LS10 196 704 52 7.4% 609 843 618
LS13 244 686 46 6.8% 595 826 609

LS10+LS13 440 694 50 7.2% 595 843 612

All 527 697 51 7.3% 595 843 613

5.3 Density variation within boards

The statistical evaluation of the global and local density measurements adjusted at
12% MC is presented in Tables 5.1 and 5.2, respectively. It can be seen that the
mean and minimum values of the global density is very similar for grades LS7,
LS10 and LS13; the density scatter for grades LS10 and LS13, denoted by low
COVs of 7.4% and 6.8%, respectively, show no relevant difference. The results
indicate that the mean density of the boards is most likely a bad predictor for the
strength grade, as there exists no positive correlation with increasing grade.

With regard to the representativity of the investigated oak material in terms of
density, a very good agreement with the results of two comprehensive investiga-
tions (Glos and Lederer, 2000; Faydi et al., 2017) on oak from different growth
regions can be stated. The first mentioned study on bending of 340 unseasoned
oak scantlings (growth region south-west Germany, forest district Herrenberg),
cut primarily from second and third length segments of logs harvested in thin-
ning operations, was conducted with different cross-sections from 40 × 80mm to
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Table 5.3. Statistics for the COV of local densities for each board

COV of density of individual boards [%]
N Mean Std COV Min Max

Grade

Reject 4 3.6 0.6 17 2.7 4.4
LS7 4 2.9 1.5 51 0.8 4.9

LS10 17 2.5 1.1 46 1.3 5.3
LS13 22 3.0 1.5 52 0.6 8.4

LS10+LS13 39 2.7 1.4 51 0.6 8.4

All 47 2.8 1.4 49 0.6 8.4

60 × 180mm. The second referenced work on French oak wood (source Bour-
gogne Franche Comté) focusing on vibrational MOE prediction, comprised 160
boards with cross-sections of about 24mm×(80 to 170mm). In both investigations,
dealing similarly with a mixture of strength classes D18 to D30 and reject, too,
the average gross density, 𝜌12,glob, was about 710 kg/m3, which is very close to the
material regarded here.

The local densities show a very similar picture with regard to its indifference
to strength grades. This is emphasized by the fact that the extreme values of local
densities reveal almost no difference between the respective grades, disregarding
the rejected boards. Regarding the absolute differences between minimum and
maximum densities, these are more pronounced on the local level. There, in
average, for the grades LS7, LS10 and LS13, a value Δ𝜌min/max = 226 kg/m3 was
found. On the global level, the density span is 30% smaller.

The mean local density variation within a board, characterized by an average
COV of 2.8%, is very small and similar throughout all strength grades (see Ta-
ble 5.3). However, the spread of the local density variation (COV and extreme
values) is somewhat larger for the strength grade LS13 (see Table 5.3). This
is reasonable, as the difference between the clear wood and knot areas is more
pronounced at higher strength grades.

The very low density scatter between boards and along individual boards
matches the results for the global and local densities of beech wood laminations, as
presented by Blaß et al. (2005). According to their findings, the density variation
along the board length, measured for 20 boards with consecutive board segments
with 200mm lengths, was so small—specified exclusively graphically and ranging
between 40 and 80 kg/m3 around the respective mean board density—that the
density was then considered to be constant along the board length in all simulations.
Similar findings and conclusions regarding the simulation in a glulam model have
been presented by Colling (1990a) for the case of spruce laminations.
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5.4 Modulus of elasticity

5.4.1 Processing of measured data

For the evaluation of local and global MOEs the average of both diagonally opposite
LVDT measurements was taken. To compute the MOEs, the data-points were
considered starting at 10 kN, in order to avoid possible non-linearities produced
by slip movements of the boards in the clamping areas at begin of the loading
regime. The analysis of the data showed that all measurements between the loads
of 10 and 30 kN, respectively, were within the linear range, which was proven by
computed squared correlation coefficients, 𝑅2, almost equal to unity.

In order to verify the correctness of both local and global MOE measurements,
the global MOE can be derived analytically, 𝐸cell

𝑡,0,glob, from all locally measured
MOEs within ℓ𝐸,glob, by the well-known principle of springs arranged in series as

𝐸cell
𝑡,0,glob = ℓ𝐸,glob (

𝑁

∑
𝑖

ℓ𝑖,cell
𝐸𝑖,cell

)
−1

, (5.1)

where ℓ𝐸,glob is the total length spanning the 𝑁 cells, ℓ𝑖,cell is the length of each
individual cell, and 𝐸𝑖,cell is the MOE measured in each cell. In the given case
ℓ𝑖,cell = const. = ℓcell, and ℓ𝐸,glob = 𝑁 ⋅ ℓcell, which simplifies Eq. (5.1) to

𝐸cell
𝑡,0,glob = 𝑁 ⋅ (

𝑁

∑
𝑖

1
𝐸𝑖,cell

)
−1

. (5.2)

5.4.2 Global and local moduli of elasticity

Tables 5.4 and 5.5 present a condensed statistical evaluation of all global and local
moduli of elasticity (MOE) results, separately for the three visual strength grades,
the combined LS10+LS13 sample and for the entire sample. Regarding the mean
values of the global MOEs, 𝐸mean

𝑡,0,glob, almost no difference can be stated between
the LS10 and LS13 grades. The normalized scatter, i.e. the coefficient of variation
(COV), is very similar for grades LS10 and LS13 (COV not discussed for LS7 due
to the low number of specimens). The minimum and maximum values of 𝐸mean

𝑡,0,glob
are slightly (3% and 4%) higher for LS13. The mean and extreme values of LS7,
irrespective of the very low number of specimens in the sample, are throughout
lower, being in line with the grading provisions.
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Table 5.4. Global MOEs, 𝐸𝑡,0,glob, corrected to MC = 12% separated by grade

Global MOE 𝐸𝑡,0,glob [GPa]
N Mean Std COV Min Max

Grade

Reject 4 10.6 1.3 13% 9.2 12.3
LS7 4 11.2 2.6 23% 8.1 15.0

LS10 17 11.9 2.1 18% 8.8 16.0
LS13 22 11.7 1.9 17% 9.1 16.6

LS10+LS13 39 11.8 2.0 17% 8.8 16.6

All 47 11.6 2.1 18% 8.1 16.6

Table 5.5. Local MOEs, 𝐸𝑡,0,cell, corrected to MC = 12.0% separated by grade

Local MOE 𝐸𝑡,0,cell [GPa]
N Mean Std COV Min Max

Grade

Reject 60 11.6 2.6 22% 2.2 18.6
LS7 60 11.7 3.1 26% 2.7 19.0

LS10 255 12.2 2.7 22% 5.5 20.7
LS13 330 12.2 2.7 22% 2.8 22.2

LS10+LS13 585 12.2 2.7 22% 2.8 22.2

All 705 12.1 2.7 22% 2.2 22.2

The mean value of the local MOEs, 𝐸mean
𝑡,0,cell, shows a very good agreement with

𝐸mean
𝑡,0,glob, presenting 3% to 4% higher values for grades LS10 and LS13, respectively.

However, the spread of 𝐸0,cell is now considerably larger as compared to 𝐸𝑡,0,glob.
This is also highlighted by the far wider range of the extreme values of the 𝐸𝑡,0,cell
results, spreading from 2.1GPa to 21.6GPa, whereas for 𝐸𝑡,0,glob the range is much
more narrow, spreading from 8.8GPa to 16.2GPa. The scatter of 𝐸𝑡,0,cell is shown
for the entirety of values in Fig. 5.4. It can be seen in Tables 5.4 and 5.5 that the
COV of 𝐸𝑡,0,cell for all boards is 22.4%, whereas for 𝐸𝑡,0,glob a smaller value of 17.6%
is obtained. For all the boards, a very good agreement was found between the
measured global MOE (𝐸test

𝑡,0,glob) and the computed global MOE (𝐸cell
𝑡,0,glob), derived

from Eqs. (5.1) and (5.2) based on the locally measured MOEs (see Fig. 5.5a). In
average the ratio of both results was 𝐸test

𝑡,0,glob/𝐸
cell
𝑡,0,glob = 1.01 ± 0.01.

Figure 5.5b shows the correlation between dynamic MOE, 𝐸𝑡,0,dyn, and mea-
sured global MOE, 𝐸test

𝑡,0,glob. A high correlation can be observed (𝑅 = 0.97),
although—as usual for dynamic MOE measurements—the 𝐸𝑡,0,dyn results tend
to overestimate the MOE by 4%. This can be visually corroborated by comparing
the linear regression with a diagonal having a slope equal to unity (dashed line in
Fig. 5.5b), and noticing that the majority of the data-points lay above the diagonal
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Figure 5.4. Cumulative distribution functions of the global and local MOEs.

0.8 1.0 1.2 1.4 1.6
𝐸0,glob,test [N/mm²] ×104

0.8

1.0

1.2

1.4

1.6

𝐸
0,
gl
ob

,c
el
ls
[N

/m
m
²]

×104

𝑅 = 1.00
N = 47
𝑅 = 1.00
N = 47

(a)

LS13
LS10
LS7
Reject

0.8 1.0 1.2 1.4 1.6
𝐸0,glob,test [N/mm²] ×104

0.8

1.0

1.2

1.4

1.6

1.8

𝐸
0,
dy

n
[N

/m
m
²]

×104

𝑅 = 0.97
N = 47
𝑅 = 0.97
N = 47
slope = 1.04

(b)

LS13
LS10
LS7
Reject

Figure 5.5. Correlation between the different methods used to obtain the global MOE: (a) Cor-
relation between the global MOE computed from the individual local measurements
according to Eq. (5.2) and the globally measured MOE. (b) Correlation between the dy-
namic MOE and MOE measured statically with a gauge length of 1500mm; The dashed
line represents a diagonal with slope = 1.

90 5 | Variation of mechanical properties in oak boards

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 76

COVMOE= 16.8%

(a) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 89

COVMOE= 21.3%

(b)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Distance [mm]

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 91

COVMOE= 6.1%

(c) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Distance [mm]

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 51

COVMOE= 12.3%

(d)

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

Figure 5.6. Examples of variation of local MOE, Et,0, and clear wood area ratios CWAR (dashed
line) along the length of different oak boards. The orange, horizontal line denotes the
measured global MOE, Eglob,test. The (cell-)location of the global failure is indicated
by the black wedge. (a) Specimen 76 presents a high COV for the MOE which is not
explained by a high knotiness; (b) Specimen 89 shows a high COV for the MOE with a
very good correlation with CWAR values. (c) Specimen 91 shows a small COV for the
MOE with no presence of knots; (d) Specimen 51 shows a moderate COV for the MOE
with a small presence of knots;
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Table 5.6. Coefficients of variation (COV) of local MOE within individual boards

COV of 𝐸𝑡,0,cell of individual boards [%]
N Mean Std COV Min Max

Grade

Reject 4 18.4 5.8 31.7 11.4 27.6
LS7 4 14.0 5.8 41.3 7.5 21.7
LS10 17 12.9 5.0 38.4 7.0 21.4
LS13 22 11.0 5.5 50.0 3.0 25.7

LS10+LS13 39 11.9 5.4 45.2 3.0 25.7

All 47 12.6 5.7 45.7 3.0 27.6

line.

The MOE fluctuation along the length of the boards is shown in Figs. 5.6a–d
for four representative cases. These correspond to the boards No. 76, 89, 91 and
55, belonging to the grades LS13, LS10, LS13 and LS10, respectively. Their corre-
sponding global MOEs (𝐸𝑡,0,glob) are 16.2GPa, 11.5GPa, 10.9GPa and 10.3GPa,
represented by the horizontal line in each figure. Furthermore, the clear wood
area ratio (CWAR) of each cell is depicted (dashed line) and the position of the
global tensile failure is marked by the black wedge. The results corresponding to
the entirety of the tested boards are presented in Appendix A.

Figure 5.6a illustrates a rather high variation of MOE along the board (COV
= 16.8%), without presence of large knots (as indicated by the monotonously
high values of CWAR). Thus, the high variation cannot be attributed to the effect
of knots in the board, but results most likely from other growth-bound defects,
such as the fiber orientation. This contrasts to what is depicted in Fig. 5.6b, where
also a rather high MOE variation is observed (COV = 21.3%). However, this time
the variation can be directly correlated to the presence of knots on the board.
Another typical MOE-defect feature is presented in Fig. 5.6c, where a very low
MOE variation is observed (COV = 6.1%), accompanied by a low presence of knots.
A final example is illustrated in Fig. 5.6d, where a moderate MOE variation (COV
= 12.3%) occurs, resulting mostly from both, knot presence and, presumably,
fiber orientation.

The scatter of 𝐸𝑡,0,cell within the boards of the different strength grades is
specified in Table 5.6. The mean value of the local MOE scatter is slightly higher
for the grade LS10 as compared to LS13. However, the difference in scatter
between individual boards, determined by the coefficient of variation of the COV,
is pronouncedly more expressed for the grade LS13.
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Figure 5.7. Correlations between MOE and density normalized to 12% moisture content. The data
are given separately for the different strength grades LS7, LS10, LS13 and reject. (a)
Global level; (b) Local level

5.4.3 Correlation of MOE with density and KAR

Figure 5.7a presents the correlation between the global MOE (𝐸𝑡,0,glob) and global,
i.e. total board density (𝜌12,glob), denoted by 𝑅 = 0.51; the individual data points
are differentiated with regard to the respective board grade.

The reported 𝑅-value is substantially lower than the correlations usually ob-
tained for global MOE versus gross density of softwood laminations, where an
𝑅-range of 0.7 to 0.9 is typical (e.g. 𝑅 = 0.88 in Colling and Scherberger, 1987).
For hardwoods, limited literature data can be found on the relationship between
𝐸𝑡,0,glob and 𝜌glob. In a recent study on French oak boards an 𝑅-value of 0.30 was
obtained (Faydi et al., 2017), thus even significantly lower than in this study. For a
mixed dataset of beech, oak, and ash laminations, an 𝑅-value of 0.40 was reported
(Frühwald and Schickhofer, 2005).

Figure 5.7b illustrates the correlation between the local MOE, 𝐸𝑡,0,cell, and
corresponding local densities, 𝜌12,cell. In this case, an even lower correlation
(𝑅 = 0.43) compared to the global level was obtained. It should be pointed out
that the analyzed dataset is truncated (𝑁 = 527) regarding the entirety of the cells
(𝑁 = 705), owing to the mentioned fracture-bound impossibility of measuring the
density in each cell. The reported MOE-𝜌 correlation of the board segments is
almost twice as high as the respective 𝑅-value of 0.23 obtained by Blaß et al. (2005)
for a dataset of 330 beech board segments cut from a corresponding number of
boards, with an average density 𝜌0 = 680 kg/m3 and cross-sections in the range
of 100 × 25mm2 to 150 × 35mm2. However, contrary to this investigation, in
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which the local densities are gross values obtained from weighing of the individual
100mm segments, the density of the beech wood segments was then determined
from 20mm-wide knot-free segment slabs. Although global and, in particular, local
MOE-density correlations found in this investigation are substantially higher than
those reported for beech laminations, density has to be considered as a rather poor
predictor for the MOE within and between oak boards for the material addressed
in this study (see Section 5.6). A generalization of this statement to oak species
(Q. robur, Q. petraea) would, however, require a significantly larger database.

The relationship of the global MOE with the grade-determining KARmax value
delivers a very low coefficient of correlation of 0.3. The removal of the two highest
KARmax ratios reduces the correlation to 𝑅 = 0.16, which highlights the unsuitability
of this relative small-sized database for establishing a reliable global MOE-KARmax

relationship. Furthermore, the suitability of such a correlation can be questioned
with regard to the theoretically very small impact (e.g. Eqs. (5.1)) of a single weak
local cell. The linear relationship between the cell-related KAR value, KARcell, and
𝐸𝑡,0,cell, based on a total of 527 cells, yielded, somewhat surprisingly, a similarly
weak correlation coefficient of 0.31, being lower as the above reported 𝑅-value
for the MOE-density relationship. The obtained low 𝐸𝑡,0,cell–KARcell correlation
deviates considerably from the result 𝑅 = 0.70 obtained by Blaß et al. (2005) for
this relationship in the beech wood study. Whether the stated marked difference
is species-dependent, or/and a result of the specifics of the samples in this and the
referenced investigations, is of high interest and has to be investigated further.

5.4.4 Normalization of the measured MOE data

The results analyzed in this chapter show a large variation of 𝐸𝑡,0,glob for the studied
boards (𝜎𝐸,glob ≈ 2000N/mm2), some of which can be explained by the difference
in density observed in the boards (see above). The rest of the global variability
may be explained by other characteristics, such as the relative position of the board
in the trunk, average fiber orientation, or the presence of sapwood (Kollmann and
Côté, 1968). The cell-wise MOE, 𝐸𝑡,0,cell, exhibits an even higher total standard
deviation (𝜎tot ≈ 2600N/mm2), which results from the superposition of the inter-
board variation, 𝜎𝐸,glob, and the local level (intra-board) variation (𝜎𝐸,local), in
theory complying with the relationship

𝜎2tot = 𝜎2𝐸,glob + 𝜎2𝐸,local, (5.3)

for the simplified case where both variables are uncorrelated.
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As simple as Eq. (5.3) might be, it constitutes the basis for most of the known
models to simulate MOE values along boards (see e.g. Ehlbeck and Colling (1987),
Blaß et al. (2005), and Fink (2014)). It justifies the hierarchical approach, where
firstly a global value for the board is generated based on 𝜎𝐸,glob, and then the local
variation is considered (based on 𝜎𝐸,local). This concept is adopted in the present
work too, however, the methodology used differs from that of previous models.

In the following, the characteristics of the local MOE variation are analyzed.
For this, a normalization approach will be presented, where the measured local-
ized MOE values of all boards are brought to a common level, allowing for the
comparison of the intra-board variation between the different boards.

The finding of a suited normalization method requires a theoretical under-
standing of the relevant variables that directly affect the measured 𝐸𝑡,0,cell. For
example, it seems reasonable to assume that the within-board MOE variation is
mostly a consequence of the fiber orientation throughout the board. This has been
proven to produce very accurate results when comparing measured local bending
stiffnesses with values computed on the basis of laser-scanned fiber orientations
for Norway spruce (Hu et al., 2018). The same method was applied to French oak
by Olsson et al. (2018), however no local bending measurements were available.
This assumption implies that higher relative values of 𝐸𝑡,0,cell should correspond to
cells with fiber orientations parallel to the main axis of the board (or very close to
it), whilst lower relative 𝐸𝑡,0,cell values should coincide with local deviations of the
grain with respect to the main axis of the board. Another relevant variable is, of
course, the presence of knots. However, this effect may also be captured by the
determination of fiber orientation only (Hu et al., 2018; Olsson et al., 2018). An
appropriate normalization could then be related to the MOE values in regions free
of knots and with no grain deviation, which could be considered as the base value
for the MOE in each board.

However, the stiffest segment of a board might not correspond necessarily
to the segment with lowest fiber distortion, as other variables might show some
influence here, too (e.g. density variation). In addition, it is possible for the fibers
of a board to be consistently deviated throughout the length of the board, resulting
in an entire absence of cells with fibers parallel to the main axis. For the present
analysis, however, this does not represent a major problem, as the objective is to
capture the effect of the fiber variation (and other variables) on the MOE, and not
the fiber orientation itself. Considering this, and in absence of detailed local grain
orientation, the base level is here defined as the average of the three largest 𝐸𝑡,0,cell
values in each board ( ̄𝐸max,3), being an arbitrary but reasonable normalization
value for this purpose. Thus, the normalization was performed based on ̄𝐸max,3
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Figure 5.8. Histograms and fitted probability density functions for (a) the normalized MOEs, 𝐸𝑡,0,cell,
and (b) measured data, 𝐸𝑡,0,cell

according to

𝐸𝑡,0,𝑖,𝑗 =
𝐸𝑡,0,𝑖,𝑗
̄𝐸max,3,𝑖

, (5.4)

where 𝐸𝑡,0,𝑖,𝑗 corresponds to the normalized MOE of the cell 𝑗 of board 𝑖, and 𝐸𝑡,0,𝑖,𝑗
is the corresponding measured local MOE value. If large differences are observed
among the two largest 𝐸𝑡,0,cell values in a board (> 10%), then only the maximum
value is used as 𝐸max,3.

A histogram of the normalized 𝐸𝑡,0,cell for the boards belonging to grades LS10
and LS13 is presented in Fig. 5.8a. As reference, the non-normalized data is shown
in Fig. 5.8b. An important characteristic of the normalized data, 𝐸𝑡,0,cell, is the
marked left-skewness (skew=−1.68), which contrasts with the somewhat slightly
right-skewed distribution observed prior to the normalization. The skewed 𝐸𝑡,0,cell
reflects the occasional, yet marked relative MOE drop-downs observed within the
otherwise rather low variation zones, caused by large grain deviations attributed
to the presence of knots, as well as the knots themselves.

The normalized data, 𝐸𝑡,0,cell, was fitted to four candidate distributions: reversed
Gumbel (GumbelR), Weibull, Log-Gamma and Beta. For both, Weibull and Beta
distributions, the location parameter was manually set to zero. Not doing this
results in (i) extremely large negative values for the location (order of 106) and (ii)
equally (but positive) large scale parameter, complicating the direct interpretation
of the parameters. Both, GumbelR and Log-Gamma distributions present no
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Table 5.7. Fitted parameters for the standardized form of the candidate distributions for (i) all cells
and (ii) for clear wood cells

loc scale shape1 shape2 log ℒ̂ AIC
Distribution

GumbelR
All 0.928 0.0842 – – 506 −1008
KAR < 0.05 0.944 0.0717 – – 504 −1004

Weibull All 0 0.923 10.1 – 476 −946
KAR < 0.05 0 0.941 12.7 – 500 −994

Log-Gamma All 0.988 0.0481 0.437 – 515 −1023
KAR < 0.05 0.963 0.0618 0.790 – 505 −1003

Beta All 0 1.07 10.0 2.29 490 −972
KAR < 0.05 0 1.08 15.5 3.07 503 −998

lower bounds, thus potentially may produce negative values. To prevent this,
the distributions were truncated at zero, which does not introduce a large error,
given that the cumulative distribution within the disregarded tails is very small.

The estimated parameters for the standardized form of each distribution are
presented in Table 5.7, together with the maximum log-likelihood (log ℒ̂) and
the Akaike information criterion (AIC), defined as AIC = 2𝑘 − logℒ, where 𝑘 is
the number of fitted parameters (Akaike, 1974). Based on this information the
Log-Gamma distribution represents the best of the four analyzed models, as it
presents the smallest AIC. Having set the location parameter to zero for the Weibull
and Beta distributions limits the maximum likelihood obtained for them, affecting
the AIC, too. However, the truncation of the lower tail is justified, as it limits the
possible lowest MOE values to zero, preventing negative 𝐸𝑡,0,cell values.

The same analysis was performed considering clear wood sections only, here
defined as cells with KAR < 0.05. This is an attempt to separate the effects of the
knots on the MOE variability from the pure effect of fiber inclination. Specifically,
this helps to illustrate the effect of cutting-off board segments containing large
knots (similar as in the boards used for the fabrication of the glulam beams of
the Dataset B). It is reasonable to expect that the exclusion of large knots would
reduce the variation within board, as knot-affected segments should experience
in average larger MOE drop-offs compared to knot-free cells, due to the effective
reduction of the cross-section and large localized grain deviations.

Figure 5.9a shows the normalized MOE considering clear wood segments only,
where a reduction of the spread (𝜎 = 0.09 compared to 𝜎 = 0.12) can be observed.
Additionally, the skew diminishes by about 60% to a value of −0.98. For this case,
the AIC criterion indicates that the Gumbel distribution is the best model, only
slightly better than the Log-Gamma model. In fact, the latter is (−1004 + 1003)/2

5.4 | Modulus of elasticity 97

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



0.2 0.4 0.6 0.8 1.0 1.2

𝐸𝑡,0,cell [–]

0

1

2

3

4

5
Pr
ob

ab
ili
ty

de
ns
it
y
[–
]

Log-Gamma

(a)

𝜎 = 0.09
skew = -0.98

LS10 + LS13
(clear wood cells)

10 15 20
𝐸𝑡,0,cell [GPa]

0.0

0.5

1.0

1.5

2.0

Pr
ob

ab
ili
ty

de
ns
it
y
[–
]

×10−1

(b)

𝜎 = 2.44GPa
skew = 0.91

Figure 5.9. Histograms and fitted probability density functions for (a) the normalized MOEs, 𝐸𝑡,0,cell,
and (b) measured data, 𝐸𝑡,0,cell
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Figure 5.10. Comparison of all fitted distributions for both studied cases: (a) all cells; and (b) cells
with KAR ≤ 0.05

≈ 0.606 times as probable as the former to minimize the information loss. This
means that both distributions are almost equally appropriate alternatives. All the
fitted distributions can be seen together in Figs. 5.10a,b for both analyzed cases,
considering (i) all cells and (ii) only cells with KAR ≤ 0.05.

5.4.5 Transformation of normalized MOE to stationary data

One of the most interesting aspects of the measured localized MOE values is the
possibility to study the autocorrelation of the 𝐸𝑡,0,cell values along board. The
standard procedure to do this involves the application of Eq. (2.15) to the data of
one board, in order to obtain the sample autocorrelation function (SACF). However,
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since each board has only 15 cells, the quality of the results would be inadequate.
Ideally, the results of all boards should be used together in an aggregated manner,
as done e.g. by Taylor and Bender (1991).

A further point concerns the data used to compute the serial correlations, as
some theoretical aspects need to be considered. Specifically, computing the SACF
directly with the 𝐸𝑡,0,cell values can potentially lead to an overestimation of the
autocorrelation, as the pronounced difference of global MOEs between boards
has a marked effect on the computed SACF. A solution comes directly from the
previous section, where the 𝐸𝑡,0,cell values were brought to a common ground by
applying a normalization (𝐸𝑡,0,cell). Using the 𝐸𝑡,0,cell values to compute the SACF
solves the mentioned issue, as the global variation between boards is suppressed.
However, a further issue remains, which has to do with the stationarity of the data.
By stationarity it is meant whether the data is likely to have been produced by a
stationary process as described in Section 2.4.3.

To understand the problem, it has to be bared in mind that the main objective
of computing the SACF is to calibrate an AR model for 𝐸𝑡,0,cell (see Section 6.3).
According to the definitions presented in Section 2.4.3, one condition of an AR
model is for its white noise component, 𝜀𝑖, [see Eq. (2.12)] to be stationary. Re-
calling the distribution obtained for 𝐸𝑡,0,cell from the previous section, it is evident
that 𝐸𝑡,0,cell presents a clearly left-skewed distribution, which cannot have origi-
nated from a stationary process. A common solution for such cases is to apply a
transformation to the data, in order to obtain the needed stationarity. The nature
of the transformation is typically determined by inspection of the data.

The transformation chosen here considers the mapping of the distribution
describing 𝐸𝑡,0,cell, i.e. (𝐹(𝐸𝑡,0,cell)) into a standard Gaussian distribution 𝒩(0, 1).
For this, the following equation is used:

𝑍𝑡,0,cell = Φ−1[𝐹(𝐸𝑡,0,cell)], (5.5)

where 𝑍𝑡,0,cell are the stationary data, and Φ−1 is the inverse cumulative distribution
function (CDF, or percent point function) of the 𝒩(0, 1). In this manner the
stationarity of the data is ensured, and the SACF can be computed.

5.4.6 Serial correlation of localized MOE measurements

The serial correlations were computed using the stationary data, 𝑍𝑡,0,cell, obtained
with Eq. (5.5). The data pairs (𝑍𝑖−𝑘, 𝑍𝑖) of all boards were used in Eq. (2.15)
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for the computation of each lag-𝑘. The values 𝑍𝑖−𝑘 and 𝑍𝑖 originate from cells
of the same board, i.e. the MOE values of different boards are not mixed into a
single vector to perform the correlation analysis. Placing all the data into a single
vector would lead to erroneous results, since cells of different boards would be
mixed when computing the serial correlations. Figure 5.11 shows a diagram of the
two-step transformation of the local MOE data, 𝐸𝑡,0,cell, and its subsequent handling
to compute the SACF. For the case of CW cells, a minimum of seven contiguous
CW cells were considered in order to obtain meaningful autocorrelations.

A further comment has to be made regarding the described methodology used
for the computation of the SACF; this concerns the handling of the data. When
computing the serial correlation of a vector 𝑿 (in this case the local MOE along
a board) it is obvious that the same results will be obtained regardless of the
direction along the board length in which the data are processed. This means
that e.g. for the lag-1 it is irrelevant whether the sub-vectors 𝒂

1
= [𝑥1…𝑥𝑛−1]

and 𝒂
2
= [𝑥2…𝑥𝑛] are taken in one or the other order to compute the correlation

(abscissa and ordinate in a graph). However, in the method described here, the
stationary MOE values of all the boards are considered together, which raises the
question about the direction in which the data of each board are concatenated
together when computing the correlation. To illustrate this, suppose that now,
additionally to the single vector 𝑿, a second vector 𝒀 is present (representing
data from another board), from which also the sub-vectors 𝒃

1
= [𝑦1…𝑦𝑛−1] and

𝒃
2
= [𝑦2…𝑦𝑛] are obtained. Then, there are two different possible ways in which

they can be concatenated: (i) either [𝒂
1
, 𝒃

1
] and [𝒂

2
, 𝒃

2
] or (ii) [𝒂

1
, 𝒃

2
] and [𝒂

2
, 𝒃

1
].

Both of these options could be used to compute the lag-1 correlation, and since
the second halves of the vectors are interchanged, it follows that different values
will be obtained.

Knowing this, there are different approaches which can be applied to compute
the needed serial correlations. The most trivial one would be to simply take the
data of each board in the order they were obtained and concatenate them together
to proceed with the computation of the correlations. Another, more complex
approach, would be to perform an optimization to find the direction of each board
that maximizes the serial correlation. Such an optimization is not trivial, since
it corresponds to an integer non-linear problem, which would demand a high
computational power even for the low number of boards used. It can be argued,
that the difference obtained between these two options might only be significant
for a small number of boards, but as the sample size grows larger, the difference
should be negligible. For this reason, the first option was used here for the analysis
of the serial correlations.
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Figure 5.11. Diagram describing the process whereby each lag-k autocorrelation is computed

The data used to compute the first five lags are shown in Figs. 5.12a-e for all cells,
and in Figs. 5.13a-e for the previously defined clear wood segments. The results
obtained for the first five lags are illustrated in Fig. 5.12f and 5.13f for all cells
and CW segments, respectively. A steady relative decrease of the correlation level
throughout the five lag-correlations can be observed, resembling the characteristic
geometric progression of an AR(1) process [see Eq. (2.14)]. The serial correlation
results are presented quantitatively in Table 5.8, too. Furthermore, Table 5.8
presents the SACF computed with the original 𝐸𝑡,0,cell values (i.e. without any
transformation applied), and additionally with 𝐸𝑡,0,cell, too.

The rather low autocorrelations contrast with the results obtained by Taylor
and Bender (1991), where much higher correlations (between 0.95 and 0.89) were
found for the first three lags in Douglas-fir lumber. There are many factors that
can influence the computed SACF (e.g. species or length of segments), however,
the observed difference is most probably explained by the methodology used to
compute the SACF. Taylor and Bender did not attempt to normalize the MOEs prior
to the regression analysis, as done here. Thus, the computed SACF is probably
highly influenced by the variation in global MOE.

This assumption can be tested with the results from Table 5.8, by comparing the
SACF obtained with and without the two-step transformation (𝐸𝑡,0,cell and 𝑍𝑡,0,cell,
respectively). Here it can be seen that the SACF values are considerably higher for
𝐸𝑡,0,cell, being 64% and 250% larger than the results obtained with 𝑍𝑡,0,cell for the
first two lags when all cells are considered (lag-1: from 0.42 to 0.69; lag-2: from
0.17 to 0.59).

5.4 | Modulus of elasticity 101

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



−2 0 2
𝑍𝑖 [–]

−2

0

2

𝑍
𝑖+

1
[–
]

lag-1

𝑅 = 0.42
N = 658

(a)
−2 0 2

𝑍𝑖 [–]

−2

0

2

𝑍
𝑖+

2
[–
]

lag-2

𝑅 = 0.17
N = 611

(b)

−2 0 2
𝑍𝑖 [–]

−2

0

2

𝑍
𝑖+

3
[–
]

lag-3

𝑅 = 0.08
N = 564

(c)
−2 0 2

𝑍𝑖 [–]

−2

0

2

𝑍
𝑖+

4
[–
]

lag-4

𝑅 = 0.03
N = 517

(d)

−2 0 2
𝑍𝑖 [–]

−2

0

2

𝑍
𝑖+

5
[–
]

lag-5

𝑅 = 0.00
N = 470

(e)
0 1 2 3 4 5

Lag [–]

0.0

0.2

0.4

0.6

0.8

1.0

Se
ri
al

co
rr
el
at
io
n
[–
]

0.42

0.17

0.08

0.03

0.00

(f)

Figure 5.12. Experimentally obtained serial lag-correlations for the local MOE measurements in-
cluding all cells. (Figs. (a) to (e)) Linear regressions used to compute the first five
serial lag-correlations; (f) obtained serial correlations. The dashed line in Figs. (5.12a)
through (e) represents a line with slope equal to unity.
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Figure 5.13. Experimentally obtained serial lag-correlations for the local MOE measurements com-
prising exclusively CW cells. (Figs. (a) to (e)) Linear regressions used to compute the
first five serial lag-correlations; (f) obtained serial correlations. The dashed line in
Figs. (5.13a) through (e) represents a line with slope equal to unity.
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Table 5.8. First five serial correlation values computed for all and for the clear wood segments
applying making any additional filtering

lag-1 lag-2 lag-3 lag-4 lag-5

𝐸𝑡,0,cell
all cells 0.69 0.59 0.59 0.58 0.56
CW cells 0.89 0.85 0.79 0.75 0.71

𝐸𝑡,0,cell
all cells 0.40 0.15 0.15 0.13 0.11
CW cells 0.64 0.44 0.25 0.10 −0.06

𝑍𝑡,0,cell
all cells 0.42 0.17 0.08 0.03 0.00
CW cells 0.58 0.36 0.17 0.07 −0.10

ACF AR(1)*
all cells 0.42 0.18 0.08 0.03 0.01
CW cells 0.58 0.34 0.20 0.12 0.07

* Theoretical autocorrelation function for an AR(1), based on SACF obtained for
𝑍𝑡,0,cell.

When considering only CW cells an increase in the computed autocorrelations
is observed, which for the case of 𝑍𝑡,0,cell is about 53% (from 0.58 to 0.89). This
is a very reasonable result, and supports the intuition that regions with knots,
presenting highly localized disturbance in the fibers, exhibit marked lower MOE
values, thus reducing the total autocorrelation along the main axis of the board.

The transformation of 𝐸𝑡,0,cell into 𝑍𝑡,0,cell has only a minor effect on the com-
puted SACF. For the first lag, and considering all cells, similar values of 0.40 and
0.42 are obtained for 𝑍𝑡,0,cell and 𝐸𝑡,0,cell, respectively. For the case of CW cells also
closely agreeing values of 0.58 and 0.64 (a small decrease of 10%) are obtained.
Finally, and most importantly, it can be seen how closely the SACF follows the
theoretical ACF of an AR(1) for the stationary data (shown in Table 5.8 as “ACF
AR(1)”). This strongly indicates, that an AR(1) is probably a good model to explain
𝑍𝑡,0,cell. The usefulness of the latter is shown in Section 6.3, where a model for the
simulation of 𝐸𝑡,0,cell is presented.

5.5 Tensile strength

The tensile strength obtained from the tests were analyzed at both global and local
levels. While the statistical analysis for the global data was performed according
to typical procedures (fitting to a statistical distribution and estimating the 5%-
quantile value), different methods were used to assess the local (intra-board)
strength variation data. Specifically, survival analysis and order statistics were
used to study the within-board tensile strength variation, this being the main topic
of this section.
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5.5.1 Fracture behavior and global tensile strength

The failure of the boards occurred in all cases in a brittle manner. A highly linear
relationship between tensile load and elongation (piston displacement) along the
free length ℓ𝑠 was observed. The fracture line extended often rather perpendicular
to the board axis and the failure planes showed in many cases a blunt fracture
surface (see e.g. Figs. 5.14a,b). Hence, the aspect of the tensile failures is very
different from the typical failure modes observed in softwoods and partly in diffuse
porous hardwoods (e.g. beech (F. sylvatica)), where the crack often follows the
fiber direction at the location of the first crack onset, e.g. at a knot. Due to the
highly localized failure, the global tensile strengths could be attributed, in general,
to one or sometimes two of the cells, for which the local MOE, 𝐸𝑡,0,cell, had been
previously determined. In most cases (78%) the tensile failure of the boards
started from a knot, and in all other cases from an intersection of inclined fiber
orientation with one of the edges of the board.

Table 5.9 presents the statistical evaluation of the global tensile strength val-
ues for the different grades and for the structurally relevant grade combination
LS10+LS13. The results reveal a small difference between the strength grades
LS10 and LS13, where the higher grade, with throughout more restrictive re-
quirements on the visual grading parameters, shows higher strength values on the
mean, minimum, maximum and 5%-quantile levels. Here, the 5%-quantile level
was based on a Lognormal distribution at a confidence level of 75% according to
EN 14358 (2016).

(a) (b)

Figure 5.14. Examples of blunt failures obtained in tensile tests. (a) perfectly blunt failure perpen-
dicular to load and fiber direction; (b) mix of blunt failure normal to fiber direction and
failure aligned with the inclined fiber direction.
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Table 5.9. Global tensile strength results, separately for the different strength grades

Tensile strength 𝑓𝑡,0,glob [MPa]
N Mean Std 𝑓𝑡,0,𝑘 COV Min Max

Grade

Reject 4 20.8 4.1 13.4 20% 14.9 25.1
LS7 4 29.6 12.7 7.0 43% 8.6 40.4

LS10 17 27.4 10.6 12.8 39% 13.1 49.2
LS13 22 30.5 11.6 13.9 38% 14.6 55.3

LS10+LS13 39 29.1 11.3 13.4 39% 13.1 55.3

All 47 28.5 11.2 12.6 39% 8.6 55.3

The scatter of the strength values of all individual grades, as well as for the
combined LS10+LS13 sample, is denoted throughout by a COV of about 40%,
being very high. This leads to rather low characteristic i.e. 5%-quantile values,
𝑓𝑡,0,𝑘, of 12.8N/mm2, 13.9N/mm2 and 13.4N/mm2 for the grades LS10, SL13
and the grade combination LS10+LS13, respectively.

5.5.2 Local tensile strength

The observed blunt failures of the specimens allowed in many cases (76%) a
further tensile testing of at least one of the remaining parts of the broken board
(see Fig. 5.2). A third and fourth tensile test was possible in 43% and 2% of the
boards, respectively. No evidence for a noticeable weakening of the remnant parts
of the boards after the global failure was found.

In a first approach to the analysis, Fig. 5.15a presents all (95) tensile strength
values of those boards (𝑛 = 37) where multiple strength measurements were
possible. These data were obtained either in the first loading to fracture, 𝑓𝑡,0,glob,
or in the secondary loading tests, 𝑓𝑡,0,sec. Figure 5.15b presents the same results,
now as ratios 𝑓𝑡,0,sec/𝑓𝑡,0,glob. The chosen presentation of the data enables a first
assessment of the variability of 𝑓𝑡,0,cell in the studied oak boards.

In both Figs. 5.15a and 5.15b, the boards are ordered from left to right by
the assigned hardwood strength grade (LS) and within each LS grade group by
ascending strength ratio 𝑓𝑡,0,sec/𝑓𝑡,0,glob within each board. Table 5.10 contains a
statistical evaluation of the results presented graphically in Fig. 5.15b. Very large
variations denoted by strength ratios up to almost 6 can be observed. However
the mean and standard deviation of the regarded strength ratio of 2.2 ± 1.2 foster
the impression that this variation is normally not that extreme. It can be seen
that boards belonging to the grade LS13 tend to have lower variation in strength
as the LS10 boards (1.93 ± 0.84% vs. 2.35 ± 1.33%), which can be attributed

106 5 | Variation of mechanical properties in oak boards

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



98 91 76 78 75 72 77 70 62 84 79 83 92 80 68 54 81 71 64 86 59 73 53 51 57 74 65 95 82 89 66 63 10
1

10
0 99 61

Board No.

1

2

3

4

5

6

Te
ns
ile

st
re
ng

th
ra
tio

s
𝑓 𝑡

,0
,s
ec

/𝑓
𝑡,

0,
gl
ob

(b)

LS13
LS10
LS7
Reject

98 91 76 78 75 72 77 70 62 84 79 83 92 80 68 54 81 71 64 86 59 73 53 51 57 74 65 95 82 89 66 63 10
1

10
0 99 61

20

40

60

80

Te
ns
ile

st
re
ng

th
𝑓 𝑡

,0
[N

/m
m
²]

(a)

LS13
LS10
LS7
Reject

Figure 5.15. Global and secondary tensile strength values of the investigated oak boards of different
visual hardwood grades (LS7, LS10 and LS13) according to DIN 4074-5 (2008); (a)
absolute values; (b) ratios of secondary strengths vs. global values per board.

to the difference in the allowed knot sizes in each grade. Nevertheless, such an
assessment is biased, as the data are highly incomplete, owed to the physical
impossibility to test the tensile strength of each cell. As such, the real variation
should probably be higher. This is analyzed subsequently in more depth.

5.5.3 Relationship between tensile strength and MOE

A regression analysis was performed for the MOE and tensile strength at the global
and local levels, for all strength grades together (in Figs. 5.16a,b the respective
grades are identified by different symbols). It is apparent that the correlation
between ln(𝑓𝑡,0,glob) and 𝐸𝑡,0,glob is rather weak, denoted by a coefficient of correla-
tion 𝑅 = 0.48. In contrast, the localized correlation between ln(𝑓𝑡,0,cell) vs. 𝐸𝑡,0,cell is
significantly higher, characterized by an increased R-value of 0.73. The difference
between the two computed correlations is reasonable, as the global tensile strength
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Table 5.10. Statistical evaluation of the relative difference of the maximum value of the secondary
tensile strengths vs. the global strength of the individual boards.

Grade Within board strength ratio 𝑓𝑡,0,sec/𝑓𝑡,0,glob
N Mean Std COV Min Max

Reject 4 2.37 – – 1.67 3.64
LS7 2 3.39 – – 1.28 5.50

LS10 15 2.35 1.33 56.8% 1.22 5.75
LS13 15 1.93 0.84 43.6% 1.13 4.32
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Figure 5.16. Correlations between tensile strength and MOE. (a) global MOE, 𝐸𝑡,0,glob, vs. global
tensile strength, ft,0; (b) local MOE, 𝐸𝑡,0,cell, vs. local tensile strength, 𝑓𝑡,0,cell.

of a board with the described localized failure is triggered by the weakness of
the specific failing cell. Furthermore, the weakest of the serially arranged cells
along the full free length, ℓ𝑠, fails first irrespective of how strong/stiff the board
may be at other cells. Hence, it can be expected for the correlation between the
local properties 𝑓𝑡,0,cell and 𝐸𝑡,0,cell to be higher as the correlation for the global
properties. Similarly, in the secondary tensile tests, performed with the remaining
parts after the global failure, the respective weakest cell within the reduced free
length fails.

It is tempting to assume that the cells responsible for the global and secondary
failures represent the cell with the minimumMOE—or close to it—of all cells within
the respective free length, i.e. 𝐸fail

𝑡,0,cell = 𝐸min
𝑡,0,cell, as MOE-detrimental variables have

probably a negative effect on tensile strength, too. This assumption was checked
against the experimental data: the location of 𝐸glob-fail

𝑡,0,cell corresponded with the
location of 𝐸min

𝑡,0,cell for 53% of the tested boards. If the adjacent cells of 𝐸min
𝑡,0,cell are

considered too, then 70% of the global failures occur in the region defined by
the position of 𝐸min

𝑡,0,cell and its immediate surroundings. The cases where this does
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not occur are mostly characterized by boards or board sections with a low 𝐸𝑡,0,cell
variation, presumably correlated to a low tensile strength variation. Since many
adjacent cells have similar low 𝐸𝑡,0,cell values, the occurrence of the failure at the
cell with lowest MOE becomes less likely.

In summary, it can be stated that the weakest cell (responsible for the global
failure) is in general associated to the lowest 𝐸𝑡,0,cell of each board, and that 𝑓𝑡,0,cell
shows a correlation with 𝐸𝑡,0,cell. This is especially true when higher MOE variation
is observed within each board. This constitutes some relevant information for the
estimation of the intra-board distribution of tensile strength discussed below.

5.5.4 Estimation of the intra-board tensile strength distribution

The presented data give a sense of the amount of variation that can be expected
for the tensile strength in the specifically studied oak boards. However, in the
presented form these data fail to give an adequate statistical characterization of
the variation of 𝑓𝑡,0,cell, e.g. a probability distribution. This is owed to the limited
amount of data relative to the number of cells defined per board (15 cells). An
adequate representation of the variation of 𝑓𝑡,0,cell has a practical importance in
the development of a material model for the boards, and is therefore investigated
here.

Survival analysis applied to the tensile strength data

The analysis of the variation of tensile strength along board is performed by means
of survival analysis (SA). The general methodology for this was presented in
Section 2.3.3. In a short summary, survival analysis is based on maximizing the
likelihood function, ℒ, of Eq. (2.8).

For the studied oak boards, the censored data correspond to the tensile strength
associated to the unbroken cells. For these it is only known that 𝑓𝑡,0,𝑖 ≥ 𝑓𝑡,0,𝑘, with
𝑘 being the cell that failed in the corresponding free length (see Fig. 5.17). If
the data is considered in this manner, then Eq. (2.8) can be used to study the
suitability of different models to describe 𝑓𝑡,0,cell.

In this analysis, four different models were fitted to the data. Firstly, there are
two censored parametric models: (a) a three parameter Weibull distribution and
(b) a Beta distribution; and secondly, two censored regression models with the
same base distributions as before: (c) Weibull and (d) Beta, where the scale (𝛿)
and shape parameters (𝜌, and 𝑎 and 𝑏) are functions of the global MOE of each
board, 𝐸𝑡,0,glob. These four models are presented in Table 5.11.
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Figure 5.17. Assumed censored data in the tensile tests of boards (compare with Fig. 5.3)

The Weibull distribution is a common choice to describe the strength of differ-
ent materials—especially when brittle failure is observed—, as it was developed
with the concept of weakest link (WL) in mind. Including this distribution in the
analysis results therefore naturally. The Beta distribution is less commonly used
for the description of strength of materials. However, having seen the results of
the localized MOE variation and the rather left-skewness of its distribution (see
Section 5.4.2), it seems reasonable to test a distribution that is able to express a
similar behavior, while at the same time being compatible with the WL theory.

The data fed to the models were constructed in the following way:

1. A binary vector 𝛿 of size 15 ⋅𝑁 (𝑁 = total number of tested boards; multiplier
15 represents the number of 100mm long cells per board) was assembled
with either “1” or “0”, corresponding to whether a failure has been observed
in the cell or not, respectively.

2. A second vector of tensile strengths, 𝒇
t,0
, of size 15 ⋅ 𝑁 is created in the

following manner:

• if 𝛿𝑖 = 1, then the observed 𝑓𝑡,0 value is inserted,

• if 𝛿𝑖 = 0, then the value assigned corresponds to the highest tensile
strength registered during a test where the 𝑖-th cell was part of the free
length of the board. This is interpreted as “this cell has at least a tensile
strength 𝑓𝑡,0,𝑖”.

3. For the case of the models (c) and (d), representing the censored regressions,
a third vector was created with the corresponding 𝐸𝑡,0,glob value for each cell,
as MOE is assumed constant for each cell in a given board.
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Table 5.11. Statistical distributions and fitted parameters for the different investigated models to
describe the tensile strength variation within board

Model Parameters(1)

Censored parametric models:
(a) Weibull (𝜆, 𝛿, 𝜌)
(b) Beta (𝜆, 𝛿, 𝑎, 𝑏)

Censored regressions:
(c) Weibull (𝛼0, 𝛼1, 𝛽0, 𝛽1)
(d) Beta (𝛼0, 𝛼1, 𝛽0, 𝛽1, 𝛾0, 𝛾1)

with: 𝜆 = 0
𝛿 = exp (𝛼0 + 𝛼1 ⋅ 𝐸𝑡,0,glob)
𝜌, 𝑎 = exp (𝛽0 + 𝛽1 ⋅ 𝐸𝑡,0,glob)
𝑏 = exp (𝛾0 + 𝛾1 ⋅ 𝐸𝑡,0,glob)

Distributions:

Weibull: 𝐹(𝑥) = 1 − exp [− (𝑥 − 𝜆
𝛿 )

𝜌
]

Beta(2): 𝑓(𝑥) = Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏) ⋅ (

𝑥 − 𝜆
𝛿 )

𝑎−1
(1 − 𝑥 − 𝜆

𝛿 )
𝑏−1

1: 𝜆: location; 𝛿: scale; (𝜌, 𝑎, 𝑏): shape parameters.
2: The probability density function (PDF) is presented instead of the cumu-
lative density function (CDF), since the Beta distribution has no closed
expression for its CDF.

* Γ(⋅): Gamma function

For the application of the above described method, the python library Lifelines
(Davidson-Pilon et al., 2019) was used, which implements the needed framework
for the analysis of censored data. The models were implemented according to the
specifications of Lifelines, and are available in Tapia and Aicher (2021).

Survival analysis has been used before for a similar study by Fink (2014),
however the methodology used there was very different. Specifically, the likelihood
function was not considered and instead an iterative method was applied to fit a
parametric Normal distribution, according to Chatterjee and McLeish (1986).

Parametric model

Table 5.12 presents the estimated parameters of the two studied parametric
strength distribution models, which were fitted to the tensile strength data, 𝑓𝑡,0,cell,
of the whole set (𝑁 = 47) and to the subset of grades LS10 and LS13 boards
(𝑁 = 39). Further, the logℒ and the Akaike information criterion (AIC) (Akaike,
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1974) are given for each model. Figure 5.18 shows the two fitted distributions for
the whole set.

Considering all boards, the two parametric models, (a) Weibull and (b) Beta,
result in very similar logℒ values, meaning that the quality of the fitting process is
comparable. However, the Beta model is penalized by the AIC owed to the one extra
parameter (AIC = 2𝑘−2 logℒ, with 𝑘 number of parameters). Figure 5.18a shows
both fitted parametric models as compared to the non-parametric Kaplan-Meier
(KM) estimator (Kaplan and Meier, 1958). A good agreement can be observed
between both model curves and the KM estimator. However, beyond the lower tail
of the distributions both models behave fundamentally different, which is apparent
from the respective PDFs in Fig. 5.18b. The most important difference in this
regard is that the Beta model imposes an upper limit, estimated for the given case
as loc + scale ≈ 100MPa. In contrast, the Weibull model is not capped, meaning
that much higher local tensile strengths should be possible. It is also clear that the
fitted Beta distribution presents a rather marked skewness “to the left”, associated
with an abrupt descent of the right tail of the PDF. Contrary, the estimated Weibull
model shows a more symmetric behavior, even slightly right-skewed, reaching
higher 𝑓𝑡,0,cell values.

Similar observations can be made for the behavior of the fitted parameters for
the LS10+LS13 subset, revealed graphically in Fig. 5.19. Here, however, the Beta
distribution presents a lower AIC value than the Weibull model. While the Weibull
model (a) behaves very similarly as in the case of all boards, the Beta model (b)
exhibits a sharp end, determined by the shape parameter 𝑏 = 1.

The main difference between the Beta and the Weibull distributions is that the
Beta distribution is bounded from both sides, while the Weibull distributions are
unbounded to the right. This has a noticeable effect in the shape of the distribution
when maximizing the log ℒ̂ in Eq. (2.9). Since it is reasonable to imagine a finite
maximum possible tensile strength for the boards, the double-sided bounding can

Table 5.12. Fitted parameters and statistical information for the different fitted distributions

loc scale shape parameters log ℒ̂ AIC

Model 𝜆 𝛿 𝜌, a b

All boards:

(a) Weibull 5.92 74.5 2.39 – −600.6 1207.3
(b) Beta 6.93 93.4 2.15 1.23 −600.3 1208.5

LS10+LS13 grades:

(a) Weibull 8.71 70.4 2.31 – −491.6 989.1
(b) Beta 10.6 79.3 1.97 1.00 −490.1 988.1
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Figure 5.18. Fitted distributions for 𝑓𝑡,0,cell of all boards (a) CDFs and Kaplan-Meier estimator; (b)
PDFs.
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Figure 5.19. Fitted distributions for 𝑓𝑡,0,cell for LS10+LS13 boards(a) CDFs and Kaplan-Meier esti-
mator; (b) PDFs;

be regarded as a reasonable property in this case—preventing negative values on
the one side and unrealistically large values on the other. The maximum value
for the Beta distribution (“loc” + “scale” = 100.3N/mm2) resulted directly from
the optimization process (no parameters were fixed). However, if there was a
reason to assume a specific maximum value (e.g. due to results of a different batch
of specimens), then this could be considered in the fitting process by setting the
“scale” parameter accordingly.

Although this analysis provides a good insight into the 𝑓𝑡,0,cell variation, a further
step can be made in order to differentiate the level of variation according to a
global indicator of each board. The results of such approach are presented next.
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Figure 5.20. Parametric 𝑓𝑡,0,cell–𝐸𝑡,0,glob regression models fitted to all boards. Probability distri-
bution functions drawn for percentiles between 0% and 99.8% (a,b) strength–MOE
relationship and PDFs for different MOEs; (c,d) PDFs of 𝑓𝑡,0,cell distributions for con-
stant MOE values

Parametric regression model

The censored regression analysis was performed with both models (c) Weibull and
(d) Beta, considering the global MOE as the explanatory variable. Similarly as
for the parametric models, the analysis was performed for all boards and for the
subgroup of LS10+LS13 boards. Due to numerical problems the Beta regression
model could not be fitted to the data subset of LS10 and LS13 boards.

Figures 5.20a and 5.20b illustrate the results of the fitted Weibull and Beta
regression models for all grades, by means of several PDF curves for ascending
𝐸𝑡,0,glob values in the range of 8GPa to 16GPa. Figures 5.20a and b show the PDFs
of the local strength distributions for selected, constant MOE values. Figures 5.21a
and b analogously reveal the results for the strength grade sub-group LS10+LS13.
The regression lines in Figs. 5.20a and 5.21a reveal a clear increase in the expected
value of 𝑓𝑡,0,cell is observed from both models with growing 𝐸𝑡,0,glob. Thus, these
two models capture both, the variation of 𝑓𝑡,0,cell and its correlation with the global
MOE of boards.
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Figure 5.21. Parametric𝑓𝑡,0,cell–𝐸𝑡,0,glob regressionmodels fitted to the subgroup LS10+LS13. Prob-
ability distribution functions drawn for percentiles between 0%and 99.8% (a) strength–
MOE relationship and PDFs for different MOEs; (b) PDFs of 𝑓𝑡,0,cell distributions for
constant MOE values

Table 5.13 presents the estimated parameters for the fitted Weibull and Beta
regression models. Model (c) starts with a rather right-skewed and wide-spread dis-
tribution for lower 𝐸𝑡,0,glob (skewness 𝑠 = 0.42 for 𝐸𝑡,0,glob = 8GPa, see Fig. 5.20c),
and evolves towards a more symmetric, lower variation distribution for higher
𝐸𝑡,0,glob values (𝑠 = −0.18 for 𝐸𝑡,0,glob = 16GPa). Model (d) starts with a wide-
spread, right-skewed distribution for lower 𝐸𝑡,0,glob values, too, however its shape is
kept rather constant for higher 𝐸𝑡,0,glob, but shifted upwards towards higher 𝑓𝑡,0,cell
values (see Fig. 5.20d). Paradoxically, the regression model (c) resembles more
the behavior of the parametric Beta model (b), whilst model (d) (Beta) behaves
more similarly to the parametric model (a) (Weibull). Table 5.14 shows the log-
likelihood and AIC associated to each fitted model, where it can be observed that
the AIC is lower for the Weibull model, i.e. the Weibull model should be preferred.

It is worth noting, that models considering the location parameter 𝜆 also as a free
parameter (i.e. 𝜆 ≠ 0, both dependent and independent of 𝐸𝑡,0,glob) did not render
satisfactory results, but in fact resulted in mechanically unlikely distributions.
This could be related to an insufficient number of data points, or to numerical
instabilities, preventing to find the optimum result. For the case of highly non-linear
problems with many parameters to fit, the choice of the right initial values has
an important influence on the solutions. For the analyzed models with 𝜆 = 0 the
estimated parameters represent the optimal ones, which was proven by checking
multiple different combinations of the initial conditions.
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Table 5.13. Estimated parameters for the regression models Weibull and Beta

loc scale shape parameters

Model 𝜆 𝛿 𝜌, a b

All boards:

(c) Weibull 0 𝛼0: 4.04 𝛽0: 2.22 · 10−1 –
𝛼1: 2.36 · 10−5 𝛽1: 8.01 · 10−5 –

(d) Beta 0 𝛼0: 5.90 𝛽0: 2.02 · 10−1 𝛾0: 2.01
𝛼1: 5.50 · 10−5 𝛽1: 1.19 · 10−4 𝛾1: 1.48 · 10−4

LS10+LS13 grades:

(c) Weibull 0 𝛼0: 3.91 𝛽0: 4.84 · 10−1 –
𝛼1: 3.11 · 10−5 𝛽1: 6.34 · 10−5 –

Table 5.14. Log-likelihood and AIC for the fitted parameters of the Weibull and Beta regression
models

𝑙𝑜𝑔ℒ̂ AIC
Model

All boards:

(c) Weibull −591.8 1192
(d) Beta −590.5 1193

LS10-LS13 grades:

(c) Weibull −484.9 978

Verification of parametric models by means of Order Statistics

The goodness of the fitted Weibull (a) and Beta (b) parametric models can be
checked by extreme value theory. As previously mentioned, if the fitted models
are describing the tensile strength variation along the board, then the application
of Eq. (2.6) to the CDF of the fitted models should match the experimental values
of 𝑓𝑡,0,glob (minimum value of each board). This is demonstrated in Figs. 5.22b
and 5.22a for the Weibull and Beta models, respectively.

It is apparent that the theoretical minimum CDF curve 𝐹min(𝑥) matches rather
exactly the experimental results using an exponent 𝑛 = 15 in Eq. (2.6). This is
the desired behavior in a stochastic model for 𝑓𝑡,0,cell, as this means that the model
should be able to capture the size effect (see below) in a rather good manner.
Regarding the censored regression models (c) and (d), a similar analysis could
not be performed, as their parameters depend on 𝐸𝑡,0,glob. This would need a
comparison against experimental data for different, specific 𝐸𝑡,0,glob values, which
is not possible for this dataset due to the rather small sample size.
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Figure 5.22. Application of Eq. (2.6) to two of the fitted parametric models: (a) Weibull model; (b
Beta model). The shown experimental values correspond to the tensile strength per
board (𝑓𝑡,0,min)

5.6 Regression models for MOE and 𝑓𝑡,0

The presented analysis of the variation of mechanical properties within board
presented in the thesis is quite different to the more usual approach consisting
on the use of linear regressions. Nevertheless, it is deemed important to produce
results in line with the proposed models of Ehlbeck and Colling (1987), Blaß et al.
(2005), and Fink (2014), too. This allows to assess the suitability of these models
for the studied oak material.

Table 5.15 presents a summary of the results obtained by applying different
regression models from the literature to the experimental data. These models take
the same form as the regression models presented in Table 2.1. The results are
briefly discussed in the following.

Firstly the MOE results obtained with Eqs. (a) and (c) of Table 5.15 used by
Ehlbeck and Colling (1987) and Blaß et al. (2005) are discussed. It can be observed
that, although Eq. (c) adds an additional density term (𝜌20), no effect is observed in
the computed R-value. However, a noticeable effect is observed for the AIC, which
clearly indicates the usefulness of the additional term. Here, the global density
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was used for the computations, as many cells would remain unconsidered if only
local densities would have been used (local densities are not available for every
cell). Nevertheless, if only the local densities are used, correlations R=0.57 and
R=0.58 are obtained for models (a) and (c), respectively.

Regarding the results for the 𝑓𝑡,0 models of Eqs. (b) and (d) it can be concluded
that there is no noticeable difference in their prediction quality. Both models
(Eqs. (b) and (c)) show equal R-values R=0.55, and very similar AIC values of
85.6 and 86.0, respectively.

The application of themodels (e)–(h) from Fink (2014) to the oak data produces
in general better correlations than the models (a)–(d). For example, a high R-value
of 0.79 is obtained for Eq. (e), however, the R-value diminishes to 0.61 for (f)
where only weak sections are considered. Since only a subset of the data was used
to fit Eqs. (e) and (f) (CWS and WS respectively) a direct comparison with the
results from Eqs. (a) and (c) is not possible. However, if all the cells are used in
Eq. (f) (N=705) correlation coefficients R=0.76 and AIC=−622.7 are obtained.
This means that by all measures that the regressions by Fink (2014) deliver better
results for 𝐸𝑡,0 than the above mentioned models. This is to be expected, as the
dynamic modulus of elasticity presents in general a high correlation with the global
MOE.

5.7 Summary and discussion

The within-board variation of MOE and tensile strength were discussed in detail,
and to a minor extent the effect of density, too. To study the MOE variation, a
two-step transformation process was applied to the empirical cell MOE data. In the
first step, the empiric MOEs are normalized by the averaged intraboard maxima,
and the resulting data are used to fit a statistical distribution. Due to the specific
hardwood-growth characteristics in the regarded case (European white oak), the
normalized cell data present clear left skewness, which is best approximated by
a log-gamma distribution. Finally, the normalized MOE values are then mapped
onto a 𝒩(0, 1) normal distribution, thus achieving stationarity.

The left skewness of the (normalized) MOE is owed to the localized low MOE
values attributed to the detrimental effect of local imperfections, such as knots and
fiber deviations. It can be proven that the normalization method itself preserves
the original shape of the distribution, which gives a solid base to assume that the
obtained left-skewed distributions within board accurately represent the variation
of MOE.
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Furthermore, the distribution for 𝐸𝑡,0,cell should, in theory, be determined for
each studied batch of boards. An experimental campaign using the here reported
methodology can be very time-consuming. Thus, ideally this distribution would
be parameterized in terms of certain characteristics of the boards, like grading
class or origin. Naturally, this would require a large enough dataset in a first place.
Since the presented method is rather slow, different techniques could be used to
accelerate the process of gathering the needed data. Possible methods could be
digital image correlation or fiber-optic strain measurements.

The application of survival analysis to the study of the variation of 𝑓𝑡,0,cell proved
to deliver reasonable results, which are in agreement with the extreme value theory.
This means that a model based on this results should be capable of simulating a size
effect. This will be investigated in the next chapter. Whether the Weibull or Beta
distribution is more suitable for the simulation of 𝑓𝑡,0,cell values is a more difficult
question. Considering the AIC’s from Table 5.12, the Weibull model should be
chosen, as it represents the data with higher probability than the Beta distribution.
Nevertheless, the fitted Beta model is appealing, too, since it considers a clear
upper limit for the tensile strength within a single board.

The two analyses carried out for MOE and 𝑓𝑡,0 produced the needed components
for the development of a material simulation model. Such model should be capable
to reproduce the observed properties in a probabilistic sense, making it suitable to
be used as input for stochastic models of glulam.

5.7 | Summary and discussion 121

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



Ch
ap

te
r

6
Simulation of mechanical

properties along oak boards

6.1 General remarks

This chapter presents models for the simulation of mechanical properties along
boards required for glulam strength models, such as the model introduced in
Chapter 7. The models comprise the generation of MOE, tensile and compres-
sive strength profiles along boards, while preserving the statistical characteristics
observed at the global level (i.e. according to standardized tests). This is done
by applying the results from the previous chapter regarding the autocorrelation
of the variation of MOE within board, as well as the intra-board tensile strength
distributions.

The general procedure to simulate the mechanical properties can be divided
in two main subtasks: (i) The simulation of correlated global properties (𝐸𝑡,0,glob,
𝑓𝑡,0,glob and 𝑓𝑐,0,glob), and (ii) the generation of profiles of the corresponding local-
ized mechanical properties (𝐸𝑡,0,cell, 𝑓𝑡,0,cell and 𝑓𝑐,0,cell). Figure 6.1 illustrates these
steps.

The global properties are generated considering the correlation matrix, while
the simulation of localized profiles is based on an autoregressive model. For the
case of the localized MOE, the procedure considers the generation of stationary
processes, which are then translated to MOE profiles by reversing the two-step

123

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



Input variables

Generation of correlated
global mechanical properties

Simulation of board lengths

Simulation of local-
ized MOE profiles

Simulation of localized
tensile strength profiles

Simulation of localized com-
pressive strength profiles

Storage of all simu-
lated profiles in a file

Figure 6.1. General flowchart of the simulation of localized mechanical properties

method described in the previous chapter. Tensile and compressive strength profiles
are simulated based on the same stationary data, too. Here, the cross-correlation
between the different mechanical properties at a local level is considered by a
cross-correlation coefficient. The details of each step are presented in the following.

6.2 Simulation of global properties of boards

For the simulation of global mechanical properties, the method described in 2.4.1
is applied. This approach uses the concept of the multivariate normal distribu-
tion to preserve the correlation between variables. Additionally, it considers the
mapping of the correlated variables from the𝒩(0, 1) space onto the corresponding
distribution for each global variable. The mechanical properties regarded here
are the MOE parallel to the main axis of the board, 𝐸𝑡,0,glob, the tensile strength
parallel to the grain, 𝑓𝑡,0, and the compressive strength parallel to the grain, 𝑓𝑐,0.
The input data needed by the model is obtained by means of the commonly used,
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Table 6.1. Correlation matrix, 𝚺, for the mechanical strength-MOE properties of dataset B

𝐸𝑡,0,glob 𝑓𝑡,0 𝑓𝑐,0
𝐸𝑡,0,glob 1.00 0.48 0.81
𝑓𝑡,0 0.48 1.00 0.80
𝑓𝑐,0 0.81 0.80 1.00

Table 6.2. Parameters for the global mechanical properties of the boards

Variable Distribution loc scale shape

𝐸𝑡,0,glob lognorm 6.22 × 103 6.58 × 103 4.20 × 10−1

𝑓𝑡,0 lognorm −3.52 × 102 8.88 × 102 1.83 × 10−1

𝑓𝑐,0 lognorm −2.26 × 10−1 5.03 × 102 4.62 × 10−2

standardized tests, for example according to EN 408 (2012).

The application of this method is demonstrated taking as input parameters the
statistical information of Dataset B (specifically the combined grade LS10+LS13,
see Table 3.3). For the oak boards belonging to this dataset the correlation matrix
𝚺 is presented in Table 6.1. The correlation between 𝑓𝑡,0 and 𝑓𝑐,0 has not been
determined empirically, and was assumed as R=0.8. However, it is noteworthy to
mention that this value is only mathematically needed and does not influences the
relevant generated variables significantly: the correlation 𝑓𝑡,0–𝑓𝑐,0 has no relevance,
as both variables are mutually exclusive in a GLT model: either 𝑓𝑡,0 or 𝑓𝑐,0 is
assigned depending on the position of the board (see Fig 7.2). The experimentally
estimated parameters for the statistical distributions of these variables are shown
in Table 6.2.

Figure 6.2a shows the simulated global values for 𝐸𝑡,0,glob and 𝑓𝑡,0, for a total
of 5000 boards. The simulated data fits the input distribution very closely. At
the same time, the correlation R=0.48 between both variables is preserved, too.
The same conclusion can be drawn from Fig. 6.2b, where the simulated 𝐸𝑡,0,glob
and 𝑓𝑐,0 are compared. In this case, the correlation obtained is slightly smaller
as specified in the covariance matrix, Σ, (0.79 vs. 0.81). This difference in the
correlation is owed to the translation 𝑦 = 𝐹−1(Φ(𝑥)). For the studied distributions,
this difference can be considered to be very small.

6.3 Localized modulus of elasticity

The model for the simulation of 𝐸𝑡,0,cell values along boards is based on an au-
toregressive (AR) model that preserves the serial correlation determined in Sec-
tion 5.4.6. In essence, the steps described in 5.4.6 to analyze the MOE variation
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Figure 6.2. Simulated data for global MOE vs. strength values (a) 𝐸𝑡,0,glob vs. 𝑓𝑡,0,glob, and
(b) 𝐸𝑡,0,glob vs. 𝑓𝑐,0,glob
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are followed in reverse order. First, (i) a stationary process is generated by means
of an AR model, (ii) then this process is mapped into the distribution corresponding
to 𝐸𝑡,0,cell, and finally (iii) a scaling factor is applied to these values to de-normalize
the 𝐸𝑡,0,cell values and obtain real local MOEs for any given global MOE for a board.

In the following, the characteristics of the autoregressive process are analyzed
and later the detailed steps to simulate the 𝐸𝑡,0,cell profiles are presented.

6.3.1 Determination of order and parameters of the stationary
AR process

The first step for the simulation of MOE profiles along board concerns the sampling
of stationary 𝑍𝑡,0,cell values. The analysis performed in Section 5.4.6 provides all
required information for this. The results obtained for the first five lag-correlations
indicate, that a first order AR model describes the variation of 𝑍𝑡,0,cell in a satisfac-
tory manner. This applies for both studied cases: for clear wood segments only
(KAR < 0.05), and for all segments in each board. A verification of this statement
was tested by fitting the 𝑍𝑡,0,cell data to both, an AR(1) and an AR(2) model of the
form

𝑍𝑡,0,𝑖 =
𝑝

∑
𝑗=1

𝜑𝑗 ⋅ 𝑍𝑡,0,𝑖−𝑗 + 𝜀𝑖, (6.1)

where 𝜑𝑖 are the model parameters, and 𝜀𝑖, the white noise component, computed
according to Eq. (2.30). The model parameters 𝜑𝑖 were determined by solving
Eq. (6.1) for 𝑝 = 1 and 𝑝 = 2 (first and second order, respectively). The equation
system was solved by means of the ordinary least squares method.

The fitted parameters for the two models [AR(1) and AR(2)], as well as for the
two studied cases, considering all cells and only the CW segments, are presented
in Table 6.3. It is apparent that the additional parameter in AR(2) has almost no
relevance in the prediction quality of the stationary data (see the 𝜑2 parameters
and the 𝑅 values in Table 6.3). This irrelevance becomes even more clear when
the AIC is considered, where in both cases, the AR(1) presents the lowest value.
Furthermore, the fact that the difference of the AIC values for AR(1) and AR(2) is
exactly 2 means that the extra parameter has no notable effect in the prediction
(AIC = 2𝑘−2 logℒ, whereℒ is the likelihood and 𝑘 is number of fitted parameters).
It should be noted that the same number of data points was used to compute the
AIC for AR(1), as was available for the AR(2) fitting process, since the AIC depends
on the number of data points used (owing to the likelihood).
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Table 6.3. Parameters for autoregressive models of first [AR(1)] and second [AR(2)] order for local
MOE for (i) all cells and (ii) for clear wood (CW) cells with KAR < 0.05

𝜑1 𝜑2 R Resid AIC
Model

AR(1)All 0.440 – 0.43 0.96 1722
AR(2)All 0.446 −0.014 0.43 0.96 1724
AR(1)CW 0.584 – 0.60 0.77 637
AR(2)CW 0.586 −0.002 0.60 0.77 639

In conclusion, the AR(1) was chosen to describe the stationary process needed
for the simulation of localized MOE profiles along board.

6.3.2 Model for the simulation of MOE profiles

The simulation method is based on an AR(1) model and consists of three main
steps, which are analogous to the steps described to obtain the stationary data of
the localized empiric MOEs, but in a reversed order. The procedure consists of the
following steps:

1. Generate an autoregressive process with the model parameters 𝜑𝑖 estimated
from solving the Eq. (6.1). Following the above results, an AR(1) model is
used to simulate 𝑍𝑡,0,cell values as

𝑍𝑡,0,𝑖 = 𝜑1𝑍𝑡,0,𝑖−1 + 𝜀𝑖 , (6.2)

where 𝜀𝑖 is the white noise component 𝒩(0, 𝜎), with 𝜎 = √1 − 𝜑21 . To avoid
a strong influence from the initial conditions, the first 30 generated values
per board are discarded.

2. The generated 𝑍𝑡,0,cell values are mapped to the distribution 𝐹(𝑥) of the
normalized cell MOE data, 𝐸𝑡,0,cell as

𝐸𝑡,0,cell = 𝐹−1 [Φ (𝑍𝑡,0,cell)] , (6.3)

where 𝐹−1 is the inverse CDF of the distribution describing the normalized
MOE data and Φ is the standard normal distribution, 𝒩(0, 1), which is the
exact inverse of Eq. (5.5).
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3. Finally, given a value for the global MOE of the board (𝐸𝑡,0,glob), a factor 𝑚0

is computed to scale 𝐸𝑡,0,cell as

𝐸𝑡,0,cell = 𝑚0 ⋅ 𝐸𝑡,0,cell , (6.4)

where 𝐸𝑡,0,cell is the simulated MOE profile of the virtual board. The factor
𝑚0 is computed as

𝑚0 =
𝐸𝑡,0,glob

𝐸𝑡,0,glob,cell
, (6.5)

where 𝐸𝑡,0,glob,cell is the result after applying the equation for serially arranged
springs to the generated 𝐸𝑡,0,cell values (Eq. (5.2)). The choice of 𝐸𝑡,0,glob can
be randomly sampled from a suitable distribution.

An overview of this process is illustrated in Fig. 6.3 (left branch) as a flowchart.
Figure 6.3 also describes the simulation of tensile strength profiles, which is
described later in this chapter and depends on the simulation of MOE profiles.

6.3.3 Example of simulations of MOE profiles along boards

For the simulation of MOE profiles of oak boards, the procedure described above in
conjunction with Eqs. (6.2) to (6.5) is followed. For the simulation of the 𝑍𝑡,0,cell
values, the parameters 𝜑1, corresponding to the AR(1) models, are taken from
Table 6.3. For the distribution of the normalized MOE, 𝐸𝑡,0,cell, the log-gamma dis-
tribution is chosen with the corresponding parameters from Table 5.7. Simulations
for both studied cases are performed: (1) with the parameters determined on the
basis of all cells and (2) considering only clear wood segments. To make both
simulated cases comparable at the board level, the same white noise sequences, 𝜀𝑖,
were used for each case.

Examples of four generatedMOE profiles are presented in Figs. 6.4a–d. Focusing
first on the solid lines (parameter set 1, all cells), it can be seen that a wide range
of typical (according to the MOE measurements) MOE profiles can be reproduced.

In detail, Fig. 6.4a shows rather low variation in the MOE, while the profile
depicted in Fig. 6.4b presents higher variation, where a steady increase in MOE
is observed for approximately 800mm. One could imagine that such a behavior
arises in a real board due to a steady decrease in the fiber inclination, which may
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Figure 6.3. Flowchart of the simulation process for localized 𝐸𝑡,0,cell and 𝑓𝑡,0,cell values for a single
board
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Figure 6.4. Samples of simulated MOE profiles with typical characteristics. (a) low MOE variation,
(b) higher localized MOE variation, (c) higher, rather distributed MOE variation, (d) large
local defect.

also be related to the presence of knots. Figure 6.4c presents a board with a few
downward steps in the MOE in an otherwise rather moderately varying sequence
of 𝐸𝑡,0,cell values. This finding would simulate the presence of local defects (e.g.,
knots). Finally, Fig. 6.4d illustrates the case where a very large local defect is
present, considerably lowering the local MOE in a narrow region.

The dashed lines in Figs. 6.4a-d represent the results obtained with parameter
set 2 (CW segments). Since the same white noise sequence was used, the curves
move very similarly. However, due to the different parameters, some differences
in the variation can be observed (see, e.g., Fig. 6.4d). Overall, the variation in
the simulated CW segments is slightly smaller than that in all the cells, which
can be explained mainly by the difference in the distributions for the normalized
MOEs, 𝐸𝑡,0,cell. However, it should be mentioned that the experimental results
for the clear wood segments exhibit large variations, which is captured by the
fitted 𝐸𝑡,0,cell distribution. This phenomenon is why clear wood segments do not
represent an especially low variation in the studied case—as the concept of “clear
wood” might otherwise suggest. In this context, it should be recalled that clear
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Figure 6.5. Experimentally determined MOE and KAR profiles showing typical characteristics. (a)
relatively low variation of MOE, (b) higher MOE variation, (c) higher MOE variation, (d)
large local defect.

wood, as defined in this paper, relates exclusively to an almost complete exclusion
of knots (KAR ≤ 0.05), but includes any local or global fiber deviation, as it can be
assumed that this is the dominant reason for CW MOE fluctuations.

These profiles can be compared to a selection of the empirically determined
𝐸𝑡,0,cell values, presented in Figs. 6.5a–d. Each of these profiles was chosen based
on their apparent (visual) similarity with the simulated profiles of Figs. 6.4a-d. In
this sense, Fig. 6.5a somehow resembles Fig. 6.4a; Fig. 6.5b is similar to Fig. 6.4b;
as well as Figs. 6.5c,d and Figs. 6.4c,d, respectively.

The measured CWAR values (CWAR = 1 − KAR) for each cell are shown in
Figs. 6.5a-d, too. It can be seen that in general terms, the simulated profiles present
very similar characteristics as the empirical profiles. It should be emphasized
that the presented generated profiles are not intended to match the empirical
measurements exactly, but rather that the model is capable to reproduce profiles
belonging to the same category of variation characteristics. This is achieved
by maintaining the autocorrelation function (see Fig. 6.6) and reproducing the
distributions of normalized MOE, 𝐸𝑡,0,cell, and global MOE, 𝐸𝑡,0,glob.
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Figure 6.6. Comparison between the computed experimental and simulated SACFs. (a) all cells; (b)
CW cells

One further comparison was performed to confirm that the simulated data
preserve the specified autoregressive parameters. For this comparison, a single,
very long board of 𝑛 = 2000 cells was simulated. Then, the two-step normalization
process was applied, and the SACF was computed. Here, the ̄𝐸max,3 criterion
was generalized to use the 𝑚 highest values of the profile, i.e. 𝑚 = ⌊𝑛 ⋅ 3/15⌋, to
compensate for the different number of considered cells. The results of this analysis
can be seen in Figs. 6.6a and b, for all cells and CW cells, respectively. In both
cases, a perfect agreement between the experimental results and the generated
profiles can be observed, meaning that the autocorrelation properties are correctly
simulated.

6.3.4 Consideration of different board lengths

Since all the measurements were done for a total of 15 cells per board, it follows
that the distributions of 𝐸𝑡,0,cell should only be used for the simulation of boards
with the same number of cells—as done in the examples above. However, it is
possible to use this model to generate boards with an arbitrary number of cells,
where two principal cases can be distinguished. The first one corresponds to the
case where a board with a number of cells 𝑛cells < 15 needs to be generated. Here,
𝐸𝑡,0,cell values are generated for a total of 15 cells, but only the first 𝑛cells values
are returned. The second possibility consists on the case where 𝑛cells > 15; here,
a total of 𝑛cells values for 𝐸𝑡,0,cell are generated, however the scaling according to
Eq. (6.4) is applied considering the first 15 cells only. The data simulated in this
manner maintains the original statistical characteristics regrading the intra-board
variation.
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Figure 6.7. Simulated size effect of 𝐸𝑡,0,glob

Figure 6.7 shows the simulation of boards with different lengths (5000 simula-
tions each), where the parameters corresponding to all cells were used. The results
present the global MOE computed from the individual cells in each board, 𝐸cell

𝑡,0,glob.
It can be seen that the mean value remains almost the same for the different
simulated lengths, where a minor decrease of 0.2GPa is observed from 500mm
to 1500mm. The standard deviation, however, decreases slightly from 3GPa to
2.1GPa when moving from 500mm to 1500mm. For longer simulated boards
(between 1500mm and 2500mm) the mean and standard deviation remains
practically unchanged.

6.4 Localized tensile strength

The simulation of tensile strength, 𝑓𝑡,0,cell, requires the previous generation of
MOE profiles along the board, 𝐸𝑡,0,cell, as described above. The above presented
simulation approach consists on cross-correlating a new stationary process to
the generated 𝑍𝑡,0,cell values and then map the process to the correct strength
distribution, 𝑓𝑡,0,cell. The direct use of the fitted statistical distribution allows to
directly incorporate important statistical features, such as the consideration of the
size effect. The latter is shown with simulations in Section 6.4.3. In the following,
the model to simulate localized tensile strength profiles is presented in detail and
examples are shown.
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6.4.1 Model for the simulation of tensile strength profiles

The method to simulate 𝑓𝑡,0,cell values is based in the concept of a vector auto-
regressive (VAR) model (however simplified), where a set of stochastic processes
are cross-correlated. In the given case, a Gaussian process 𝒩(0, 1), 𝑆𝑡,0,cell, is gen-
erated based on a cross-correlation model with the previously simulated 𝑍𝑡,0,cell
values. The values 𝑆𝑡,0,cell are then mapped into the correct distribution for 𝑓𝑡,0,cell,
as previously estimated with the survival analysis methodology presented in Sec-
tion 5.5.4. The steps for the simulation of 𝑓𝑡,0,cell are:

1. First, the stationary process 𝑆𝑡,0,cell is generated, which depends on 𝑍𝑡,0,cell as

𝑆𝑡,0,𝑖 = 𝜃0 ⋅ 𝑍𝑡,0,𝑖 + 𝜀𝑖 , (6.6)

where 𝜃0 is the cross-correlation coefficient between 𝐸𝑡,0,cell and 𝑓𝑡,0,cell. In

this case the white-noise term has a standard deviation 𝜎2 = √1 − 𝜃20. The
parameter 𝜃0 is taken from the results obtained in Section 5.5.3 as 𝜃0 = 0.73.

2. The vector 𝑆
𝑡,0,cell

, which corresponds to all the 𝑆𝑡,0,𝑖 values in a board, and
assumed to belong to a 𝒩(0, 1), is mapped into the 𝑓𝑡,0,cell distribution (i.e.
any of the fitted distributions 𝐹(𝑥) presented in Table 5.11) by means of the
transformation

𝑓
𝑡,0,cell

= 𝐹−1 (Φ (𝑆
𝑡,0,cell

)) , (6.7)

where 𝐹−1 is the inverse of the cumulative distribution function (CDF), and
Φ is the CDF of the standard Normal distribution. This follows the same
principle used for the simulation of MOE profiles, where the data in the
standard normal space is transformed into a different distribution.

The vector 𝑓
𝑡,0,cell

obtained in this manner corresponds to the simulated tensile
strength profile, which has the following properties: (i) cross-correlation with
𝐸𝑡,0,cell (𝜃0 term), (ii) implicit autocorrelation owed to the cross-correlation with
𝐸𝑡,0,cell, and (iii) a statistical behavior equal to the one obtained from the survival
analysis performed with the experimental data. The described process is presented
in Figure 6.3 (right) as a flowchart.
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6.4.2 Simulation examples of tensile strength profiles along
boards

Simulations of tensile strength profiles were performed with the above described
model using the parameters obtained from the studied oak boards. The four fitted
models are studied: (a) Weibull, (b) Beta, (c) Weibull regression and (d) Beta
regression. To make the results obtained from the different models comparable,
the same white noise component 𝜀𝑖 in Eq. (6.6) is used. In addition, the same
stationary process 𝑍𝑡,0,cell is used for each model. Thus, the only difference is the
statistical distribution applied in Eq. (6.7).

The simulations are first analyzed for two different simulated boards using the
parametric Beta model shown in Figs. 6.8a and 6.8b. Both simulated profiles show
a clear correlation between 𝐸𝑡,0,cell and 𝑓𝑡,0,cell. Both, the 𝑓𝑡,0,cell and the 𝐸𝑡,0,cell
curves move similarly, but differences arise due to the introduced white noise
component, 𝜀𝑖, in Eq. (6.6). In general, regions of lower 𝐸𝑡,0,cell values also present
relatively low 𝑓𝑡,0,cell values and vice versa. Note that the 𝐸𝑡,0,glob value, needed
for the simulation of the MOE profiles, was taken randomly from the statistical
distribution for global MOE from the dataset B (see Section 3.3).
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Figure 6.8. Simulation of 𝑓𝑡,0,cell profile with the Beta model (also given are the simulated 𝐸𝑡,0,cell
values) (a), (b) boards A and B

Figures 6.9a and 6.9b present the simulation of 𝑓𝑡,0,cell and 𝐸𝑡,0,cell of the same
boards A and B as above, however showing all four models. The results of each
model are slightly shifted along the horizontal axis, helping to identify each
individual model and allowing for a direct comparison between the four models.
The blue lines correspond to the parametric models (a) and (b), while the regression
models (c) and (d) are drawn in red tones.

The “left” board A (Fig. 6.9a) corresponds to 𝐸𝑡,0,glob = 9.4GPa, while the
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Figure 6.9. Simulation of 𝑓𝑡,0,cell values together with the previously generated 𝐸𝑡,0,cell values; (a),
(b) boards A and B

“right” board B (Fig. 6.9b) has a higher global MOE of 𝐸𝑡,0,glob = 12.6GPa. It can
be seen that for the case of board A (lower 𝐸𝑡,0,glob) both regression models show
smaller values at the lower end of the profiles. For board B (Fig. 6.9b) the opposite
is true. This is directly related to the dependence of 𝑓𝑡,0,cell with 𝐸𝑡,0,glob for the
case of the regression models, as boards with higher 𝐸𝑡,0,glob values shift the 𝑓𝑡,0,cell
distribution to higher values.

The upper end of the 𝑓𝑡,,0,cell profiles also exhibit some clear differences, where
models (a) and (d) clearly present higher values as models (b) and (c). This
is, of course, directly related to the characteristics of each statistical model (see
Figs. 5.18b and 5.20). While the beta model (b) has a clear maximum possible
value at around 100MPa, the Weibull model (a) allows for higher values of 𝑓𝑡,0,cell.
A similar relation exists between model (c) and (d), respectively. These differences
in the fitted models are expressed directly in the simulated boards.

It is evident that the main disadvantage of the parametric models (a) and (b)
is the lack of correlation with the global MOE. Section 6.4.3 presents a simple
procedure to consider the correlation with the parametric models, making these
a viable alternative to the regression models, which are more complicated to
calibrate.

6.4.3 Simulation of length effect for tensile strength

The presented model is capable of simulating the size effect of the tensile strength.
This capability derives directly from the “cell”-centered stochastic nature of the
model, and is tightly related to the behavior shown in Section 5.5.4 (compliance
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Model

(a) 42.1 ± 16.9 32.8 ± 12.6 28.4 ± 10.5 25.7 ± 9.2 23.7 ± 8.4

(b) 42.1 ± 16.6 33.0 ± 12.9 28.4 ± 10.7 25.7 ± 9.5 23.6 ± 8.5

(c) 42.6 ± 16.3 34.2 ± 13.6 29.9 ± 12.2 27.2 ± 11.3 25.2 ± 10.7

(d) 42.9 ± 16.8 34.4 ± 13.1 30.3 ± 11.5 27.8 ± 10.5 26.0 ± 10.0
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Figure 6.10. Size effect obtained with the four fitted models for the variation of tensile strength
along boards. Mean and standard deviation values for each model and board length
are given in tabular form. Fitted size effect law is shown for model (b) for the mean
and 5%-quantile.

with the extreme value theory).

To show the size effect produced by the simulation method, virtual boards of five
different lengths (500mm to 2500mm) were generated. The four fitted models
for 𝑓𝑡,0,cell were used. For each length a total of 10 000 simulations per 𝑓𝑡,0,cell
model were performed. The simulation of different lengths does not require any
special consideration other than generating the needed amount of cells according
to Eqs. (6.2), (6.6) and (6.7). After this, the smallest 𝑓𝑡,0,cell value of each virtual
board is taken as the 𝑓𝑡,0,glob value, i.e. 𝑓𝑡,0,glob = min(𝑓𝑡,0,cell).

Figure 6.10 presents the results for the simulations of the five different lengths,
where a clear size effect can be observed for the four studied models. Models (a)
and (b) (Weibull and Beta) show a very similar evolution in both mean and spread.
More importantly, both models simulate the tensile strength of the reference length
(𝑛 = 15 = 1500mm) almost exactly on the mean level, and slightly underestimate
the standard deviation 6.2% and 4.5% for models (a) and (b), respectively. For
comparison see results for all boards in Table 5.9.

Model (c), i.e. the Weibull regression model, reveals a similar size effect trend,
however, it fails to reproduce the mean and spread for the reference length by 4.9%
and 8.9%, respectively. A similar behavior is observed for model (d), where the
mean differs from the experiments by 6.3% and the standard distribution by 2.7%.
The reason for this discrepancy is probably related to the specific𝐸𝑡,0,glob distribution

138 6 | Simulation of mechanical properties along oak boards

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



used to generate the needed input data. Owed to the large heterogeneity in the
quality of the studied boards and the relative low number of experiments, it is well
possible that the statistical distribution obtained for 𝐸𝑡,0,glob does not represent the
data with the needed accuracy for this application. This could only be solved with
a larger dataset.

In order to quantify the simulated size-effect, a simple exponential function of
the form

𝑓𝑡,𝑖 = 𝑓𝑡,ref ⋅ (
ℓref
ℓ𝑖

)
𝜉

(6.8)

was fitted to the results of each of the four models, where 𝑓𝑡,𝑖 is the tensile strength
for a length ℓ𝑖 and 𝑓𝑡,ref is the strength related to the reference length, ℓref, 1500mm.
The exponential quantification of the size effect as a generalized description of
the size impact, irrespective of underlying failure mechanisms (weak-link concept
or fracture mechanics), has become an internationally adopted approach in test
evaluation and design codes, e.g. EN 384 (2016), EN 1995-1-1 (2010), ASTM D245
(2019) and ASTM D6570-18a (2018). The obtained results for the exponent 𝜉 are
presented in Table 6.4. Figure 6.10 shows exemplarily a graphical representation
of the exponential size effect curves obtained for model (b) on the mean and 5%
quantile levels for all boards. Considering all boards, the size effect exponents 𝜉
obtained on the mean level range from 0.32 to 0.36, whilst for the 5% quantile
𝜉 moves between 0.27 and 0.36. For the subset of grades LS10 and LS13 only,
the exponents 𝜉 are slightly lower, ranging from 0.30 to 0.33 on the mean level,
and between 0.23 and 0.34 for the 5% quantile. Regarding an assessment of
the derived exponents, for oak boards, as well as for any other hardwood species,
no reference values could be found. Hence, in a first approach, the quantitative
discussion of the simulation-based 𝜉-values is related to the size factors given in
literature for softwoods.

Based on a meta study of an extensive data basis (27 subsets, 3070 specimens)
by established Showalter et al. (1987), Lam and Varoglu (1990) andMadsen (1990)
on north American softwood—Canadian Spruce-Pine-Fire (SPF) and Southern
pine (US)—of different structural grades, Barrett and Fewell (1990) proposed an
exponent of 𝜉 = 0.17 for the 5%-quantile level. Further, it was concluded that the
length effect in tension and bending is alike. Rouger and Barrett (1995) supported
the stated length effect exponent 𝜉 = 0.17 and discussed the variables that can
influence the size effect of a sample. These are mainly: (i) the sawing pattern and
(ii) the used grading system. The sawing pattern may lead to an apparent size
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Table 6.4. Computed exponents 𝜉 describing the size effect of the tensile strength for the simulated
sets of boards

Model: (a) (b) (c) (d)

All boards:

𝜉 – mean 0.36 0.36 0.32 0.32
𝜉 – 5%-quant. 0.27 0.28 0.36 0.30

LS10+LS13 grades:

𝜉 – mean 0.33 0.33 0.30 –
𝜉 – 5%-quant. 0.23 0.23 0.34 –

factor up to 0.37. The effect of the grading system was illustrated with lower and
higher quality samples graded both visually and with regard to MOE by machine
grading. While for the MOE-graded material 𝜉 = 0.23 was found, the visually
graded boards showed 𝜉-values ranging from −0.5 to 0.1. Burger and Glos (1996)
conducted an experimental study with 750 European spruce (Picea abies) boards
with knot area ratios ranging from 0.16 to 0.61. The valid (𝑛 = 730) test results
from three significantly different lengths (0.15m, 1.0m and 2.5m) yielded size
exponents of 0.13 and 0.22 on the mean and characteristic level, respectively.

Considering the cited literature on softwood results, it can be stated that
the simulation-based length effect for the oak boards is roughly two to three
times higher when looking at the mean strength level. This holds true for the
5%-quantile level, too, when considering all investigated oak boards. However,
focussing exclusively on the LS10+LS13 subset, being more relevant for structural
purposes, the situation is different. The parametric models (a) and (b) yielded for
the oak boards coinciding 𝜉-values of 0.23 which did not differ extremely from the
softwood results, whereas the Weibull regression model (c) gave a much higher
value, rather close to the mean level results. It is beyond the scope of this work
to deepen the discussion of the model-dependent differences. More generally
speaking, the differences between the growth-bound macroscopic structure, e.g. of
fiber angle and knot features of softwoods and hardwoods—here specifically oak
wood—are large enough to justify the assumption, that there might be a marked
difference in the respective inherent size effects.

From an overall perspective, it can be concluded that the presented order
statistics approach, based on localized (cell-wise) strength values, provides con-
ceivable results for the length effect. The magnitude of the length effect exponent,
including the model validation of the 5%-quantile level, must however be validated
experimentally with larger samples.
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6.4.4 Correlation of MOE and tensile strength at global level

It was mentioned above that the parametric models (a) and (b), derived for the
simulation of 𝑓𝑡,0,cel, cannot reproduce a correlation with the MOE at a global
level. This is because the global tensile strength, 𝑓𝑡,0,glob, results directly from the
stochastic process 𝑆𝑡,0,cell, while the global MOE is defined a priori for each board
according to the corresponding statistical distribution. Vice versa the 𝑓𝑡,0,glob–MOE
correlation is not a problem for the case of the regression models (c) and (d), since
the defined global MOE is considered in the model, thus producing the needed
correlation. However, the more simple parametric models, (a) and (b), can be
used too, if an additional step is introduced to consider the global correlation
𝐸𝑡,0,glob–𝑓𝑡,0,glob.

The method regarded here considers a rearrangement of the 𝐸𝑡,0,glob values
assigned to each board, so that the complete sample of 𝐸𝑡,0,glob values correlates
with the 𝑓𝑡,0,glob values of each board. In detail, the following steps are followed to
simulate the 𝐸𝑡,0,cell and 𝑓𝑡,0,cell profiles:

1. Firstly, a pair of correlated vectors of length 𝑁 is generated for 𝐸𝑡,0,glob and
𝑓𝑡,0,glob, according to Section 6.2. The vectors are called 𝑬

𝑡,0,glob
and 𝒇

𝑡,0,glob
,

respectively.

2. Then, a total number of 𝑁 normalized MOE profiles with 𝑘 segments (ℓ =
𝑘 ⋅ 100mm), 𝑍𝑡,0,cell, are generated [Eq. (6.1)]. Based on the generated
𝑍𝑡,0,cell a total of 𝑁 tensile strength profiles are generated [Eqs. (6.6),(6.7)].

3. The vector 𝒇cell

𝑡,0,glob
is computed, taking the minimum tensile strength of each

simulated board.

4. The following procedure is used to find the indices to reorder the vector
𝒇cell

𝑡,0,glob
, so that it will be correlated to 𝐸𝑡,0,glob in the same manner as 𝐸𝑡,0,glob

is correlated to 𝑓𝑡,0,glob. In pseudocode the steps are the following:

(i) 𝒊⟵ argsort(𝒇
𝑡,0,glob

)

(ii) 𝒋⟵ argsort(𝒇cell

𝑡,0,glob
)

(iii) 𝒓⟵ argsort(𝒊)

(iv) 𝒒⟵ 𝒋[ 𝒓 ]

(v) 𝒇cell

𝑡,0,glob
⟵𝒇cell

𝑡,0,glob
[ 𝒒 ]
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(Note: the function “argsort()” returns the indices that sort a vector in ascend-
ing order, e.g. argsort([30, 40, 10, 20]) returns the indices [3, 4, 1,
2].)

The steps (i)–(v) should be read as (i) find the indices that sort the vector
𝒇
𝑡,0,glob

in ascending manner and store these indices in the vector 𝒊; (ii) then, the

indices that sort 𝒇cell

𝑡,0,glob
are stored in the vector 𝒋. (iii) The indices that sort 𝒊

are stored in the vector 𝒓; (iv) the vector 𝒓 is then used to re-order the vector 𝒋.
(v) If the vector of indices 𝒒 is used to re-order 𝒇cell

𝑡,0,glob
, then 𝒇cell

𝑡,0,glob
≈ 𝒇

𝑡,0,glob
(see Fig. E.1). Therefore, the indices 𝒒 are used to reorder the list of generated
𝑓𝑡,0,cell profiles, which ensures the correlation between 𝐸𝑡,0,glob and 𝑓𝑡,0,glob for large
datasets. The graphical example of Fig. E.1 in Appendix E illustrates this process.

The complete procedure to simulate correlatedMOE and 𝑓𝑡,0 profiles—assuming
that the parametric models are used—for a total of𝑁 boards with correlated 𝐸𝑡,0,glob
and 𝑓𝑡,0,glob,cell variables is depicted as flowchart in Fig. 6.11.

6.5 Localized compressive strength

The variation of axial compressive strength within board, 𝑓𝑐,0,cell, was not studied in
this thesis. However, for the implementation of a finite element model, a reasonable
model for this mechanical property is needed. It was decided to use the same
method as described in Section 6.4 for the localized tensile strength. The only
difference here is the distribution, 𝐹(𝑥), used to represent the compressive strength
variation.

Compression strength data is available for datasets B and C, made on GLT
specimens of lengths 500mm and 920mm, respectively. Compressive failure is
very localized. Therefore, applying the same analysis as for the tensile strength,
the total length of the specimen can be virtually subdivided into cells of 100mm
in length and then maximize the likelihood function defined in Eq. (2.8) to obtain
a rough estimate of the distribution for 𝑓𝑐,0,cell along the board. This method was
applied to both datasets B and C with the three-parameter Weibull distribution,
and the results are used for the simulations in Chapter 8.

6.6 Discussion

This chapter presented new models for the simulation of mechanical properties
within boards, as well as a methodology to preserve a given correlation between the
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Input:
Vector of global MOEs [… ,𝐸𝑡,0,glob,𝑖, …]
Vector of global tensile strengths [… , 𝑓𝑡,0,glob,𝑖, …]
Serial correlation for 𝑍𝑡,0,cell lag-1
Correlation 𝐸𝑡,0,cell −𝑓𝑡,0,cell 𝑅1
Distribution for 𝐸𝑡,0,cell 𝐹
Distribution for 𝑓𝑡,0,cell 𝑊
No. of cells used as reference 𝑛ref
No. of cells in simulated board 𝑛cell

𝑖 < 𝑁 𝑍𝑡,0,cell = AR(1)Reorder tuples
(𝐸𝑡,0,glob, 𝑓𝑡,0,glob)

𝑖 < 𝑁

𝐸𝑡,0,cell = 𝐹−1(Φ(𝑍𝑡,0,cell))

Compute 𝐸𝑡,0,glob acc.
to Eq. (5.2) considering
the first 𝑛ref values only

𝑚0 =
𝐸𝑡,0

𝐸𝑡,0,glob,cell

𝐸𝑡,0,cell = 𝑚0 ⋅ 𝐸𝑡,0,cell

𝑆𝑡,0,cell = 𝑓(𝑍𝑡,0,cell, 𝑅1)

𝑓𝑡,0,𝑐𝑒𝑙𝑙 =𝑊−1(Φ(𝑆𝑡,0,cell))

Eq. (6.2)

Eq. (6.3)

Eq. (5.2)

Eq. (6.5)

Eq. (6.4)

Eq. (6.6)

Eq. (6.7)

𝑛cell < 𝑛ref

Take only the 𝑛cell first
generated values for
𝐸𝑡,0,cell and 𝑓𝑡,0,cell

done

𝑖 = 0

yesno

++𝑖𝑖 = 0

yes

++𝑖 no

no

yes

Figure 6.11. Flowchart of the simulation process for 𝐸𝑡,0,cell and 𝑓𝑡,0,cell for the set of all boards,
considering the correlation between MOE and tensile strength
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global modulus of elasticity, tensile and compressive strength. Within this frame-
work the most important step is the estimation of the distributions for the variation
of properties within board (specifically for 𝐸𝑡,0,cell and 𝑓𝑡,0,cell, see Chapter 5), as
these will constrain the generated values to realistic ranges.

The detrimental effects on strength of the typically used indicator properties (e.g.
KAR or fiber angle), is now captured statistically by the mentioned distributions,
rendering the use of the indicator properties in the simulation model redundant.
In fact, only one set of data is generated for the simulation of 𝐸𝑡,0,cell for each board
[the canonical AR(1) process 𝑍𝑡,0,cell], after which it is successively transformed
by different functions (see Fig. 6.3). The application of different functions to the
original data adds an extra layer of complexity, however not necessarily making it
more complicated, as the individual steps remain relatively simple.

The fact that the simulation model for 𝑓𝑡,0,cell implicitly considers the so-called
size effect, makes it very useful for representing the properties of boards with
different lengths (as it is the case in glulam beams). For this to work correctly,
the right reference length has to be supplied, i.e. the free length used during the
tensile tests. Failing in doing so will have a direct effect in the properties simulated
for boards with different lengths.

The process whereby the global properties for boards are generated could,
in theory, be left out of the simulation, if a regression model is used to define
𝑓𝑡,0,cell and 𝑓𝑐,0,cell (e.g. models (c) and (d) in Table 5.11). This is because during
the generation of 𝑓𝑡,0,cell values a correlation with 𝐸𝑡,0,glob is implicitly established,
owed to the use of 𝐸𝑡,0,glob as explanatory variable.
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te
r

7
Finite element model for
the prediction of bending
strength in glulam beams

7.1 General remarks

An accurate description of the mechanical properties of glulam beams is essential
for a safe and economical design of timber structures. However, owed to the
random nature of the mechanical properties of the boards and finger-joints, the
estimation of strength and stiffness properties of GLT beams is not trivial and
requires the introduction of rather complex models. This means that any attempt
to estimate the mechanical behavior of a sample of GLT beams must consider the
stochastic component originating in boards and finger-joints. Owed to the intrinsic
mechanical aspect of this problem, the finite element method (FEM) presents itself
as the natural tool to study the effects of the mentioned variability in GLT beams,
as shown in a number of related studies, i.a. Foschi and Barrett (1980), Kandler
and Füssl (2017), Fink (2014), and Blaß and Frese (2006).

Within the scope of FEM a few methods have been developed to study stochastic
problems , commonly referred to as “stochastic finite element methods” (SFEM),
varying in computational cost, ease of implementation and result accuracy for a
given problem. A summary of the existing SFEM approaches and their application
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to GLT beams can be seen in Stefanou (2009) and Kandler et al. (2015a). Among
the different SFEM approaches, the Monte Carlo (MC) method gives generally
the best results, however at a very high computational expense (Stefanou, 2009).
In addition, the MC method is fairly easy to implement, as it only requires the
repetition of the simulation with new variable values, representative of the studied
problem. For these reasons MC simulations are widely used in stochastic analysis
of different fields, and is therefore chosen for this study too.

The present model is similar to—and was inspired by—previous models pre-
sented i.a. by Ehlbeck and Colling (1987), Blaß et al. (2005), and Fink (2014)
(see Section 2.6), where a GLT beam is subdivided in laminations, and the lamina-
tions are subdivided in cells. Material properties are assigned to these cells and a
failure criterion is defined to obtain the bending strength. Different from previous
approaches, the present model considers fracture mechanics by introducing the
extended finite element method (XFEM) to simulate the onset and propagation
of cracks within the simulated beam. It is expected that a good calibration of the
needed parameters (mainly fracture energies) should allow for a good estimation
of the bending strength distribution.

In the following, the simulation model—here named “Stuttgart Stochastic
Strength Glulam Model (S3GluM)”—will be described in detail, starting with the
generation and handling of input parameters, then moving to the implementation
of the FE model and post-processing.

7.2 Input parameters

The simulation process begins with the generation of the input data (material
properties) according to the models presented in Chapter 6. The objective of this
step is to produce a series of virtual boards, resembling the mechanical properties
of the boards used in the production of a specific batch of glulam beams. In order to
do this, an estimation of the total number of boards needed for the MC simulations
is required. For a homogeneous GLT beam, the total number of boards to be
generated, 𝑛𝑏, is:

𝑛𝑏 = 1.2 ⋅
ℓbeam ⋅ 𝑛lams ⋅ 𝑁sim

ℓ𝑏
, (7.1)

where ℓbeam is the length of the GLT beam, 𝑛lams is the number of laminations in
the GLT beam (ℓlam = ℓbeam), and ℓ𝑏 is the mean of the length of the boards. For
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Figure 7.1. Visual explanation of the considered number of laminations per region for the compu-
tation of the total number of boards to be simulated

the case of an inhomogeneous build-up Eq. (7.1) is used for each region 𝑗, giving a
total number of boards to be generated per region, 𝑛𝑏,𝑗. For this, the total number
of laminations per region 𝑛𝑙𝑎𝑚,𝑗, is used (see Fig. 7.1).

The next step consists on simulating a total of 𝑛𝑏,𝑗 board lengths, ℓ𝑏, drawn from
the corresponding statistical distribution according to Section 7.3.2. Then a set of
global mechanical properties 𝐸𝑡,0,glob, 𝑓𝑡,0,glob and 𝑓𝑐,0,glob are generated for each
board according to their experimental distributions and correlation coefficients,
as shown in Chapter 6.2. Thereafter, localized material properties (𝐸𝑡,0,cell, 𝑓𝑡,0,cell,
𝐸𝑐,0,cell and 𝑓𝑐,0,cell) are generated according to the models presented in Chapter 6.

The generated data for 𝐸𝑡,0,cell, 𝑓𝑡,0,cell, 𝐸𝑐,0,cell and 𝑓𝑐,0,cell is then stored in an
array and saved as a text file with the structure specified in Table 7.1. Each row of
this table contains the information of one cell, as well as the associated board and
relative position within the board. The structure of the array mirrors the concept
of the endless lamella used in the production of glulam (see Section 1.3), and helps
in the later assignment of material properties to the FE model.

The final step consists of the generation of the mechanical properties for the

Table 7.1. Generated array with the mechanical data along each board

N No. Board No. Cell 𝐸𝑡,0,cell 𝑓𝑡,0,cell 𝐸𝑐,0,cell 𝑓𝑐,0,cell
1 1 1 𝐸𝑡,0,1,1 𝑓𝑡,0,1,1 𝐸𝑐,0,1,1 𝑓𝑐,0,1,1
2 1 2 𝐸𝑡,0,1,2 𝑓𝑡,0,1,2 𝐸𝑐,0,1,2 𝑓𝑐,0,1,2
3 1 3 𝐸𝑡,0,1,3 𝑓𝑡,0,1,3 𝐸𝑐,0,1,3 𝑓𝑐,0,1,3
4 1 4 𝐸𝑡,0,1,4 𝑓𝑡,0,1,4 𝐸𝑐,0,1,4 𝑓𝑐,0,1,4
5 2 1 𝐸𝑡,0,2,1 𝑓𝑡,0,2,1 𝐸𝑐,0,2,1 𝑓𝑐,0,2,1
6 2 2 𝐸𝑡,0,2,2 𝑓𝑡,0,2,2 𝐸𝑐,0,2,2 𝑓𝑐,0,2,2
7 2 3 𝐸𝑡,0,2,3 𝑓𝑡,0,2,3 𝐸𝑐,0,2,3 𝑓𝑐,0,2,3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑛cells 𝑛𝑏 j 𝐸𝑡,0,𝑖,𝑗 𝑓𝑡,0,𝑖,𝑗 𝐸𝑐,0,𝑖,𝑗 𝑓𝑐,0,𝑖,𝑗
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finger-joints. This is done following the procedure described in Section 7.3.2,
process from which an array with the structure shown in Table 7.2 is generated.

Table 7.2. Assignment of MOE and tensile strength to the finger-joints of connected pairs of boards

N Boardi Boardj 𝐸𝑡,𝑗,𝑖 𝑓𝑡,𝑗,𝑖
1 1 2 𝐸𝑡,𝑗,1 𝑓𝑡,𝑗,1
2 2 3 𝐸𝑡,𝑗,2 𝑓𝑡,𝑗,2
3 3 4 𝐸𝑡,𝑗,3 𝑓𝑡,𝑗,3
⋮ ⋮ ⋮ ⋮ ⋮

𝑛𝑏 − 1 𝑛𝑏 − 1 𝑛𝑏 𝐸𝑡,𝑗,𝑛−1 𝑓𝑡,𝑗,𝑛−1

7.2.1 Configuration files and hashing of parameters

From the models presented in Chapter 6 it is evident that a large number of
parameters are involved in the generation of the material properties. The FE
model itself adds a considerable amount of extra parameters, too. It is therefore
useful to handle all the parameters of a model in a unified manner by means of
a configuration file. For this, the json-format was chosen, which allows for a
hierarchical and readable syntax. A json-file can be parsed easily by a python
script using the standard libraries, and the content of the file can be later validated
by means of a hash function. This hash function returns a unique alphanumeric
sequence (known as “hash”) associated with the information contained in the
json-file. An (simplified) example of such a configuration file is presented in
Listing 7.1.

This is especially useful when a parametric analysis is made, where different
variables might change. Knowing exactly which parameters lead to a certain
result offers great advantages. Without the hash check, it is possible that the user
inadvertently sets wrong a parameter, or forgets to change one variable as it was
intended. The use of a configuration file, together with a hash check, removes the
source of some typical human errors.

7.3 Finite element model

The simulations were performed with the commercial software Abaqus (2017).
This program exposes a python API, which allows for the construction of parametric
models with the flexibility of an object-oriented programming language. This
means that the code can be structured in a comprehensible manner, being a great
advantage for complex models. In the following, the different aspects of the
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Listing 7.1: Example of a configuration file used in the simulations
1 {
2 "name": "Title-of-parameters-set",
3 "width": 100.0,
4 "t_lam": 20.0,
5 "board_1": {
6 "ref_length": 1500,
7 "length": {
8 "s": 0.20,
9 "loc": 0.0,

10 "scale": 1000.0
11 },
12 "moe": {
13 "distribution": "lognorm",
14 "params":{
15 "s": 0.370,
16 "loc": 6224.42,
17 "scale": 5036.21
18 }
19 },
20 "ft": {
21 "distribution": "weibull_min",
22 "params": {
23 "c": 2.211,
24 "loc": 5.92,
25 "scale": 26.31
26 }
27 },
28 "fc": {
29 "distribution": "lognorm",
30 "params": {
31 "s": 0.0461,
32 "loc": -0.226,
33 "scale": 50.251
34 }
35 },
36 "ft_fj": {
37 "distribution": "lognorm",
38 "params": {
39 "s": 0.13,
40 "loc": 0.0,
41 "scale": 40.4
42 }
43 },
44 "moe_norm": {
45 "distribution": "loggamma",
46 "params": {
47 "c": 0.4370,
48 "loc":0.9878,
49 "scale":0.0481
50 }
51 },
52 "ft_cell": {
53 "distribution": "beta",
54 "params": {
55 "a": 2.1592,
56 "b": 1.2302,
57 "loc": [6.9325],
58 "scale": [93.3778]
59 }
60 },
61 (...) // Additional content that does not fit in the page
62 },
63 "energies": {
64 "glulam": 10.0,
65 "fingerjoint": 25.0,
66 },
67 }
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FE model are presented in detail, starting with the general material properties,
geometry and mesh considerations, followed by boundary conditions and failure
criteria. A flowchart of the complete simulation process is presented in Fig. 7.2. A
description of the FE model and the steps illustrated in Fig. 7.2 are presented in
the following.

Input parameters
Material properties previously generated 𝐸𝑡,0,cell, 𝑓𝑡,0,cell, 𝑓𝑐,0,cell, 𝑓𝑡,0,𝑗
Number of beam simulations 𝑁sim
Number of regions of inhomogeneous build-up 𝑁reg
Number of laminations in region 𝑗 𝑁lam,𝑗
Total depth of the beam 𝑑
Vertical position of lamination 𝑘 of region 𝑗 𝑦𝑗,𝑘

Generate geometry of beam
and partition each lamina-
tion in 100mm long cells

𝑖 < 𝑁sim

Load generated geometry

𝑗 < 𝑁reg

𝑘 < 𝑁lam,𝑗 𝑦𝑗,𝑘 ≤ 𝑑/2

Assign 𝐸𝑐,0,cell and
𝑓𝑐,0,cell to each cell//
(plastic behavior)

Assign 𝐸𝑡,0,cell and
𝑓𝑡,0,cell to each cell
UMAT (softening)

Bending
compression

Bending
tension

Mesh the geometry 𝑗 < 𝑁reg

𝑘 < 𝑁lam,𝑗

Assign mechanical prop-
erties to finger-joints

UMAT
(softening)

Apply bound-
ary conditions

Solve

Post-processing
(extraction of
𝐹 − 𝛿 curves)

done

yes

yes

yes yes

no++𝑘

no

++𝑗 no

yes

yes

++𝑘

no

++𝑗

no

++𝑖no
1

2

3 4
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Figure 7.2. Flowchart of the finite element model and Monte-Carlo simulations
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Figure 7.3. Geometry, partitioning and meshing of the finite element model

7.3.1 Geometry and build-up characteristics

Geometry of the finite element model

The geometry of the beams is very simple and can be represented by a rect-
angle of dimensions length × depth = ℓbeam × 𝑑beam. The partitioning of this
geometry is essentially the same as the on used in previous similar models(see
Section 2.6), however with two main differences: (i) a shorter length of the used
cells (ℓcell = 100mm), and (ii) the fact that each cell does not correspond to a
single FE element, as each cell is further discretized into smaller FE elements.

Specifically, the geometry of the beam is vertically subdivided into the required
number 𝑛lam of laminations, which are in turn subdivided horizontally into 100mm
long cells (see Fig 7.3). The length (span) of the beams, ℓbeam, chosen according to
EN 408 (2012) as ℓbeam = 18⋅𝑑beam, does not ensure that ℓbeam is exactly a multiple
of 100mm. Therefore, the length of the cells, ℓcell, is adjusted so that ℓbeam/ℓcell is
an integer number. Thus, the cell length is defined as ℓ𝑐𝑒𝑙𝑙 = 100mm + Δℓ. For a
beam of about 2m in length, this results in Δℓ = ±2mm and declines for longer
spans, as the amount of cells available to distribute the error increases.

The glulam beams are modeled using two-dimensional, linear plain stress
elements with reduced integration (CPS4R). Rigid line elements (R2D2) are applied
in the support and loading zones. Orthotropic material behavior was assumed,
representing the directions parallel and perpendicular to the grain of the boards.
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Figure 7.4. Visualization of the material properties distribution within a composite build-up of two
different cross-section sizes

Composite build-ups

The model allows for the simulation of so-called composite cross-sections, which,
contrasting to homogeneous cross-sections, enable a more efficient use of the mate-
rial by placing high grade (stiffness/strength) material in the outer regions (higher
bending demand), and lower quality boards in the inner zone (see Section 1.3).
To consider this, one set of material properties is generated for each region accord-
ing to Section 7.2. Then, the material assignment process described previously
in Section 7.3.2 is used separately in each region. This concept is presented in
Fig 7.4a and b, where two composite cross-sections consisting of three regions
(LS13-LS10-LS13, according to dataset B) are presented. More precisely, Figs. 7.4a
and b show the variation of the simulated 𝐸𝑡,0, values throughout two beams with
depths of 120mm and 200mm, respectively.

7.3.2 Material properties

Length of boards

The simulation of length values for the boards is straightforward and is achieved by
sampling values from a continuous distribution and then rounding to the nearest
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100mm. This ensures that the generated lengths are compatible with the 100mm
long cells used in the analyses of Chapter 5. The values used to fit the distribution
either corresponded to the measured distances between finger-joints of the tested
glulam beams (Dataset B), or to the measured lengths of the boards used to
manufacture the GLT (Dataset C).

Tensile strength and MOE of finger-joints

Since no correlation is currently known between any of the mechanical properties
of the boards and the tensile strength of finger-joints, 𝑓𝑡,0,𝑗, no special consideration
was made for the simulation of 𝑓𝑡,0,𝑗. Thus, the values are randomly sampled from
the corresponding experimental distribution and assigned to each pair of boards
that need to be connected. The finger-joint is considered to have a length equal to
the length of one finite element (see Section 7.3.3).

The MOE of each finger-joint, 𝐸𝑡,0,𝑗, is defined as the average of the 𝐸𝑡,0,𝑐𝑒𝑙𝑙
values of the corresponding cells being connected. This means, the MOE of the
last cell of one board and the MOE of the first cell of the board to be jointed are
used as

𝐸𝑡,0,𝑗,𝑖𝑘 =
𝐸𝑡,0,−1,𝑖 + 𝐸𝑡,0,1,𝑘

2 , (7.2)

where “1” and “−1” refers to the first and last cells of a board, and the indices “𝑖”
and “𝑘” identify the boards to be jointed.

Compressive behavior

Plastic behavior was assumed in the zone of bending-induced compression, using
isotropic hardening from the predefined material laws present in Abaqus. The
model does not consider softening behavior in compression. The plastic behavior
follows the curve defined in Fig. 7.5, where plasticity is assumed to start at 75%
of 𝑓𝑐,0 and the ratio 𝜀ᵆ/𝜀𝑝 = 3. A third point was added between the proportional
limit and the ultimate strain to produce a curve more similar to the experiments.
This curve is based on the experimental results on softwood made by Song et al.
(2007).
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Figure 7.5. Definition of the plastic behavior in the boards of the GLT beam

Tensile behavior

The elements at the bending tension region of the beam were modeled with a
user-defined material subroutines (UMAT) written in the Fortran language. Two
different user defined materials are implemented: (i) a perfectly brittle material
that removes the element once the tensile strength is reached, and (ii) a material
with an energy based linear softening as presented by Blank et al. (2017).

This softening law is based on an energy-based stress-displacement response in
order to avoid (or minimize) excessive mesh dependencies. The stresses decrease
linearly with increasing crack opening, 𝛿, until reaching the failure point 𝛿𝑓 (see
Fig. 7.6a). Thereafter the element is removed from the simulation. This behavior is
implemented at the material level by means of the consideration of a virtual crack
which is smeared within the element. The material behavior is shown in Fig. 7.6b,
where the stress-strain response can be seen. The evolution of the stress-strain
curve of Fig 7.6b can be explained as follows: (i) a linear behavior is observed
(Fig. 7.6b) until the tensile strength, 𝑓𝑡,0, is reached; then (ii) the stresses decline
as the opening of the smeared crack, 𝛿, widens (Fig. 7.6e); (iii) during this phase
the elastic strains, 𝜀, are reduced at the same rate as the stresses. (iv) The failure
process finalizes once the condition ̃𝜀 = ̃𝜀𝑓 is met. It is clear then that the total
strain of the element parallel to fiber has two components, and is described as:
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Figure 7.6. Definition of energy-based softening behavior under tensile load according to Blank
et al. (2017). (a) Softening as function of crack opening 𝛿; (b) Stress-strain behaviour
considering a smeared crack in the element; (c) finite element dimension; (d) finite
element under linear-elastic loading ( ̃𝜀 < ̃𝜀𝑢); (e) conceptual illustration of finite element
during crack growth and softening (no real crack is modelled)

̃𝜀 = 𝜀 + 𝛿
𝐿𝑒

, (7.3)

where ̃𝜀 is the total strain, 𝜀 is the elastic strain, 𝛿 is the opening of the smeared
crack in the softening regime, and 𝐿𝑒 is the length of the element in the direction
parallel to the stresses 𝜎𝑡,0. Once the softening initiation criteria is met (𝜎 = 𝑓𝑡,0)
the stress parallel to the grain is described as follows:

𝜎( ̃𝜀) = 𝑓𝑡,0 ⋅ (1 − 𝜔( ̃𝜀)) , (7.4)
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where the softening factor 𝜔 ∈ [0, 1] is defined here as:

𝜔( ̃𝜀) = 𝑚 ⋅ (1 −
𝐸𝑡,0 ⋅ ̃𝜀
𝑓𝑡,0

) , (7.5)

where 𝑚 ⋅ 𝐸𝑡,0 is the slope of the softening branch in the strain-stress curve, with
𝑚 defined as a function of 𝐺𝑓 and 𝐿𝑒 as:

𝑚(𝐺𝑓, 𝐿𝑒) =
1

1 − 𝐿cr
𝐿𝑒

, (7.6)

where the critical length, 𝐿cr, is defined as:

𝐿cr =
2 ⋅ 𝐺𝑓 ⋅ 𝐸𝑡,0

𝑓2𝑡,0,
. (7.7)

The remaining stress components are likewise reduced by the term (1 − 𝜔),
producing an isotropic softening.

As mentioned by Blank et al. (2017), the softening slope, 𝑚 ⋅ 𝐸𝑡,0, becomes
infinite once the size of the element equals the critical length, 𝐿cr. For the cases
where 𝐿𝑒 > 𝐿cr is satisfied, a positive slope is obtained, whichwill cause convergence
problems due to a snap-back behavior. The length 𝐿cr is a function of the fracture
energy, MOE and tensile strength, meaning that it varies for the elements of each
different cell in the GLT model. In the implementation of the user defined material
subroutine (UMAT) the critical length is computed for each integration point. For
the case that 𝐿𝑒 ≥ 𝐿cr is satisfied, a perfectly brittle material behavior is used (i.e.
immediate removal of element after reaching 𝑓𝑡,0). In this manner the stability of
the solution is improved.

The UMAT subroutine was tested with a one-element model. The results of
this simulation are presented in Appendix C. The code for the UMAT subroutines
defining the softening and brittle behavior can be found in Tapia (2022).

Fracture energy

For the consideration of the fracture energy within the GLT model, a distinction is
made between wood and finger-joint elements. This entails the assumption that
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Figure 7.7. Consideration of the geometry simplification of finger-joints for the estimation of 𝐺𝑓

the failure behavior of wood differs from that of the finger-joints. This is reasonable,
as the failure of finger-joints not only depends on the material properties of wood,
but also on the adhesive used and the geometry of the finger-joint profile (see
Fig. 7.7).

The fracture energy of different adhesive types has been studied i.a. by Serrano
and Larsen (1999) for Modes I, II and mixedMode, and by Stapf (2010) for Mode II,
for softwoods glued with different adhesives. The values for 𝐺𝑓 depend on the type
of glue and ranges from 420 J/m2 (PUR-adhesive) to 1280 J/m2 (PVAc-adhesive).

The fracture energy of oak wood has been studied i.a. by Aicher (1992), Reit-
erer et al. (2000) and Reiterer et al. (2002). From these studies a clear conclusion
can be drawn, namely that the fracture behavior of oak wood—and in general
of hardwoods—tends to be much more brittle than that of softwood species. Ac-
cording to Reiterer et al. (2000) this may be explained by the fact that hardwood
cells, like vessel, fiber tracheids and libriform fibers, are much shorter than their
equivalents in softwoods.

Since the fracture process can be considered as an aggregation of different
macro and microscopic effects, as well as a simplification of the finger-joint geome-
try (see Fig. 7.7), the direct use of fracture energies obtained experimentally will
not necessarily lead to accurate results. Experience in simulations of GLT beams
with softening behavior by Blank et al. (2017) has shown that the use of energies
of about one order of magnitude higher than those obtained experimentally deliver
best results (e.g. Blank et al. used 𝐺𝑓 = 1 × 104N/m2). Therefore, in the context of
the model for GLT, the fracture energies for finger-joints and wood material can
be considered as a variable to be calibrated.

7.3.3 Material assignment and meshing

The material properties are assigned sequentially to each cell, starting at the bottom
left corner, and moving to the right end of the lamination (cf. Fig. 7.3). Once the

7.3 | Finite element model 157

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



ℓboard

100mm (one cell)

𝑡 la
m

length of finger-joint

finger-joint element

Figure 7.8. Assignment of material properties of the finger-joints

end of the lamination is reached the material properties for the second lamination,
starting from the left side, are assigned. For the case of inhomogeneous cross-
sections, the different regions have to be considered (see decision elements 2
and 5 in flowchart of Fig. 7.2). This process is repeated until material properties
have been assigned to each lamination (step 3 of flowchart in Fig. 7.2).

The material properties for tension or compression are assigned according to
the vertical position of the lamination 𝑖 (𝑦𝑖) relative to the mid-depth of the beam
(𝑑/2). Specifically, tension material properties (𝐸𝑡,0,cell and 𝑓𝑡,0,cell) are assigned if
𝑦𝑖 ≤ 𝑑/2, and compression material properties (𝐸𝑐,0,cell and 𝑓𝑐,0,cell) if 𝑦𝑖 > 𝑑/2 (step
4 ). The shear modulus, 𝐺, and MOE perpendicular to the fiber, 𝐸90, are scaled
according to the values of 𝐸0,cell and the mean values for oak material according
to ETA-13/0642 (2013) as:

𝐺 = 𝐺mean ⋅
𝐸0,cell
𝐸0,mean

(7.8)

𝐸90 = 𝐸90,mean ⋅
𝐸0,cell
𝐸0,mean

. (7.9)

The geometry is then meshed with rectangular elements with a side aspect
ratio close to 1:1. The edge size of the elements was chosen to be equal to
the lamination thickness. Four node, linear plane stress elements with reduced
integration (CPS4R) were used.

Finally, the material corresponding to the finger-joints is assigned to the last
column of elements of each board, as shown in Fig 7.8 (step 6 of flowchart in
Fig. 7.2).
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Figure 7.9. Position of reference points (RPs) where the boundary conditions are applied. The
loading frame according to Frese (2006b) is shown as reference, too (gray dashed line).
Test setup according to EN 408 (2012)

7.3.4 Boundary conditions

The applied boundary conditions (BCs) resemble the test conditions of a four-point
bending test according to EN 408 (2012). Due to the pronounced non-linear
behavior of the system caused by the softening behavior and plasticity within the
model, appropriate BCs are required to improve convergence. This, of course, has
to be achieved without sacrificing the correct representation of the experimental
boundary conditions.

The loads are applied through rigid lines elements (type R2D2) tied to the top
surface of the beam and controlled by reference points RP3 and RP4 (see Fig 7.9).
This emulates the steel plates used in the typical experimental setups. For non-
linear fracture mechanics analyses a displacement-controlled loading condition is
recommended. However, imposing a vertical displacement on each reference point
RP3 and RP4 leads to an unbalanced loading condition at both reference points,
owed to the stochastic distribution of the mechanical properties (especially 𝐸𝑡,0)
throughout the beam.

Frese (2006b) solved this problem with the incorporation of a frame-like struc-
ture connecting both loading points to a control point (RP5 in Fig 7.9), which
drives the frame. Both loading points are jointed to the frame by means of pinned
connections. Now, imposing a displacement 𝑣5 on RP5 produces equal forces at
both loading points, conforming to the test conditions according to EN 408 (2012).

This concept can be further simplified by replacing the rigid frame with a linear
constraint imposed directly on the vertical displacements of the loading points
(RP3, RP4) and the control point (RP5). The linear constraint can be expressed as

7.3 | Finite element model 159

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



𝑣5 − 0.5 ⋅ (𝑣3 + 𝑣4) = 0, (7.10)

which can be incorporated in an Abaqus model by means of a constraint of type
“Equation”. This constraint, similarly as the loading frame, enables a displacement
control of the loading process, then producing equal forces at both loading points
RP3 and RP4, conforming to the experimental setup described in EN 408 (2012).

Similarly as the loading points, the supports are modelled by rigid line elements.
Differently as the experimental setup, the rigid lines are tied to the vertical end
faces of the beam, and the respective reference points, RP1 and RP2, are placed
at mid-depth (see Fig 7.9). This modification does not have an influence on the
bending stresses in the central region of the beam. To improve the convergence,
a linear relationship between the horizontal displacements of RP1 and RP2 is
considered, too:

𝑢1 + 𝑢2 = 0 (7.11)

This forces both supports to move always the exact amount but in opposite direc-
tions along the x-axis (horizontal direction). An improvement of the convergence
of the system is achieved in this way as sudden, large horizontal movements due
to element failure are restrained.

7.3.5 Solver configuration

The model is solved with the standard solver of Abaqus, using the static stress
analysis (“StaticStep”), which applies the Newton’s method to solve the nonlinear
problem iteratively (Abaqus, 2017). A maximum time increment of 0.02 was
defined, where the time variable moves within [0, 1], and a damping factor of
5 × 10−7 was specified for stabilization purposes. Geometric nonlinearities were
not considered.
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Figure 7.10. Load-displacement curves corresponding to a cross-section of 200 × 100mm for (a)
a simulated beams; and (b) an experimentally tested beam. The simulation is not
intended to replicate the specific experimental result, bur rather show the general
similarities between simulations and experiments

7.4 Typical solution and post-processing of results

7.4.1 General failure behavior

A typical simulated load-displacement response is presented in Fig. 7.10a, where
the global failure point is reached once the solver cannot find a solution for the
next increment due to numerical instabilities. The zoomed-in region in Fig. 7.10a
shows the abrupt load drop-off that causes the termination of the simulation.
This is similar as observed in some experimental results (see Fig. 7.10b), where
mostly rather brittle behaviors are observed. A more detailed description of the
behavior of the simulation is presented in Figs. 7.11a–d, where the results in the
central region of the simulated beam are shown for two loads, in linear elastic and
softening response, respectively (beam properties corresponding to Dataset B).
Figure 7.11a shows the location of the finger-joints within the beam. Figure 7.11b
shows the bending stresses of the beam in the undamaged linear elastic load
regime. This phase ends at around 𝐹 = 71 kN, where the first element reaches its
tensile strength, starting the softening behavior.

A further loading of the beam produces increasing damage and redistribution
of internal stresses (Fig. 7.11c). The load redistribution is made evident at each
step, where increased stress magnitudes are taken by the regions surrounding
the element undergoing the softening process. If the lamination above the failing
element is strong enough, it will restrain the further development of the crack,
increasing the redundancy of the system. At around 𝐹 = 75.7 kN no further load
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Figure 7.11. Example of a simulated glulam beam. (a) Position of finger-joints. (b) fully elastic,
undamaged state, (c) Initiation and progression of damage within the glulam beam, (d)
Failure ratio at ultimate load. (Figures created with the Pybaqus library (Tapia, 2021).)
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can be taken by the model. This is owed to two finger-joints that reach their
respective tensile strengths almost simultaneously (Fig. 7.11d), leading to a load-
drop in the last increment, followed by the solver aborting the simulation due to
numerical instabilities.

From Figs. 7.11b–d it is evident that the cracks (damaged regions) propa-
gate generally in vertical direction (perpendicular to the beam’s main axis). Al-
though this constitutes a simplification of the real, experimentally observed failure
behavior—where shear stresses and fractures pronouncedly interact after the first
failure—the results obtained are in good agreement with the experiments, as
shown below. The simplified model assumptions whereby only the tensile strength
of boards and finger-joints is considered to asses the failure of the beam are consid-
ered, has been made by previous similar models, too. A realistic crack propagation
could only be achieved by considering shear strengths and fiber deviation too,
which most probably will further affect the convergence of such highly non-linear
models. Steps in this direction have been taken recently e.g. by Lukacevic et al.
(2018), however only at a board level. Applying a stochastic approach with such
a model at the GLT level would be prohibitively expensive from a computational
point of view.

7.4.2 Data extraction from the FE model

After each simulation the following data are extracted from the model: vertical
forces at the five reference points RP1 through RP5, as well as the vertical dis-
placements at RP3, RP4 and RP5. The vertical forces at RP3 and RP4 were used
to corroborate that the same force is being applied at both points throughout the
simulation [i.e. that Eq. (7.10) had the intended effect]. These forces are also
used to compute the load-displacement curves, later used for the determination of
the bending strength of each beam.

7.4.3 Definition of bending failure

Although the implemented FE model considers fracture mechanics, meaning that
at some point a maximum load is reached, some additional considerations have
to be made to obtain sensible results. From experiments on GLT made of oak it
was observed that a certain degree of non-critical damage is normally present
prior to the global failure of the beam. This is noticeable as slight changes in
the inclination of the load-displacement curve, which for Fig. 7.10a begins at
around 70 kN. However, the overall response is rather brittle. Similar behavior
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was observed in the simulation results (see Fig. 7.10b). The mechanics of the
fracture process in the model is a simplification and differs from the typically
observed cracks that follow the fiber direction of the timber. In the model the
cracks propagate vertically and can be effectively restrained by boards with very
high tensile strength above them. The bending strength, 𝑓𝑏, is then computed
according to linear elastic Bernoulli beam theory as

𝑓𝑏 =
3 ⋅ 𝐹max ⋅ ℓ𝑎

𝑑2 ⋅ 𝑤 , (7.12)

where 𝑑 and 𝑤 are the depth and width of the cross-section, respectively, and ℓ𝑎 is
the distance from the support to the nearest loading point (see Fig. 7.9).

This analysis is performed for all the configurations by means of a python script
after all the simulations are done. Within this process the statistics and graphics
are produced as well.

7.5 Discussion

The presented FE model is in many aspects very similar to established strength
models, such as the Karlsruher Rechenmodel. In essence the beam geometry is sub-
divided in laminations, boards, cells and finger-joints, and the material properties
are assigned accordingly. Non-linear fracture mechanics (NLFM) was included
by means of a smeared crack approach. More stable boundary conditions were
defined to compensate the strong nonlinearities arising from the damage process.
The consideration of NLFM adds complexity to the model in the form of conver-
gence issues and an additional input parameter, namely the fracture energy. The
implication of this is that a calibration of the model is needed to obtain the correct
parameter for the fracture energy. This will be addressed in the next chapter by
means of parametric analyses.

The use of a configuration file to specify all the needed parameters is of great
help when analyzing different configurations. This also improves the reproducibil-
ity of the results, as none of the relevant parameters is hidden somewhere in the
code. Furthermore, although not discussed in depth here, special attention was
put into writing the model in an organized manner, using the full potential of the
object oriented programming paradigm, in this case implemented in python. This
helps achieving a cleaner code and an easier detection of errors. The code is made
public and can be found on Tapia (2022).
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8.1 General remarks

Most of the input parameters required by the model, presented in the previous
chapter, can be experimentally determined, as shown in Chapter 5 and 6. The
fracture energy values are, however, the exception, as experimental values derived
from typical small clear wood samples are not expected to deliver good results
in this model as pointed out by Blank et al. (2017). This is owed to the fact that
the damage process is considered in a smeared manner, simplifying the geometry
and failure characteristics along the evolving crack or damaged region. Therefore,
adequate values for the fracture energies of finger-joints, 𝐺𝑓,fj, and boards, 𝐺𝑓,𝑏,
need to be calibrated with experimental ultimate load data of GLT beams.

The first of this chapter is dedicated to applying the GLT strength model to the
datasets B and C, presented in Chapter 3. For this, the exact material properties
and geometry used for the simulation of the beams belonging to both datasets are
described. Then, the results for both datasets obtained within the linear-elastic
regime are discussed. Specifically, the simulated and experimental stiffness (or
global MOE) of the beams is compared. The nonlinear fracture behavior is then
closely investigated. Here, appropriate values for 𝐺𝑓,𝑏 and 𝐺𝑓,fj for the datasets B
and C are obtained by means of a maximum likelihood approach. In the second
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part of the chapter, the previous results are extended by means of a parametric
analysis, where the board length, cross-sectional depth and material properties
are analyzed.

8.2 Studied configurations

8.2.1 Dataset B

Material properties

For the generation of the required profiles of mechanical properties, the models
presented in Chapter 6 were fitted with the dataset B (see Section 3.4.2). This
dataset does not contain information regarding the variation of properties within
boards, hence, some assumptions were made based on previously gained knowl-
edge. Since the boards to be simulated are rather short (≈ 600mm in length) and
large defects were removed, the parameters obtained for clear wood sections were
used for 𝐸𝑡,0,cell and 𝑍𝑡,0,0cell. For the variation of tensile strength, the censored
Beta model (b) was fitted considering a total of nine cells of 100mm in each board,
from which only one value is known. The reason to choose nine cells is owed to
the fact that the standard length for tensile strength, ℓ𝑡, is equal to nine times the
width of the cross-section, 𝑤, thus for this case ℓ𝑡 = 9 ⋅ 𝑤 = 9 ⋅ 100mm = 900mm.

The modulus of elasticity under compression parallel to fiber, 𝐸𝑐,0, is assumed
to be equal to 𝐸𝑡,0. This is a simplification, as the behavior of timber boards is
somewhat different in compression as it is in tension. However, since no 𝐸𝑐,0 data
are available for Dataset B, 𝐸𝑡,0 should hold as a fairly good approximation. An
explicit consideration of 𝐸𝑐,0 is, nevertheless, possible as long as the correlation
matrix is available, as the method can be used with an arbitrary number of variables.
All the parameters used for the simulation are presented in Tables D.1 and D.2.

Geometry and load setup

Three cross-sections were simulated, corresponding to the three experimental
configurations width×depth: 100 × 120mm, 100 × 200mm and 100 × 300mm,
representing inhomogeneous build-ups as shown in Fig. 3.2. The length of the
beams was ℓ𝑏 = 15 ⋅ 𝑑, and the central region, subjected to pure bending, had a
length of 6 ⋅ 𝑑, complying with the experimental setup and EN 408 (2012).
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8.2.2 Dataset C

Material properties

The GLT beams from dataset B were produced with rather long oak boards (≈ 2m),
classified as D24 according to NF B 52-001-1 (2011). Experimental data for finger-
joints were measured from flat-wise bending tests, meaning that a conversion
factor need to be used to obtain the tensile strength information required by the FE
model. Based on own tests for the used material not reported here, a conversion
factor of 0.8 was used, i.e. 𝑓𝑡,0,fj = 0.8 ⋅ 𝑓𝑚,fj. This value is larger than that obtained
by Aicher and Stapf (2014), where an average factor of 0 7 was obtained for
datasets of three different producers of oak GLT.

The solid wood boards were tested in both flat-wise bending and tension tests.
The tension tests were performed on a different batch as the bending tests, meaning
that their properties might differ from the original batch. Nevertheless, since both
batches were classified as D24 and the origin was the same, the mechanical
properties should be rather similar. Thus, in order to avoid transformation factors,
the tension data was considered here.

It was observed that the distribution of 𝑓𝑡,0 of the boards was very similar to the
group of LS10-LS13 boards investigated in Section 5.5. Therefore, the censored
Beta model (b) calibrated in Section 5.5 was chosen to model the variation of
tensile strength within board, 𝑓𝑡,0,cell.

The parameters for the MOE-relevant processes 𝐸𝑡,0,cell and 𝑍𝑡,0,cell were taken
as those corresponding to the set containing all investigated cells. The global
MOEs of the boards were obtained from dynamic excitation measurements, which
however tend to deliver between 5% and 10% higher values as compared to static
MOE measurements.

Geometry and load setup

Two cross-sections were simulated, corresponding to the two experimental config-
urations (width × depth): 160 × 160mm and 160 × 300mm, both representing
homogeneous build-ups. The span of the simply supported beams conformed to
ℓ𝑏 = 18 ⋅ 𝑑, with the constant-moment region having a length of 6 ⋅ 𝑑.
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8.3 Analysis of stiffness results

8.3.1 Stiffness results of dataset B

Figure 8.1 and Table 8.1 present the computed global MOE for the three studied
cross-sections. It is immediately evident that, while a good agreement is observed
for the two larger cross-sections of 200 × 100mm and 300 × 100mm, a consid-
erable disagreement of about 13% is obtained for the smallest cross-section of
120 × 100mm. This is certainly not an expected result, since the MOE of the
different cross-sections should, in average, remain very similar owed to the fact
that the same material is used (see e.g. Fink, 2014). Bearing this in mind, it can
be argued that the simulated results are reasonable, and that either accidentally a
sample of beams with boards of significantly lower MOE values were produced—
which admittedly is rather unlikely, but possible. Or a problem occurred with the
calibration of the LVDT used to measure the vertical displacement, the latter being
more likely.
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Figure 8.1. Empirical and simulatedmodulus of elasticity,𝐸𝑚,𝑔, for the three analyzed beam depths

In the simulations, the standard deviation of 𝐸𝑚,𝑔 decays with larger cross-
sections, which is expected, as the homogenization effect increases with an increase
of used material. Contrary, in the experiments no reduction of the variation for
the larger cross-sections was observed, which can be related to the relative low
number of specimens tested. Summarizing, it can be stated that the model gives
satisfactory stiffness results.
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Table 8.1. Experimental and simulation results for the globalmodulus of elasticity,𝐸𝑚,𝑔, of dataset B

Depth N mean std. COV 𝐸𝑚,𝑘
[mm] [–] [GPa] [GPa] [%] [GPa]

120 Exp. 10 11.4 0.9 8 9.5
Sim. 1000 13.0 1.0 8 11.5

200 Exp. 10 13.2 0.7 5 11.8
Sim. 1000 13.1 0.6 5 12.1

300 Exp. 10 12.9 0.7 5 11.5
Sim. 1000 13.2 0.4 3 12.5

Table 8.2. Experimental and simulation results for the modulus of elasticity, 𝐸𝑚,𝑔, of dataset C

Depth N mean std. COV 𝐸𝑚,𝑘
[mm] [–] [GPa] [GPa] [%] [GPa]

160 Exp. 20 11.2 0.9 8 9.6
Sim. 1000 11.4 0.8 7 10.1

300 Exp. 20 10.9 0.4 4 9.9
Sim. 1000 11.5 0.5 5 10.6

8.3.2 Stiffness results of dataset C

The stiffness results can be seen in Table 8.2. A rather good agreement can be ob-
served for the smaller beams. However, for the larger beams the simulations present
a mean value about 6% higher than the experimental results. The coefficients of
variation for experiments and simulations are in good agreement.

8.4 Calibration of fracture energy

The FE model is calibrated using two datasets, B and C (see Sections 3.3 and 3.4),
respectively. For this, simulations with a range of fracture energy values are made.
The results obtained for each 𝐺𝑓 value are compared on the basis of their likelihood
values, which is computed against the experimental statistical distribution. In
this manner, it is possible to (i) determine which fracture energy value better fits
the experimental results, and (ii) explain to what degree the consideration of a
material softening for the finger-joints improves the obtained solution.
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8.4.1 Calibration of fracture energies with dataset B

Fracture energies

The fitting of the unknown fracture energies, 𝐺𝑓,fj and 𝐺𝑓,𝑏, was performed in two
consecutive steps:

1. Firstly, the 𝐺𝑓,fj value is varied between 5N/mm and 20N/mm in increments
of 1N/mm, while 𝐺𝑓,𝑏 is set as zero (brittle behavior). A total of 1000
simulations are performed for each configuration, and the likelihood of each
set (i.e. for each depth) is computed against the corresponding experimental
distribution.

2. Then, the 𝐺𝑓,fj value that maximizes the likelihood is chosen and new simu-
lations are performed, now varying 𝐺𝑓,𝑏. The 𝐺𝑓,𝑏 value that produces the
best fit to the experimental results is chosen.

Fracture energy calibration results

The computed log-likelihood values for the analyzed range of 𝐺𝑓,fj are presented in
Fig. 8.2a–c for the three experimentally tested beam depths of 120mm, 200mm
and 300mm, respectively. A clear maximum can be observed at 𝐺𝑓,fj = 12N/mm,
𝐺𝑓,fj = 11N/mm and 𝐺𝑓 = 10N/mm for the cross-sectional depths of 𝑑 = 120mm,
𝑑 = 200mm and 𝑑 = 300mm, respectively. The obtained results can be regarded
as consistent for the three different cross-sectional depths, as very similar values of
𝐺𝑓,fj were found to maximize the logℒ. A large discrepancy between the optimal
𝐺𝑓,fj values would mean that the model is not suited for the simulation of 𝑓𝑚,𝑔.

In view of the results presented in Figs. 8.2a–c, a value for the fracture energy
for finger-joints of 𝐺𝑓,fj = 11N/mm was chosen as the optimum value for Dataset B.
Thereafter, a series of 𝐺𝑓,𝑏 values were tested, where the best results were delivered
by 𝐺𝑓,𝑏 = 15N/mm. It is worth mentioning that the effect of 𝐺𝑓,𝑏 is much smaller
as compared to 𝐺𝑓,fj, mostly controlling the lower tail of the 𝑓𝑚,𝑔 distribution. This
is owed to the fact that, for this case, the finger-joints represent the weak regions
in the beam, implying that 𝐺𝑓,fj has a larger influence in the failure mechanism as
𝐺𝑓,𝑏.

Figure 8.3 presents the CDF curves for both, experimental and simulation
results (𝐺𝑓,fj = 11N/mm, 𝐺𝑓,𝑏 = 15N/mm ) for the three studied cross-sections.
The relevant statistics are presented in Table 8.3. A good agreement can be
observed between experimental and simulation results, confirming the suitability
of the optimized values for 𝐺𝑓,fj and 𝐺𝑓,𝑏.
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Figure 8.2. Computed log-likelihood for a range of fracture energies for the finger-joints for: (a)
𝑑 = 120mm; (b) 𝑑 = 200mm; and (c) 𝑑 = 300mm

Table 8.3 reveals that the mean bending strength value of the simulations is
in average less than 1% lower than the experimental values. The characteristic
values, 𝑓𝑚,𝑘, are less than 3% lower for the simulations. Thus, simulation results
are slightly on the safe side, which might be regarded as a desired characteristic
for such a model.

Discrepancies are seen mainly in the upper tails of the distributions, where
the simulations tend to overestimate the empirical results. However, for practical
applications the mean and lower levels (especially the 5% quantile) have a much
higher relevance. For the case of the smallest cross-section (𝑑 = 120mm) the lower
tail seems to be underestimated by the simulations. This might be owed to the fact
that for shorter beams there are less weak segments within the constant bending
region (= 6 ⋅ 𝑑), meaning that a larger number of tests is needed in order to get
results with a similar confidence level as the larger cross-sections. The fact that
for the two larger cross-sections a good agreement is obtained in the lower tails,
supports this hypothesis.

The coefficients of variation are 30% to 40% higher for the simulations as
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Figure 8.3. CDF of the bending strength for the three cross-sections obtained experimentally and
by means of the here presented simulation model

Table 8.3. Statistics for the simulations and experiments with different cross-sections

Depth N mean std. COV 𝑓𝑚,𝑘
[mm] [–] [MPa] [MPa] [%] [MPa]

120 Exp. 10 54.4 5.4 10 43.7
Sim. 1000 53.8 7.3 14 42.6

200 Exp. 10 47.9 4.9 10 37.7
Sim. 1000 47.6 6.5 14 37.3

300 Exp. 10 43.4 4.3 10 34.3
Sim. 1000 43.3 5.7 13 34.2

compared to the empirical results. This difference is most probably due to the
mentioned higher values on the upper tails.

Finally, the size effect exponent, 𝜉, was computed for both, experiments and
simulations [see Eq. (6.8)], and is presented in Table 8.4 for the mean and 5%-
quantile levels. A good agreement can be observed between empiric and simulated
values, both proving a rather high size effect for the regarded GLT. Compared to the
size effect assumed in EN 1995-1-1 (2010) of 𝜉 = 0.1, the values obtained here—
both numerical and experimental—are clearly much larger. For this particular
case the reason can be related to the characteristics of the weak regions of the
beam, defined mostly by the finger-joints. The oak material also influences this
behavior, which can be assumed from the rather high size effect values obtained
in Section 6.4.3. The effect of finger-joints and length of the boards is analyzed in
more detail later in this chapter.
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Table 8.4. Size effect exponents computed for the experimental and simulation results for dataset B

mean 5%-quant.

Experiments 0.25 0.26
Simulations 0.24 0.23
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Figure 8.4. Empirical and simulated CDF curves of the two studied cross-sections for dataset C

8.4.2 Application of fitted energy values to dataset C

In this section, the calibrated model is used to simulate GLT beams corresponding
to dataset C, which contains experimental data for two cross-sections.

Bending strength results

Figure 8.4 presents the empirical CDF for the bending strength of experiments
and simulations, for both analyzed cross-sections. It can be seen that, in general
terms, the empirical and simulated curves agree rather well, the main discrepancy
being observed in the lower tail of the larger cross-section. There, the simulations
considerably underestimate the experimental values, which can be seen in Table 8.5,
which contains the relevant statistics. While the simulation values for the smaller
cross-section agree with the empirical value very well, the values for the larger
cross-section exhibit a difference of 6% and 18% for the mean and 5%-quantile
values, respectively.

The observed difference is most likely related to the rather large uncertainty
associated to the input data. Specifically, the use of a conversion factor to obtain
𝑓𝑡,fj from bending tests delivers probably a rather vague estimation of the true
(unknown) 𝑓𝑡,fj distribution. This applies similarly to 𝑓𝑡,0, as the tensile strength
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Table 8.5. Statistics for the simulations and experiments with different cross-sections

Depth N mean std. COV 𝑓𝑚,𝑘
[mm] [–] [MPa] [MPa] [%] [MPa]

160 Exp. 20 47.6 8.0 17 33.9
Sim. 1000 47.3 8.0 17 34.2

300 Exp. 20 40.8 4.5 11 32.7
Sim. 1000 38.5 7.1 18 26.9

was tested in a different batch, potentially presenting some differences with the
original material. This was also the reason to not apply the same procedure to fit
the fracture energies as done with dataset B.

8.5 Parametric analysis

It is evident that the stiffness and bending strength behavior of the simulated (and
the real) beams depend on a large number of parameters. Specifically, it is clear
that the distributions of strength and MOE affect the global behavior of the beams
in very unique manners. However, an exact analytical quantification of each effect
remains a demanding problem. The presented model, with its parametric and
stochastic nature, allows to study the effects of different factors on stiffness and
bending strength, enabling a better understanding of the interactions of different
parameters.

In the following, a parametric analysis is performed in order to study the effects
of localized tensile strength models, length of boards and finger-joint quality on the
bending strength of simulated GLT beams. In this campaign, the fracture energy
for finger-joints is chosen as 𝐺𝑓,fj = 11N/mm and for boards as 𝐺𝑓,𝑏 = 15N/mm,
as calibrated above. The rest of the parameters are described in the section
corresponding to each analysis.

8.5.1 Effect of tensile strength distribution

In Chapter 5 a total of four different models were derived for the description of the
localized variation of tensile strength within board. Later, in Chapter 6, the four
models were used to simulate boards of different lengths in order to study the size
effect at the level of the individual boards. In this section the same four models are
used to generate 𝑓𝑡,0,cell profiles for the simulation of GLT beams under four point
bending condition. The objective is to study the sensitivity of the global bending
strength of GLT beams with respect to the chosen model for 𝑓𝑡,0,cell. For this,
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Figure 8.5. CDF curves for the simulated 𝑓𝑚,𝑔 values for different models of 𝑓𝑡,0,cell. (a,c) cross-
section of 192 × 175mm, (b,d) cross-section of 384 × 175mm

two different depths built-ups of 8 and 16 laminations, respectively, are studied.
The tensile strength of the finger-joints correspond to those of dataset B. The
parameters for 𝐸𝑡,0,glob, 𝐸𝑡,0,cell and 𝑍𝑡,0,cell correspond to those of all analyzed cells
(see Tables 5.7 and 5.8). The length of the boards is chosen constant and equal to
1000mm. A total of 1000 simulations are performed for each configuration.

Results

Figures 8.5a,b present the CDF curves of the simulated GLT beams with the four
different 𝑓𝑡,0,cell models. It can be seen that there are only small differences between
the parametric Weibull (a) and Beta (b) models, and between the regression models
Weibull (c) and Beta (d), respectively. There is, however, a clear difference between
parametric and regression models, mirroring what has already been observed for
the individual boards (see Section 6.4.3).

There is only a minor difference between parametric models (a) and (b) in the
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upper half of the distribution. This is probably related to the differences in the
upper tails of the corresponding models, where the Beta model (b) is capped by a
maximum value. Nevertheless, the exact shape of the upper tail of the distribution
for 𝑓𝑡,0,cell has a low practical relevance, as for design purposes the most important
aspect is to correctly describe the lower tail of the distribution. This is ensured
by the chosen method to fit 𝑓𝑡,0,cell by means of survival analysis, as shown in
Section 5.5.4. As long as reasonable models are used—i.e. distributions that can
describe the lower tail correctly—the sensitivity of the GLT mode to different 𝑓𝑡,0,cell
models is very small.

8.5.2 Effect of length of boards

The length of the boards is related to two effects: (i) as the boards get longer,
fewer finger-joints are present in the critical loaded region of the beam, while
simultaneously, (ii) the probability of encountering a weak region in the board
increases. If the finger-joints are of poor quality, then reducing their number
seems convenient. However, longer boards translate in a higher probability of
encountering a weaker region, which is probably the very reason to having short
boards in the first place, as it was in the case of dataset B. It is evident then,
that there is an interaction between tensile strength of boards and finger-joints,
influenced by the average length of the boards.

To study this effect, lengths of boards between 500mm and 3500mm in steps
of 500mm are studied for three cross-sectional beam depths: 120mm (6 lamina-
tions), 240mm (12 laminations) and 360mm (18 laminations). The parameters
for the different material properties were taken equal as for the beams of dataset C.

Relationship between strength of finger-joints and boards

Before analyzing the results of the parametric analysis, the relation between the
tensile strength of boards and finger-joints, dependent on the length of the boards,
is discussed. For this, extreme value theory comes in handy. In Section 5.5 it
was shown that starting from the cell-wise tensile strength distribution, 𝐹(𝑥),
the distribution at board (global) level, 𝐹(𝑛)min(𝑥), can be obtained by applying
Eq. (2.6) for, in that case, a board composed of 𝑛 = 15 cells, i.e. 1500mm in
length. Following this theory, distributions for 𝑓𝑡,0 can be obtained for different
lengths. This is illustrated in Figs. 8.6a,b for ℓ = 500mm and ℓ = 1500mm,
respectively. The dashed line represents the tensile strength of finger-joints, 𝑓𝑡,0,fj,
which is assumed equal for both cases, as the length of the board should not affect
their resistance.
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Figure 8.6. Application of extreme value theory to𝑓𝑡,0,cell for boards of (a) 500mm and (b) 1500mm
in length, i.e. with five and 15 cells 100mm in length, respectively

Figures 8.6b revel that for longer boards the finger-joints will, most of the
time, resist more than the board material. For very short boards, however, this
relation stops holding (see Fig. 8.6a), and might even reverse, depending on the
specific distributions for 𝑓𝑡,0,cell and 𝑓𝑡,0,fj. For the case studied here, this means that
a very small effect should be observed in the bending strength of the simulated
GLT beams, as the timber material is, statistically speaking, more decisive for the
initiation of global failure of the beam.

Results

Figures 8.7a–f present the results for the parametric analysis of the length of boards.
It can be seen that, as theorized above, the effect is very small, only distinguishable
for shorter boards of 500mm and, to a minor extent, also for lengths of 1000mm.
The differences are restricted mostly to the upper quantiles (⪆ 50%-quantiles),
while the lower tails behave very similarly.

It should be mentioned that the simulations do not consider the effect of
cutting off weak regions (e.g. large knots) for shorter boards, and assumes a
random shortening of boards instead. Nevertheless, as shown in Section 6.4.3, this
approach delivers clearly higher strengths for shorter boards and lower strengths for
longer boards. A more realistic simulation, where the cutting off of evidently weak
regions is considered, would presumably show a larger effect than the presented
simulation.

The size effect for the different configurations is analyzed in the following.
Table 8.6 presents the computed size effect exponents, 𝜉, obtained for the GLT
simulated with different board lengths. Beams made from shorter boards seem to
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Figure 8.7. Glulam bending strength obtained for simulations with different board lengths and
beam cross-sectional depth: (a,b) 𝑑 = 120mm, (c,d) 𝑑 = 240mm, (e,f) 𝑑 = 360mm
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Table 8.6. Size effect computed for the simulated beams with different board lengths

Size effect exponent, 𝜉 [–]

Board length [mm] 500 1000 1500 2000 2500 3000 3500

mean 0.26 0.29 0.30 0.32 0.32 0.31 0.32
5%-quant. 0.30 0.35 0.34 0.37 0.39 0.35 0.40

present a somewhat larger size effect as compared to using longer boards for the
characteristic (5%-quantile) values. On the mean level the computed size effect
factors range between 0.35 and 0.38, and can be considered rather high for GLT
beams. This stems from the rather low quality of the studied boards, as was also
shown in Section 6.4.3, where the size effect for individual boards was numerically
investigated.

Naturally, the results depend on the specific distributions of 𝑓𝑡,fj and 𝑓𝑡,0,cell,
but the general behavior should remain unchanged. This is, for shorter boards,
normally having higher 𝑓𝑡,0, values, finger-joints become more relevant for the
failure mechanism, whilst the opposite happens for longer boards.

This analysis indicates that shorter (stronger) boards account for the behavior
of dataset B, where the finger-joints presented relatively low values compared to
the tensile strength of the boards. These boards had a rather short length of about
600mm, where most of the defects are cut out. The problem of low strength finger-
joints can then be considered as a multidimensional problem, where an interaction
of board length, classification criteria and bonding quality of the finger-joints
defines the overall situation.

8.5.3 Effect of tensile strength of finger-joints

It has been shown that for GLT beams of oak, the failure mainly originates at the
location of finger-joints, which is owed to the relative low strength of finger-joints
as compared to the oak boards. This was experimentally observed in dataset B,
where short, strong boards were used. Hence, it is of great interest to study how
changes in the strength of finger-joints influence the global failure of the GLT
beams when short boards (≈ 600mm) are used.

For the following analysis, the properties for 𝑓𝑡,0,cell and the distribution of board
lengths are taken from dataset B. The distribution for 𝑓𝑡,fj is varied by modifying
the generalized parameters “location” and “scale”, producing a shifting and a
change in spread, respectively. The original (base) distribution for the finger-
joints of the outer LS13 laminations is described by a Lognormal distribution with
loc = 24.7MPa, scale = 15.2 and shape = 0.56. The location parameter is modified
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by adding or subtracting values ranging from −10MPa to 25MPa, in steps of
5MPa; similarly, the scale parameter is modified by adding or subtracting values
ranging from −10 to 10 in steps of 5.

An illustration of the modified distributions can be seen in Fig. 8.8a,b, where
the base distribution of 𝑓𝑡,0 is presented, too. It can be seen from Fig. 8.8a that the
chosen range of modified location parameters covers the entire 𝑓𝑡,0 distribution,
which should translate in rather different behaviors for each configuration. In a
similar way, Fig. 8.8b shows how the modified scale parameters span over the region
of the 𝑓𝑡,0, distribution. As with the other analyses, a total of 1000 simulations are
performed per configuration, and three different depths are analyzed: 6 and 9 and
15 laminations, corresponding to 120mm, 200mm and 300mm, respectively.
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Figure 8.8. Investigated modified tensile strength, 𝑓𝑡,fj, distributions. (a) modification of the loca-
tion parameter, (b) modification of the scale parameter

Results for the modified “location” parameter

Figures 8.9a–f present the results for the investigated “location” parameters for the
different analyzed cross-sections. The mean and 5%-quantile values are shown in
Table 8.7. It can be seen that as the location parameter in increased (larger 𝜆), the
bending strength monotonically increases. However, the rate of increase decreases
for larger 𝜆 values. This is expected, since, as the 𝑓𝑡,fj distribution is shifted towards
higher values, the wood material (boards) begins to gain more relevance—from
the perspective of the failure mechanism. Eventually the point is reached where
higher 𝑓𝑡,fj values have no effect, as the failure mechanism is entirely controlled by
the wood material.

Table 8.8 presents the percentage difference compared to the base case (𝜆 = 0)
for both, mean and 5%-quantile levels. It is apparent that for larger depths the
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Figure 8.9. Simulated bending of GLT beams of different depths dependent on location parameter
of the lognormal distribution describing the tensile strength of finger-joints. (a,b)
𝑑 = 120mm; (c,d) 𝑑 = 200mm; (e,f) 𝑑 = 300mm
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Table 8.7. Mean and 5%-quantile values for 𝑓𝑚,𝑔 of different beam depths, resulting from the
modification of the “location” parameter of the 𝑓𝑡,fj distribution

Depth
[mm]

Bending strength, 𝑓𝑚,𝑔 [MPa]

𝜆 [MPa] -10 -5 0 5 10 15 20 25

120 mean 49.9 52.2 54.1 55.9 58.2 61.0 63.6 65.9
5%-quant. 33.3 38.9 41.9 44.1 46.6 48.4 49.8 51.1

200 mean 40.6 44.9 47.5 49.9 52.4 54.6 57.1 59.0
5%-quant. 27.3 33.0 37.4 40.2 42.2 43.8 45.9 46.9

300 mean 36.7 40.0 42.7 45.1 47.6 50.0 52.4 53.9
5%-quant. 25.3 29.9 34.0 36.0 38.2 39.9 41.6 42.1

Table 8.8. Difference between the 𝑓𝑚,𝑔 for different beam depths, obtained with the modified 𝑓𝑡,fj
distributions and the base case (𝜆 = 0)

Depth
[mm]

Difference relative to base case 𝜆 = 0 [%]

𝜆 [MPa] -10 -5 0 5 10 15 20 25

120 mean −7.7 −3.4 0.0 3.4 7.7 12.8 17.6 21.8
5%-quant. −20.5 −7.3 0.0 5.3 11.2 15.5 18.7 21.8

200 mean −14.5 −5.6 0.0 4.9 10.3 14.8 20.1 24.1
5%-quant. −27.1 −11.9 0.0 7.3 12.8 17.0 22.7 25.3

300 mean −14.1 −6.4 0.0 5.7 11.5 17.2 22.8 26.3
5%-quant. −25.8 −12.2 0.0 5.8 12.2 17.3 22.3 23.6

effect of shifting the 𝑓𝑡,fj distribution is stronger. This can be explained by the
simple fact that, for longer beams the number of finger-joints increases, making it
more likely for the weakest region to be determined by a finger-joint. In contrast,
for smaller beams, fewer finger-joints are present, which increases the probability
of having a weak region in the wood material. In the latter case, the improved 𝑓𝑡,fj
has a lesser impact as in the former case.

This information allows to assess the hypothetical improvement of the 𝑓𝑡,fj distri-
bution. For example, for an increase of 58% in themean value of 𝑓𝑡,fj—corresponding
to 𝜆 = 10MPa—, an increase of about 12% can be expected for the 5%-quantile
value of the bending strength. This percentage depends, of course, on the specific
distributions for 𝑓𝑡,0 and 𝑓𝑡,fj.

Finally, the size effect was computed for each configuration, based on the
three analyzed beam depths. The results are presented in Table 8.9. It can be
observed that the size effect decreases as the 𝑓𝑡,fj distribution is shifted towards
higher strength values. This is related to the percentage differences shown in
Table 8.8. Since the same improvement in finger-joints produces a higher relative
increase in 𝑓𝑚,𝑔 for larger beams, the difference of strength between depths is
reduced, thus resulting in the observed smaller size effect.
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Table 8.9. Size effect exponent dependent on the location parameter of the lognormal of finger-joint
distribution

Size effect exponent, 𝜉 [–]

𝜆 [MPa] -10 -5 0 5 10 15 20 25

mean 0.33 0.29 0.26 0.24 0.22 0.22 0.21 0.22
5%-quant. 0.29 0.28 0.23 0.23 0.22 0.21 0.20 0.22

Table 8.10. Mean and 5%-quantile values for 𝑓𝑚,𝑔 of different beam depths, resulting from the
modification of the “scale” parameter of the 𝑓𝑡,fj distribution

Bending strength, 𝑓𝑚,𝑔 [MPa]

𝜎 [–] -10 -5 0 5 10

120 mean 49.9 52.3 54.1 56.2 58.2
5%-quant. 36.0 39.9 41.8 43.6 44.2

200 mean 41.2 44.8 47.5 49.7 51.6
5%-quant. 29.8 34.2 37.2 39.1 40.6

300 mean 37.2 40.4 42.8 44.8 46.6
5%-quant. 27.1 31.4 34.0 35.5 36.6

Table 8.11. Difference between the 𝑓𝑚,𝑔 for different beam depths, obtained with the modified
𝑓𝑡,fj distributions and the base case (𝜍 = 0)

Difference relative to base case [%]

𝜎 [–] -10 -5 0 5 10

120 mean −7.7 −3.3 0.0 4.0 7.7
5%-quant. −13.9 −4.7 0.0 4.3 5.6

200 mean −13.3 −5.7 0.0 4.6 8.5
5%-quant. −20.0 −8.2 0.0 5.0 9.2

300 mean −13.2 −5.7 0.0 4.6 8.8
5%-quant. −20.2 −7.7 0.0 4.5 7.8

Results for the modified “scale” parameter

Figures 8.10a–f and Talbe 8.10 present the results for 𝑓𝑚,𝑔 concerning the aspect
of “scale” parameter variation. For larger spreads, i.e. larger standard deviations,
higher bending strength values are obtained. However, the effect decreases as the
𝑓𝑡,fj distribution widens (𝜎 > 0) and acquires similar characteristics as 𝑓𝑡,0 (see
Fig. 8.8b). For higher values of the parameter 𝜎, it is expected that mostly the
wood material controls the failure mechanism.

The effect relative to the base configuration (𝜎 = 0) is presented in Table 8.11
for both, mean and 5%-quantile levels. Similarly as for the case of the location
parameter variation, the modification of 𝜎 has a slightly larger effect for larger
cross-sections. The explanation to this is very similar to the explanation for the
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Figure 8.10. Simulated bending of GLT beams of different depths dependent on scale parameter
of the lognormal distribution describing the tensile strength of finger-joints. (a,b)
𝑑 = 120mm; (c,d) 𝑑 = 200mm; (e,f) 𝑑 = 300mm
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Table 8.12. Size effect computed for the simulated beams with different scale parameters for the
distribution of finger-joints

Size effect exponent, 𝜉 [–]

𝜎 [–] -10 -5 0 5 10

mean 0.31 0.28 0.26 0.25 0.24
5%-quant. 0.30 0.26 0.23 0.22 0.21

location parameter, namely the larger number of finger-joints present in longer
beams.

The computed size effect exponents are shown in Table 8.12 for both, mean
and 5%-quantile levels. It can be seen that for larger spreads, the size effect
decreases. This seems counterintuitive at first sight, however, this is owed to the
specific analyzed case, where a larger spread of 𝑓𝑡,0,fj resembles the distribution for
𝑓𝑡,0. This effectively translates into less variation of tensile strength throughout
the simulated beam, as all the strength values might be regarded as following the
same distribution instead of two different distributions.

8.6 Discussion

This final chapter presented some practical applications of the glulam strength
model. After the initial calibration, themodel was able to produce a good agreement
with test results. The advantages of applying such a model are multiple, and
discussed in the following.

The production of GLT beams and the declaration of its respective mechanical
properties is based on the experience and results accumulated over many decades.
This experience has lead to the development of a set of rules given in EN 14080
(2013), which ensure a reliable production of GLT beams, where the quality and
safety of the product stand in the front line. These rules paved the way for the
current ubiquity of softwood GLT, being the most used glued engineered element
in timber constructions.

For the specific case of hardwood GLT, however, the accumulated experience
is much smaller and clear rules are lacking for the definition of the relevant
mechanical properties. In absence of clear rules—as in the case of softwoods—, the
only alternative to reduce the uncertainty of the mechanical properties is normally
considered to be the realization of experimental campaigns. Although experiments
are normally regraded as the last word for such cases, the use of a strength model
helps in the interpretation of the results, especially for the cases where a small
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number of specimens are tested.

The ultimate objective of this model is not to only to assist in the analysis of the
results obtained from experimental campaigns, but, more ambitiously, reducing
the number of required specimens to be tested—or even replacing them—, thus
reducing their associate costs. Such approach would in essence be equivalent to the
current approach according to EN 14080 (2013), however, the nature of the finite
element model enables a higher degree of flexibility, allowing to make calibrations
for specific species or predict characteristic values for specific loading conditions.
It should be mentioned that the developed model can not only be used under
bending conditions, but simulations under tension loading are straightforward to
implement, similarly as done by Frese et al. (2017).

Furthermore, the strength model serves not only the prediction of bending
strength based on empirically obtained parameters for material distributions, but
also allows to assess the effects of possible improvements in the production chain,
e.g. better finger-joints or better boards. This can be considered being a useful
tool e.g. in the decision process whether or not to invest in a new finger-jointing
machine—associated with a specific improvement in 𝑓𝑡,fj—is justified, based on the
specific criteria of an individual producer.

The most time-consuming part of applying the presented strength model is the
determination of the correct parameters to describe the variation of the material
properties within board. Ideally, this could be simplified by the specification of
parameters describing the variation of MOE within board in a tabulated form. This
could be done for specific strength grades or combination of grades, and for boards
with different cross-sectional dimensions.

For the variation of strength along board, the presented method, based on
survival analysis, can be used to estimate 𝑓𝑡,0,cell. Preferably, multiple strength
values per board should be obtained in order to better represent the real distribution
of 𝑓𝑡,0,cell. However, it was shown that the shape of the upper tail of 𝑓𝑡,0,cell has
a rather small influence on the computed bending strengths. This means that
suitable parameters might be derived based on one tensile test per board, perhaps
in combination with an assumed maximum possible strength value, which could
be fed to the parametric Beta model.
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Conclusions and outlook

9.1 Conclusions

This thesis was initiated to address the general lack of knowledge regarding the
variation of mechanical properties in hardwoods. This was addressed here for the
particular case of European oak (Q. robur, Q. petraea). The mechanical properties
along board are in general influenced by a multitude of variables, spanning from
the microstructure of the wood cells to the larger scale defects. The interaction
of the different variables is complex and in some cases the variables are itself
unknown. Regression analyses do help to understand the influence of some of
these variables and are very useful in the context of classification. However, these
variables can be ignored and a pure aleatoric process can be assumed. In doing
so, the focus shifts to the process itself, its nature, providing a new perspective
of its characteristics. In the context of stochastic simulations, the latter approach
shows some advantages, as only the needed process is simulated, eliminating
the need to generate auxiliary variables like knots or density. The methodology
applied to investigate the variation of properties along boards might, at times,
have given the impression of being an exercise in pure statistics. However, the
practical relevance of the introduced methods was hopefully made evident in the
last chapter, where the methods were used in the developed finite element (FE)
glulam strength model.

Although the final output of this work is the presented glulam strength model,

187

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



it is evident that the study of the variation of properties within board constitutes
the core of this thesis. The improvements of the developed FE strength model and
similar models from the literature are, generally speaking, rather small. In fact,
the main principles have not changed much since the first models presented in
the 1980’s, except for additional considerations as fracture mechanics and some
adjustments in the discretization. Certainly the implementation of each model
differs substantially, but the core remains unchanged. In contrast, the methodology
adopted for the analysis of the variation of mechanical properties along board
contains new ideas with a general character, thus making them applicable to
different hardwood—and maybe softwood—species, too.

The conclusions deriving from the study of the variation of mechanical proper-
ties within board can be summarized as follows:

• The intra-board distribution of modulus of elasticity (MOE) presents a marked
skew to the left, best represented by a Log-Gamma distribution. The observed
skew points at a relatively large number of cells with high MOE values and
a decreasing amount of cells with comparatively low MOE values. This
behavior is also observed when large knots are removed, evidencing the
rather large degree of variation that can be attributed to other factors such
as the fiber deviation.

• The autoregressive analysis performed on the stationary MOE data strongly
suggests that a first order autoregressive model [AR(1)] describes the data
in a satisfactory manner.

• The computed lag-1 considering all cells and only clear wood segments were
0.44 and 0.58, respectively, highlighting the influence of large knots in the
intra-board variation of MOE.

• The developed autoregressive model differs from most of the existing stochas-
tic regression-based MOE variation approaches in that it is independent of
knot indicators.

• The developed model is able to reproduce the observed statistical character-
istics of the studied boards.

• The variation of tensile strength can be analyzed by means of survival analysis.
The fitted models behave in agreement with the weakest link theory, i.e.
simulating the length effect in a coherent manner.

• The cross-correlation between MOE and tensile strength models promotes
lower tensile strength values in regions of low MOE and higher strength
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in cells with higher relative MOE values, which is in agreement with the
expected behavior.

• The simulated size-effect for oak boards is rather high compared to typical
values for softwoods, showing an exponent between 0.30 and 0.33 for the
mean level, and between 0.23 and 0.31 for the 5%-quantile level depending
on the used model. This seems to be a characteristic of oak boards, deriving
from the rather large variation observed.

The following main conclusions can be drawn from the results obtained with
the developed FE glulam strength model:

• The consideration of fracture mechanics improves the capacity of the glulam
strength model to reproduce the observed behavior of experimental results.

• The calibrated fracture energy values of 11N/mm and 15N/mm for finger-
joints and board material, respectively, delivered satisfactory results for both
GLT datasets.

• The use of a structured file format to solve the complete set of parameters
needed for a single GLT configuration and cryptographic hash functions to
ensure reproducibility, reduces possible human errors related to changes in
parameters.

• The model can be used to assess the impact of possible improvements to
the quality of finger-joints or wood material on the bending strength of GLT
beams.

9.2 Outlook

At the end of any research work, almost inevitably, some questions will remain
unanswered. Furthermore, the insights gained during the methodological analysis
and solving of one problem will, in many cases, uncover additional unknowns or
motivate alternative approaches and applications. Although great effort is done in
pursuing some of these ideas as they appear—producing new insights and new
ideas—,time constraints or the prevention of an excessive widening of the scope
will leave many open questions. Chapters need to be closed at some point. Hence,
some ideas must be left for future research. In the following, possible research
topics related to this thesis are discussed.

The method chosen to measure the localized MOEs is very time consuming.
A different approach, which would also yield considerably higher resolutions,
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is the use of optical systems to measure strains by means of fiber glass cables.
This method would allow for a faster and more reliable gathering of data, easily
applicable to different datasets. The higher resolution translates into a more
detailed autoregressive analysis, which can lead to an improvement of the MOE
model.

The data analyzed here and the simulations derived from the fitted models
indicate a significantly stronger size effect as compared to softwoods. However, the
rather small size of the dataset prohibits a decisive claim with the needed degree
of certainty. Thus, the size effect needs to be studied in a larger dataset of oak
boards.

The largely known differences existing between different hardwood species
makes it highly unlikely for the variation of mechanical properties along board
of different hardwoods to be governed by the same parameters as obtained here.
Considering the change in availability of natural resources, the fostering of glu-
lam made of different hardwoods should be an objective for the timber industry.
Therefore, the methods presented here, or similar, should be applied to boards of
different hardwood species, with the objective of slowly building a database with
parameters describing each species.

The glulam strength model can be used to assist the development and fitting
of a design equation for glulam beams made of hardwood species, analogous to
EN 14080 (2013). For this, a mixture of experimental results and simulations
based on possible configurations of material properties can be made.

The glulam strength model can be modified and extended to consider different
loading situations and failure mechanisms. For example, it is trivial to analyze the
behavior of GLT under tension loading by simply changing the boundary conditions
and extending the fracture behavior to the entire cross-section. Additionally, the
variation of properties related to shear or tension perpendicular to grain could be
considered, too. This would require modifications on the user-defined material
subroutine implemented for Abaqus. There is, however, enough work done in the
literature for the consideration of the interaction of multiple stress components,
e.g. by Lukacevic et al. (2017) and Sandhaas et al. (2020).

Finally, given the large number of simulations required, the strength model
could be reimplemented with a different software without licence restrictions
(e.g. open-source). This would allow for a much larger parallelization of the
computations, reducing the total time needed to study a specific configuration.
Owed to the rather simple geometry, this should be possible to implement with
existing tools in a moderate time frame.
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List of Symbols

Latin letters

𝑎𝑖 Diameter of knots, measured on surface of board perpendicular to grain

𝑏 Width of cross-section of board

𝑑 Depth of GLT beam

𝑓(⋅) Probability density function

𝑓𝑐,0 Compressive strength of boards

𝑓𝑚,𝑔 Bending strength of GLT beam

𝑓𝑚,𝑗 Flat-wise bending strength of finger-joints

𝑓𝑡,0,cell Cell-wise tensile strength parallel to grain

𝑓𝑡,0,glob Global tensile strength of board

𝑓𝑡,0,sec Tensile strength obtained from secondary tensile tests

𝑓𝑡,0 Tensile strength of board perpendicular to grain

𝑓𝑡,0 Tensile strength of boards

𝑡 Thickness of cross-section of board

𝑥05 5%-quantile level

̄𝐸max,3 Average of three largest 𝐸𝑡,0,cell values in a board

𝐸𝑡,0,𝑖,𝑗 Normalized MOE of cell 𝑗 of board 𝑖

𝐴𝑖,𝑘 List with tuples of 𝑘-lagged values per board
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𝐶𝑖,𝑘 List with the concatenation of the 𝐴𝑖,𝑘 lists of each board

𝐸dyn Dynamic MOE parallel to grain

𝐸𝑚,0 Flat-wise bending stiffness of boards

𝐸𝑚,𝑔 Bending stiffness of GLT beam

𝐸𝑡,0,cell Cell-wise MOE parallel to grain direction

𝐸𝑡,0,glob Global MOE parallel to grain direction in board

𝐸𝑡,0,𝑖,𝑗 Measured MOE of cell 𝑗 of board 𝑖

𝐸𝑡,0 MOE parallel to grain direction

𝐹(⋅) Cumulative distribution function

𝐹min(⋅) Distribution of minimum value

𝐺𝑓 Fracture energy

𝐿 Length of window used to analyze knots along board

𝑃 Load

𝑅 Coefficient of correlation

𝑍 Random variates corresponding to a standard normal distribution

𝑍𝑡,0,cell Stationary data corresponding to MOE variation within board

KARthres KAR threshold used for analysis of clear wood segments

ℓboard Length of board

ℓcell Length of cell

ℓCW Length of clear wood segment

ℓknots Length used to measure knot variables

ℓ𝑏,mean Mean length of boards in GLT

ℓ𝐸,glob Length used to measure the global MOE in board

ℓ𝑔 Length used to measure grain deviation

ℓ𝑠,2,𝑖 Testing length of the 𝑖-th secondary tensile tests of boards

ℓ𝑠 Free length in tensile test
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ℒ(⋅) Likelihood function

𝒩 Normal distribution

Greek letters

𝛼0 Intercept of the regression for scale parameter 𝛿 in Weibull and Beta
regression models

𝛼1 Regression coefficient associated with 𝐸𝑡,0,glob for parameter scale 𝛿 in
Weibull and Beta regression models

𝛽0 Intercept of the regression for shape parameters 𝜌 and 𝑎 in Weibull and
Beta regression models, respectively

𝛽1 Regression coefficient associated with 𝐸𝑡,0,glob for parameter scale 𝜌 and 𝑎
in Weibull and Beta regression models, respectively

𝛿𝑖 Binary variable indicating whether the 𝑖-th value is censored or not

𝛾(⋅) Autocovariance function

̂𝛾(⋅) Sample autocovariance function

̂𝜌(⋅) Sample autocorrelation function

𝜇 Mean value

𝜈 Frequency

𝜌(⋅) Autocorrelation function

𝜌 Density

𝜌0 Density corrected at 0% MC

𝜌12 Density corrected at 12% MC

𝜎 Standard deviation

𝜎tot Total standard deviation of cell-wise MOE in a group of boards

𝜎𝐸,glob Standard deviation of global MOE of boards

𝜎𝐸,local Standard deviation of cell-wise MOE for one board

𝜎𝑡,0 Tensile stress parallel to grain

𝜃 Parameters defining a given distribution function
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𝜀𝑖 White noise component of AR process

𝜑𝑖 Model parameters for AR model

𝝁 Vector of mean values of a multinomial distribution

̂𝜃 Estimated parameters for a given distribution function

Δ Used to denote a difference

Γ(⋅) Gamma function

𝚺 Covariance matrix

Φ(⋅) Cumulative distribution function of the standard normal distribution

Φ−1(⋅) Percent point function of the standard normal distribution

Superscripts

cell Variable computed from measured cell-wise results

mean Mean value of measured variables

test Variable measured directly from test results

Subscripts

0 Property parallel to grain

100 Value associated to a window of 100mm

12 Property corrected to 12% MC

150 Value associated to a window of 150mm

𝑐 Property under compressive conditions

𝑗 Property associated to finger-joints

𝑘 Characteristic value

𝑡 Property under tensile conditions

cell Property associated to one cell in board

glob Global property, associated to entire board

max Maximum value

min Minimum value
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Abbreviations

ACF Autocorrelation function

AIC Aikaike Information Criterion

AR Autoregressive model

CDF Cumulative distribution function

COV Coefficient of correlation

CWAR Clear wood area ratio

CWS Clear wood segment

GLT Glued laminated timber

IP Indicating property

KAR Knot area ratio

MC Moisture content

MOE Modulus of elasticity

PDF Probability density function

SACF Sample autocorrelation function

WL Weakest link

WS Weak segment
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Ap
pe

nd
ix

A
Variation of MOE along

boards

The entirety of the analyzed results regarding the variation of the modulus of
elasticity parallel to the fiber direction, and clear wood ratios is presented here.
The board No. 85 was not used in the analysis because a software-related mal-
functioning of the testing machine brought it to an early (compressive) failure,
before the global MOE could be measured. Therefore, no data for MOE or tensile
strength is available. Nevertheless, the results for the MOE and CWAR variation
along the board are presented in the following appendix (Fig. A.4c), since the
author estimates that it adds relevant information to the understanding of the
MOE variation along boards.

209

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
M
O
E
[N

/m
m
²]

×104

No. 50

COVMOE= 17.3%

(a) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 51

COVMOE= 12.3%

(b)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 52

COVMOE= 7.5%

(c) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 53

COVMOE= 8.4%

(d)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 54

COVMOE= 10.2%

(e) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 55

COVMOE= 7.2%

(f)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Distance [mm]

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 56

COVMOE= 3.0%

(g) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Distance [mm]

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 57

COVMOE= 17.5%

(h)

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

Figure A.1. MOE and CWAR variation for boards 50, 51, 52, 53, 54, 55 and 56. Horizontal line
represents the measured global MOE. Black wedge marks the location of the global
failure.
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Figure A.2. MOE and CWAR variation for boards 58, 59, 60, 61, 62, 63, 64 and 65. Horizontal line
represents the measured global MOE. Black wedge marks the location of the global
failure.
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Figure A.3. MOE and CWAR variation for boards 66, 67, 68, 70, 71, 72, 73 and 74. Horizontal line
represents the measured global MOE. Black wedge marks the location of the global
failure.
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Figure A.4. MOE and CWAR variation for boards 75, 76, 77, 78, 79, 80, 81 and 82. Horizontal line
represents the measured global MOE. Black wedge marks the location of the global
failure.

213

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
M
O
E
[N

/m
m
²]

×104

No. 83

COVMOE= 15.4%

(a) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 84

COVMOE= 12.0%

(b)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 85

COVMOE= 24.4%

(c) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 86

COVMOE= 21.4%

(d)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 87

COVMOE= 7.5%

(e) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 88

COVMOE= 6.0%

(f)

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Distance [mm]

0.0

0.5

1.0

1.5

2.0

2.5

M
O
E
[N

/m
m
²]

×104

No. 89

COVMOE= 21.3%

(g) 10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

Distance [mm]

0.0

0.5

1.0

1.5

2.0

2.5
×104

No. 91

COVMOE= 6.1%

(h)

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

0

25

50

75

100

0

25

50

75

100

CW
AR

[%
]

Figure A.5. MOE and CWAR variation for boards 83, 84, 85, 86, 87, 88, 89 and 91. Horizontal line
represents the measured global MOE. Black wedge marks the location of the global
failure.
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Figure A.6. MOE and CWAR variation for boards 92, 93, 95, 96, 98, 99, 100 and 101. Horizontal line
represents the measured global MOE. Black wedge marks the location of the global
failure.
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B
Analysis of MOE

normalization method

The objective of this annex is to show the suitability of the MOE normalization
method presented in Section 5.4.4. Specifically, it will be shown, by means of a
simple numerical example, that the normalization method does not distort the
shape of the original distribution. Thus, demonstrating that the observed skew is
not an artifact of the chosen method.

The numerical example consists of a series of simple simulations, where the
normalization method is used on distributions with different skews. In order to
demonstrate this, Fig. B.1 (top) presents three Weibull distributions with three
different shape parameters (1.5, 3.0 and 10.0). Each distribution is used to generate
1000 samples of 15 randomly generated values each (representing the studied
boards). These fake boards are then normalized as done with the experimental
data. Figure B.1 (bottom) shows the obtained normalized distributions for each of
the above-lying original distributions, where it is evident that the normalization
procedure does not affect the original skewness in any noticeable manner. Thus,
it can be said that the chosen normalization method respects the underlying
distribution of MOE within board and does not affect its general characteristics
(i.e. the skewness is largely preserved). This holds as long as the support of the
distribution is positive.

217

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



0 10 20
[–]

0

2

4

6

PD
F
[-]

×10−2

scale = 10
shape = 1.5

(a)

Original
distribution

0 1
[–]

0.0

0.5

1.0

PD
F
[-]

(d)

Normalized
distribution

5 10 15
[–]

0.5

1.0

×10−1

scale = 10
shape = 3.0

(b)

0.5 1.0
[–]

0.5

1.0

1.5

(e)

8 10
[–]

0

1

2

3

×10−1

scale = 10
shape = 10.0

(c)

0.6 0.8 1.0
[–]

0

2

4

(f)

Figure B.1. Normalization method tested on Weibull distributions with three different shape pa-
rameters: (a) 1.5, (b) 3.0, and (c) 10.0; (d,e,f) distributions resulting from applying the
normalization method to each original distribution
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C
Testing of the user-defined

material in a one-element
problem

The used-defined material subroutine (UMAT) was tested with one element loaded
in one direction by means of a set of given displacements. A two-dimensional,
plain stress element of type CPS4R was used. The dimensions of the element
were 10 × 10mm. A tensile strength of 𝑓𝑡,0 = 40MPa was defined and the fracture
energy was set as𝐺𝑓 = 6N/mm. Thematerial properties used are listed in Table C.1.
The displacements were defined as a load-unload-load series, depicted in Fig. C.2a.

Figure C.2b shows the stress-strain result for the loading-unloading cycle. It
can be seen that the element responds as expected, where after reaching 𝑓𝑡,0
softening starts. Once the load is reduced, the element unloads linearly exhibiting

𝑢

𝑢

x

y

Figure C.1. Model of the tested configuration with one element
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Table C.1. Material properties used for the one-element model

𝐸0 𝐸90 𝜈𝑥𝑦 𝐺𝑥𝑦 𝑓𝑡,0 𝐺𝑓
[MPa] [MPa] [–] [MPa] [MPa] [MPa]

12 500 350 0.02 650 40 4

the original elasticity. When the element is loaded again, it takes load until
it reaches the previous load level prior to the unloading. Thus, it can be said
that the implementation of the material with softening capabilities satisfies the
requirements for the simulations.
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Figure C.2. Results for the one-element test with the UMAT subroutine. (a) applied displacement to
the element, (b) element response
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D
Input parameters used in

the strength model

D.1 Parameters used for the strength model with
dataset B

The following parameters for the distributions of the different variables were
employed for the simulations of GLT beams with wood material corresponding to
dataset B. The parameters of the distributions in Tables D.1 and D.2 correspond to
parameters of the standardized form of the distribution, as defined in the SciPy
software package (Virtanen et al., 2020).

Table D.1. Parameters used for the LS13 boards

Variable Distribution location scale shape shape 2

Length Lognorm 9.31 × 101 3.73 × 102 3.98 × 10−1 –
𝐸𝑡,0 Lognorm 6.22 × 103 6.58 × 103 4.26 × 10−1 –
𝑓𝑡,0 Lognorm −3.52 × 101 8.89 × 101 1.84 × 10−1 –
𝑓𝑐,0 Lognorm 2.61 × 101 2.39 × 101 9.70 × 10−2 –
𝑓𝑡,fj Lognorm 2.47 × 101 1.52 × 101 5.57 × 10−1 –
𝑓𝑡,0,cell Beta 2.01 × 101 9.99 × 101 1.85 5.91 × 10−1

𝑓𝑐,0,cell Weibull 4.23 × 101 1.26 × 101 3.32 –
𝐸𝑡,0,cell Log-Gamma 9.63 × 10−1 6.18 × 10−2 7.90 × 10−1 –

221

Dieses Werk steht Open Access zur Verfügung und unterliegt damit der Lizenz CC-BY 4.0



Table D.2. Parameters used for the LS10 boards

Variable Distribution location scale shape shape 2

Length Lognorm 9.31 × 101 3.73 × 102 3.98 × 10−1 –
𝐸𝑡,0 Lognorm −3.63 × 104 4.90 × 104 4.07 × 10−2 –
𝑓𝑡,0 Weibull 2.13 × 101 2.66 × 101 1.70 –
𝑓𝑐,0 Lognorm 2.61 × 101 2.39 × 101 9.70 × 10−2 –
𝑓𝑡,fj Lognorm 1.08 × 101 3.24 × 101 2.96 × 10−1 –
𝑓𝑡,0,cell beta 2.13 × 101 9.87 × 101 1.55 7.94 × 10−1

𝑓𝑐,0,cell Weibull 4.23 × 101 1.26 × 101 3.32 –
𝐸𝑡,0,cell Log-Gamma 9.63 × 10−1 6.18 × 10−2 7.90 × 10−1 –

D.2 Parameters used for the strength model with
dataset C

The parameters shown in Table D.3 correspond to the distributions of the different
variables that were employed for the simulations of GLT beams with wood material
corresponding to dataset C.

Table D.3. Parameters used for the boards of dataset C

Variable Distribution location scale shape shape 2

Length Lognorm 4.15 × 102 1.36 × 103 2.83 × 10−1 –
𝐸𝑡,0 Lognorm −2.24 1.13 × 104 1.82 × 10−1 –
𝑓𝑡,0 Weibull 8.33 2.45 × 101 2.18 –
𝑓𝑐,0 Weibull 3.45 × 101 1.28 × 101 5.22 –
𝑓𝑡,fj Weibull 7.66 3.82 × 101 3.56 –
𝑓𝑡,0,cell Beta 1.06 × 101 7.92 × 101 1.97 1.00
𝑓𝑐,0,cell Weibull 3.45 × 101 1.94 × 101 5.22 –
𝐸𝑡,0,cell Log-Gamma 9.63 × 10−1 6.18 × 10−2 7.90 × 10−1 –
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E
Reordering of vectors to

maintain global correlation

In Section 6.4.4 an algorithm is described to reorder a given vector 𝑨 so that it will
match another, equally long vector 𝑩 (assuming both are generated by the same
statistical distribution). In the used case, the vector 𝑨 corresponds to the tensile
strength of each simulated board (i.e. the minimum value of each simulated 𝑓𝑡,0
profile), whilst the vector 𝑩 contains the values for 𝑓𝑡,0,glob, which were simulated
to be correlated to the global MOE, 𝐸𝑡,0,glob. If we can find the indices that reorder
𝑨 into 𝑨′ ≈ 𝑩, then we can use those indices to reorder the generated 𝑓𝑡,0,cell
profiles, too. The steps to find said indices 𝒒 are:

(i) 𝒊⟵ argsort(𝑩)

(ii) 𝒋⟵ argsort(𝑨)

(iii) 𝒓⟵ argsort(𝒊)

(iv) 𝒒⟵ 𝒋[ 𝒓 ]

(v) 𝑨′ ⟵𝑨[𝒒 ]

The function argsort() returns the indices that sort a given vector, whilst
the notation 𝑿[ 𝒒 ] denotes that a vector 𝑿 is reordered according to the indices
contained in 𝒒. These five steps are explained in Fig. E.1 in a visual manner.
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Figure E.1. Steps (i)–(v) from Section 6.4.4 applied to a small generated dataset and visual explana-
tion of each step
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