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1. S. Grossjohann, A. Honecker and W. Brenig, Interchain Coupling in Mixed-Spin

Quantum-Ferrimagnets, Poster, DPG Frühjahrstagung Berlin, 04.03-09.03.2005

2. C. Mennerich, C. Golze, V. Kataev, A. Alfonsov, R. Klingeler, B. Büchner, D.J.
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Chapter 1

Introduction

Most of the properties of simple metals can be accounted for by models where the

conduction electrons are described by effectively free fermions, i.e. are described by a

kinetic energy, an effective mass, and Pauli’s principle. In some systems however, the

Coulomb repulsion between electrons and the effects of exchange-correlations cannot

be ignored. Once the interaction energy between electrons becomes comparable to

their kinetic energy, the notion of strongly correlated electron systems (see [1] for an

overview) has been established. Such systems exhibit a diversity of exotic and interesting

properties, e.g. high-temperature superconductivity [2], heavy fermion behavior [3], and

quantum magnetism [4].

Among the simplest models to describe itinerant electrons with strong correlations

mediated via Coulomb repulsion is the Hubbard model

H = −t
∑
〈i ,j〉,σ

(
c
†
i ,σcj,σ + h.c.

)
+ U

∑
i

ni↑ni↓. (1.1)

This Hamiltonian describes a hopping of electrons from one lattice site to another

through creation c†i ,σ and annihilation operators cj,σ with an additional Coulomb repulsion
U between two electrons on the same site. At half filling and in the strong coupling

limit U >> t, the Hubbard model can be reduced to the Heisenberg model

H = J
∑
〈i ,j〉

[
ΔSzi S

z
j +
1

2

(
S+i S

−
j + S

−
i S
+
j

)]
+ gμBB

∑
i

Szi +D
∑
i

(Szi )
2 (1.2)

with J = t2/U. While the kinetic and potential energies in real space are not of similar

magnitude in the Heisenberg limit, this phenomenon still pertains to the spin space.

In fact the exchange energy J
2

(
S+i S

−
j + S

−
i S
+
j

)
is of identical magnitude as the Ising

energy JΔSzi S
z
j for the isotropic point Δ = 1. These play a role similar to that of the
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kinetic and potential energy, which becomes particularly evident in one dimension by

a mapping to spinless fermions via the Jordan Wigner transformation S−j = e−iφjaj ,

S+j = e
iφja

†
j , S

z
j = a

†
j aj − 1

2
= nj − 1

2
. The phase φj = π

∑j−1
q=1 nj counts the number of

spinless fermions left of lattice site j to fulfill fermion commutation relations [5].

H = J
∑
〈i ,j〉

[
Δ

(
ni − 1

2

)(
nj − 1

2

)
+

(
a
†
i aj + h.c.

)]
+ gμBB

∑
i

(
ni − 1

2

)
(1.3)

In this picture, the coupling anisotropy Δ sets the ratio of kinetic to potential

energy similar to the ratio U/t, and the the application of a magnetic field (Zeeman

term) translates into the notion of a chemical potential, regulating the filling of the

conduction band. Furthermore, the single-ion anisotropy D was introduced in eqn.

(1.2) as a relevant model parameter for this thesis, owing to orbital quenching and

spin-orbit coupling for spin S ≥1 materials.

Despite its simplicity, the Heisenberg Hamiltonian is still a challenging subject for

theory. Up to present times only static properties of the spin S=1/2 chain have been

given exactly by Bethe in 1931 [6, 7] while it still proves to be challenging to calculate

matrix elements of dynamic correlation functions for this particular system. Next to the

well established Bethe ansatz [6] and field theoretical approaches (e.g. bosonization,

conformal field theory, non-linear σ-model ([8–12]), numerical methods such as exact

diagonalization (ED), lanczos diagonalization ([13, 14]), density matrix renormalization

group (DMRG, [15] and ref. therein) and quantum Monte Carlo (QMC, [16] and ref.

therein) play a key role in evaluating static and dynamic properties of quantum spin

models.

The physics of the Heisenberg model, its critical behavior, and its ground state phases

are influenced by the interplay of intrinsic properties, such as dimensionality, spin

magnitude (i.e. quantum fluctuations), or magnetic frustration, and by extrinsic

influences, such as magneto-elastic coupling or disorder. In particular the interplay

of quantum fluctuations and reduced dimensions leads to many unusual effects.

Focusing on one dimension, the absence of long range order has been established by

Bethe’s exact solution of the eigenvalue problem [6] for the spin S=1/2 chain. Field

theoretical methods resulted in a critical exponent η = 1 of the algebraically decaying

spin-spin correlation function 〈SiSj〉 ∝ (−1)|i−j |(log |i − j |)1/2/|i − j |η (extensive review
see [17]) and its low-energy properties are well described by those of a Luttinger

liquid (LL) [9, 18], i.e. a description of bosonic collective excitations (spinons) with

only two defining parameters: the spinon velocity v of the linear dispersion and the

renormalized Luttinger parameter K which establishes interactions and governs the
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Figure 1.1: Illustration of the transition from a spin chain over a two-leg spin ladder

to a two-dimensional plane. Empty, respectively closed circles stand for spins pointing

up/down.

power-law decay of most correlation functions. With static properties well under-

stood [7], dynamic and spin transport properties are however still subjects of discussions.

After establishing quantum criticality for the spin-1/2 chain, it came as a surprise

when Haldane, employing the non-linear O(3) σ-model (NLσM) in a semi-classical

large-spin approximation, suggested that only the half-integer spin chains are critical

whereas all integer spin-chains have an energy gap Δ in the excitation spectrum

[19]. As consequence, all thermodynamic properties activate exponentially and the

spin-spin correlation function decays as 〈SiSj〉 ∝ e−|i−j |/ξ with a finite correlation
length ξ ∝ 1/Δ1.

The existence of a finite correlation length in the integer spin chains categorizes

them as spin liquids, i.e. spin systems with no long range order and only short-range

correlations. Another class of spin liquids relevant for my thesis is found in form of

spin ladders [23], i.e. by increasing the dimensionality through linking chains into

a two-dimensional alignment (see Fig. 1.1 for illustration). Such ladder systems

alternate between spin liquid behaviour for even and critical behavior for odd number

1Note, that the ground state of the spin S=1 chain was found to have a hidden topological string-order

[20–22].



14 CHAPTER 1. INTRODUCTION

of legs. A particularly interesting aspect of spin liquids in dimensions d ≥ 2 is
their field driven quantum phase transition into an ordered phase by condensing

of the lowest magnon excitations (Bose-Einstein condensate). In the vicinity of

the critical eld Bc , a universal scaling of the critical temperature Tc as function of

magnetic field strength was predicted Tc ∝ (B − Bc)α with α = 3/2 [24]. For
d = 1, a breaking of the continuous XY-symmetry is permitted by Mermin-Wagner’s

theorem, therefore a critical temperature does not exist. However, in an already

magnetized state there remains no conceptual difference in the low energy properties

between spin ladders, integer and half-integer spin chains [25, 26]. Interestingly, this

crossover into a Luttinger liquid is driven by increasing the magnetic field. For the spin

S=1/2 chain it is observed upon decreasing the magnetic field through its critical value.

In my thesis, the main points of interest are (i) numerical methods and (ii) static

and dynamic properties of spin systems in reduced dimensionality and in the vicinity

of quantum critical points. The thesis is structured threefold. In the first part, the

employed QMC method will be introduced. In a small introduction of the most common

numerical methods, I will motivate our choice as QMC proves to be a very powerful

and flexible tool, tailored for evaluation of large systems in any dimension down to

essentially zero temperature. Its adjacent discussion features a small introduction to

quantum Monte Carlo and systematically explains its implementation for the particular

case of the stochastic series expansion (SSE). The latter provides a detailed discussion

about measuring longitudinal and transverse imaginary time observables which, to the

best of my knowledge, is still insufficiently documented in literature. As a consequence

of results in imaginary time, two common analytic continuation algorithms will be

introduced in section 2.5. Such continuations from imaginary to real axis are required

to perform comparisons with experiments such as inelastic neutron scattering (INS) or

nuclear magnetic resonance (NMR). After the methodical aspect of this thesis, results

will be presented in chapter 3 and 4. While the first part of my results (chapter 3)

features exclusively static quantities of low-dimensional spin systems, the second part

(chapter 4) focuses on dynamic properties of the spin S=1/2 and S=1 chain with a

short introduction to spin transport of the spin S=1/2 system.

In further detail, chapter 3 is divided threefold: the first section 3.1 deals with

thermodynamic properties of quantum spin S chains with S ∈ {1/2, 1, 3/2, 2, 5/2}. By
means of the static susceptibility we contrast the quantum spin model with a classical

S → ∞ limit by Fisher [27]. After a finite size analysis for all spin magnitudes in a
temperature range 0.01 ≤ T/J ≤ 100, we find that even for the largest evaluated spin
S=5/2 there are considerable differences in terms of the maximum position and the
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low temperature behavior compared to the S → ∞ limit. Additionally, Padé-fits are
given for the whole evaluated temperature region to allow for an analytical access to

our numerical data. We evaluate our fit quality through a comparison to high-accuracy

Bethe-ansatz data in the case of spin S=1/2 and suggest improvements of commonly

used fit formulas available in literature for all evaluated spin magnitudes.

In section 3.2, we analyze thermodynamic properties of a spin S=1 two-leg ladder

as function of rung/leg coupling and single-ion anisotropy. Such a ladder system is

unique in many regards: first of all we know that even-leg spin S=1/2 ladders show

spin liquid behavior and naturally we expect the same for a spin S=1 ladder system.

In the coupling limits of zero inter-chain and zero intra-chain coupling, we find two

uncoupled Haldane chains, respectively uncoupled dimers – both systems which display

a strong spin gap. In the region of intermediate coupling however, Todo et al. showed

a weakening of the gap by nearly two orders of magnitude. At this point we utilize

QMC in the thermodynamic limit to show that for intermediate coupling ratios and

an additional small easy-plane anisotropy, the system seems to become gapless. This

results in finite susceptibilities even at lowest elevated temperatures T/J = 0.001 and

the low-temperature magnetization profile loses the typical step-structure of a spin

ladder. Additionally we compare our results to susceptibility and magnetization mea-

surements of Mennerich et al. [28] on a Ni(II) based spin S=1 ladder material in order

to elaborate on its coupling constants. Ultimately, all comparisons point at weakly cou-

pled dimers for this system with a small easy-plane anisotropy – too small to lift the gap.

In the last section of chapter 3, we study an essentially zero-dimensional [3 × 3]-
grid system with large spin S=5/2, motivated by susceptibility and magnetization

measurements on a molecular magnet based on Mn(II) ions [29]. Such molecular

magnet with such a large effective magnetic moment may have many technically

interesting applications, such as e.g. storage device for conventional bits due to the

large relaxation time of the magnetization (one month at 2K) or as basis for quantum

computing if the tunnel barrier of the Néel vector is not too large. Interestingly, the

system exceeds the computational limits of exact diagonalization despite its small size,

which means exact theoretical results are largely absent. Among the observables we

compute are susceptibility, magnetization and (staggered) static structure factor as

function of temperature, center spin coupling, magnetic field and single-ion anisotropy.

As far as the temperature and center-spin coupling variation is concerned, we find

very low impact on the form of the susceptibility. High- as well as low temperatures

show solely Curie behavior with very marginal variation in an intermediate temperature

region 1 ≤ T/J ≤ 10. Upon variation of the single- ion anisotropy however, strong
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effects occur. For a small easy-plane anisotropy, the system aligns immediately

in-plane, leading to an Ising-like total spin S=1/2 with clear fingerprints in the

magnetization steps and (staggered) structure factor. Likewise we find an immediate

aligning along the z-axis with the application of a small easy-axis anisotropy, leading

to a total spin S=5/2 with clear indications given in the magnetization profile and

(staggered) structure factor. Finally, with an extensive parameter study, we provide a

very accurate description for the whole available temperature region 1K ≤ T ≤ 300K
to the experimental susceptibility of the Mn-[3 × 3] grid and our magnetization profile
qualitatively reflects magneto-torque measurements performed by O. Waldmann [30].

Chapter 4 is also divided threefold. In section 4.1 we study dynamic properties of

the Heisenberg spin S=1/2 chain as function of temperature and magnetic field – a

parameter-combination where theoretical results are lacking. Among our observables

are longitudinal as well as the transverse structure factor for the Luttinger liquid

regime 0 ≤ B < Bc up to fields beyond the saturation field. We detail the field and

temperature dependence of the incommensurate fermi vectors and clarify finite tem-

perature q-dependence of the system at full polarization by a two-magnon excitation

model. Additionally we analyze the 1/T1-relaxation rate and successfully compare it

to experiments by H. Kühne et al. [31]. Their experiments and our numerical results

strongly reflect the condensation of magnons upon decreasing the field through the

saturation field Bc in a diverging relaxation rate for T → 0. Interestingly, the maximum
of the 1/T1-relaxation rate at finite temperatures is found below the critical field for

both, theory and experiment.

The same critical behavior of a level-crossing magnon dispersion has mostly been

looked at upon increasing the magnetic field for gapped systems such as Haldane chain

or spin ladder materials. With that in mind, we look at the dynamics of the Haldane

system as function of temperature and magnetic field in section 4.2, which, in the

case of B = 0, is fundamentally different from the dynamics of the spin S=1/2 chain.

The Haldane dynamics are dominated by a sharp, gapped magnon dispersion while the

spin S=1/2 system is known to consist of spinons spanning an energy continuum.

However, upon increasing the field for the Haldane system, the spin gap closes and the

system can be described by a Luttinger liquid again, resembling the dynamic properties

of the spin S=1/2 system discussed earlier. In that regard, we look at the evolution

of the transverse dynamic structure factor as function of field and temperature and

discuss it for the gapped 0 ≤ B ≤ Bc1 and the LL regime Bc1 ≤ B ≤ Bc2. Furthermore
we extract the relaxation rate and show its exponential increase by populating the gap

through heating, respectively upon approaching the first critical field at a fixed finite

temperature. Both, section 4.1 as well as 4.2, close with a discussion of sum rules

as a consistency check for our analytic continuations from the imaginary to the real axis.
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This leads to section 4.3 (as follow-up to dynamic properties of the spins S=1/2 Heisen-

berg chain), dealing with transport properties of the isotropic spin S=1/2 Heisenberg

chain, which has been under intense scrutiny since one decade without coherent results

for the nature of the transport at the SU(2) symmetric point, e.g. ballistic or diffusive.

Unfortunately our analytical continuations with the commonly assumed error of 10-20%

are not sufficiently accurate to enter this discussion with reasonable arguments on the

real axis. Very recently however, spin diffusion has been conjectured to governs the

low-frequency spectrum of the regular conductivity which provides for an approximate

expression of the Fourier transform of the retarded spin susceptibility [32]. This expres-

sion can be transformed to imaginary time, where our QMC results are only subject to

statistical errors. With considerable numerical effort we show that our data is support-

ing a diffusive channel for the XXZ-model, which opens up the intriguing possibility of

a finite temperature dynamical spin conductivity of the Heisenberg model which com-

prises both, a finite Drude weight and a regular part with a large mean free path at low

temperatures.





Chapter 2

Methods

The wide field of correlated electrons supported the development of numerous numer-

ical and analytical methods in order to deal with static and dynamic quantities of the

here considered Heisenberg Hamiltonian (eqn. (1.2)). On the one hand there are ana-

lytical methods (often combined with numerical evaluation) such as the Bethe-Ansatz

(BA, mapping to fermion systems, [6, 33, 34]), quantum field theoretical approaches

(bosonization [8–10], non-linear σ-model (NLSM) [11, 12, 19]) and perturbational ap-

proaches such as high order series expansions [35–37]. On the other hand there are

numerical approaches with the most prominent methods being exact (ED) and Lanczos

diagonalization [13, 14], density matrix renormalization group (DMRG, [15] and ref.

therein) and finally Quantum Monte Carlo (QMC, [16] and ref. therein). In order to

get a small overview let me introduce the most dominant methods up to date briefly.

Bethe-Ansatz: Bethe-Ansatz was introduced in 1931 [6] and provided the first exact

eigenvalues and eigenstates to the spin 1/2 Heisenberg chain. It is based on a mapping

of the spin operators to spinless fermions which is very well described in a tutorial work

for the ferromagnetic [33], antiferromagnetic [34] and the two-spinon dynamics of the

antiferromagnetic S=1/2 Heisenberg chain [38]. The method is doubtless the best

choice in the limited framework of spin S=1/2 and one dimension. However it still

proves to be challenging to calculate matrix elements of spectral functions and only

very recently, higher spinon contributions to the dynamic structure factor have been

evaluated.

Conclusion: First choice method for static properties of spin S=1/2 Heisenberg

chains, dynamic properties nevertheless challenging.
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ED & Lanczos: Exact diagonalization is based on setting up the whole Hamilton-

operator in a chosen basis and find its eigenvalues and eigenstates by diagonalization.

This technique has the advantage of being applicable to all models and topologies at

all temperatures with the downside of suffering from finite size effects due to memory

limitations of the exponentially growing matrix dimensions with system size. To get an

idea about the computational limits: without abusing symmetries a spin S=1/2 chain

with 24 spins has a matrix dimension of 224 which leads to storage requirements of 1015

Byte or roughly 1000TByte. A Lanzcos diagonalization can handle bigger systems on

cost of the full spectrum – in contrast to ED only the lowest eigenvalues are extracted

by an iterative procedure which accumulates rounding errors, resulting eventually in a

loss of orthogonality of the eigenstates.

Conclusion: Excellent all-around method without any model and observable limita-

tions, only drawback set through excessive memory consumption due to exponentially

increasing Hilbert space (ED), respectively numerical rounding errors (Lanzcos).

DMRG: While ED works on the full Hilbert space and is thus limited to small systems,

DMRG methods are based on an efficient truncation of the density matrix. This is

achieved by an iterative increasing of the system size with adjacent reduction of the

density matrix to its most significant (instead of the lowest-lying!) eigenstates. This

way the system is approaching the thermodynamic limit with high numerical accuracy

and an efficient control on memory consumption. For an extensive review see [15] and

references therein. Currently this method is among the best methods to study one

dimensional problems at finite and zero temperatures. It has also been applied to real

time dynamics very recently [39–41] but numerical results also show the major drawback

of this method: for longer timescales as well as for higher dimensions the needed

spectral dimensions in order to achieve the desired numerical accuracy is exponen-

tially growing, which currently limits the method to one dimension and short time scales.

Conclusion: Currently the strongest method for 1D systems without model limitations.

System dynamics are only accessible for small time scales.

QMC: QMC methods are based on efficient sampling of the Hilbert space by intelligent

picking of configurations with high thermodynamic weight and will be explained in depth

in the next chapter (for an extensive overview see [16]). Advanced methods such as

the stochastic series expansion (SSE) [42] achieve linear scaling in system size and
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inverse temperature which allows impressive numerical simulations such as one million

spins S=1/2 on a Heisenberg square lattice [43]. The strengths of performing well

at the thermodynamic limit for any spin magnitude and any finite temperatures with

exact treatment of the Hamiltonian makes the QMC one of the best choices method

for comparisons with experiments, only hindered by the so called sign problem. The sign

problem is an issues that affects the method generally when frustration comes into play,

which in return limits the applicability of the method to bipartite lattices, respectively

non-frustrating coupling topologies (even though there exist workarounds for the sign

problem in some special cases [44, 45]). In addition to the sign-problem, dynamic

correlations can only be measured in imaginary time, which leads to challenging analytic

continuations to the real axis in oder to compare with experimental observables such

as the inelastic neutron scattering or T1-relaxation rates.

Conclusion: Very flexible method in one and higher dimensions, favorable for direct

comparisons with experiments since thermodynamic limit and impurity concentrations

of any kind are relatively simple to reach/implement. Frustration hardly accessible due

to sign problem, dynamic observables require analytic continuation.

It is apparent that all introduced methods share a common denominator while each

of them also comes with their very own limitations. In this thesis we went for an

implementation of a QMC algorithm for its broad field of possible applications, its

independency of spin magnitude, dimension or system size at all temperatures and

magnetic fields. This broadness of applications will become most obvious in chapter 3

and it led to numerous cooperations with experiments over the course of this thesis.

2.1 Basic working principle of (Quantum) Monte Carlo

The basic idea behind (Quantum) Monte Carlo is based on the thermodynamic ex-

pectation value of an observable A as a sum over all configurations c of the Hilbert

space

〈A〉 =
∑
c

Ace
−βEc/Z

with the partition function

Z =
∑
c

e−βEc

and β = 1/kBT as inverse temperature. A few things are hindering the simple evalua-

tion of the sum. First of all the Eigenvalues Ec |ψc〉 = H|ψc〉 are unknown in a quantum
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problem and if they were known there would have been no problem left to evaluate.

The second drawback is the evaluation of the sum itself, which is exponentially growing

with system size. For a better understanding consider the example of an Ising spin

system with N spins: each spin can either be pointing up or down which relates to

an exponentially growing configurational space of 2N. To overcome this scaling issue,

the Metropolis-algorithm [46] offers an efficient sampling of the most important con-

figurations of the Hilbert space by means of a Markov-chain process with transition

probabilities between two configurations ci and cj given by

Pci→cj =
Wcj

Wci
= e−β(Ecj−Eci ). (2.1)

Here Wci = e−βEci /Z is the thermodynamic weight of a configuration. Note how
ergodicity

∀ci , cj ∃n : P nci→cj �= 0 (2.2)

and detailed balance

Pci→cjWci = Pcj→ciWcj (2.3)

is fulfilled per construction of the transition probabilities. Thanks to the canceling

out of the partition function in eqn. (2.1) one can apply this scheme directly to any

classical problem, measure observables in any update step and finally average over all

measurements, which ultimately yields

〈A〉 ≈ Ā = 1
M

M∑
n=1

An. (2.4)

For quantum problems, one more hurdle has to be overcome, namely the eigenvalues

Eci in order to calculate transition probabilities. To deal with this final problem is

what distinguishes different QMC methods – the general idea is a mapping of the N-

dimensional quantum problem to an (N+1)-dimensional problem where only local matrix

elements have to be calculated in order to create new configurations. Leaving the path

of generality, i want to introduce one example of a state of the art QMC method, the

so called Stochastic Series Expansion (SSE). Its implementation was already part of

my diploma thesis and throughout the course of my thesis it has been extended and

speed-up considerably.

2.2 Stochastic Series Expansion: general framework

The general idea behind the SSE is a series expansion of the partition function Z in β

which goes back to D. C. Handscomb [47] whose algorithm built the basis for further



2.2. STOCHASTIC SERIES EXPANSION: GENERAL FRAMEWORK 23

development by A. Sandvik in collaboration with O. F. Syljůasen and J. Kurkijärvi in the

early 90s [42, 48–51]. Sampling in such a representation is carried out on summands

of the expansion, i.e. expectation values of operator products with variable length. To

set up the cornerstone for sampling we introduce a local presentation by rewriting the

Hamiltonian (1.2) into Nb bond-operators

H = −J
Nb∑
b=1

Hb (2.5)

and splitting the bond-operators further into a diagonal and an off-diagonal part

Hb = H1,b +H2,b (2.6)

where

H1,b = C − ΔSzi(b)Szj(b) + hb
(
Szi(b) + S

z
j(b)

)
(2.7)

H2,b =
1

2

(
S+i(b)S

−
j(b) + S

−
i(b)S

+
j(b)

)
. (2.8)

For bipartite lattices, the number of bonds is determined by the number of sites N, the

dimension d and the boundary conditions. For periodic boundary conditions in a non-

diluted d-dimensional system Nb reads Nb = Nd . Care has to be taken of the magnetic

field hb, which is to be seen as a fractional contribution per neighbor and therefore is

a number that changes on dimensionality and dilution. To pick an example, we find

hb = gμBB/2 for an undiluted chain. Note that we left out the single-ion anisotropy D

from eqn. (1.2) for convenience – D gives a diagonal contribution and has to be treated

exactly as the Zeeman term. The constant C in (2.7) is chosen in a way that all matrix

elements are positive, ensuring non-negative Metropolis weights during the sampling

procedure. For now its value does not play any important role – details regarding its

choice will be discussed in Section 2.3.

With the localization of the Heisenberg-Hamiltonian in mind, we now expand the par-

tition function Z

Z = T r(e−βH) = T r

( ∞∑
n=0

(−β)n
n!

Hn

)
=

∑
α

∞∑
n=0

(−β)n
n!
〈α|Hn|α〉 (2.9)

where the trace is carried out as a sum over basis states |α〉 = |Sz1 , Sz2 , . . . , SzN〉 in
a chosen eigenbasis (here Sz). A more elegant way to rewrite the series expansion

follows from introducing the so called operator string Sn = [a1, b1], [a2, b2], . . . , [an, bn]

with ai ∈ {1, 2} and bi ∈ {1, 2, . . . , Nb}
∞∑
n=0

Nb∑
b=1

(H1,b −H2,b)n =⇒
∑
Sn

n∏
i=1

Hai ,bi (2.10)
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which takes care of all possible operator products of length n in the expansion. With

this change, (2.9) reads

Z =
∑
α

∞∑
n=0

∑
Sn

(−β)n
n!
〈α|

n∏
i=1

Hai ,bi |α〉. (2.11)

An algorithmic simplification follows from changing the sum over n and product 1 . . . n

into a fixed length representation of length M = M(β)1, where we use M − n �-

operators to fill up the operator string. In other words, Sn is extended by a new ai
(⇒ ai ∈ {0, 1, 2}) which enables all possible orders in the fixed string representation up
to a maximum order M. Taking the

(
M
n

)
possibilities of distributing M − n �-operators

into account, we end up with

Z =
∑
α

∑
SM

(−1)nβn(M − n)!
M!

〈α|
M∏
i=1

Hai ,bi |α〉 (2.12)

for the expansion of the partition function. One main weakness of the method stems

from the sign (−1)n of the operator strings with various order. On a bipartite lattices
and nearest neighbor coupling this sign will automatically vanish since initial state

|α(0)〉 and final state |α(M)〉 =∏M
i=1Hai ,bi |α(0)〉 need to be equal to contribute which

is ensured by a pairwise occurrence of off-diagonal operators. On frustrated lattices

however (for example triangular geometries, frustrated next-nearest neighbor couplings

on bipartite lattices, also fermion systems), an uneven number of off-diagonal operators

is possible and the algorithm develops the so called sign problem. The sign itself is

not problematic since observables can be sampled along with the sign – the problem is

rather the statistics of the sign at low temperatures which makes frustrated systems

in general hardly accessible for QMC methods. There exist workarounds for specific

problems ([44, 45, 52]), but since the sign problem plays no role in this thesis it will

not be discussed in more detail here.

To summarize what has been done: the partition function has been expanded in a series

with a Hamiltonian which was split into local diagonal and off-diagonal bond-operators.

The expansion was cut off at large enough M(β) in a fixed length representation where

low orders n < M are achieved by filling inM−n �-operators into the system. Demands
on a sampling procedure are changes of

• the number of non-unit operators in the system
• the number of diagonal versus off-diagonal operators
1Section 2.3 will explain, why a finite cutoff does not introduce systematic errors to the algorithm.
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• the state of spins when there is no operator acting on a lattice site

while being ergodic (2.2) and preserving detailed balance (2.3). The algorithmic details

of the update-procedure will be discussed in the next section 2.3.

2.3 Updates

In this section it will be discussed, how new operator strings SM are created, or in other

words, how updates of the kind [ai , bi ] ↔ [a′i , b′i ] are performed under the constraint
of preserving detailed balance and ergodicity. While an algorithm is certainly ergodic

by using Metropolis transition weights, there is still a problem of rapidly growing

autocorrelation times near a system’s critical points. This is probably best portrayed on

the two-dimensional classical Ising-system near its critical temperature T/J = 2.269,

displayed in Fig. 2.1: at high temperatures local updates still provide efficient sampling

of the configuration space. At temperatures at or below the critical temperature

(here T/J = 1), clusters form and extremely long autocorrelation times prevent any

meaningful output. By flipping whole clusters of equally aligned spins instead of

energetically expensive local changes, Swendsen-Wang and Wolff cluster algorithms

have provided major improvements in update-efficiency near this critical point.

Similar cluster updates exist for QMC methods such as the SSE or algorithms in

continuous time (for an extensive overview, see [16]). In the case of the SSE,

the update is splitted into two different updates. Firstly the so called diagonal

update, which performs local changes of the expansion order n → n ± 1 by replacing
unit-operators with diagonal operators and vice versa [0, bi ]↔ [1, bi ]. Secondly the so
called loop update which performs changes of the kind [1, bi ]↔ [2, bi ] in a cluster type
of upgrade.

In the following subsections, the update procedures will be discussed in depth, including

corresponding Metropolis weights, generalizations to spin-S models, and an efficiency

tuning of the loop update, known as directed loop.

2.3.1 Diagonal update

In this section the working principle of the diagonal update will be explained. The

update, as the name suggests, acts solely on diagonal operators and samples the
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Figure 2.1: Left: Ferromagnetic ISING spin system with 640x640 spins (white dot=↑,
black dot=↓) at T/J = 5. Local updates are able to create new configurations ef-
ficiently. Right: Below the critical temperature (here T/J = 1), clusters form (large

white region). Local updates are not able to create new configurations efficiently since

the energy cost to flip a local spin against its neighbors is too high – the system starts

to freeze in one orientation and autocorrelation times diverge.

operator string length n by performing local changes of the kind [0, bi ]↔ [1, bi ] at every
position of the operator string. For the following, a typical graphical representation

is helpful to understand the basic algorithm (see Fig. 2.2). Shown is an expanded

5-site spin S=1/2 chain up to maximum order of n = 6 with one diagonal H1,b0,

two off-diagonal H2,b2 and the rest of the expansion filled up with �-operators. We

therefore look at the summand 〈α|H2,b2H1,b0H2,b2|α〉 – one among many contributions
to eqn. (2.12).

Following the Metropolis updating scheme (2.1), the probability to accept a change

leading from a configuration ci to a new configuration cj is given by

Pci→j = min

(
1,
Wj

Wi

)
(2.13)

with

Wi =
1

Z

βn(M − n)!
M!

〈α|
M∏
i=1

Hai ,bi |α〉 (2.14)

Wj =
1

Z

βn±1(M − (n ± 1))!
M!

〈α|
M∏
i=1

Hai ,bi |α〉 (2.15)
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α(0)

Figure 2.2: Expanded 5-site spin S=1/2 chain up to maximum order of n = 6 with

one diagonal H1,b0 , two off-diagonal H2,b2 and the rest of the expansion filled up with

�-operators. Solid (empty) circles stand for spin up (down), consequently solid bars

donate diagonal operators, double bars off-diagonal ones.

depending on whether we insert (+) or remove (−) a diagonal operator. With those
weights, the probability to insert an operator into the expansion at expansion position

p and random bond bi reads

P ([0, bi ]→ [1, bi ]) = min
(
1,
Nbβ〈α(p)|H1,b|α(p)〉

M − n
)
, (2.16)

where the factor Nb stems from the Nb possibilities to replace a �-operator by a diagonal

operator at any empty expansion order position p. Note that, given a perfect imple-

mentation, the processing time of any given problem should scale only linear in system

size, inverse temperature and diagonal matrix elements of the Hamiltonian (e.g. applied

magnetic fields for the Heisenberg model). In other words: the defining key-strengths

of the QMC are condensed in equation (2.16)!

To complete the diagonal update section, eqns. (2.14) and (2.15) yield

P ([1, bi ]→ [0, bi ]) = min
(
1,

M − n + 1
Nbβ〈α(p)|H1,b|α(p)〉

)
. (2.17)

for the Metropolis probabilities to remove a diagonal operator at position (p, bi).

In the implementation of the algorithm, a loop from initial state |α(0)〉 to |α(M)〉 is
performed and each slice of the expansion order is checked for the presence of any
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Figure 2.3: Histogram of the expansion order of a QMC run for a spin S=1/2 chain

with 100 sites at T/J = 0.01. The cutoff during thermalization was adjusted to be

M = 13000, typically 1.2− 1.5× nmax in order to avoid possible cutoff effects.

non-unit operator. If a diagonal one is found, roll for removal with probability given by

(2.17), reducing the expansion order n → n − 1 eventually. If there is no operator, roll
for insertion according to (2.16) with a new expansion order n → n+1 on a successful

roll. Finally, in the case of an off-diagonal operator, move on to the next slice without

any changes.

Looking at the probabilities to insert/remove an operator, it is now also comprehensible,

that at large enoughM there will be a balance of inserting and removing operators which

ultimately leads to a gaussian distribution of the average number of operators 〈n〉 in
the expansion (see Fig. 2.3). Therefore one has to choose the cutoff M carefully in

an equilibration phase in order to avoid cropping the distribution of n which in return

justifies the truncation of the expansion in (2.12).
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Bounce Switch&Reverse Switch&ContinueContinue Straight

Figure 2.4: Illustration of the four possible ways through an example operator of a

Heisenberg spin S=1/2 system. Solid circles stand for spin down, open circles stand for

spin up which means the initial operator is one with both ”incoming” and ”outgoing”

spins pointing up. As illustrated, the bounce process leaves an operator untouched and

exits through the entry spin. Switch and reverse, as shown second, is not among the

valid choices, since the new configuration does not exist. Continue straight leaves the

diagonal operator a diagonal operator, but with one spin pointing up and one pointing

down. Finally the last choice switch and continue changes the initial diagonal operator

into an off-diagonal operator (S+S− operation).

2.3.2 Loop update

After introduction of the diagonal update with operator string length sampling [0, bi ]↔
[1, bi ], a second so called loop update is required for changes of the kind [1, bi ]↔ [2, bi ]
which, in combination with a state update of free spins, should deplete the whole Hilbert

space of the system. It is important to note that, while the diagonal update is not

susceptible to critical system parameters, the loop update is. To overcome efficiency

problems with large autocorrelation times, the loop update is designed as a cluster

update and its basic idea is explained in a few words: pick a random position in the

expansion and insert a discontinuity S±S∓, depending on the spin state at that particular
position. Now let the ”head” or ”tail” of that discontinuity move in one direction, while

spins get flipped on its path. Upon meeting any kind of non-unit operator, there are

four ways to traverse as illustrated in Fig. 2.4:

1. Bounce: leaves operator untouched and undoes changes that have been made

on the way to the operator

2. Switch and reverse: changes diagonal into off-diagonal operators and vice versa

3. Continue straight: leaves diagonal/off-diagonal operators
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4. Switch and continue: changes diagonal into off-diagonal operators and vice

versa.

Both ways which include switching the real-space coordinate perform the desired

sampling [1, bi ]↔ [2, bi ], the other ways leave the operator type untouched2. After this
kind of directed random-walk through the expansion, where the traverse-probabilities

through operators are again given by a Metropolis scheme as will be explained in the

next subsection, the ”head” and ”tail” of the discontinuity will eventually meet and

”heal” out. A new configuration has been created and, owing to its cluster character,

it is a very efficient update even at critical system parameters.

An algorithmic side note at this point: typically one performs more than just one of

those loops to reduce autocorrelation times between a full QMC-update (diagonal

and consecutive loop update). A well working rule of thumb is, that on average a

full loop update should reach every operator at least once which in praxis means that

about 20 up to 1000 loops per diagonal update are performed. Parameters such

as the average number of loops Nl or the cutoff M are adjusted in an equilibration

phase and remain unchanged for measurements of observables to prevent biasing results.

2.3.3 Directed loop and generalization to spin S

In the last subsection, the loop update’s general working principle was presented. This

subsection will account for the implementation details such as traverse probabilities

through operators and the algorithmic generalizations of spin S.

Traverse probabilities through operators need to fulfill detailed balance (2.3) and ergod-

icity (2.2). While ergodicity can be proven for the loop update, it is detailed balance

that sets up the equations for the correct probabilities of the four possible ways in Fig.

2.4:

WcP (c, e, x) = Wc ′P (c
′, x , e). (2.18)

Here, Wc is the local weight of the operator before traversing, Wc ′ the weight after

traversing, P (c, e, x) the probability to enter at entry spin e ∈ 0, 1, 2, 3 and exit the
operator at exit spin x ∈ 0, 1, 2, 3.

2Continue straight changes the operator, but not the type as in diagonal/off-diagonal.
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Figure 2.5: Illustration of detailed balance for the Heatbath-solution. Entering the initial

Operator with weight Wc (two spins up) at spin e = 0 and leaving it at spin x = 2

leads to the same Heatbath-denominator as by entering the newly created operator with

weight Wce,x at spin e
′ = 2 and leaving at exit spin x ′ = 0.

Since the loop has to exit at any leg, there is a second equation given by

3∑
x=0

P (c, e, x) = 1. (2.19)

Equation (2.18) and (2.19) combined form a set of equations called directed loop

equations. A very simple solution is given by the Heatbath traverse probabilities

P (c, e, x) =
Wce,x∑3
x=0Wce,x

, (2.20)

where Wce,x are the weights of the newly created operators by entering at spin e and

leaving at spin x . That the Heatbath-solution (2.20) fulfills the directed loop equations

is easily shown. For (2.18) we find

WcP (c, e, x) = Wc
Wc ′∑3
x=0Wce,x

= Wc ′
Wc∑3
x=0Wce,x

= Wc ′P (c
′, x , e).

To comprehend the last line, note that by entering the newly created operator

Wc ′ = Wce,x at its former exit spin x leads to the same denominator in eqn. (2.20) as

by entering the initial operator Wc at its entry spin e (see Fig. 2.5).
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Figure 2.6: Algorithmic phase-diagram showing bounce-free solutions for the spin

S=1/2 Heisenberg model.

As for (2.18) we immediately find eqn. (2.19) fulfilled:

3∑
x=0

P (c, e, x) =

∑3
x=0Wce,x∑3
x=0Wce,x

= 1.

The heatbath solution is a particularly simple way to set up the probability tables for all

traverse ways through all types of operators in the system. Nevertheless it represents

just one solution in the more general framework of the directed loop equations (2.18)

and (2.19). A reason to take a closer look at a more optimized probability set is

motivated by bounce-probabilities. Bounces are always valid choices when a loop arrives

at an operator and choosing to bounce means that a loop will be partially undone – a

very unfavorable behavior since CPU time for creating and undoing changes is wasted

in such a case.

To create a more advanced set of probabilities, one can set up all directed loop

equations and optimize the solution in regard to minimum bounce probabilities.

By doing this one can achieve whole parameter regions of the Hamiltonian, where

bounce-free solutions exist (see Fig. 2.6). In my algorithm, the solution is found by

the use of a free linear programming solver ”lpsolve” [53].

To get an idea about the complexity of the equation system, I hereby present some

typical examples:

1. Spin S=1/2 Heisenberg, 4 diagonal and 2 off-diagonal operators, number of

detailed balance equations: 192Nb, number of bounce probabilities to minimize:

12Nb
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2. Spin S=1 Heisenberg, 9 diagonal and 8 off-diagonal operators, number of

detailed balance equations: 1088Nb, number of bounce probabilities to minimize:

68Nb

3. Spin S=3/2 Heisenberg, 16 diagonal and 18 off-diagonal operators, number of

detailed balance equations: 3264Nb, number of bounce probabilities to minimize:

204Nb

4. Spin S=2 Heisenberg, 25 diagonal and 32 off-diagonal operators, number of

detailed balance equations: 7296Nb, number of bounce probabilities to minimize:

456Nb

5. Spin S=5/2 Heisenberg, 36 diagonal and 50 off-diagonal operators, number

of detailed balance equations: 13760Nb, number of bounce probabilities to

minimize: 860Nb

Given numbers stem from the formula 4S × [# of operators] × [# of entry spins] ×
[# of exit spins] × [# of bonds]. In this formula, 4S accounts for the different types
of the loop update. While for S = 1/2, only spin-flips Δm = ±1 are allowed, there are
4S so called loop colors possible in spin S systems. In practice this means that, at the

starting point of a loop, one has to choose randomly among the allowed loop colors.

In practice this also means, that loops with |Δm| > 1 are unfavorable, since generally
less traverse probabilities through operators are allowed (= non-zero). Since one of the

allowed ways will always be bounce (even though minimized by the linear programming

solver), the relative weight of bounces increase for such loops.

Partially there are very interesting workarounds for such problems, such as for example

for the spin S=1 model, where Δm = ±2 bounce probabilities can be maximized to be
the only allowed way [54]. What appears to be contra-productive on first sight, allows

to leave out loops of the color Δm = ±2 completely, since the update is deterministic
and will end after immediately bouncing back to the starting position without changing

anything in the system.

The improvements by ”tuning” traverse probabilities in the general directed loop frame-

work are visible most of all at low temperatures when the amount of operators in the
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system becomes larger and more operators are reached within a single random walk.

Autocorrelation times decrease substantially [50] and less loop updates are required to

visit each operator at least once on average.

2.4 Observables

It is ever-surprising how close the QMC actually resembles experiments. Simulations

are performed at finite temperatures and in the thermodynamic limit, observables are

”measured” during runtime and, just like any real experiment, the QMC quantities are

subject to errors – statistical errors in this case. Due to the 1/
√
N behavior of the

standard deviation σ

σ =

√√√√ 1
N

N∑
i=1

(Aci − Ā)2, (2.21)

simulation runtimes have to be approximately quadrupled in order to achieve double

accuracy of any observable A.

This section is divided into three subsections. Firstly, there is an introduction on how

static quantities are measured within the formalism of the SSE. Among them standard

quantities such as susceptibility, magnetization, energy, specific heat and correlation

functions.

Secondly, measurements of dynamic quantities will be explained in detail. The main

focus here lies on the longitudinal and transverse dynamic structure factor, which can

be related both, to dynamic and static quantities. Overall measuring such an observable

is quite involved and post-processing of QMC data is required to create a basis for

comparisons with experimental data.

This section is finally closed by a short discussion about error propagation.

2.4.1 Static quantities

In the latest version of the algorithm, the following static quantities are measured each

update:

• magnetization M(q) = 1
N

∑
m e
iqmSzm

• energy E
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• longitudinal susceptibility χzz(q)

• specific heat C

• static longitudinal real space correlations Czz(ri , rj) = 〈SzriSzrj 〉

• static longitudinal structure factor Szz(q) = 1
N2

∑
ri ,rj
e iq(ri−rj )Czz(ri , rj).

Furthermore, there are a few other implemented static observables such as various

transverse quantities (susceptibility, correlations, structure factors), which follow from

Kubo-integrals of dynamic measurements. The way to obtain those is a subset of the

next section and will be left out at this point.

To deduct a few quantities on the list above, basic thermodynamics are required. Start-

ing with the magnetization M, which is given by the derivative

M = −∂F
∂B

(2.22)

of the free energy

F = −1
β
lnZ

where Z is the partition function given in (2.9) with Hamiltonian (1.2).

Equation (2.22) yields

M =
1

βZ
gμBβTr

[
Sze−βH

]
= gμB〈Sz〉 = gμB

N

N∑
i=1

〈α(0)|Szi |α(0)〉.

Hence the measurement in the SSE formalism requires a simple measurement of the Sz

quantum number in |α(0)〉, which is particularly easy in a code working in the Sz-basis.

The static uniform susceptibility χ is connected to the magnetization by

χ =
∂M

∂B
,

which leads to

χ = −g
2μ2Bβ

Z2

(
Tr

[
Sze−βH

])2
+
g2μ2Bβ

Z
Tr

[
(Sz)2e−βH

]
= g2μ2Bβ

(〈(Sz)2〉 − 〈Sz〉2) .
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Consequently the susceptibility is measured alongside with the magnetization and its

square.

In a system without outer field B, the inner Energy E is given by

E =
1

Z
Tr

[
He−βH

]
= 3〈Szi Szi+1〉, (2.23)

which means the nearest neighbor correlations need to be averaged over all QMC steps.

Just as the susceptibility, the specific heat is a second derivative of the grand potential

C = kBβ
2∂E

∂β
(2.24)

= kBβ
2
(〈E2〉 − 〈E〉2) . (2.25)

and thus it is a measure for the fluctuations of the inner energy. An important note at

this point: the difference of two squared numbers in combination with the pre-factor

β2 makes the specific heat a statistically very unpleasant quantity, in particular for

low temperatures. In practice, extremely high numerical effort is required to achieve

sufficiently low relative errors for non-gapped systems.

For both, energy and specific heat, there exist so called improved estimators. Such

estimators are algorithm-adapted measurements which are very fast or simple to perform

and often yield improvements regarding statistics, autocorrelations times or the like.

In the case of the inner energy (and also the specific heat), one finds an improved

estimator by starting at the series expansion of the partition function, which is connected

with the inner energy by

E = − ∂

∂β
lnZ.

With (2.12), the energy is given by the remarkably simple expression

E = − 1
Z

∂

∂β

(∑
SM

(−β)n(M − n)!
M!

Tr

[
M∏
i=1

Hai ,bi

])
=
1

β
〈n〉. (2.26)

Evaluating (2.24) again in the formalism of (2.26), one ends up at a very similar ex-

pression for the specific heat

C = 〈n2〉 − 〈n〉2 − 〈n〉. (2.27)

Finally, there are longitudinal correlations Czz(ri , rj) and their q-space fourier-transform

Szz(q) (longitudinal static structure factor). Just as the magnetization or susceptibility,
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correlations are measured in the initial state |α(0)〉, but to improve the statistical quality,
an averaging over all M slices of the expansion order, so called cyclic averaging, is

beneficial3:

〈SzriSzrj 〉 =
1

M

M−1∑
p=0

〈α(p)|SzriSzrj |α(p)〉. (2.28)

2.4.2 Dynamic quantities

The measurement of longitudinal and in particular transverse dynamic correlation

functions is probably among the most involved quantities to obtain by a QMC method.

While static quantities only require operations on |α(0)〉 (with optional statistic
improvements by averaging over all slices), dynamic quantities need informations about

the full expanded system, which is not only far more complicated conceptually, but also

slows down the algorithm considerably.

The motivation to look at dynamic correlations is given by experiments such as inelastic

neutron scattering (INS) or nuclear magnetic resonance (NMR). Both experiments can

be directly related to the dynamic structure factor (DSF) – in the case of INS, the

scattering rates per solid angle and energy are directly proportional to

dσ2

dΩdω
∝ Sμν(q, ω),

where Sμν(q, ω) is the space and time fourier-transform of the real-time correlation

function

Sμν(q, ω) =
∑
r

∫ ∞

−∞
dte−i(ωt−qr)〈Sμr (t)Sν0(0)〉 (2.29)

and μν ∈ {zz, xx}. At zero magnetic field, longitudinal and transverse correlations
are equal due to SU(2) invariance of the model but once a magnetic field is applied,

a superposition of Szz(q, ω) and Sxx(q, ω) is measured. To resolve those quantities

further, polarized neutrons have to be used in experiments.

The NMR measures the relaxation of precessing nuclei spins – the so called nuclear

spin-lattice relaxation time 1/T1, which refers to the mean time of an individual spin

to return to its thermal equilibrium state after being flipped in an external field. This

3It is not beneficial for the magnetization measurement (which consequently includes the suscepti-

bility), since the Hamiltonian preserves the spin ([H,M] = 0) and therefore every slice of the expansion

just yields the exact same value for M.
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quantity can also be directly related to the dynamic structure factor by a summation

over all q-vectors, weighted with the hyperfine coupling form factor A(q), evaluated at

the NMR resonance frequency ωR

1/T1 ∝
∑
q

A(q)S+−(q, ωR), (2.30)

which is equivalent to performing the limit ωR → 0 in relation to typical coupling

constants4.

In other words: the dynamic structure factor is one of the most desirable quantities

of a quantum spin system and it does not only contain all spectral information (which

gives direct access to static quantities via sum-rules), but it is also the key-quantity for

comparisons with more involved experimental methods.

In order to calculate the dynamic structure factor, real time correlation functions with

time evolution in the Heisenberg picture

〈Sμr1(t)Sνr2(0)〉 =
1

Z
Tr

[
e itHSμr1e

−itHSνr2e
−βH] (2.31)

need to be evaluated. Unfortunately, a direct evaluation of (2.31) by expanding

the exponential functions in the SSE formalism (following steps (2.9) to (2.12))

is hindered by the heavy oscillating character of e±itH which leads to convergence
problems when translating discrete QMC slices into time (simply replace ”τ” by ”i t”

in eqn. 2.34). A workaround is available by performing a Wick-rotation i t → τ

and calculate (2.31) in imaginary time instead in order to transform the heavily

oscillating exponential functions into exponentially decaying ones. Two questions

remain: how to obtain imaginary time correlation functions within the SSE and, even

more importantly, how to get back to the real axis in the end? The first question

will be answered in the consecutive paragraphs, however the analytic continuation to

the real axis will require a section of its own and will be discussed in depth in section 2.5.

To translate the expectation value for the imaginary version of (2.31) into SSE notation,

4Assuming ωR ≈ 109 and J ≈ 1K one finds �ωR/J ≤ 10−2
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the exponential functions are expanded

〈Sμr1(τ)Sνr2(0)〉 =
1

Z

∑
α

〈α|
∞∑
n=0

(τ − β)n
n!

HnSμr1

∞∑
m=0

(−τ)m
m!

HmSνr2|α〉 (2.32)

=
1

Z

∑
α

∞∑
n=0

n∑
m=0

(τ − β)n−m(−τ)m
(n −m)!m! 〈α|Hn−mSμr1HmSνr2|α〉

=
1

Z

∑
α

∞∑
n=0

∑
Sn

n∑
m=0

(τ − β)n−m(−τ)m
(n −m)!m!

×〈α|
n∏

l=m+1

Hal ,blS
μ
r1

m∏
k=1

Hak ,bkS
ν
r2
|α〉 (2.33)

In the case of μν = zz (diagonal), one can extract the eigenvalues Szri |α(p)〉 =
Szri (p)|α(p)〉

〈Szr1(τ)Szr2(0)〉 =
1

Z

∑
α

∞∑
n=0

∑
Sn

(−β)n
n!
〈α|

n∏
l=1

Hal ,bl |α〉

×
n∑
m=0

(τ − β)n−m(−τ)mn!
(−β)n(n −m)!m! S

z
ri
(m)Szrj(0).

The partition function Z cancels out and the final result after truncation of the sum to

M in the fixed string representation (see (2.12)) reads

〈Szr1(τ)Szr2(0)〉 =
M∑
m=0

(
M

m

)(
τ

β

)m (
1− τ

β

)M−m
1

M

M−1∑
p=0

Szr1(m + p)S
z
r2
(p). (2.34)

with optional, but recommended cyclic averaging (compare with (2.28)).

With this conversion, the discrete expansion slices of the SSE are linked to continuous

imaginary time via a binomial distribution which obviously has to hold for transverse

correlations as well. Note, that working in a fixed string representation has the huge

advantage of fixed binomial coefficients for the whole simulation at each temperature.

This means that, instead of measuring in imaginary time, we can now ”measure”

correlations of states between each of the M slices, average over sufficient updates

and convert to imaginary time through eqn. (2.34).

For diagonal operators, this measurement is very simple and can be performed in each

diagonal update just as the averaging of equal-time correlation functions in (2.28). For
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S−

S+

S−

S+

S+

S− S−

S+

S+(m)S−(0) S+(0)S−(m) S−(m)S+(0) S−(0)S+(m)

Figure 2.7: Illustration of the four possible cases of inserting a pair of S+S−/S−S+

with the head, respectively tail performing the directed random walk. Solid circles stand

for spin down, open circles stand for spin up as in previous pictures.

off-diagonal operators, this is however a highly non-trivial task since, on the one hand,

inserting a pair of raising and lowering operators needs to preserve detailed balance

and, on the other hand, the process has to sample over all distances in space and

expansion order.

Luckily, both requirements are already fulfilled in the loop update – thus it is obviously

a good idea to measure correlations of the kind 〈S±r1(τ)S∓r2(0)〉 directly in the loop
building process.

One can convince oneself quickly by permutations within the trace of eqn. (2.33), that

S+r1(m)S
−
r2
(0) = S−r2(M −m)S+r1(0)

and likewise

〈S+r1(τ)S−r2(0)〉 = 〈S−r2(β − τ)S+r1 (0)〉.
Furthermore we know that

〈Sxr1(τ)Sxr2(0)〉 =
1

2

(〈S+r1(τ)S−r2(0)〉+ 〈S−r1(τ)S+r2(0)〉) .
Consequently, in order to acquire any transverse correlation function it is sufficient to

know either μν = +− or μν = −+.

The actual recording process needs some considerations which will be explained in depth

in the following paragraphs now. Given is a system of N spins of magnitude S with



2.4. OBSERVABLES 41

a maximum expansion order M without restrictions to zero magnetic field. The first

step in the loop building process is the random choice of a coordinate (r, m) with

r ∈ {0, . . . , N − 1} and m ∈ {0, . . . ,M}. Adjacent, the eigenvalue Szr (m) at position
(r, m) is evaluated, and a loop color is chosen given by the possible options in regard to

the eigenvalue. Only if the color corresponds to spin-flips |Δm| = 1, correlation function
during the loops construction can be measured, otherwise a loop update is performed

without measuring. At this point there are four distinct cases (also see Fig. 2.7):

1. insertion of S+S−, S+ moves up

2. insertion of S+S−, S− moves down

3. insertion of S−S+, S− moves up

4. insertion of S−S+, S+ moves down

Case 1: The spin configuration allows the insertion of a S+S−-discontinuity and the
random number generator decides that S+ moves up. All future measurements are

performed relative to the starting position, assuming a translationally invariant system.

That means during the random walk through the system, measurements of the type

S+r (m)S
−
0 (0) = 〈α̃(m)|S+r |α(m)〉〈α̃(0)|S−0 |α(0)〉

are recorded.

A small but nevertheless important detail has to be taken into account: periodic bound-

aries in time. Once the loop reaches S+r (M)S
−
0 (0), we find by permutation of the matrix

element in eqn. (2.33)

〈α|S+r HMS−0 |α〉 = 〈α|HMS−0 S+r |α〉 (2.35)

= 〈α|HMS+r S−0 |α〉, r �= 0, (2.36)

that means normal periodic boundaries S+r (M)S
−
0 (0) = S+r (0)S

−
0 (0) apply for r �= 0.

For r = 0 however the loop is obviously closed, but the distinction between closing

by moving up or closing by moving down has an important consequence: the final

measurement S+r (0)S
−
0 (0) has to be left out in the case of the loop closing by moving

up, but it must be included if the loop closes by moving down. This is not a particular

feature of case 1, but a general feature, since S+r (0)S
−
0 (0) will never commute at the
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point where the loop closes. Thus it is important to note, that for all cases, the final

step may only be recorded, when the loop closes in the configuration which was originally

inserted into the system.

Case 2: The spin configuration allows the insertion of a S+S−-discontinuity and the
random number generator decides that S− moves down. With the loop construction,
measurements of the type

S+0 (0)S
−
r (m) (2.37)

can be performed. Since correlation functions can only depend on the relative distances

in space and time and the system is M-periodic, eqn. (2.37) can be rewritten to

S+0 (0)S
−
r (m) = S+0 (−m)S−r (0)

= S+r (M −m)S−0 (0).

That means even though the S−-tail moves around in the system, S+S− correlations
can be measured by a simple re-numeration m → M −m of the slices.

Case 3: The spin configuration allows the insertion of a S−S+-discontinuity and the
random number generator decides that S− moves up. Correlations of the kind

S−r (m)S
+
0 (0)

are recorded during loop construction. This expression can again be rewritten with the

arguments of relative distance and permutation (compare eqn. (2.36))

〈α|HM−mS−r HmS+0 |α〉 = 〈α|HmS+0 HM−mS−r |α〉,

which leads to the measured quantity

S−r (m)S
+
0 (0) = S

+
r (M −m)S−0 (0)

(see also case 2).

Case 4: The spin configuration allows the insertion of a S−S+-discontinuity and the
random number generator decides that S+ moves down. Correlations of the kind

S−0 (0)S
+
r (m)
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can be measured. With the typical arguments of relative distance and permutation, one

shows

S−0 (0)S
+
r (m) = S−0 (−m)S+r (0)

= S−0 (M −m)S+r (0)
= S+r (m)S

−
0 (0),

which equals the measurement of Case 1.

One important addition to the measurement of transverse correlation function has to

be made for nonzero magnetic fields. While the imaginary time correlations are mirror-

symmetric in time around the point m = M/2 for zero field, this symmetry is lost in

the case of finite magnetic fields with the consequence that

S±0 (M)S
∓
0 (0) �= S±0 (0)S∓0 (0), ∀B > 0 (2.38)

is not given by symmetry anymore. Unfortunately, this quantity is required for the

m → τ conversion and it is also needed to deduct other correlation functions (e.g.

−+, xx from +−). In the special case of S = 1/2, the knowledge about Sz0(0)Sz0(0) =
Sx0(0)S

x
0(0) = 1/4 allows to construct

1/4 = Sx0(0)S
x
0(0)

=
1

2

(
S+0 (0)S

−
0 (0) + S

−
0 (0)S

+
0 (0)

)
=
1

2

(
S+0 (0)S

−
0 (0) + S

+
0 (M)S

−
0 (0)

)
⇔ 1/2− S+0 (0)S−0 (0) = S+0 (M)S

−
0 (0).

For general spin S and magnetic field B > 0 however, S±0 (M)S
∓
0 (0) has to be evaluated

separately during the loop. Following case 1 till 4 we find that, whenever a +− mea-
surement is forbidden due to non-commutativity (at the very start or end of a loop),

one can measure the −+ quantity S−0 (0)S+0 (0) = S+0 (M)S
−
0 (0) instead, which turns

out to be missing piece for the τ-conversion (2.34).

As a final note, there also exists an improved estimator for measurements of diagonal

correlations such as Szr (m)S
z
0(0), following classical cluster Monte Carlo estimators:

since all spins on a loop are flipped it follows, that in a sum of ”before” and ”after”

measurement, spins on the loop have zero correlation with the rest of the spins in

the expanded system, whereas loop-spins are fully correlated. In other words: while

recording transverse correlation functions by following the head or tail of the loop and
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counting up the number of visits of each coordinate (r, m), the longitudinal correlations

can be acquired by applying a modulo 2 operation to the transverse correlations.

However, a problem arises in the general spin S case and finite magnetic fields: the loop

can heal out by arriving at the starting position in two ways. Returning the way the

loop has taken at loop start essentially removes the starting position from the loop and

makes a measurement relative to the initial coordinate (r, m) impossible by following

the simple ”modulo 2” operation. In this case, high numerical effort has to be used to

track all correlations of all spins among each other on the same loop retroactively, which

most likely does not outweigh the statistical quality gain over a direct measurement in

the diagonal loop update. For the particular case S = 1/2 and zero magnetic field, the

directed loop equations lead to a deterministic loop update that prevents the loop from

closing in a way where it would remove its own starting position. Ironically, transverse

and longitudinal correlations are equal due to SU(2) symmetry in this case, making

either of the measurements obsolete.

2.4.3 Errors

As the final section dealing with the QMC algorithm, error handling will be explained.

The statistical mean error estimation in eqn. (2.4) needs to take into account, that

subsequent configurations c1, c2, . . . , cM and consequently subsequent measurements

A(i) of a quantity 〈A〉 are always correlated. The quantity that reflects the degree of
correlation is the (normalized) autocorrelation function

CA(t) :=
〈A(i)A(i + t)〉 − 〈A(i)〉〈A(i + t)〉
〈A(i)A(i)〉 − 〈A(i)〉〈A(i)〉 , (2.39)

which typically decays exponentially (∝ e−t/τ) at large t. This leads to the definition
of the exponential autocorrelation time

τexp = lim sup
t→∞

t

− ln |CA(t)|. (2.40)
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Taking a look at the variance σ2(A) of a quantity A now, one finds that

σ2(A) =
1

M2

M∑
i ,j=1

(〈A(i)A(j)〉 − 〈A(i)〉〈A(j)〉)

=
1

M2

M∑
i ,j=1

CA(i − j)
(〈A2〉 − 〈A〉2)

=
1

M

M−1∑
t=−(M1)

(
1− |t|

M

)
CA(t)

(〈A2〉 − 〈A〉2)

which, with the definition of an integrated autocorrelation time

τint =
1

2

∞∑
t=−∞

CA(t) =
1

2
+

∞∑
t=1

CA(t),

reads

σ2(A) =
1

M

(〈A2〉 − 〈A〉2) 2τint. (2.41)

This means due to the correlation of data, the effective number of measurements is by

a factor of 2τint smaller than the real number of measurements which underlines the

great importance of efficient creation of independent configurations by Monte Carlo

algorithms.

To extract reliable data from QMC it is crucial to estimate errors as correct as pos-

sible. The general strategy is based on so called binning of the data into k subsets

of length L = M/k . If those subsets have a length that is larger than the integrated

autocorrelation time, then the averaged quantities within those data blocks

Ab :=
1

L

bL∑
i=(b−1)∗L+1

A(i), b = 1, . . . , k (2.42)

are statistically independent and they form the correct variance

σ2(A) :=
1

k − 1
k∑
b=1

(
Ab − Ā

)2
, Ā =

1

N

N∑
i=1

A(i). (2.43)

While binning is perfectly viable for linear quantities (energy, susceptibility, magnetiza-

tion, ...), it does not take into account error propagation of non-linear quantities such
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as the specific heat. A more suited method in is the Jackknife-procedure in that case.

The basic idea behind the jackknife error estimator is a resampling of the data sets by

creating k subsets out of the k bins with length L = M/k by leaving out one bin at

each time. Calculating the average

Āav =
1

k

∑
i∈subset

Āi , Āi =
1

L

∑
j∈bini

A(j)

over the k subsets which, combined with Ā0 =
1
M

∑M
i=1 A(i) of the complete set, is a

set of k + 1 averages, backed up by a large amount of measurements each.

In the Jackknife algorithm, the final average is now given by

Ā = Ā0 − (k − 1)
(
Āav − Ā0

)
(2.44)

with a variance

σ2(A) =
k − 1
k

k∑
i=1

(
Ā2i − Ā2av

)
(2.45)

The advantage of this method is an automatic error propagation of non-linear quantities,

resulting in a bias (k − 1) (Āav − Ā0) of the binning average Ā0. For linear quantities,
Jackknife and simple binning are identical.

2.5 Maximum Entropy

In subsection 2.4.2 it has been shown that the SSE is capable of extracting dynamic

correlation functions, however, the highly oscillating character of the time development

operators e±itH in the SSE -formalism forces a Wick-rotation i t → τ to imaginary

time where the time development operators become diffusive functions. This chapter

will provide the bridge between experimentally relevant quantities such as the dynamic

structure factor, T1-relaxation rates and the imaginary time correlation functions of

subsection 2.4.2.

2.5.1 The continuation problem

In order to connect the imaginary plane 〈Sμri (τ)Sνrj (0)〉 with the real axis in form of e.g.
the dynamic structure factor, we start with the imaginary time Greens function

GAB(τ) = −〈TτA(τ)B(0)〉. (2.46)



2.5. MAXIMUM ENTROPY 47

Here A,B stand for S±,z and Tτ is the imaginary time ordering operator. Expanding
(2.46) in a full eigensystem {|n〉} with H|n〉 = En|n〉 one finds GAB(τ) to be β-periodic:

GAB(τ) =
1

Z

∑
n,m

〈n|A|m〉〈m|B|n〉e−τ(Em−En)e−βEn = GAB(τ + β). (2.47)

Consequently, one can express GAB(τ) through a discrete Fourier-transform

GAB(τ) =
1

β

∑
ωn

e−iωnτ G̃AB(iωn) (2.48)

with coefficients given by

G̃AB(iωn) =

∫ β

0

dτe iωnτGAB(τ). (2.49)

The so called Matsubara-frequencies ωn are given by ωn = (2n + 1)π/β for fermions,

respectively ωn = 2nπ/β for bosons with n ∈ N.
Combining eqn. (2.47) and (2.49) links G̃AB(iωn) to the spectral function χ

′′
AB(ω)

G̃AB(iωn) = −
∫ β

0

dτe iωnτ
1

Z

∑
n,m

〈n|A|m〉〈m|B|n〉e−τ(Em−En)e−βEn (2.50)

=
1

Z

∑
n,m

〈n|A|m〉〈m|B|n〉 1− e
β(En−Em)

iω+ En − Em e
−βEn (2.51)

=

∫ ∞

−∞
dω

χ′′AB(ω)
iωn − ω (2.52)

with

χ′′AB(ω, q) =
1

Z

∑
n,m

〈n|A(q)|m〉〈m|B(−q)|n〉δ(ω+ En − Em)(1− eβ(En−Em))e−βEn .

(2.53)

This quantity is directly related to the dynamic structure factor

SAB(ω, q) =
1

Z

∑
i ,j

e−q(ri−rj)
∫ ∞

−∞
e iωt〈Ari (t)Brj(t)〉 (2.54)

=
1

Z

∑
n,m

〈n|A(q)|m〉〈m|B(−q)|n〉δ(ω+ En − Em)e−βEn (2.55)

by a comparison with eqn. (2.53):

χ′′AB(ω, q) = (1− e−βω)SAB(ω, q). (2.56)
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This is the so called fluctuation-dissipation theorem, which, in combination with eqn.

(2.52) and insertion into eqn. (2.47), provides the wanted link of QMC-data and

dynamic structure factor

GAB(τ, q) =
1

β

∑
ωn

∫ ∞

−∞
dω
1− e−βω
iωn − ω SAB(ω, q). (2.57)

In a final step, the Matsubara sum is carried out by rewriting the sum into a contour-

integral in the complex plane with poles at the Matsubara-frequencies in order to use

Cauchy’s residue theorem. This yields the simple equation

GAB(τ, q) =

∫ ∞

−∞
dωe−τωSAB(ω, q) (2.58)

which, in the case of SAB(q, ω) with AB ∈ {SzSz , SxSx} can be further simplified by
looking at the symmetries of eqn. (2.55):

SAB(q,−ω) = 1

Z

∑
n,m

〈n|A(q)|m〉〈m|B(−q)|〉δ(−ω+ En − Em)e−βEn (2.59)

=
1

Z

∑
m,n

〈n|B(−q)|m〉〈m|A(q)|n〉δ(−ω+ Em − En)e−β(En+ω)(2.60)

= e−βωSBA(q, ω). (2.61)

Inserting this result into eqn. (2.58) yields a new kernel with new integration borders

GAB(τ, q) =

∫ ∞

0

dω(e−τω + e−(β−τ)ω)SAB(ω, q), AB ∈ {SzSz , SxSx} (2.62)

In the numerical implementation of (2.58) and (2.62), GAB(τ, q) is a vector

G = (G1, . . . GNτ ), the spectrum a vector A = (A1, . . . ANω) and finally the kernel Ki j
an Nτ × Nω matrix. Several issues hinder the simple inversion of K in order to get
A = K−1G. Firstly, a solution is not unique due to Nω > Nτ with Nτ being of the order
of 10 while Nω is typically chosen to be of the order of 10

3 for a smooth ω-resolution.

Secondly, a direct inversion of the kernel involves singular numerical values which,

multiplied with error-prone QMC data, often results in high-frequent noise without any

connection to the real spectrum. Over the course of this thesis, three different versions

were implemented to invert eqn. (2.58) – from a ”quick and dirty” direct inversion-test

in form of the singular value decomposition (SVD) over the Meshkov-algorithm [55]

which transforms the inversion-problem onto the minimization of a vector up to a

Maximum Entropy method, tailored specifically to deal with correlated and noisy data

(Bryan-Algorithm) [56].
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2.5.2 Singular value decomposition

The most simple and straightforward way of inverting eqn. (2.58) utilizes the so called

singular value decomposition (SVD), a tool of the linear algebra to factorize real or

complex rectangular matrices of the form

K = UΣV ∗ (2.63)

where K is the Nτ ×Nω transformation kernel, U a unitary square matrix of dimensions
Nτ × Nτ , Σ a Nτ × Nω diagonal matrix and V ∗ the conjugate-transpose of the unitary
Nω×Nω matrix V . For our real-valued kernel K we have U−1 = UT and V ∗ = V T = V −1
with only real eigenvalues in Σ.

Applied to the inversion problem, the SVD yields for the dynamic structure factor

Ai =

Nω∑
j=1

Nτ∑
k=1

Vi jσ
−1
j U

T
jkGk (2.64)

In our implementation the SVD is performed by the LAPACK subroutine DGESV [57]. A

straightforward approach to carry out the sums in eqn. (2.64) is likely to fail, since

the eigenvalues σj in Σ vary among 30 orders of magnitude and applied to QMC data

simply do not yield any useful results. Instead, one can truncate the eigenvalues to the

Nc most dominant ones, typically with Nc < 10, leading to

Ai =

Nc∑
j=1

Nτ∑
k=1

Vi jσ
−1
j U

T
jkGk . (2.65)

This truncation is a very special case of a more general set of filter functions which

help to regularize eqn. (2.64), see Tikhonov regularization [58] for a review. However,

we did not explore filter details further after a few SVD continuation tests, one of

them shown in Fig. 2.8: displayed is the autocorrelation time of a spin S=1/2 dimer

system at T = 0.25J – a system that can easily be treated analytically and its results

are well understood with hand-waving arguments: at high temperatures, the spin barely

sees his neighboring spin and it performs a thermally driven random-walk, leading to

dominant intensity at ω = 0 and its vicinity. Upon cooling, the neighbor-interaction

becomes dominant and the spin starts precessing in the field of its neighbor, leading to

high intensity of the autocorrelation function at its larmor-frequency ω/J = 1. While

static and dynamic quantities are accessibly analytically, it is also a system that allows

for extremely high numerical accuracy with the QMC owing to its small size – an

ideal test subject for an analytic continuation. Our imaginary time source data in the

inset of Fig. 2.8 has a relative error of 10−6 which can be regarded as very high
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Figure 2.8: Autocorrelation function of a dimer spin system at T/J=0.25. The solid

line is the exact result from diagonalizing the Hamiltonian, the dashed line is the result

from imaginary time QMC-data (shown in the inset), which was fed into a straight

forward inversion of eqn. (2.62) by singular value decomposition (see eqn. (2.65)).

The results are poor at best.

accuracy. Despite the excellent statistical quality it is pretty obvious, that the SVD in

this brute force approach with Nc = 5 does not yield any useful spectral properties – the

larmor-frequency peak of the analytic results is barely visible and at a wrong position,

the spectral intensity drops below zero at times and already at slightly larger Nc > 7

the spectrum becomes completely distorted by high-frequency oscillations with strong

intensity, orders of magnitudes higher than the analytic results. This test scenario

clearly shows that a straightforward SVD is not a viable way to perform the analytic

continuation.
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2.5.3 Regularization – the Maximum Entropy formalism

In the last subsection it has become very clear, that the ill-posed inversion problem of

eqns. (2.58) and (2.62) needs more advanced ways of regularization, eventually even

asks for additional input to find the solution that resembles the true spectrum A most.

Since G of the inversion problem is the result of a measurement it can be interpreted as

a realization of a gaussian distributed random variable with the exact value as the mean

and a width that reflects the statistical error of the QMC. One can then use statistical

reasoning to find an expression for the distribution of P [A|G] of observing A when G
has already occurred. The final spectrum would then read as

Ā =

∫
AP [A|G]dA. (2.66)

To simplify things for later numerical application, one approximates the mean of our

spectrum to be the value at the distribution’s maximum

Ā = max
A
P [A|G]. (2.67)

In order to calculate the conditional probability P [A|G] (also called posterior probabil-
ity), one makes use of Bayes theorem

P [A|G] = P [G|A]P [A|I]
P [G|I] (2.68)

with the likelihood P [G|A] of the observation G for a given A and the prior probability
P [A|I] of the spectrum, given any prior information I one might have. Examples for
this are positivity or even analytical behavior of the spectrum. Finally there is the

so called evidence P [G|I] which functions as a normalization and has no effect on
the outcome of the spectrum, hence can be disregarded for the analytic continuation

problem.

Likelihood Function Under the assumption of Gaussian-distributed QMC-data G, the

choice of the likelihood function P [G|A] is given by

P [G|A] = norm−1e−χ2/2, χ2 =

Nτ∑
i ,j=1

(
Gi − G̃i

)
C−1i j

(
Gj − G̃j

)
(2.69)

with G̃i obtained through the original integral equation (2.58,2.62) of the spectral trial

data in its discretized form with finite step-width Δω

G̃i =

Nω∑
k=1

KikAkΔω. (2.70)
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Ci j is the so called covariance matrix of M repeated measurements

Ci j =
1

M(M − 1)
M∑
k=1

(G
(k)
i − Ḡi)(G(k)j − Ḡj) (2.71)

and G
(k)
i stands for the k-th measurement of the i-th entry in G with an M-averaged

value of Ḡi .

Perfectly uncorrelated data (see Fig. 2.9 and caption) would leave all off-diagonal

entries of eqn. (2.71) zero with the variance σ2i on its diagonal and in such a case, χ
2

in eqn. (2.74) simplifies to

χ2 =

Nτ∑
i=1

(
Gi − G̃i
σi

)2
. (2.72)

In other words: χ2 is the least square measure of integral transformed trial spectrum

to the imaginary QMC data, weighted by its variance.

Prior Probability Following [59], the fundamental principle of maximum entropy sug-

gests the so called entropic prior to be

P [A|I] = norm−1eαS, S = Δω

Nω∑
i=1

(
Ai −mi − Ai ln Ai

mi

)
(2.73)

as most uninformative and unbiased prior. S is an entropic measure very similar to the

Shannon entropy and m a reference distribution of rank Nω (default model), holding

all information one might have about the spectrum.5 An uninformed default model is

typically flat and positive, ideally adjusted in height to match the zeroth moment of A

if that information is available through sum-rules for example (see subsection 4.2.6).

Posterior Probability Connecting eqns. (2.69) and (2.73) through (2.68) yields

P [A|G] = norm−1eαS−χ2/2 (2.74)

for the form of the posterior distribution. This equation is maximized for

min
(
χ2/2− αS) (2.75)

5Note that S stands for the entropy here and only here. For chapter 3 onwards, S will refer to the

spin magnitude again.
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Figure 2.9: This plot shows the results of diagonalizing the covariance matrix of eqn.

(2.71). The system is a single dimer system, introduced in Fig. 2.8. Due to its small

size (N = 2) and comparably high temperatures β = 4, the corresponding maximum

order M of the expansion is very small (M = 200), since it scales linear with N and M.

This means an extraction of too many τ-points inevitably leads to correlations among

the data points. This behavior is clearly shown in the plot, where the extraction of more

than 10 τ-points already leads to spurious eigenvalues after diagonalizing the covariance

matrix. On the other hand the extraction of only a handful of τ-points shows eigenvalues

of the covariance similar to the diagonal elementals of the undiagonalized covariance

matrix – a consequence of extremely small off-diagonal matrix elements Ci j , i �= j . In
other words: using only the diagonal covariance entries in the determination of χ2 in

eqn. 2.72 is justified, as long as the QMC data is not over-sampled through extraction

of too many τ-points.

and we find the choice of the spectrum to be a competition between the least square

functional χ2 and the proximity to the default model through the entropy, driven by the

choice of the regularization parameter α. For large α, the final solution will resemble

the default model, for small α it will give in to the data constraints. Therefore the

correct choice of α is of great importance.
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The correct α – historic maximum entropy To close the discussion of the maximum

entropy method, we describe how statistical arguments can be used to derive criteria for

the correct choice of the regularization parameter. In the so called historic maximum

entropy [60], the solution is found when

χ2(Aα) =

Nτ∑
i=1

(
Gi − G̃i(Aα)

σi

)2
= Nτ . (2.76)

This choice is easily understood: the correct value for α is given, when the trial spec-

trum matches the original imaginary time data up to the standard deviation – a very

reasonable criteria since, for smaller α, the data quality is in principle not sufficient

to justify a closer fit. More sophisticated arguments are used in the so called classic

maximum entropy.

The correct α – classic maximum entropy Here, α is treated as a parameter

in the solution-space and the posterior probability in eqn. (2.68) gets expanded to

P [α,A|G,m], which means we now maximize P [α,A|G,m] with respect to A and si-
multaneously the posterior probability P [α|G] with respect to α (this probability should
not depend on the default model m). To find P [α|G], we again utilize Bayes’ theorem

P [α,A|G,m] = P [α,A,G|m]/P [G] (2.77)

= P [G|S]P [A|α,m]P [α]/P [G|m] (2.78)

∝ P [α]eαS−χ
2/2, (2.79)

where we annihilated some obvious independencies of the default model m or α, e.g.

P [G|A, α,m] = P [G|A]. P [α] is typically chosen as constant or as the so called Jeffrey’s
prior P [α] ∝ 1/α which makes P [α] ’scale-free’ and therefore as uninformed as possible
[56, 61, 62]. Following the same references one arrives at the posterior probability for

α by integration over A which yields:

P [α|G,m] ∝ P [α]

∫
eαS−χ

2/2M(A)dNωA (2.80)

∝ P [α]

Nω∏
i=1

(
α

α+ λi

) 1
2

eαS−χ
2/2. (2.81)

Here {λi} are the eigenvalues of diag{A}∇∇12χ2diag{A} with the measure
M(A) =

∏Nω
i=1

1√
Ai
.
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The sealing argument for classical maximum entropy is now to assume that P [α|G,m]
is sharply peaked at α̂, yielding a result for the spectrum by

〈A〉 =
∫
AP [α,A|G,m]dαdNωA (2.82)

=

∫
AαP [A|G, α,m]P [α|G]dαdNωA (2.83)

≈
∫
AP [A|G, α̂,m]dNωA (2.84)

≈ Aα̂. (2.85)

The maximum of P [α|G] is easily determined by its partial derivative of eqn. (2.81)
with respect to α. For this purpose we look at the logarithm of P [α|G]

∂ logP [α|G]
∂α

= 0 (2.86)

and find

− 2α̂S(Aα̂,m) =
Nω∑
i=1

λi

α̂+ λi
(2.87)

as the determining equation for α̂.

The correct α – Bryan maximum entropy Unlike historic and classic maximum

entropy which determined their solution by selecting one particular α, Bryan’s approach

actually calculates the full posterior probability distribution (2.78) and forms the final

spectrum as weighted average over a whole range of spectra Aα with α typically ∈
{0.001, . . . 107}:

〈A〉 =
∫
AP [A|G, α,m]P [α|G]dαdNωA (2.88)

=

∫ αmax

αmin

AαP [α|G]dα. (2.89)

The classic approach makes sense whenever the distribution is sharply peaked. However,

depending on the quality of the QMC-data, this is not necessarily fulfilled (see Fig. 2.10,

Fig. 2.11 and Fig. 2.12 with captions).

In Fig. 2.10 we show continuation results on S(q = π, ω) of a four-spin ring with 105,

respectively 107 sweeps. The resulting spectra look very similar, however the lesser

data quality spectrum is slightly smoother. In the inset P [α|G] is shown. Clearly the
function is far from being sharply peaked and the shift to higher α with lesser data
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Figure 2.10: This figure shows the effect of statistical errors on the quality of the

analytic continuation, in this case S(q = π, ω) of a N=4 spin S=1/2 Heisenberg chain

with sweeps of 105 and 107. Clearly the maximum gets less and less pronounced and less

sharp the more the statistical quality is reduced. Exemplarily two posterior probabilities

for α are shown in the inset which makes very clear, that the classic assumption of a

sharply peaked distribution is not always true, seeing that the distribution is nonzero

over four orders of magnitude. However, the spectrum hardly changes shape in the

region of the nonzero posterior distribution (see also Fig. 2.11 and Fig. 2.12), leading

to relatively similar results of classic and Bryan maximum entropy.

quality explains the smoother spectrum in the main plot.

In Fig. 2.11 we contrast the three different choices of α at the example of the dynamic

structure factor Szz(q = π/2, ω) for a Heisenberg S=1/2 chain with 128 spins at

T/J = 0.25. Obviously, historic, classic and Bryan show very similar results, even

though the cutoff α̂ and the maximum of P [α|G] varies over four orders of magnitude
(see inset). Such stability in the solution indicates very high data quality (low errors,

minimum correlation). Note how nicely the transition from default model (for very large

α) up to the final spectrum (for very low α) is portrayed by the grey alpha scan lines
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Figure 2.11: Shown in this plot are the resulting trial spectra of a scan over the reg-

ularization parameter α, coming from α = 109 with a trial spectrum relatively close

to the flat default model, down to α = 10−4 with a probably over-fitted trial spec-
trum. Obviously, historic, classic and Bryan maximum entropy yield very similar results

which speaks for the imaginary time QMC data quality. Nevertheless we find, that the

choice of the regularization parameter changes over several orders of magnitude from

αhistoric = 3000 over αclassic = 3 down to the distribution with maximum around α = 1.

The continued data shown is the dynamic structure factor of a spin S=1/2 Heisenberg

chain with N=128 sites at wave vector q = π/2 and temperature T/J = 0.25.

(107 > α > 10−4).
Finally in Fig. 2.12 we present continuation results for the autocorrelation function

S0(ω) of the dimer at T/J = 0.25, first introduced in Fig. 2.8. The underlying τ-data

is highly correlated due to the very small expansion orders, leading to less reliable and

stable continuations. As a consequence, historic, classic and Bryan strongly differ in

sharpness, however the correct maximum position is found by all three choices of α.
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Figure 2.12: Shown ins this plot are again resulting trial spectra of a scan over the

regularization parameter α, coming from α = 107 down to α = 10−4 of the dimer
autocorrelation function introduced first in Fig. 2.8. This time the historic maximum

entropy solution is clearly less sharp in comparison to classic and Bryan’s solution despite

the extremely good data quality.

2.5.4 Meshkov-Algorithm

After the discussion of the maximum entropy formalism and the extended discussion

about the choice of the regularization parameter, the remaining issue is the algorithmic

realization of the minimization procedure of the maximum entropy functional given

in eqn. (2.75). One should keep in mind that finding the minimum in a 200+

dimensional variable space is not trivial and two tested realizations will be given. One

of them is an algorithm given by Meshkov in 1994 [55] which reduces the minimization

problem onto finding the minimum of a quadratic functional with linear constraints,

also known as non negative least square (NNLS) problem. The other is the algorithm

of Skilling and Bryan [56], which works in principle with standard Newton-iterations,

however in a highly reduced and optimized variable space, which makes the algorithm
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extremely fast and relatively stable despite the high dimensionality of the solution vector.

Meshkov’s algorithm starts from a series expansion of the entropy (eqn. (2.73)) up to

second order in A around a positive function f = {f1, f2, . . . , fNω}, leading to:

αS = α

Nω∑
i=1

[
mi − Ai + Ai ln

(
Ai

mi

)]
Δω (2.90)

≈ α

Nω∑
i=1

[
mi +

fi

2
− Ai + Ai ln

(
fi

mi

)
+
A2i
2fi

]
Δω (2.91)

= R(f|A). (2.92)

If this positive vector f is chosen as the true minimum 〈A〉 of the non-quadratic MaxEnt-
functional eqn. (2.75) then it should also give the minimum of the quadratic functional

in eqn. (2.91). Following [55] further, the process of finding the minimum (under the

constraint of a positive A) is chosen as a recursive determination of the vector f

A(n+1) = minAi≥0∀i
[
χ2(A)/2 + R(f(n)|A)] (2.93)

where f(n) is designed with a memory of the old solution

f(n) = ηA(n−1) + (1− η)A(n), A(0) = A(1) = m (2.94)

in order to stabilize the iterations. The rate of convergence is controlled by the

parameter 0 < η < 1 and we went with Meshkov’s suggested value of η = 0.3 for

guaranteed stability.

In each iteration process, the quadratic functional of Nω variables

F (A) =
1

2

Nτ∑
i=1

(
Gi − Δω

∑Nω
j=1Ki jAj

σi

)2
+ αΔω

Nω∑
j=1

{
Aj

[
ln

(
A
(n)
j

mj

)
− 1

]
+

A2j

2A
(n)
j

}

(2.95)

has to be minimized under Nω linear constraints Ai ≥ 0. Equation (2.95) can be
rewritten in the form of a series expansion up to quadratic order in A (higher order

terms were neglected)

F (A) = −
Nω∑
j=1

F ′j (A
(n))Aj +

1

2

Nω∑
i ,j=1

F ′′i jAiAj + const (2.96)
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where

F ′j (A
(n)) = Δω

Nτ∑
i=1

σ−2i GiKi j − αΔω
[
ln
(
A
(n)
j /mj

)
− 1

]
(2.97)

F ′′i j = Δω2
Nτ∑
l=1

σ−2l Kl iKl j + αΔω
δi j

A
(n)
j

. (2.98)

Upon diagonalizing F ′′i j in eqn. (2.98) with the orthogonal transformation matrix Ui j

F ′′i j =
Nω∑
l=1

φlUi lUj l , (2.99)

one can substitute

Ai =

Nω∑
j=1

Ui j
1√
φj
(ψ̄j + ψj), ψ̄j =

1√
φj

Nω∑
l=1

Ul jF
′
l (A

(n)) (2.100)

which simplifies the minimization of eqn. (2.95) to a standard Least Distance Program-

ming (LDP) problem of finding a vector with minimal norm

||ψ||2 =
Nω∑
i=1

ψ2i (2.101)

under Nω linear constraints

Nω∑
j=1

1√
φj
Ui jψj ≥ −

Nω∑
j=1

1√
φj
Ui j ψ̄j . (2.102)

As a summary for the Meshkov algorithm: The non-linear MaxEnt functional is expanded

around a memory function into a quadratic form, whose minimization yields the new

spectrum in recursive iterations with a memory-parameter η to stabilize the algorithm.

Each minimization of the quadratic functional in respect to A is reduced to a LDP

problem and can be even further reduced to a non-negative least square (NNLS) problem

with Nω linear constraints. During each iteration, a matrix-diagonalization of dimension

Nω×Nω and one LDP minimization has to be performed – both steps that scale with the
spectral resolution in a non-linear fashion which turned out to be very unfavorable for

useful resolutions, in particular in direct comparison with Bryan’s algorithm which will

be given in the next subsection. Continuation and runtime results of both algorithms

will be given subsequently.
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2.5.5 Bryan-Algorithm

While Meshkov’s algorithm [55] works on expanding the MaxEnt-functional in eqn.

(2.75) up to quadratic order in A, Bryan’s algorithm [56] works on the full functional

by finding the minimum over its gradient in regard to A. For the entropy (eqn. (2.73)),

this yields

(∇S)j = ∂

∂Aj

Nω∑
i=1

[
Ai −mi − Ai ln

(
Ai

mi

)]
= − ln

(
Aj

mj

)
. (2.103)

Likewise we calculate the gradient of the least square measure in eqn. (2.72)

∇1
2
χ2 =

1

2
KT

∂χ2(G, G̃)

∂G̃
, G̃ = KA. (2.104)

Now, one can apply the singular value decomposition of the kernel (see eqn. (2.63))

∇1
2
χ2 =

1

2
UΣV T

∂χ2(G, G̃)

∂G̃
. (2.105)

and put the two equations together

− α ln
(
A

m

)
=
1

2
U(c)Σ(c)(V (c))T

∂χ2(G, G̃)

∂G̃
(2.106)

where the index (c) means a reduction to the Nc largest eigenvalues of Σ which consid-

erably shrinks the computational effort of matrix operations in the algorithm, but most

of all allows for a reduced number of search variables by a smart decomposition of A

through

Aj = mj exp

[
Nc∑
i=1

U
(c)
j i ui

]
. (2.107)

By this transformation two things are achieved. Firstly, the spectrum A is bound to be

positive at all times and secondly, the Nω search directions of the minimization have

been reduced to down to the Nc most efficient ones, which obviously only depend on

the kernel, or in a further step, only on the number of extracted τ-points and the inverse

temperature β. This reduction to u = {u1, u2, . . . uNc}, as will become clear during the
comparison of Meshkov and Bryan, allows for a high gain of speed and a convenient

independence of the desired spectral resolution which limits Meshkov’s algorithm in its

current form.

Applying this transformation to eqn. (2.106) yields

− αU(c)u = 1
2
U(c)Σ(c)(V (c))T

∂χ2(G, G̃)

∂G̃
. (2.108)
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Figure 2.13: Direct comparison of SVD, Meshkov’s and Bryan’s MaxEnt algorithms on

a dimer system at T/J = 0.25. While SVD is far off the exact spectrum, Meshkov and

Bryan are basically giving equally good results, just with a large difference in runtime in

favor of Bryan’s algorithm (see Tab. 2.1).

Due to the orthogonality of U, the equation simplifies further to

− αu = 1
2
Σ(c)(V (c))T

∂χ2(G, G̃)

∂G̃
= g (2.109)

which is taken as basic equation for standard Newton-iterations

g(u(n)) + αu(n) +
(
g′(u(n)) + α1

)
δu ≈ 0, u(n+1) = u(n) + δu. (2.110)

For that purpose, g′ must be evaluated

∂g

∂u
=
1

2
ΣV T

∂2χ2(G, G̃)

∂G̃2
∂G̃

∂A

∂A

∂u
(2.111)

=
1

2
ΣV T

∂2χ2(G, G̃)

∂G̃2
V ΣUTdiag{A}U (2.112)

= MD (2.113)
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Resolution Meshkov Bryan

50 12sec 2sec

100 27sec 2sec

200 128sec 2sec

400 1550sec 3sec

Table 2.1: Run-time comparison of Meshkov’s and Bryan’s MaxEnt-algorithms.

with

M =
1

2
ΣV T

∂2χ2(G, G̃)

∂G̃2
V Σ (2.114)

and D = UTdiag{A}U. Substituting in eqn. (2.110) finally leads to the simple equation

(α1 +MD)δu = −αu− g (2.115)

which is solved with respect to δu by simple matrix inversion

δu = −(α1 +MD)−1 (αu+ g) , (2.116)

performed by LAPACK routines DGETRF and DGETRI in our implementation.

To imposed a certain control on the increment δu we thresholded it with the ratio ||δu||||u|| .
Whenever the changes exceed a certain fraction of the norm ||u||, the changes were
renormalized through

ui = ξ
||u||
||δu|| (2.117)

by a ξ of choice, in our case typically ξ = 0.1.

2.5.6 Conclusion

For both algorithms we used the same convergence criteria suggested by

Touchette/Poulin [63] [
1
2
χ2n − αSn

]− [
1
2
χ2n−1 − αSn−1

][
1
2χ
2
n − αSn

] < ε (2.118)

with an epsilon which was chosen to be 10−8 in all performed continuations. Both algo-
rithms also used identical regularization parameters as described in subsection (2.5.3).
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Results for the already introduced continuation of the dimer autocorrelation function

are shown in Fig. 2.13. Clearly, both algorithms match the exact spectrum very well

with an η = 0.027 in the artificially broadened δ-functions δη(x) =
1
π

η
η2+x2

of eqn.

(2.55). However, the runtime of Meshkov’s and Bryan’s algorithm differ by a large

margin due to completely different scaling. While Meshkov becomes increasingly slower

with resolution increase, Bryan’s algorithm proves to be more or less unaffected owing

to the smart choice of search directions (see Tab. 2.1).



Chapter 3

Static properties of low dimensional
quantum magnets

In this chapter, results of my thesis will be presented in three main sections. Each

section is relatively independent and materials, experiments and theoretical motivation

will therefore be given in each particular section. Nevertheless I would like to give a

short overview at this point to prepare for the upcoming results.

In Section 3.1, we investigate the spin driven transition between quantum and

classical behavior of isotropic Heisenberg quantum spin chains by means of the static

susceptibility. Apart from that comparison, we fit our results with a Padé-fit to provide

an analytic expression of our data and assess the fit quality my comparing to previous

fit attempts.

In the next section 3.2, we move from chains to two-dimensional systems by intro-

ducing an interchain coupling to form n-leg ladders, which are known to exhibit a

gapful excitation spectrum for n even. For the spin S=1 two-leg ladder, we perform

parameter scans of the rung and leg coupling constants as well as the single-ion

anisotropy, following the pioneering work of Todo et al. on this particularly interesting

system with the gapful limits of Haldane chain and dimer. We analyze our results

in terms of susceptibility and magnetization and show that the system may be

driven into a gapless phase for certain ratios of rung/leg coupling parameters and a

weak easy-plane anisotropy. Furthermore, we compare our parameter studies to an

assumed spin S=1 ladder material and clarify the strength of the coupling constants in

the thermodynamic limit by means of the experimental susceptibility and magnetization.
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While both preceding sections increased the Hilbert space by stretching the system

size into the thermodynamic limit, we look at small molecular magnets with large spin

magnitude motivated by experiments predominantly performed by Waldmann et al. in

the last section. Our particular interest was driven by a Mn-[3× 3]-grid system of nine
spin S=5/2. This system can be regarded as an eight-site ring of spins with the center

spin coupled to four ring spins via center-spin coupling. Such systems are of great

interest for various technical applications, among them the realization of a Qbit by

quantum tunneling of the Néel vector. We analyzed the susceptibility, magnetization

and (staggered) static structure factors of the system as function of center-spin

coupling and single-ion anisotropy with adjacent comparison to experimental results

of the susceptibility in order to clear up contradicting publications about the coupling

constants.

To understand the general layout of this chapter, note that all three sections are unified

by combining investigations of purely static QMC observables while chapter 4 will deal

predominantly with dynamic properties of quantum spin systems.
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3.1 Spin S chains – searching the classical limit

Two decades ago, Haldane’s conjecture [19] divided the spectral properties of anti-

ferromagnetic spin chain into integer and non-integer spin magnitudes. Experiments

[64–68] and involved methods like the Bethe-Ansatz, exact diagonalization, DMRG

and QMC-methods shed light onto the two very different systems and lead to de-

tailed knowledge about the inherent physics. The scientific focus was on S=1
2
and

S=1 systems while higher spins systems suffered from exponentially increased numer-

ical effort and/or lack of compounds. With the synthesis of molecular magnets the

transition metal ions in non-magnetic ligand-surroundings, (e.g. Pyrimidine or Pyrazine

[69]) offer experimental access to a wide range of low dimensional materials for inte-

ger (Ni, Fe) and non-integer spins (Cu, Co, Mn). Among those systems we highlight

the long-neglected (C4H4N2)(NO3)2 (CuPzN, S=1/2) [70–72] which will be subject

of our studies on 1/T1-relaxation rates in chapter 4. In addition to the relatively

new way of designing materials, there exist plenty of oxide or chloride based materials

by now, e.g. SrCuO2 (S=1/2) [73], Sr2CuO3 (S=1/2) [74], Cu(C6H5CO2)2 (cop-

per benzoate, S=1/2) [75], Ni(C2HZ8N2)2NO2ClO4 (NENP, S=1) [66, 67, 76–78],

CsNiCl3 (S=1) [79–82], Y2BaNiO5 (S=1) [83], Ni(C5D14N2)2N3(PF6) (NDMAP, S=1)

[84–88], CsVCl3 (S=3/2) [89, 90], (C10H8N2)MnCl3 (S=2) [91], and (CH3)4NMnCl3
(TMMC, S=5/2) [92, 93]. Their thermodynamic properties are well described by the

Heisenberg-Hamiltonian (eqn. (1.2)) which can be studied in a variety of approxima-

tions/limits such as the asymptotic spin wave approach [94–96], series-expansions in

powers of 1/T [97, 98], in the Ising-limit for highly anisotropic coupling (Δ → ∞)
[99–101] or in the classical limit S →∞ for large spins [27].
In this section we want to focus on the latter which is known to yield analytic closed ex-

pressions for thermodynamic quantities as pointed out by Fisher [27]. The shortcomings

of the classical limit should be visible at low temperatures where quantum fluctuations

are dominant in respect to thermal fluctuations. To study the validity of the classical

approach, we use Fisher’s expression for the susceptibility in comparison with QMC data

for S={1
2
, 1, 3

2
, 2, 5

2
} chains to qualitatively follow the crossover from pure quantum to

classical regime as a function of temperature and spin. Since the QMC covers those

spin quantum numbers which refer to the most common ionization states of transition

metal atoms in molecular magnets, we will additionally give Padé-approximations to our

susceptibilities and compare with widely used fit-approaches [102, 103].
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Figure 3.1: Low temperature region of QMC-susceptibilities for Spin-
{
1
2
, 1, 3

2
, 2, 5

2

}
Heisenberg-chains of 512 sites (colored symbols). Black small foregrounded symbols

denote systemsizes of 256, respectively 768 (large backgrounded symbols) sites to

check the thermodynamic limit for β=100. Statistical errors are only shown when they

exceeded the symbol-size. The solid lines are Padé-approximations to the QMC data.

3.1.1 Magnetic susceptibilities

In Fig. 3.1 we present the low temperature results of the susceptibilities for S ={
1
2
, 1, 3

2
, 2, 5

2

}
and systemsizes up to 768 sites. The finite-size analysis shows that 512

sites can be considered as the thermodynamic limit for all calculations. Statistical

errors are not shown in the plots unless they exceed the symbol-sizes. The typical

order of the error is 10−5 for high and 10−3 for low temperatures. In the case S=5
2

the errors at low temperature are not negligible anymore. This is due to the extremely

large Hilbert space of (2S + 1)768 which contains 10366 times more configurations

than the corresponding S=1
2
system. To sample such a large Hilbert space sufficiently,

great numerical effort with long runtimes are a consequence which is why we restricted

ourselves to a maximum of β=10 for S=5
2
.
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Figure 3.2: QMC-susceptibilities (symbols) with their Padé-fit (black solid lines) in

comparison with classical results (red solid lines) as a function of T/J. The colored

lines mark the maximum position of the QMC data.

Looking at the low temperature regime T/J � 1, we find the two different

characteristics of integer and non-integer spin chains. The former (S=1, 2) show

exponentially activated behavior of the susceptibility with energy excitation gap

ΔS=1 ≈ 0.410(3) and ΔS=2 ≈ 0.08(1) which was extracted by fitting χ ∼ e−Δ/T to
the low-temperature region of our data. The latter (S=1

2
, 3
2
, 5
2
) are known to have a

gapless excitation spectrum leading to finite susceptibilities at T=0, which is consistent

with the low-temperature behavior shown by S=1
2
and S=3

2
in Fig. 3.1. Similarly we

expect a finite susceptibility for S=5
2
as well although it is not clearly approved by the

data since we restricted ourselves to T≥0.1J.

Fig. 3.2 shows the QMC-susceptibilities in direct comparison with results for the clas-

sical Heisenberg model from Fisher [27]. His expression for the magnetic susceptibility

reads

χ =
g2S(S + 1)μ2B

3kT

1 + u

1− u (3.1)
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with

u = coth

[
JS(S + 1)

kT

]
− kT

JS(S + 1)
(3.2)

which can be obtained by taking the limit S →∞ of the Heisenberg-model. As can be
seen, eqn. (3.1) and (3.2) perfectly match the QMC data at high temperatures. For

low temperatures instead, we find strong differences owing to the onset of quantum

effects. In contrast to integer-spin QMC results at T=0, we find a constant finite

susceptibility (χ|T=0 = g2

6|J|) for each spin magnitude. However, there is spin-depending
convergence of classical and quantum mechanical results concerning the position of the

maxima. While we find a 46% maximum position deviation for spin S=1
2
, it is only 9%

for the highest spin S=5
2
.

3.1.2 Padé-fits

For an analytic description of the numerical QMC results as a function of tempera-

ture/coupling we use the following general expression to fit χ in the temperature region

0.01≤ kBT/J ≤20, respectively 0.1≤ kBT/J ≤20 for S=52 :

χ(x) = e−Δ/x
S(S + 1)

3x
P lk(x) (3.3)

P nm(x) =
1 +

∑l
n=1Anx

−n

1 +
∑k
m=1Bmx

−m (3.4)

where

x =
kBT

|J| . (3.5)

The orders of the Padé approximant P lk(x) are determined by the low temperature

behavior of χ. For S=1
2
the susceptibility χ|T=0 has the finite value of 0.101322 [104],

requiring k=l+1 and Δ=0. For this case, Klümper et al. gave very accurate fits

(∼ 10−7) to numerical Bethe-Ansatz data [102] – an accuracy we cant achieve due
to the intrinsic statistical errors of the SSE data (10−5athighupto → 10−3 for lowest
temperatures and largest Hilbert space). Similar behavior from higher non-integer spins

suggests the same Padé-setup for S=3
2
, 5
2
.

For integer-spin chains the approximations need to reflect the finite spin gap Δ �= 0
and the exponential suppression of the susceptibility. Numerical results for the gap

of S=1 and S=2 chains are ΔS=1 � 0.4105 (DMRG, [105]) and ΔS=2 � 0.0876
(DMRG, [106]). However, we are using Δ as a free fit-parameter to gain better overall

fit-results to our data. Therefore we need to point out that Δ for S=1 and S=2 must
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Figure 3.3: Absolute differences of the two different Padé-approximations for the sus-

ceptibilities. The solid line is a comparison of our data and a high-accuracy fit (error

≈ 10−7) to Bethe-Ansatz data from Klümper et al. [102].
S Δ A0 A1 A2 A3 B0 B1 B2 B3 B4
1
2

- 0.01069 0.06901 0.03924 -0.0003 0.5001 0.37725 0.07918 0.09097 -0.0008

1 0.46024 93.2513 1987.5 22.2623 410.805 93.1356 2093.27 1663.99 2336.51 -
3
2

- 0.03832 0.83126 0.09970 -0.00095 2.529 4.86816 4.3319 2.57636 -0.02273

2 0.03550 1.00386 5.13266 6.85929 -0.11084 4.95696 18.9541 34.3336 116.45 -
5
2

- 3.13943 8.02237 -10.5702 -0.23443 9.38686 33.6076 221.48 -220.366 -18.4252

Table 3.1: Fit-coefficients of eqn. (3.3) to numerical QMC-data for isotropic antifer-

romagnetic Heisenberg chains with S=1
2
, 1, 3

2
, 2, 5

2
.

not necessarily match the numerical results of ΔS=1 and ΔS=2. Furthermore we choose

the order k=l for integer spins to achieve asymptotic decay of the high temperature

susceptibility proportional to 1/T. The Padé-coefficients of eqn. (3.3) are given in

Tab. 3.1 for S = 1/2, 1, 3/2, 2, 5/2.

For the case S = 1
2
, Johnston et al. have already presented fits to Bethe-Ansatz data

in 2000 [7]. We use their Padé-approximation as a reference-fit for S=1
2
and find good
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Figure 3.4: Padé-fits to QMC-susceptibilities (colored lines) and to Weng-data (black

lines) by Hiller et al. [103] for different spins (S=1
2
, 1, 3

2
, 2, 5

2
) as a function of T/J.

agreement within the statistical QMC errors (see Fig. 3.3). For high temperatures the

deviations are of the order 10−5, for temperatures smaller than the coupling we find
differences up to 10−4.
Finally we compare our fits with a widely used Padé-approximation from Hiller et al.

[103]:

χ =
Ng2μ2B
kT

[
A+ Bx−2

] [
1 + Cx−1 +Dx−3

]−1
. (3.6)

The coefficients were fitted to numerical data from Weng [107] who used exact diago-

nalization to extrapolate susceptibilities of small systems (N < 10) with even and odd

number of sites to the thermodynamic limit.

For the Curie-like region (χ ∼ 1/T ) we find an overall fair agreement with the fits to
QMC data (see Fig. 3.4). Nevertheless the deviations up to 5% are surprising compared

to former Padé-fits to Weng-data for S=1 [108]. Lower temperatures reflect the fact

that Hiller et al. fitted to data which is dominated by large finite-size errors. While
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the fit for S=12 shows an overall correct low temperature behavior of the susceptibility
1

with a maximum deviation of 5 × 10−3 (see Fig. 3.4), we find stronger deviations for
larger spins. In particular the exponentially activated susceptibility of integer spin chains

is not described by the original extrapolation data and therefore neither by the fit. For

larger spins we also find the susceptibility-maximum to deviate stronger from the QMC

results. While the maximum-position for S=1
2
is 3% lower than that of the QMC, it is

already 10% higher for S=2 and S=5
2
.

3.1.3 Conclusion

We used the Stochastic Series Expansion to calculate susceptibilities for S ={
1
2
, 1, 3

2
, 2, 5

2

}
Heisenberg chains in the thermodynamic limit. A comparison with clas-

sical data in the limit S → ∞ shows fundamentally different behavior at low tempera-
tures for all spins. We find large differences for the positions of the susceptibility-maxima

which are however decreasing with increasing spin magnitude. A Padé-approximation of

the QMC-data has been given and we have shown those approximations to match with

high-accuracy spin S=1/2 Bethe-ansatz results from Johnston et al. within statistical

errors. For larger spin magnitudes S > 1/2, we have shown our Padé-approximations to

considerably improve widely used Padé-fits from Hiller et al.. This improvement pertains

both, to the high, and more pronounced to the low-temperature region.

1Of course the fit can not take logarithmic corrections into account which were introduced in 1994

[109].
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3.2 Spin S=1 ladder system

Coming from the preceding chapter about spin chains, we saw that even-site half-

integer Heisenberg spin chains with uniform nearest neighbor exchange coupling form

a spin singlet ground state with gapless excitations. Introducing an additional inter-

chain magnetic exchange coupling between adjacent spin chains the so-called n-leg spin

ladders are formed. These have been discussed very intensively for the S=1/2 case

since even-n compared to odd-n exhibit completely different ground state properties

[110, 111]. In particular for even-leg ladders a non-magnetic spin-liquid ground state

with a finite energy gap is found [112].

For S=1, already for a single antiferromagnetic chain, the ground state is well described

by the AKLT ansatz ([113]) with a finite energy gap as proposed by Haldane [19] and

several experimental realizations are known [114]. Only very little is known about the

ground state and excitations of a S=1 two-leg spin ladder. From bosonization studies

[115, 116] and quantum Monte-Carlo simulations [117] a continuous crossover from

the Haldane spin gap state to the case of antiferromagnetic dimers, which also shows

a spin excitation gap, is predicted.

Experimentally the situation is complicated by the fact that most S=1 systems (usu-

ally based on high spin Ni(II) transition metal ions) show a strong axial crystal field

anisotropy D which modifies the ground state of the spin system [118].

In this part of the thesis, which has been partially published in [28], we focus on a

Heisenberg S=1 two-leg spin ladder with variable intra-chain (J) and inter-chain cou-

pling K for different single-ion anisotropies as an extension to [117]. Todo et al. have

shown in large scale QMC calculations that in the crossover of Haldane chain (J = 1,

K = 0, spin gap Δ = 0.41J) to Dimer (J = 0, K = 1, Δ = J) the excitation gap

gets smaller by up to one order of magnitude with respect to uncoupled dimers/chains.

We will show, that the system may even become gapless with the introduction of an

easy-plane anisotropy D by adding Hion = D
∑
i(S

z
i )
2 as used in eqn. (1.2). Here,

positive D yields an easy-plane anisotropy, negative D an easy-axis anisotropy for a spin

on each site.

Our interest has been driven by recent experiments by C. Mennerich et al. on the Ni(II)

based material Na2Ni2(C2O4)3(H2O)2 (see Fig. 3.5), which include static susceptibility,

high-field magnetization and high-field high-frequency ESR measurements. As preview

to a detailed discussion in subsection 3.2.1 we find, that the structurally nearly isotropic

S=1 spin ladder is magnetically very well described by isolated spin dimers with an

antiferromagnetic exchange of J = 43 K on the rungs and a large easy-plane anisotropy

of D = 11.5 K. While the size of the anisotropy was determined by ESR, its sign stems
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Figure 3.5: Crystal structure of Na2Ni2(C2O4)3(H2O)2. For clarity, Na and H atoms

are not shown. The numbers indicate the distance (in Å) between opposing oxygen

atoms on the distorted NiO6 octahedra which are tilted by 17 degree with respect to

the a axis.

from comparing a dimer model to high-field magnetization results. Its calculated field

dependence shows successive level crossings of higher spin states (S = 1, 2) with the

ground state up to full polarization. This is confirmed by experimental magnetization

data which provides direct evidence for a magnetic field induced switching of the S=0

ground state to an S=1 state at Bc1 ≈ 30T and to S=2 at Bc2 ≈ 60T .

3.2.1 Magnetic susceptibility

First we look at the magnetic susceptibility as function of rung- (J) and leg- (K)

coupling for fixed easy-plane single-ion anisotropy D = 11.5K = 0.27J at experimen-

tally accessible temperatures down to β ≤ 10. A careful finite size scaling analysis
has been performed and the thermodynamic limit is reached with 2x200 sites for

these comparably high temperatures. This is in agreement with existing results for
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Figure 3.6: Scaled static susceptibility for the two-leg spin S = 1 ladder for an easy-

plane anisotropy D = 0.27J (taken from ESR measurements on Na2Ni2(C2O4)3(H2O)2)

as function of a scaled temperature T/(J+K) for different ratios of R = K/(J+K) ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}.

D = 0 [117]. Fig. 3.6 shows the scaled static susceptibility χ(J + K) as function of

scaled temperature T̃ = T/(J + K) for different ratios R = K
J+K

between uncoupled

dimers (R = 1) and two uncoupled Haldane chains (R = 0). Both limiting cases are

well studied and the static susceptibility is expected to vanish exponentially at low

temperatures χ ∝ e−Δ/T with Δ = 1 for the dimer and Δ ≈ 0.41050(2) for the Haldane
chain [105]. The region of intermediate R for T̃ < 0.5 however displays a significant

change of shape for the susceptibility as function of R. Firstly we find a noticeable

increase of the broad maximum upon R-decrease as already mentioned by Todo et al..

Upon further decrease R ≤ 0.5, the susceptibility is suppressed again even below its
value at R = 1. Secondly we find a strong suppression of the spin gap up to the point

R < 0.5 where it is not clear anymore if the system is still gapful. Finally we find a

shoulder structure for R = 0.3 which is an indication for the second energy scale in the

system, introduced by the two different coupling constants. Such shoulders are also

expected for other ratios of R with finite J,K, however they are not dominant enough
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Figure 3.7: Static susceptibility for J = K = 1 as function of temperature for different

single-ion anisotropies D ∈ {−1.0,−0.7,−0.5,−0.3, 0.0, 0.3, 0.5, 0.7, 1.0}.

to be directly observable in the QMC results. In direct comparison with data at D = 0

from Todo et al. we would like to point out the significant difference for intermediate

0.5 ≥ R ≥ 0.1. This region coincides with a region where the spin gap is shown to
be Δ ≤ 0.1J and we believe that a finite easy-plane anisotropy closes the small gap
completely.

To elaborate on the influence of the single-ion anisotropy, we performed QMC calcula-

tions for the susceptibility (see Fig. 3.8) at very low temperatures 0.001 ≤ T/J ≤ 0.1
with system sizes up to N = 512x2 and R = 0.3 as the parameter featuring the

smallest spin gap for D = 0. By fitting exponentially activated behavior χ ≈ Ae−Δ/T ,
we find ΔD=−0.1 ≈ 0.440 and ΔD=0 ≈ 0.069 for our data. These values can be
regarded as upper boundaries to the true zero temperature gap with an uncertainty

introduced by the fitting procedure, which overestimates the gap depending on the

upper cutoff temperature of the fit. In this respect, the value at D = 0 is perfectly in

line with the value ΔD=0 = 0.06476(4) of the second-moment [119] given by [117].

For the easy-plane anisotropy D = 0.1, the susceptibility is still finite even at lowest
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Figure 3.8: Low-temperature susceptibility of the ladder system for R = 0.3 and three

different anisotropies D ∈ {−0.1, 0, 0.1}. Error bars are within symbol size. For D =
0,−0.1, exponential fits were performed to extract the spin gap.

elevated temperatures. Obviously, such a small and positive value of D already drives

the system into a gapless excitation spectrum.

Finally we want to compare our susceptibility with experimental results published in

[28]. Taking into account the two different topologies of exchange pathways, one can

assume a magnetic interaction J along the rungs which is stronger than the magnetic

interaction K along the legs. In the limit of J >> K this leads to an isolated dimer

picture where each dimer consists of two S=1 spins on the rungs of the ladder. Since

all Ni-ions on a ladder are crystallographically equivalent they share the same size and

orientation of the single-ion anisotropy D. Hence, we produced results close to the

dimer limit with an easy-plane anisotropy D = 11.5K = 0.27J extracted from ESR

measurements and fitted the experimental data to QMC results. It should be noted,

that the scaled experimental dataset appreciably depends on the g-factor (in the range

of 2.2 to 2.25). Nevertheless, all possible fits lead to a value of R ≈ 0.95 – 1.00 for
total magnetic exchange strengths between 43 K (R = 1) and 45 K (R = 0.95). The
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Figure 3.9: Comparison of experimental susceptibility versus (J+K)-scaled QMC results

with D = 11.5K = 0.27J and different ratios R ∈ {0.85, 0.9, 0.95, 1.0}. A g-factor of
g = 2.23 was used.

solid line in Fig. 3.9 shows the best result of the fit using a total coupling constant

J+K = 45 K, a g-factor g = 2.23, a temperature independent term of 0.0085 μB/dimer

and a Curie constant of 0.0045 μBK/dimer. A comparison with the QMC data in

the low temperature regime of T/(J + K)≤1.5 yields a value of R=0.95, which re-
sults in an intradimer coupling of J = 42.75 K and an interdimer coupling of K = 2.25 K.

3.2.2 High-field magnetization

Similarly to the susceptibility, we performed calculations for the magnetization M

at corresponding temperatures of high-field magnetization experiments on powder

samples, which were carried out in pulsed fields up to 55T.

As can be seen from the energy diagram of the spin states of the spin ladder (Fig. 3.10)
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Figure 3.10: Breit-Rabi diagram of a S=1 dimer model with single-ion anisotropy D =

11.5K = 0.27J, calculated for the magnetic field applied perpendicular to the z-axis:

the triplet S=1 and the quintet S=2 are well separated from the S=0 ground state by

an activation energy of roughly J = 43K. Both multiplets exhibit a zero field splitting

due to crystal field anisotropy. Note the ground state level crossings around 30 and

53T

in the approximation of a single dimer with a single-ion anisotropy D=11.5K, the split-

ting of the states in a magnetic field yields a level crossing of the ground state with

the lowest triplet state |−〉 at a field BC1 and a second level crossing of the |−〉 state
with the | − −〉 quintet state at field BC2 with BC1 < BC2. This leads to a step-like

behavior for the high field magnetization. If the field is applied along the z-axis, the

critical field BC1 can be estimated using the equation BC1 = (J − D/3)/(gμB/kB),
depending strongly on the sign of D. For a field perpendicular to the local anisotropy

axis, a negative D (leading to higher critical fields for B ‖ z) pushes the critical field to
lower fields and vice versa for a positive D. Since for measurements on powder samples,

the perpendicular situation dominates the spectrum of the spin states, the field depen-

dent magnetization can give a clear indication for the sign of the anisotropy D – in

our case for a positive D = 11.5K. With this fixed easy-plane anisotropy, we performed

an R-scan at the lowest accessible experimental temperatures T = 1.47K = 0.034J,



3.2. SPIN S=1 LADDER SYSTEM 81

0 0.5 1 1.5 2
B/J

0

0.2

0.4

0.6

0.8

1

M R=1
R=0.9
R=0.8
R=0.5
R=0.3
R=0.0

0 0.2 0.4 0.6
0

0.1

0.2

Figure 3.11: Field dependent magnetization for different ratios 1 ≥ R ≥ 0 and D =
0.27J of the S=1 ladder system at the temperature T = 0.034J.

depicted in Fig. 3.11 with the inset showing the low-field behavior.

It is apparent, that already a small inter-dimer coupling smears the magnetization step

structure and decreases the length of theM = 0.5 plateau. For a coupling ratio R ≤ 0.7
and for temperature above T = 0.034J, plateaus in the calculated magnetization profile

are absent. The low-temperature inset reveals the expected variation of the gap in R

in accordance with our susceptibility calculations: for R ≥ 0.7 we still find a clear spin
gap, indicated by M = 0. At lower ratios 0.7 ≥ R ≥ 0.3 gaps are not visible anymore.
Note that this however is no clear indication for a vanishing gap due to the relatively

high temperatures. Finally for the pure Haldane system, we again find a magnetization

profile which is consistent with a gapped excitation spectrum.

The calculations for R=1, 0.95 and 0.9 are compared with the measured data in Fig.

3.12. The data was scaled by setting the magnetization at Bex = 40 T to M = 0.5 and

using a value J+K ≈ 43 K. A variation of J+K mainly shifts the position of the step and
does not affect the broadening of the step. The QMC calculations show a broadening

of the magnetization step for decreasing R, i.e. increasing magnetic exchange strength
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Figure 3.12: QMC calculations of the field dependent magnetization for different ra-

tios of R with D/J = 0.27. Open circles: R = 1, open triangles: R = 0.95, open

squares:R = 0.9. The calculations were done for a reduced temperature T/J = 0.034,

corresponding to J + K = 43K and T = 1.47K. The solid squares are the normalized

measurements scaled with J +K = 43K.

along the legs of the ladder. The QMC calculations are possible only for B parallel to

the anisotropy axis up to now. Therefore, comparing with the measurements on powder

samples one has to consider that the magnetization step in the experimental data set is

additionally broadened by the averaged presence of the axial anisotropy D. Therefore,

the step of the appropriate QMC calculation has to be sharper than the measurement

performed on a powder sample. For this reason, the experimental data is in agreement

only with the calculation for R = 1, i.e. the uncoupled dimer model.
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3.2.3 Conclusion

We have shown QMC data for the susceptibility and the magnetization of a spin S=1

ladder system with different ratios of rung and leg coupling, limited by Haldane-chain

and uncoupled dimers, for various single-ion anisotropies. It turns out that a small

easy-plane anisotropy drives the system from a gapped to a gapless excitation spectrum

which we have shown for the particular ratio R = 0.3 within the thermodynamic limit.

It is to be expected that small easy-plane anisotropies will act similarly for other ratios

R. For the experimental comparison we conclude that although the Ni(II) ions form a

structural ladder, a model of isolated dimers on the rungs describes the susceptibility

very well with an upper limit of 5 % interdimer exchange coupling by fitting a different

susceptibility temperature region. The analysis of the temperature dependent suscepti-

bility and magnetization data leads to a magnetic exchange constant of J = 43 K along

the rungs of the ladder with a single-ion anisotropy D = 11.5 K.
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3.3 Spin S grid systems

To close the chapter of static QMC applications, we utilize our method in a very dif-

ferent context as compared to the preceding sections. The ability of the QMC to deal

with a large Hilbert space has so far mainly been used to scale up system sizes into

the thermodynamic limit. In this section however, we look at particularly small grid

systems with large spin magnitudes S=5/2 which increase the Hilbert space beyond

the scope of exact diagonalization techniques. Such systems can be realized in molec-

ular nano-magnets which are compounds with magnetic metal ions linked by organic

ligands to form well defined magnetic nano-clusters. A prominent example which has

driven numerous scientific effort is the Mn12 molecule (Mn12O12(OAc)16(H2O)4, see

Fig. 3.3 (b)) with review articles documenting the physical, chemical and technological

implications of such materials [120–127]. This molecule exhibits slow relaxation of the

magnetization, with a relaxation time of about one month at 2 K which makes it an

ideal storage for 1 bit of information while at the same time being orders of magnitude

smaller than nanoparticles of conventional ferromagnets. This, and the observation of

quantum tunneling of the magnetization in the presence of a single-ion anisotropy, were

identified to be of purely molecular origin which lead to an enormous growth in the field

of molecular magnets.

In this section we report on another molecular magnet which is Mn9(2POAP-

2H)6(ClO4)6 · 3.57MeCN·H2O, the so called Mn-[3 × 3] grid (see Fig. 3.3 (a)). The
system can be described by a Hamiltonian consisting of a ring of eight spins coupled

by Jr and a center-spin coupled to the edge spins of the ring by Jc with single-ion

anisotropies Dr , Dc working separately on ring- and center-spin.

Due to the very large dimensions of the Hilbert space (10077696) this material

has so far only been described in terms of an effective Hamiltonian in which spin

operators of corners and edges were combined to sublattice spin operators SA, SB
with SA = SB = 4 × 5/2 [30]. Parameters extracted from inelastic neutron scat-
tering measurements [128] suggest Jr = Jc = J = 5K (antiferromagnetic) and

Dr = Dc = D = 0.14K (easy-plane anisotropy), while previous fit attempts based

on susceptibility measurements assumed the center spin as essentially uncoupled [29].

3.3.1 The effect of center-spin coupling

To shed light on the consequences of the parameters Jc , Jr , D we performed parameter

studies of the full [3 × 3] grid system Hamiltonian as function of single-ion anisotropy
D and center-spin coupling Jc . The latter will be discussed in the following paragraphs,

the single-ion anisotropy is subject of the next subsection.
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Figure 3.13: (a) Structural representation of the cation [Mn9-(2POAP-2H)6]
6+ and (b)

of the Mn12 molecular magnet Mn12O12(OAc)16(H2O)4.

Susceptibility In Fig. 3.14 we present results for the susceptibility as function of

center-spin coupling 0 ≤ Jc ≤ 1. We find several effects – firstly we find classical
Curie behavior for the high-temperature region as indicated by a straight line in the

log-log plot (→ χ ∝ 1/T ). The same behaviour is found at low temperatures as
second observation. This comes as expected, since we examine a system with an odd

number of spins, leading to a macroscopic total spin S =
∑9
i=1 S

z
i . The latter will act

as an effective free spin as long as no single-ion anisotropy is present. The transition

between a weakly and a strongly coupled center-spin appears to be smooth for all

temperatures, as also shown in the low-temperature inset of Fig. 3.14. The dominant

effect of decreasing Jc is a slightly enhanced susceptibility in the temperature region

1 ≤ T/Jr ≤ 10. This effects pertains beyond the trivial scaling factor χ(2Jr + Jc)/3
and 3T/(2Jr+Jc) given by the 2:1 ratio of ring- to center-bonds. In order to pronounce

the effect on the susceptibility upon variation of Jc in Fig. 3.15, we depicted the

susceptibility with respect to Jr .

Ergodicity It is interesting to note the relatively large QMC errors for the susceptibility

at low temperatures (not visible in Fig. 3.14 as consequence of the utilized scales). To

elucidate on that issue, we present temperature dependent magnetization data for three

different coupling ratios Jc/Jr ∈ {0.0, 0.5, 1.0} at zero field (see Fig. 3.15). What we
find is, that at temperatures below T/Jr < 0.1, QMC errors increase substantially by

orders of magnitude. This is a direct consequence of the macroscopic total spin of the
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Figure 3.14: Susceptibility for the spin S=5/2 [3 × 3] grid system with D = 0 as
function of temperature and center-spin coupling Jc in units of the ring-coupling Jr .

The main plot shows a double logarithmic scale corresponding to the expected free spin

Curie behavior which is clearly visible in the high- and in the low-temperature regime.

The inset shows Tχ in the low temperature region. QMC errors are within line-width

of the plots.

system, which has to be sampled efficiently to result in a zero total magnetization for

zero magnetic field. This sampling however requires an extensive amount of Monte-

Carlo sweeps since the Hilbert space is extremely large and a tunneling of the Néel vector

S → −S has to cross an energy barrier of intermediate higher energy states which is
lowered by an easy-plane (D > 0), respectively heightened further by an easy-axis

anisotropy (D < 0). To ensure ergodicity of the QMC we paid close attention to the

zero-field magnetization as an ergodicity probe for all presented data – any deviations

from M = 0 outside the standard deviation indicates ergodicity loss2.

2Note that the converse argument does not hold – we cannot deduce preserved ergodicity by M = 0.
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Figure 3.15: Magnetization for the spin S=5/2 [3 × 3] grid system with D = 0 as
function of temperature and center-spin coupling Jc/Jr ∈ {0.0, 0.5, 1.0}. Note the
strong increase of the error at low temperatures, reflecting the enormous Hilbert space

which brings the algorithm to a point where ergodicity might not be ensured anymore.

3.3.2 The effect of single-ion anisotropy

After the rather subtle effect of center-spin coupling on the spin susceptibility, we now

focus on the effect of a single-ion anisotropy D.

Susceptibility In Fig. 3.16 we show Tχ as function of temperature and six different

single-ion anisotropies D ∈ {−0.3,−0.2,−0.1, 0.1, 0.2, 0.3} in comparison to the refer-
ence value of D = 0. The results support our expectation, that even a small single-ion

anisotropy has a large impact on the system due to the large spin magnitude which

enters the anisotropy contribution to the Hamiltonian quadratically. In comparison to

the reference data at D = 0 we find two dominant effects – a large spin gap for the

susceptibility with easy-axis anisotropy D < 0 in contrast to the Curie-like plateau of
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Figure 3.16: Susceptibility for the spin S=5/2 [3 × 3] grid system with |D/J| ∈
{0.0, 0.1, 0.2, 0.3} as function of temperature for Jc = Jr = J. We find Curie be-

havior for easy-plane and a large spin gap for easy-axis anisotropy. The QMC-errors (if

not shown) are within symbol size.

the easy-plane datasets (note that Tχ is shown). Both effects are fairly easy to un-

derstand: on the one hand, a small easy-axis anisotropy immediately leads to a strong

energy contribution whenever the individual spin z-component is large. This drives the

system into a high total spin state S = 5/2, nearly independent of the magnitude of D.

In contrast to that, already a small easy-plane anisotropy forces each spin into its lowest

z-state, leading to a total spin of S = 1/2. This effect also appears to be relatively

independent of the magnitude of D.

Ergodicity Again, we notice comparably large errors of the susceptibility for 0.25 ≤
T/J ≤ 1 and easy-axis anisotropy. A look at temperature dependent magnetization
data as function of single-ion anisotropy D ∈ {−0.3, 0, 0.3} (see Fig. 3.17) indicates,
that the QMC seems to produces a reliable error for all three choices of D, since the

magnetization is zero within QMC error bars. For an easy-axis anisotropy however, the

error is nearly one order of magnitude larger than for the D = 0 and D = 0.3 results
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Figure 3.17: Magnetization for the spin S=5/2 [3 × 3]-grid system with |D/J| ∈
{0.0, 0.3} as function of temperature with Jc = Jr = J. In the case of strong easy-axis
anisotropy we find an increase of the statistical errors up to one order of magnitude

compared to D = 0.0. However, 〈M〉 = 0 is still fulfilled owing to independent parallel
computing of observables to ensure ergodicity.

in the displayed temperature region 0.01 ≤ T/J ≤ 1. This can be explained by the
additional tunnel barrier introduced by the easy-axis choice of D, which complicates the

tunneling S → −S of the energetically equivalent total spin states.
These obvious sampling complications can in principle be countered by parallel

tempering [129]. For our results however, parallel computing of 100+ independent

systems running on different CPUs seemed sufficient to extract reliable information.

Static Structure Factor To support our arguments for the susceptibility shown in

Fig. 3.16 with total spin z-component state S = 1/2 for D > 0 and S = 5/2 for

D < 0, we present the static structure factor at q = 0 (Fig. 3.18) and q = π (Fig.

3.19). Starting with S(q = 0), we find that, independent of the magnitude of D, the
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Figure 3.18: Static structure factor S(0) as function of temperature for seven different

single-ion anisotropies |D/J| ∈ {0.0, 0.1, 0.2, 0.3} with Jc = Jr = J. QMC-errors are

within symbol size.

zero-temperature limit of D < 0 and D > 0 is always the same. In the case of an

easy-plane anisotropy D > 0 we find S(0)|D>0 ≈ 0.0030864198(3) which agrees up
to 8 digits with the results of a classical Néel state of a 3 × 3 spin S = 1/2 system
S(q = 0)classic =

1
92
1
4
= 0.00308642. On the other hand we find S(q = 0)|D<0 ≈

0.077160494(4) for the zero-temperature limit of the static structure factor with easy-

axis anisotropy D < 0. The corresponding classical result of a [3 × 3] grid with spin
S = 5/2 in perfect Néel order is S(q = 0)classic =

1
92
25
4
= 0.0771605. This means at

zero temperature for any single-ion anisotropy, the system becomes immediately well

described by a purely classical Néel-state with either maximized (D < 0) or minimized

(D > 0) z-components.

If we follow the same classical argument for the staggered static structure factor S(π)

shown in Fig. 3.19, we find a zero-temperature limit of S(π)D=0.3 ≈ 0.6505(2) and
S(π)D=−0.3 ≈ 0.1257(4) for the largest D ∈ {0.3,−0.3}. The corresponding classical
results read 1

9
1
4
= 0.69444 and 1

9
25
4
= 0.02777. While the classical description fits the

easy-axis anisotropy reasonably well, we find a much larger staggered structure factor
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Figure 3.19: Staggered structure factor S(π) as function of temperature for seven

different single-ion anisotropies |D/J| ∈ {0.0, 0.1, 0.2, 0.3} with Jc = Jr = J. QMC-

errors are within symbol size.

for the easy-plane anisotropy D = 0.3 in comparison to classical results.

Magnetization We finally present results for the magnetization M of the grid system

as function of applied magnetic field B and single-ion anisotropy D at temperatures

T/J ∈ {0.1, 0.01} (see Fig. 3.20). From previous results of the susceptibility and the
static structure factor it is clear, that the effects of a small ion-anisotropy should lead

to very different magnetization profiles as function of B and D. On the one hand we

learnt that the system aligns immediately around the z-axis with a high spin z-state for

D < 0. This should result into the initial polarization of a total spin S = 5/2, followed

by a series of ΔS = 1 level crossings for larger B. On the other hand we know that the

system orients in-plane with a minimum spin z-state for D > 0 which should lead to an

initial polarization of a total spin S = 1/2 with adjacent ΔS = 1 level crossings.

Those expectations are matched perfectly in Fig. 3.20 (note that M is normalized by

the system size N = 9). Beyond these expected observations it is interesting to note the
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Figure 3.20: Magnetization M of the [3×3]-grid system as function of applied magnetic
field B and for three different single-ion anisotropies |D| ∈ {0.0, 0.1} in units of Jr =
Jc = J. QMC-errors are within symbol size.

particularly long plateau of the data for D = 0 in contrast to the considerably smaller

plateaus for the spin S = 1/2, 3/2 and 5/2+ transitions in the case of D = 0.1. The

effect of temperature is merely a weakening of the step-structure. No results are shown

for the easy-axis anisotropy D < 0 since the QMC showed clear signs of ergodicity

problems, stemming from the large tunnel barrier between total spin S = ±5/2 state
which lead to extremely large errors bars with questionable validity.

3.3.3 Comparison to experimental data

In this final subsection we compare our results to experimental data on Mn-[3×3] [29].
Our focus for comparisons is set on the susceptibility since magnetization measure-

ments are again (as for the ladder system discussed in subsection 3.2) only available as

powder-average. So far the susceptibility of Mn-[3×3] has been interpreted by coupling
constants Jr = 5.5K and Jc = 0 [29]. Two years later an INS study found the parame-
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Figure 3.21: Comparison of QMC data with experimental susceptibility of the [3 × 3]-
grid system with parameters D = 0.07K and J = 5.4K for different ratios of Jr , Jc while

preserving the high-temperature limit of the QMC data through 1:2 changes on Jr : Jc
which is dictated by the bond ratios. Obviously all shown ratios even with ferromagnetic

center-spin coupling lead to satisfying high-temperature (T > 50K) description of the

grid system. In the intermediate regime (upper panel), only ratios 1/2 < Jr/|Jc | < 2
still display an acceptable description of the data while for the low-temperature regime

the best fit supports Jr ≈ Jc .

ters Jr = Jc ≈ 5K with an easy-plane anisotropy D = 0.14K to be the best description
of the spectral features. Obviously a thorough study with the full Hamiltonian would

be helpful to clarify the basic parameters of the system.

In Fig. 3.21 we present our results for the the susceptibility for different parameters

Jr , Jc in units J = 5.4K with a weak easy-plane anisotropy D = 0.013J = 0.07K. At

high temperatures (T > 50K, main panel Fig. 3.21), we find all our trial parameters to

be a valid description of the experimental susceptibility as long as the coupling constants

Jr :Jc obey 1:2 step changes. Those step changes are dictated by the bond ratio of eight

ring bonds versus four center spin bonds. In contrast to that, the intermediate region

(10K < T < 50, upper panel) pins the ratio to be 2 ≥ Jr/Jc ≥ 1 and clearly excludes
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the choice Jr = 5.5K and Jc = 0 of [29]. The lowest temperature region finally shows

best agreement with Jr = Jc , supporting [128]. However, we suspect that the marginal

differences displayed in the susceptibility for all ratios 2 ≥ Jr/Jc ≥ 1 can be lifted by
small variations of D in the low-temperature limit.

3.3.4 Conclusion

We presented QMC data for the susceptibility, magnetization and (staggered) static

structure factor of a Mn-[3× 3] grid system with large spin S = 5/2. First we system-
atically studied center-spin coupling dependency Jc ∈ {0.0, . . . , Jr} and found enhanced
susceptibility in the region 1 ≤ T/Jr ≤ 10 upon decreasing Jc . The transition between
Jc = 0 and Jc = 1 was shown to be smooth with no signs of fundamental changes in the

underlying physics. Much stronger impact than the center-spin coupling has been found

by applying small single-ion anisotropies. The effect of applied easy-plane anisotropies

was shown to be consistent with an Ising-like low-z state description with a total spin

S = 1/2 while the system immediately favors an Ising-like high-z state with a total spin

S = 5/2 for any applied easy-axis anisotropy. Both effects have been documented by

the (staggered) dynamic structure factor, which showed classical Néel ordering upon

|D| > 0 for the T → 0 limit. For the easy-plane anisotropy D > 0 the low-z state

was also proven in the magnetization data in the initial polarization of the total spin

S = 1/2, followed by level crossings of S = 3/2, 5/2, . . . with increasing magnetic field.

This however was not possible for the easy-axis anisotropy, since our QMC algorithm

showed clear signs of ergodicity problems due to the large tunnel barrier of the total

spin introduced by relatively small easy-axis anisotropies.

We finalized our investigation on the [3 × 3] grid system with a comparison of QMC
vs. experimental susceptibility on Mn-[3×3] [29] with the conclusion that, even though
there is a wide choice of parameters fitting the high temperature region, the low tem-

perature exchange couplings Jr , Jc need to be within 2 ≥ Jr/Jc ≥ 1 in combination
with a small easy-plane anisotropy D = 0.07K. This result contradicts early fits on an

effective model Hamiltonian [29] and it supports later INS studies [128] on this issue.



Chapter 4

Dynamic properties of 1D quantum
magnets

In this section, dynamic properties of spin chains will be discussed, contrasting the

zero-field spinon-continuum of the isotropic spin S=1/2 Heisenberg chain with the

sharp magnon-excitations of the Haldane chain as function of temperature and mag-

netic field. This very broad context is carried in the case of spin S=1/2 by numerous

high- (SrCuO2 [73] (J/kB ≈ 2600K), Sr2CuO3 [74, 130, 131] (J/kB ≈ 2200K)) and
low-J (Cu(C4H4N2)(NO3)2 [132] (J/kB ≈ 10.7K)) materials. Methods for non-static
quantities are typically high resolution spectroscopy methods such as inelastic neutron

scattering (INS) [133], high-field nuclear magnetic resonance (NMR) [31, 134–136],

muon spin-resonance (μSR) [137], but also magnetic transport measurements

accessible through heat transport [138, 139]. The key-quantities to look at from

an experimental point of view are the dynamic structure factor Sαβ(ω, q) which is

directly proportional to the neutron scattering cross section of INS experiments,

and its q-integration at the NMR resonance frequency, which corresponds to the

1/T1-relaxation rate of an NMR experiment (see eqn. (2.30)).

From a theory point of view, the dynamics of the Heisenberg chain is still a challenging

subject for various methods and, in the case of finite fields in combination with

finite temperatures, results are completely absent. It is generally accepted that spin

excitations of the spin S=1/2 chain fractionalize into multi-spinon states, which span

an energy continuum [140, 141]. At zero temperatures, numerical analysis of these

excitations has been carried out in many studies using exact diagonalization (ED) of

finite AFHCs, see eg. refs. [142–144], including the effects of B and Δ, as well as by

dynamic variants of the DMRG [145, 146]. In principle, also BA allows to determine
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dynamic correlation functions, however calculating the corresponding matrix elements

is highly non-trivial and progress has been made only recently. By now analytic

expressions for dynamic spin correlation functions are available for the two- [147–149]

and the four-spinon sector [150–153] at Δ = 1, B = 0 and T = 0. In addition,

determinant approaches [154, 155] allow for numerical treatment of two- [156–158]

and many-spinon [159, 160] states of the XXZ chain in finite magnetic fields at T = 0.

Finally, mapping to field theory in the continuum limit [161] has been used to study

the small-q behavior of the longitudinal dynamic structure factor in the gapless regime

[68, 162–164].

At finite temperatures, the dynamic correlation functions of the AFHC remain an

open issue. The dynamic structure factor Sαβ(q, ω) has been studied by complete

ED of small systems [165, 166] in the context of spin diffusion, see [138, 167] and

refs. therein. However, such analysis is limited by finite size effects to kBT � J.

Recently, finite temperature real-time auto- and next-nearest neighbor correlation

functions have been accessed by DMRG methods [39, 168]. However, the time range

of such calculations is limited, as the spectrum of the reduced density matrix used to

truncate the Hilbert space becomes dense. In this respect QMC remains a key tool to

evaluate Sαβ(q, ω) for system sizes which are close to the thermodynamic limit, over

the complete Brillouin zone and at finite temperatures with the limitations set primarily

by the analytic continuation of imaginary-time data [169]. QMC analysis of Sαβ(q, ω)

has been carried out for B = 0 [170–172], results for B �= 0, however, are lacking.

A very interesting aspect of the spin S=1/2 chain is the field driven quantum critical

point (QCP) at saturation field Bc . Following the pioneering analysis of spin chains

[173–175] and spin ladders [25] in external magnetic fields, Bose-Einstein condensation

of hard-core bosons has been related to some phase transitions in quantum magnets

which stem from the level-crossing of elementary triplet excitations with the ground

state at a critical external magnetic field. Such field induced QCPs have been under

intense scrutiny for three and quasi-two dimensional spin S = 1/2 dimer systems,

i.e. TlCuCl3 [24, 176–178] and BaCuSi2O6 [179], for S=1/2 ladder materials

Cu2(C5H12N2)2Cl4 [180] and (C5H12N)2CuBr4 [181, 182], for the S=1 Haldane chain

Ni(C5H14N2)2N3(PF6) [68], for the coupled-chain compound NiCl2-4SC(NH2)2 (DTN)

[183, 184] with S=1, as well as for the effective S=1 system (CH3)2CHNH3CuCl3
[185, 186]. All of the latter materials feature a gapful zero-field state with the

lowest triplet branch condensing as the field is increased. However, a similar scenario

can be realized in the AFHC upon decreasing the field through the critical value

for complete polarization. Intriguing NMR experiments have been performed by
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Hannes Kühne et al. [31] which lead to a comparison of their experimental and our

theoretical 1/T1 relaxation rates in the vicinity of the QCP presented in subsection 4.1.3.

In contrast to that, the dynamics of the Haldane chain will be discussed in section

(4.2), following similar discussions for spin S=1/2 in section 4.1 and 4.1.3 which means

we focus mainly on dynamic structure factors and resulting NMR rates as function of

temperature and magnetic field to connect to section 4.1. In contrast to the half-integer

spin chain, the spin excitations of the Haldane chain are gapped [19]. Furthermore, most

of the spectral weight is combined into a sharp S=1 one-magnon branch [187–189] in

contrast to the broad energy continuum of the spin S=1/2 chain. Even though the

spectral properties are very different for spin S=1/2 and Haldane chain in zero field,

the latter can be described by a Luttinger liquid once the spin gap is closed by the first

critical field Bc1 [161, 173, 190].

The Haldane system found many experimental realizations in multiple materi-

als Ni(C2H8N2)2NO2(ClO4) (NENP) [66, 67, 76–78], CsNiCl3 [79–82, 191],

Ni(C5D14N2)2N3(PF6) (NDMAP) [84–88], Ni(C5H14N2)2N3(ClO4) (NDMAZ) [192],

AgVP2P6 [193] and CsNiCl3 [194, 195]. Additionally, various spin S=1/2 two-

leg ladder materials TlCuCl3 [24, 196, 197], (C4H12N2)Cu2Cl6 (PHCC) [198] and

(C5H12N)2CuBr4 [199, 200] were found to display dynamics very similar to that of

the Haldane chain and they have been studied extensively in the context of magnon-

fractionalization in the Luttinger liquid phase as already mentioned.

From a theoretical point of view, the dynamic properties are framed by field theory

approaches, most prominently the non-linear σ-model (NLσM) [201–203], Tsevlik’s

three coupled Majorana fermions [203, 204] and the bosonic Landau-Ginzburg model

[173, 174, 203]. Such analyses are typically valid in the limits of low energy near the

zone boundary and/or center. Beyond field theory approaches, only very few other

methods are available. Several QMC [171, 188, 205, 206] and first tDMRG results

[207] for the dynamic structure factor exist, however none at finite magnetic fields even

though particularly the field dependence of the Haldane dynamics yields rich properties.

After analysis of the dynamic structure factors and the 1/T1 rate (in 4.1.3), we treat

the subject of finite temperature spin diffusion for the SU(2) symmetric point Δ = 1 in

section 4.3, where up to present time contradicting results exist. Spin transport in the

Heisenberg chain is directly related to carrier transport in 1D correlated spinless fermion

systems, via the Jordan-Wigner transformation, and therefore is of great interest in a

broader context. Linear response theory [167] shows the zero momentum, frequency

dependent spin conductivity σ′(ω) = Dδ(ω) + σ′reg(ω) to consist of the Drude weight
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D and a regular spectrum σ′reg(ω). This Drude weight has been under intense scrutiny
for more than two decades. However, no generally accepted picture has emerged. A

nonzero Drude weight would imply dissipationless transport in a correlated system

[208], despite the fact that the z-component of the spin current j and Hamiltonian H

do not commute [j, H] �= 0 for the XXZ model. Very recently, spin diffusion has been
conjectured to govern the low-frequency spectrum of the regular conductivity [32],

based on real-time transfer matrix renormalization group (tTMRG) and a perturbative

analysis using bosonization. The latter provides for an approximate expression for the

Fourier transform of the retarded spin-susceptibility χret(q, t) = iΘ(t)〈[Szq(t), Sz−q]〉,
a quantity we relate directly to QMC results free of any MaxEnt procedure for a

high-precision comparison in subsection (4.3).
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4.1 Dynamic structure factors of the spin 1/2 Heisen-

berg chain

In this section we will present results for the transverse and longitudinal dynamic struc-

ture factor at finite temperatures, in the range of T = J/20 . . . J and magnetic fields

below and above the saturation field Bc . Furthermore we extract relaxation rates to

document the QCP of the system upon approaching the saturation field in comparison

to experiments performed by H. Kühne et al. on the material CuPzN. We conclude our

results with a sum-rule consistency check of our analytic continuations.

All QMC calculations refer to systems with 128 sites, typically with one billion Monte-

Carlo updates (one diagonal and sufficient [50] loop updates), distributed over 1000

bins. Only 50-100 τ-points were extracted for each temperature in order to prevent

over-sampling of the relatively short expansion orders at elevated temperatures close to

T = J. An indication for over-sampling is given by diagonalizing the covariance matrix

which exhibits vanishing eigenvalues in case of statistically dependent data.

4.1.1 Longitudinal dynamic structure factor Szz(q, ω)

In Fig. 4.1 and 4.2 we show the longitudinal dynamic structure factor both, as a 3D and

a contour plot for two different temperatures T = {J, J/4} and three different magnetic
fields B = {0, Bc/2, Bc}. The solid lines displayed in the contour plots for B < Bc
refer to the upper and lower boundaries of the two-spinon spectrum as obtained from

BA selection rules [142]. For zero magnetic field they enclose a region which, within

two-spinon calculations, contains about 73% of the zero temperature spectral weight

[148]. We will now focus on each of the magnetic fields separately.

The case B = 0 At zero magnetic field and high temperatures, i.e. Figs. 4.1a)

and 4.2a), we find a strong broadening of spectral features. While the region of finite

spectral weight remains bounded from above by Jπ sin |q/2| [141], significant weight
appears below the lower two-spinon boundary πJ

2
sin |q| set by de Cloizeaux-Pearson

[140]. Most noteworthy, high spectral weight occurs for q, ω → 0. This intensity is
related to spin conservation which dominates the long wave-length dynamics in the

quasi-classical regime kBT � J. The question whether the long wave-length spin

dynamics in the AFHC can be described by spin diffusion is a long-standing issue with

no final answer as of today, however we will present strong indications for a diffusive

transport channel in section 4.3. For a recent review on the present status and related

references we refer to [138].
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Figure 4.1: 3D plot of the longitudinal dynamic structure factor by QMC + MaxEnt as

function of frequency ω and wave vector q. Temperatures and magnetic fields in units

J: a) T=1 and B=0, b) T=0.25 and B=0, c) T=1 and B=1, d) T=0.25 and B=1, e)

T=1 and B=2 and f) T=0.25 and B=2.

Unfortunately QMC is too sensitive to the default model for the MaxEnt continuation in

the small-q, ω regime [171] to elucidate the issue of spin-diffusion on the real axis. Yet,

we would like to mention agreement of our results regarding the frequency-transformed

autocorrelation function Szz0 (ω), i.e. the q-integrated dynamic structure factor (not

shown here) with previous QMC, performed at B = 0, high temperature series expansion

[172] and TMRG [168]. These results exhibit a ω−0.3...−0.4-divergent behavior which
bears resemblance to the phenomenological approaches by Bloembergen [210] and de

Gennes [211] who predicted ω−1/2.

Next we consider lower temperatures, i.e. T = J/4. As is obvious from Figs. 4.1b) and

4.2b), spectral weight is removed from the long wave-length regime in this case. Both

figures demonstrate that most of the spectral weight is confined within the two-spinon

boundaries with however still an appreciable intensity below the lower boundary. This

is consistent with findings reported in [171]. In contrast to T = J we find a strongly

enhanced spectral weight at q = π owing to the increase of the antiferromagnetic

correlation length [212] which is consistent with the autocorrelation function reported

in ref. [168].

In the limit (q, ω)→ (π, 0) we find indications for diverging behavior of Szz(π, ω) with
decreasing temperatures. This is shown in more detail in Fig. 4.3, scanning a wide
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Figure 4.2: Contour plot of the longitudinal dynamic structure factor as function of

frequency ω and wave vector q. Temperatures and magnetic fields in units of J: a)

T=1 and B=0, b) T=0.25 and B=0, c) T=1 and B=1, d) T=0.25 and B=1, e) T=1

and B=2 and f) T=0.25 and B=2. For B < Bc the solid lines are zero temperature

excitation boundaries by the Müller-ansatz [142] while at critical fields the exact zero

temperature 1− cos(q) dispersion [209] is shown.

range of temperatures from T = J to T = J/20. As can be seen, the spectrum consists

of an upturn for ω → 0 and a peak at finite ω. The latter peak shifts to lower energies
while gaining sharpness as T → 0. For T → 0, Fig. 4.3 suggests that the peak will
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Figure 4.3: Zero-field dynamic structure factor at q = π for four different temperatures

(in units of J) {1, 0.25, 0.1, 0.05}. As the temperature decreases we find an increased
divergent behavior for ω → 0 as predicted by two-spinon calculations. In addition there
is a low frequency peak which shifts to lower energies while steadily gaining sharpness.

Note that the dataset for T = 1 and for T = 0.25 was multiplied by a factor of eight,

respectively five for illustrative reasons.

merge with the zero-ω upturn to form a single divergence at ω → 0, as predicted by
two-spinon calculations at T = 0 which lead to Szz(π, ω) ∼ ω−1 [142]. A similar peak
at finite ω was observed also in ref. [171]. However, smaller system sizes in that case,

i.e. N = 32, render the zero-ω upturn into a shoulder only. Biasing the default model

by several sum-rules, it was shown in ref. [171], that Szz(π, ω) on 32-site systems

could be obtained with only a single peak at finite ω. Recent SSE-QMC on 128-site

systems at B = 0 show only a single rounded maximum, centered at ω = 0 [172].

While all these findings are consistent with the formation of a zero-ω divergence as

T → 0, they show that the details of the low-ω spectrum are subject to details of the
MaxEnt approach.
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Figure 4.4: Zero-field dynamic structure factor calculated by finite-temperature t-

DMRG [40] in comparison to QMC + MaxEnt at two different wave vectors q ∈
{π/2, 0.8π} at T/J=0.25 (picture published in [40].

Later studies of this subject, motivated by recent DMRG results [40, 41], showed

that analytic continuations employing the informed1 kernel K = e−τω + e−(β−τ)ω

(eqn. (2.62)) in the finite interval [0, ωc ], with ωc being the cutoff-frequency, are

not necessarily favorable over analytic continuations over the symmetric frequency

interval [−ωc , ωc ] using the uninformed kernel K = e−τω (eqn. (2.58)). Partially this
strikes as a surprise since the informed kernel has, despite prior knowledge about the

spectrum, also a much smaller dynamic range [1, e−βωc ] compared to [eβωc , e−βωc ] of
the uninformed kernel. Therefore its inversion is much more robust to QMC errors

1The informed kernel contains prior information about the spectrum – in this case the spectral property

S(q,−ω) = e−βωS(q, ω).
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Figure 4.5: Zero-field dynamic structure factor calculated by FTD-DMRG [41] in com-

parison with QMC + MaxEnt at q = π and T/J=0.25.

from a numerical point of view. However, the ω → 0 behavior shown in Fig. 4.3 can be
traced down to cutoff-effects of the integral transform – a well-known phenomenon of

Fourier transforms. In our case, whenever there is finite spectral weight at the cutoff

frequency, an upturn was found in our spectra – less pronounced for small spectral

weight and more pronounced for strong spectral weight such as displayed at wave

vectors near the zone boundary q → π.

To showcase the effect of weak cutoff effects we present Fig. 4.4, which stems from

a cooperation with T. Barthel on the spin S=1/2 dynamic structure factor at finite

temperatures, calculated by t-DMRG and published in [40]. In this figure, results of

our QMC were used to support a newly developed t-DMRG method with very satisfying

agreement in the frequency dependent spectra for several selected wave vectors. How-

ever, note the small upturn at ω → 0 for β = 1 of the QMC results, which is a hint for
a weak cutoff effect due to small spectral weight at the lower integration interval border

of the informed kernel continuation. In contrast to that, no differences can be found
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in the τ-data comparisons of t-DMRG and QMC – a clear indication that the small

differences on the real axis are only subject to the analytic continuation procedure.

A showcase for stronger cutoff effects is presented in Fig. 4.5, where q = π QMC data

is compared to very recent FTD-DMRG at q = π [41]. Here we clearly see the impact

of the cutoff in a direct comparison of the informed kernel with [0, ωc ] integration inter-

val versus the uninformed kernel with [−ωc , ωc ] integration interval. This effect has to
be taken very serious for comparisons with NMR relaxation rates, which typically have

resonance frequencies in the limit ω → 0.

The case B = Bc/2 Figs. 4.1,4.2 c) and d) depict the longitudinal structure factor

at half of the critical field. The impact of a finite magnetic field is fourfold. First,

at zero momentum the longitudinal structure factor is proportional to the square of

the field-induced magnetization at zero frequency, i.e. Szz(q = 0, ω) ∼ 〈Sz〉2δ(ω).
To focus on the remaining spectrum, we have chosen to skip the single wave vector

q = 0 in all 3D, as well as contour plots of Szz(q, ω) for B �= 0. Second, longitudinal
excitations with q �= 0 will have decreasing matrix elements with increasing magnetic
field. This is consistent with the evolution of the overall scale in Fig. 4.1 a)-e) and b)-f).

Third, longitudinal spin-excitations at the zone boundary are energetically unfavorable

in a magnetic field. In fact, at low temperatures a gap can be observed at q = π,

which is proportional to the magnetic field [142] (see Fig. 4.2d)). Finally, a soft mode

occurs at an incommensurable wave vector qs = π(1 − 2〈Sz〉) (see Fig. 4.2d)). This
can be understood in terms of the Jordan-Wigner fermionic description of the AFHC

[213–215], where Szq is related to the fermion density and the magnetic field plays the

role of a chemical potential driving incommensurability. This finding is consistent with

ref. [142], with interacting spin-wave calculation [216] as well as with finite system

diagonalization [217]. The role of temperature is evident. At high temperatures, i.e.

T = J in Fig. 4.2c), Szz(q, ω) is rather featureless and extends clearly beyond the

boundaries set by the two-spinon continuum. This changes as the temperature is lowered

to T = J/4 (Fig. 4.2d)), where the spectrum is far more confined to within the dCP

boundaries and displays more pronounced features. In particular, the weight is enhanced

as (q, ω)→ (π, J).

The case B = Bc For B ≥ Bc and T = 0, the statistical operator of the AFHC is

pure and corresponds to the fully polarized state, i.e. Szz(q, ω) = N(1/4) δq,0 δ(ω).

Additional finite spectral weight for q, ω �= 0 will occur only for T > 0. To observe

this we have again removed the wave vector q = 0 from Figs. 4.1,4.2 e), f), which

are at the critical field. Indeed, on lowering the temperature from panel e) to panel f)

in Fig. 4.1, the remaining total spectral weight decreases. Apart from this the higher
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Figure 4.6: Transverse dynamic structure factor by QMC + MaxEnt as function of

frequency ω and wave vector q. Temperature and magnetic field in units of J: a) T=1

and B=1, b) T=0.25 and B=1, c) T=1 and B=2, d) T=0.25 and B=2, e) T=1 and

B=2.5 and f) T=0.25 and B=2.5.

temperature spectrum is rather featureless, while the lower temperature spectrum clearly

resembles the exact zero temperature dispersion of 1 − cos(q) [209] (see Fig. 4.2f)).
This excitation has a constant spectral weight 2π/N for q �= 0 and vanishes in the
thermodynamic limit.

4.1.2 Transverse dynamic structure factor Sxx(q, ω)

In Fig. 4.6 and 4.7 we show the transverse dynamic structure factor as 3D and as

contour plots for identical temperatures T/J = {1, 0.25} as for the longitudinal dynamic
structure factor, however for a different range of magnetic fields B/J = {1, 2, 2.5}. For
vanishing magnetic field we refer to Figs. 4.1,4.2 a), b) for Sxx(q, ω) which is identical

to Szz(q, ω) at B = 0 due to SU(2) invariance.

The case B = Bc/2 First, we note that the results for Sxx(q, ω) in Figs. 4.6,4.7 a)

and b) are clearly different from those for Szz(q, ω) in Figs. 4.1,4.2 c) and d) at identical

magnetic fields. This is to be expected, since the application of a finite magnetic field

breaks the SU(2) invariance of the AFHC. Second, long wave-length transverse spin-

excitations will experience the Zeeman energy due to the magnetic field, which leads to
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Figure 4.7: Transverse dynamic structure factor by QMC + MaxEnt as function of

frequency ω and wave vector q in a contour plot. For parameter details see text or

Fig. 4.6. The solid lines for half critical field a) and b) are zero temperature excitation

boundaries of different BA selection rules (see [142]). For B ≥ Bc the one-magnon

cosine dispersion is shown.

a spin gap of size B/J at q = 0. This has to be contrasted against the gap at q = π in

Szz(q, ω) at finite fields in Figs. 4.1,4.2 d). Third, and as for the longitudinal case, a

field driven zero mode at q = qs can be seen in 4.2 a), b) – with a rather low intensity

as T → 0. In contrast to the longitudinal case, this mode develops out of the zone
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center and moves to the zone boundary with qs = 2π〈Sz〉 [142, 218, 219].
Even though it can be misleading to compare MaxEnt data based on different QMC data

sets quantitatively due to the underlying different statistic quality, we notice enhanced

spectral weight near the zone boundary in Fig. 4.6b) compared to zero magnetic field

in Fig. 4.1b), which means that a weak uniform field strengthens the antiferromagnetic

order in the transverse structure factor. This effect was also observed in [142] for small

fields and by Karbach et al. for the static structure factors [220].

The case B ≥ Bc At intermediate fields selection rules [142] allow for a fairly complex

distribution of spectral weight as is also obvious from the solid lines in Figs. 4.7a) and b).

In contrast to this, above the saturation field and at low temperatures, a straightforward

picture emerges (see Fig. 4.6,4.7 d) and f)). In this regime and for T → 0 the system is
fully polarized. In that case the elementary excitations are non-interacting ferromagnetic

one-magnon states, leading to a dispersion E(k) = J cos(k) + B in the transverse

structure factor, with a momentum-independent spectral weight [142]. For finite T ,

we find that this picture is modified in two ways. First, significant thermal broadening

occurs, which as e.g. in Fig. 4.7e), at B = 2.5 and T = J can lead to a complete closure

of the zone boundary spin gap. Second, and as can be seen in Figs. 4.6 d) and f), there

is a substantial wave vector dependence of the spectral weight in the cosine-signature

of the one-magnon state. The latter can be explained by elementary one-magnon

states being excited in a polarized background which contains thermal fluctuations.

For this purpose we expand the spectral function χ′′(q, ω) of the polarized system
into numbers of excited magnons with a hard-core repulsion. Because of Sxx(q, ω) =
1
2
(S+−(q, ω) + S−+(q, ω)) and S+−(q, ω) = e−βωS−+(q, ω), it is sufficient to look at
either +− or −+ contributions to understand the wave vector dependence.

χ′′+−(q, ω) = (1− e−βω)S+−(q, ω)

=
1

Zπ
Im

[∑
l ,m

|〈l |S−q |m〉|2
e−βEm − e−βEl

(ω + i0+)− Em + El

]

≈ 1

Zπ
Im

[
|〈0|S−q |1〉|2

e−βE1 − e−βE0
(ω + i0+)− E1 + E0

+ |〈1|S−q |2〉|2
e−βE2 − e−βE1

(ω + i0+)− E2 + E1 + . . .
]

(4.1)

The first term of the sum in eqn. (4.1) is known to have no q-dependence [142], so any

non-constant spectral weight distribution must be hidden in higher magnon excitations.
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Figure 4.8: Two magnon contribution to the spectral weight of the expansion in eqn. 4.1

for a 64-site system at B/J = 2.5 and three different temperatures T/J ∈ [0.1, 0.25, 1].
The weight increase for the QMC at q → 0 can be explained fairly well (compare with
Fig. 4.7). However, we can not find the weight increase at the zone boundary for lower

temperatures in our QMC data.

In Fig. 4.8 we show the contributions of two magnons (l , m) = (1, 2). This figure clearly

demonstrates the weight increase for q → 0 at finite temperatures and interestingly, the
largest dependence on q is displayed for the lowest temperature for which the spectral

weight also increases at the zone boundary.

Finally, we emphasize the difference in the evolution of the overall spectral weight,

contrasting longitudinal versus transverse excitations. While in Fig. 4.1 the weight of

the excitations decreases with increasing field, this is not so in Fig. 4.6.

Figs. 4.6 and 4.7 bear a close resemblance to the concept of field-induced Bose-Einstein

condensation of triplets, which has been under intense scrutiny for several quantum spin-

systems recently [24, 68, 176–186]. These systems feature a gapful zero-field state

with the lowest triplet branch ’condensing’ as the field is increased. For the AFHC,

this scenario is reversed, i.e. decreasing the field through the critical value for complete

polarization Bc , the magnons condense at q = π and the system switches from a

gapful state to a Luttinger liquid of deconfined spinons. Obviously, the latter does not

represent a true gauge-symmetry broken state, since (i) 1D-correlation functions decay

algebraically and (ii) the magnons above Bc are constrained by a hard-core repulsion

[25, 173–175].

As the temperature is lowered, the thermal smearing of the approximately quadratic

dispersion at q = π for B = Bc is reduced, see Figs. 4.7 c) to d). For the momentum-

integrated structure factor this will lead to a critical increase of the density of states at

ω = 0 as temperature is lowered. This is something we will discuss in detail in the next

subsection.
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4.1.3 T1-relaxation rate of the spin 1/2 Heisenberg chain

To tie up to the results of the DSF in the last subsection, we now want to discuss

the behavior of the nuclear spin-lattice relaxation rate T−11 , which measures the spin
fluctuations at the nuclear Larmor frequency ωn [221] given in eqn. 2.30 and repeated

for convenience:

1

T1
∝

∑
q

∑
β=x,y ,z

(A2xβ(q) + A
2
yβ(q))

·
∫ ∞

−∞
〈Sβ(q, t)Sβ(−q, 0)〉e−iωntdt (4.2)

=
∑
q

(F⊥(q)S⊥(q, ωn) + F
z(q)Sz(q, ωn)). (4.3)

Here, F⊥(q) and F z(q) are the geometrical form factors and S⊥(q, ω) and Sz(q, ω)
are the transverse and longitudinal dynamical structure factors of the electronic spin

system. Aαβ with α, β = x, y , z are the components of the hyperfine coupling tensor

A(q). This tensor mixes transverse with longitudinal contributions to the T1 rate. With

sample orientation however, one can minimize longitudinal contributions by measuring in

the principle coordinate system of the tensor, which reduces the NMR rate to transverse

contributions only. In the following we will assume that only transverse fluctuations

contribute to the T1 relaxation rate. Furthermore we will take into account only the

on-site coupling A(r) ≈ A0δ(r), i.e. the real space form factor is reduced to the

autocorrelation function at the NMR frequency ωn. This means that the T1 relaxation

rate can be written as:

1/T1 ≈
∑
q

A0S
⊥(q, ωn) (4.4)

= S⊥0 (q, ωn). (4.5)

For the MaxEnt procedure, we tested both ways to determine the relaxation rates – on

the one hand direct continuation of the autocorrelation function versus the DSF resolved

for all available wave-vectors with subsequent integration. Both procedures produced

very similar results, however the fully q-resolved QMC data seems to produce more

features in comparison with the simple continuation of the autocorrelation function.

This is to be expected, seeing that the MaxEnt has generally problems with resolving

rich structures while e.g. single peaks are typically captured very well. We therefore

adopt the q-integrated T1 as the most accurate one, following similar results of [172].

There are three interesting aspects shown in Fig. 4.9. Firstly, and as central result

of this plot, we find a diverging NMR rate at B ≈ Bc which is very suggestive of
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Figure 4.9: Temperature and field dependent transverse 1/T1 relaxation rates with

fields B ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5} in units of J. Each point in this plot is
a constant form factor q-integration over the full transverse DSF as displayed in Fig.

4.7. The scattering of the points gives a rough estimate of the average error - typically

within 10-20% of the absolute scale.

critical scattering as T → 0. As T increases, the van-Hove singularity in the DOS
at Bc is smeared, leading to the decrease in T

−1
1 (compare with Fig. 4.7). Secondly

we observe a weak temperature dependence in the classical regime kBT � J with

a rate decrease with increasing fields, which is indicative of an excitation spectrum

dominated by spin-diffusion modes from q = 0. Finally, we observe the spin gap to

open for B > Bc at sufficiently low temperatures. This results in an exponentially

decreasing relaxation 1/T1 ∝ exp(−(B−Bc)/kBT ), which is visible in a drop of the rate.

For comparisons with NMR experiments, H. Kühne et al. provided excellent data on the

spin S=1/2 chain material copper pyrazine dinitrate Cu(C4H4N2)(NO3)2 (CuPzN) (see
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Figure 4.10: Left: Crystal structure of CuPzN. Right: NMR center shift δ of spectral

lines versus β compared with a simulation of the local magnetic field.

Fig. 4.10) [31]. This copper compound with pyrazine-ring spacers is a molecular magnet

with only 10.7K intra-chain coupling and three orders of magnitude lower inter-chain

coupling, resulting in a critical field of only 14.9T. It has been characterized by inelastic

neutron scattering, muon-spin relaxation, magnetothermal transport, specific heat and

magnetization measurements [133, 222–224] and all of these studies are consistent

with a description of CuPzN in terms of the AFHC.

In CuPzN the 13C-nuclei used as a probe for the NMR experiment are coupled to the

magnetic moments of the Cu(II) electrons via isotropic hyperfine coupling, mediating

only transverse spin fluctuations, and anisotropic dipolar coupling, mediating transverse

and longitudinal spin fluctuations [225]. Consequently, to compare with our transverse

1/T1-rates, the dipolar contribution to A(q) has to be minimized. This minimum was

found for the orientation β = 50◦ via a study of the angular dependence of the NMR
shift δ = (ωn − γB0)/γB0 (see Fig. 4.10) [136].

To gauge the experimental results to theory, we compared the Knight shift for a fixed

orientation of the external field

δ(T ) = A(0) · M(T )
B

with QMC magnetization results (see Fig. 4.11). The scaling factor A(0) was deter-

mined to be A(0) = 0.101T/μB by a least-squares fit of the 2 T data sets. For 2

T there is excellent agreement between theory and experiment, both showing a broad

maximum around 6.5 K, reflecting the onset of antiferromagnetic correlations. At 13.8
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Figure 4.11: Comparison of temperature dependent NMR shift δ with

magnetization data calculated by QMC. For clarity, an offset has been

added to the data at 13.8 T (+1000 ppm to NMR shift and 0.0099

(μB/T) to calculated magnetization) and 28 T (-1000 ppm and -0.0099

(μB/T), respectively). The QMC errors are within symbol size. All solid lines are

a guide to the eye.

T, slightly below the saturation field, both data sets show monotonous increase towards

saturation with decreasing temperature. The kink near 5 K in the experimental data

is due to the proximity of the boiling point of liquid Helium. At 28 T, theory and ex-

periment deviate below 20 K. An rf heating of the sample can be excluded since the

conditions of the CPMG pulse-sequence were carefully adjusted.

To achieve best comparison results with the NMR rate in the experiment, we allowed

a tuning of the form factors in eqn. (4.3) beyond the purely constant on-site contri-

bution. Fig. 4.10 (left) shows that the NMR site, i.e. the carbon nucleus, is located

asymmetrically between two Cu(II)-ions. We extended results shown in Fig. 4.9 by a

next-nearest neighbor contribution to the form factor A(r) = [A0δ(r) + A1δ(r − a)],
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Figure 4.12: Field dependence of the nuclear spin-lattice relaxation rate of 13C in the

critical regime. Left inset: The log-scale plot demonstrates the linear opening of the

spin gap with field. Right inset: The full scale plot highlights the maximum of T−11 (B)
near the T=0 K critical field. All solid lines are a guide to the eye.

where a is the lattice constant and A0,1 parameterize the hyperfine coupling between

the nucleus and its nearest copper moments. This leads to a transverse relaxation rate

of
1

T1
= A20

[
(1 + R2)S⊥(0, ω) + 2RS⊥(1, ω)

] |ω→0 (4.6)

where S⊥(r = 0(1), ω) are the real-space transverse spin correlation functions at a
distance r = 0(1).

In Fig. 4.12 we compare the observed NMR rate with the QMC results versus magnetic

field in the quantum regime kBT � J, with T = 1.6 K. The QMC data is shown for

R = 0 and a ”best-fit” normalization A0 assigned at 2 T and high temperatures. The

similarity between theory and experiment is remarkable. For both we find a pronounced
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Figure 4.13: Temperature dependence of the nuclear spin-lattice relaxation rate of 13C

for different external fields. The solid QMC data lines are each polynomial fits to 50

analytic continuations of a 128 site system and the error-tube was chosen to contain all

data points within a range of 2 σ (compare fluctuations with Fig. 4.9). The log-scale

inset shows the exponential decrease of 1/T1 with 1/T above Bc .

maximum of T−11 (B) at B = 13.8 T shifting to lower fields with increasing temperature.
To interpret these results, note that in the fully polarized state for B > Bc , single

magnons are exact eigenstates with a dispersion of

E>(k) = J cos(k) + gμBB , (4.7)

E>(k) displays a field-driven excitation gap of gμBB − J leading to an exponential
decrease of T−11 (B) at fixed T and for B > Bc (also compare with Fig. 4.7 e) → f)).
This can be seen for both, NMR and QMC, on the log-scale left inset in Fig. 4.12. The

rates calculated by QMC display a broader maximum than the measured data, but drop

with the same slope for fields above 16 T. We emphasize that this deviation between
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NMR-data and QMC is confined to low temperatures T � 6 K and to a limited range

of fields 15 T � B � 17 T which can be seen from the log-scale of the left inset.

At B = Bc the dispersion touches the zero at k = π/2 (see Fig. 4.7 d)) with a

quadratic momentum dependence yielding a van-Hove type of critical DOS. This leads

to the maximum in T−11 , tending to diverge as T → 0. For both, NMR experiment and
QMC, the maximum in Fig. 4.12 occurs at B̃c ≈ 13.8 T, which is slightly less than
the saturation field of Bc = 14.9 T for the magnetization. Most likely this downshift

is a finite temperature effect of excitations populating the gap. In the Luttinger liquid

for B < Bc the low-energy spinon excitations have a field-dependent linear dispersion,

yielding a finite, yet reduced NMR rate.

In Fig. 4.13 we finally compare our QMC T−11 rates with selected experimentally ob-

served ones versus temperature for three fields, i.e. above, at, and below B̃c . As for the

field dependence, the agreement between theory and experiment is very good. Inclusion

of next nearest neighbor hyperfine couplings, i.e. R= −0.2, can slightly improve this
agreement at high temperatures, but decreases the agreement at low temperatures.

In conclusion, by a complementary analysis of experiment and theory for the low fre-

quency spin-spectrum of the AFHC CuPzN, as probed by the NMR T−11 rate as well

as by the Knight shift, we have provided clear evidence for critical dynamics close to

a field-induced QCP. Both, theory and experiment are in good agreement and show

a pronounced maximum in T−11 in the vicinity of the saturation field, which tends to

diverge as T → 0. Moreover, good agreement between theory and experiment is also
found for the magnetization versus temperature and field, except for a low-T deviation

at 28 T, yet to be explored. Our findings may be of interest in the context of other

field-induced QCPs as eg. in TlCuCl3 [24, 176–178] or BaCuSi2O6 [179].

4.1.4 Sum rules

Sum rules have been used extensively for the AFHC to evaluate the contribution of

two- and four-spinon excitations to the spectral weight of the dynamic structure factor

at T=0 [148, 152, 153, 226]. For the present work sum rules can be applied to

assess the quality of the analytic continuation. We will focus on the sum rules for the

static structure factor Sαβ(q) and the static susceptibility χαβ(q), obtained by integral

transforming the dynamic structure factor [227]

Sαβ(q) =
1

π

∫ ∞

0

dω(1 + e−βω)Sαβ(q, ω) (4.8)

χαβ(q) =
2

π

∫ ∞

0

dω ω−1(1− e−βω)Sαβ(q, ω). (4.9)
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Figure 4.14: Comparison of transverse and longitudinal static susceptibility/structure

factor (symbols) and sum rules (lines) for T=J/4 and four different magnetic fields

B/J = {0, 1, 2, 2.5} (from top to bottom). All sum rule results are within the error
bars of the static quantities which are within symbol size.

While Sαβ(q, ω) on the right-hand side of eqns. (4.8) and (4.9) involve MaxEnt-data,

the static structure factor Sαβ(q) in eqn. (4.8) is calculated from a real-space Fourier

transform of the equal-time correlation functions and the static susceptibility χαβ(q) in

eqn. (4.9) can be evaluated by the Kubo integral

χαβ(q) =
∑
r

e iqr
∫ β

0

dτ
〈
Sαr (τ)S

β
0 (0)

〉
. (4.10)

of the imaginary time QMC-data. I.e. both, Sαβ(q) and χαβ(q) are obtained from

QMC-data which is independent from the MaxEnt continuation. In particular the static

susceptibility should provide for a clear consistency check regarding the low energy

features in the zero field dynamic structure factor at k = π as shown in Fig. 4.3.

In Fig. 4.14 we compare the left- and right-hand sides of eqns. (4.8) and (4.9) both,

for the longitudinal and transverse components, i.e. αβ = zz and αβ = xx . First,
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we emphasize that the numerical values for Szz(0), Szz(π), χzz(0) and χzz(π) which

we have obtained at zero magnetic field are consistent with those reported in refs.

[172, 212] and corroborate the parameters of scaling relations [172]

Szz(π) = Ds ln(Ts/T )
3
2 , Ds = 0.094(1), TS = 18.3(5)

χzz(π) =
Dχ

T
ln(Tχ/T )

1
2 , Dχ = 0.32(1), Tχ = 5.9(2)

for T = J/4. Second, Fig. 4.14 proves an excellent agreement of QMC data involving

analytic continuation to that free of the MaxEnt procedure. We have found this agree-

ment for all temperatures and all fields investigated, including those not depicted here.

All differences lie within the error bars of the static quantities which is remarkable, given

that the typical MaxEnt error is estimated to be ∼10-20% [172]. We note that we have
performed this sum-rule check for various MaxEnt procedures, i.e. historic, classic and

bryan and found the same level of agreement.

4.1.5 Conclusion

In conclusion, using MaxEnt continuation of QMC results, we have analyzed the evolu-

tion of transverse and longitudinal spin excitations of an AFHC with 128 sites at finite

temperatures and magnetic fields up to and above the saturation field. Our results

are consistent with and complement similar studies using small system ED and zero-

temperature BA. In particular we have detailed the difference between longitudinal and

transverse excitation as a function of the magnetic field and temperature, highlighting

the occurrence of incommensurate zero-modes and the field induced magnon ’conden-

sation’ at the saturation field. The latter has been studied in further detail by means of

the 1/T1-relaxation rate. In this context, we compared our data to NMR-experiments

on CuPzN by Kühne et al. and found good agreement for both, the diverging relaxation

rate for T → 0 due to triplets crossing the ground state as well as the shifting of the
rate’s maximum to lower fields with increasing temperatures [31]. A comparison of

Knight shift and magnetization data rounds up the conclusion of a good description of

CuPzN by a purely spin S=1/2 Heisenberg chain.

Several open questions remain. While the issue of spin-diffusion has been out of reach

in this section, future analysis might improve the resolution of the MaxEnt in order to

access the line-shapes at small q. This also pertains to the form of the low-ω spectrum

of the zero-field dynamic structure factor at q = π. Finally it will be interesting to

perform similar calculations for various generalizations of the AFHC including anisotropy

and disorder.
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4.2 Dynamic structure factors of the Haldane chain

In this section we will present dynamic properties of the Haldane chain with focus on

transverse structure factor, evolution of the Haldane-gap and T1-relaxation rates at

finite temperatures 1/10 ≤ T/J ≤ 1 and magnetic fields 0 ≤ B ≤ Bc2. As strong

contrast to the gapless continuum of spinons in the spin S=1/2 case, the Haldane

dynamics in zero field are dominated by a sharp magnon dispersion. However, upon

closing the gap by a magnetic field B ≥ Bc1, both systems can be described as a

Luttinger liquid with incommensurate Fermi wave vectors and similar critical dynamic

properties beyond the saturation field Bc2. We conclude this section again with a sum-

rule consistency check of our data. As for the spin S=1/2 chains of the previous

section, also the calculations for the spin S=1 chains of this section were done for 128

sites. Technically we again performed up to one billion Monte-Carlo updates, distributed

over 1000 bins with only 50-100 τ-points prevent over-sampling of the relatively short

expansion orders at elevated temperatures close to T = J. As usual, an indication for

over-sampling is given by diagonalizing the covariance matrix which exhibits vanishing

eigenvalues in case of statistically dependent data.

4.2.1 Temperature dependence of the transverse DSF

Figure 4.15 shows temperature dependent contour plots with T ∈ {J/10, J/4, J/2, J}
of the transverse dynamic structure factor in zero magnetic fields with insets of the

DSF normalized by its static results. Unlike the spinon continuum of the S=1/2

Heisenberg chain ([228] and ref. therein), we find a sharp, symmetric mode at

π/3 ≤ q ≤ π with the Haldane gap [19] of Δ = 0.41J at q = π, supported my

numerical [187–189] and numerous experimental results on CsNiCl3 [79–82, 191],

NENP [66, 67, 76–78] and AgVP2P6 [193].

Going to lower wave vectors 0 ≤ q ≤ π/3 at T/J = 0.1 we find strongly suppressed

spectral weight, resembling the static structure factor’s q-dependence in a single-mode

approximation (SMA) S(q) ∝ q2 which is related to the dynamic structure factor by

sum rules (eqn. (4.8)). Additionally the line shapes become increasingly asymmetric

for longer wavelengths which is subject of recent experimental studies on CsNiCl3
[194, 195, 198] and will be discussed in more detail in the next subsection on the basis

of Fig. 4.17. In the limit of q → 0 we find finite weight of intra-band excitations owing
to finite temperatures. For the lowest temperature, those excitations are essentially

zero in respect to the absolute scale 160 of the contour plot. However, the insets
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Figure 4.15: Contour plots of the dynamic structure factor Sxx(q, ω) for four differ-

ent temperatures T ∈ {J/10, J/4, J/2, J} and zero magnetic field with insets showing
the normalized quantity Sxx(q, ω)/Sxx(q, t = 0). At lowest temperatures, a sharp sin-

gle mode with the Haldane-gap Δ = 0.41J at q = π as key-signature of the S=1

Heisenberg chain is shown. Its spectral weight decays for q < π/3 into multi magnon

excitations (see Fig. 4.17) with an ω-integrated weight-scale given by the behavior of

the static structure factor S(q) ∝ q2. For higher temperatures, the gap closes and

S(q, ω) becomes a smooth continuum as already known from previous calculations on

the S=1/2 chain [228].

of Fig. 4.15, Fig. 4.22 (and also Fig. 4.23 to some extent) clearly shows the finite

weight which is rapidly increasing with temperatures due to widening of the linewidth.

In parallel with the growth of the intra-band excitation weight, we notice the closing

of the Haldane-gap when the temperature is increased. Already at T = J/4 the sharp

magnon mode has broadened enough to close the gap at q = π. This trend, combined

with steady weight increase at long wavelength and ω → 0, continues and finally leads
to a smooth continuum for T/J = 1.0, resembling of what is known from earlier work

on spin S=1/2 chains in the limit of high temperatures [172, 228].
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Figure 4.16: Shown here is the temperature dependence of the transverse dynamic

structure factor at q = π. The inset shows the position of the peak which agrees well

with other QMC results [171]. A direct comparison to the temperature dependence

of the massive triple mode of a NLσM calculation (self consistent solution in [202],

not the given low-temperature approximation) agrees well at lower temperatures and

slightly deviates at higher temperatures. Above T/J > 0.5 the peak position seems to

be not observable anymore, matching previous QMC findings and experimental results

[66, 171].

4.2.2 Temperature dependence of the gap Δ(T )

The temperature dependence of the gap has been observed in experiments on CsNiCl3
[80] and NENP [66], and discussed from a theoretical point of view by NLσM studies

[202] and QMC calculations [171, 205]. The NLσM suggests an exponentially activated

low temperature behavior of the form

Δ(T ) ≈ Δ(0) +
√
2πΔ(0)Te−Δ(0)/T , T/Δ(0)→ 0. (4.11)
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Our results for the dynamic structure factor S(π, ω) and its maximum position are

presented in Fig. 4.16. For low temperatures T/J = 0.1 we find a sharp, symmetric

mode at exactly ω/J = Δ, which displays strong broadening with respect to increase

of temperature. Additionally the peak position shifts to higher energies which can be

understood as an increasing gapsize of the massive triplet mode in the picture of the

NLσM. At T/J = 0.5 the maximum in the QMC is hardly noticeable anymore (in

agreement with experiments [66]) and due to its weak curvature, the positional error

introduced by the MaxEnt is not negligible anymore (compare Bryan vs. historic solu-

tions). However, our results for the maximum positions (inset Fig. 4.16) agree very

well with results reported by Deisz et al. [171] and the fit (solid line, inset) supports

exponential behavior. A comparison of our data with eqn. (4.11) showed strong devi-

ations and we must question the validity of this low-temperature approximation at the

temperatures relevant for this work. Taking one step back, we solved the general gap-

equation in [202] for each temperature numerically and the results displayed satisfying

agreement within the QMC error bars given by the differences of Bryan and historic

continuations shown in the main frame of Fig. 4.16. We like to add, that the gap-size

of the triplet branch in the NLσM is not necessarily equal to the maximum position of

the spectrum at finite temperatures.

4.2.3 Low-q behavior

Recently the DSF has been studied in the region of long to intermediate wave vector,

i.e. 0 < q < π/3 [194, 198, 229]. For these wave vectors it is believed that the one

magnon excitation decays into a continuum of multi-magnon modes. Due to its low

intensity, detecting this continuum by INS is challenging and has been achieved only

recently [194]. The NLσM predicts, that the triplet spectrum at q = 0 is gapped by

twice the Haldane gap Δ. This can be understood in terms of the lower bound of

the two-particle continuum at q=0 formed from two one-magnon states at q = π,−π.
This has been confirmed by tDMRG calculations performed last year [207]. Considering

MaxEnt of QMC results, spin conservation renders the observation of spectral weight

at finite frequencies complicated as q → 0. However, already at q = π/64 we find

non-zero spectral weight at finite frequencies. This spectrum is show in Fig. 4.17 and

Fig. 4.18. It displays a double peak structure, with the low-energy peak located almost

exactly at 2Δ. As the wave vector is increased, the double-peak structure shifts to

higher energies. This shift is consistent with the predictions of the NLσM on the lower

threshold ωth and the position ωmax of the lower maximum at zero temperature [201].

To the best of our knowledge, the maximum, visible at higher energies of approximately

ω = 2J, has not been reported in the literature yet. We speculate that it originates from
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Figure 4.17: Low-q behavior at T/J = 0.1 for wave vectors 0 ≤ q ≤ π/8. The solid
lines are Bryan MaxEnt results, the dashed lines are the corresponding historic results.

Obviously the historic approach cannot resolve a double peak structure while Bryan does.

This is most probably related to the relative error of τ-data, which increases for long

wavelengths as described in the text. A bigger relative error leads to large regularization

parameter cutoffs with the consequence of generally smooth spectral results.

higher order multi-magnon excitations. In the context of this secondary peak we would

like to point out that within the present calculation the absolute error of the QMC data

on the τ-axis is 10−6, which is very small. However, the relative error increases by orders
of magnitude as q → 0, since the static structure factor S(q) scales as ∝ q2, which

implies small absolute numbers for the DSF S(q, τ) also. This leads to a very sensitive

response to the choice of the regularization parameter α at long wavelengths and as

a consequence, historic, classic and Bryan MaxEnt results are clearly distinguishable in

this q-region. In direct comparison to Deisz et al. [171] and S. V. Meshkov [206], our

historic MaxEnt (the least ambitious choice of α) in Fig. 4.17 resembles their presented

data very well.
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Figure 4.18: Same parameter region as Fig. 4.17 in a contour plot. The two solid lines

are taken from a NLσM approach [201] and denote the lower threshold for spectral

weight at T = 0 (lower solid line), respectively the maximum position of the spectral

weight (upper solid line).

4.2.4 Field dependence of the transverse DSF

In this subsection we discuss the field dependence of the transverse dynamic structure

factor Sxx(q, ω). A magnetic field closes the Haldane-gap linearly Δ(B) = Δ(0) − B
[173] by level-crossing of the lower triplet branch with the ground state at the first

critical field Bc1. Results of S
xx(q, ω) for this field interval 0 < B ≤ Bc1 will be given

in Fig. 4.19. We detail the field dependence of the gap in Fig. 4.20 and exemplarily

resolve into S+−(π, ω) and S−+(π, ω) contributions at field B/J = 0.2. Beyond the
first critical field, we present results for Sxx(q, ω) in the gapless Luttinger liquid phase

Bc1 ≤ B ≤ Bc2 in Fig. 4.21. This regime has been highlighted very recently by INS

experiments on magnon fractionalization of a spin ladder systems [199, 200].

The case 0 < B < Bc1: Figure 4.19 shows results for the transverse DSF at tem-

peratures T/J = 0.1 and magnetic fields B/J ∈ {0.1, 0.2, 0.3, 0.4}. Several effects
occur as function of the applied field: firstly we find that a gap opens linearly at q = 0

with respect to the field due to the Zeeman energy (visible in the insets normalized

by the static structure factor). Secondly, there is a broadening of the sharp zero field
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Figure 4.19: Results for the transverse DSF at T/J = 0.1 for four different magnetic

fields (in units of J) B ∈ {0.1, 0.2, 0.3, 0.4} with corresponding normalized insets by its
static structure factor. Coming from zero magnetic field, the +- and -+ branch move

towards lower, respectively higher energy, leading to a widening of the spectrum at the

zone boundary while at the same time a gap opens at q = 0 linearly with the applied

field. Close to the critical field B = 0.4J (last panel), the system’s groundstate fills

with gapless excitations, leading to a high density of states and a high absolute scale.

magnon dispersion with increasing fields near the zone boundary due to the splitting

of the triplet excitations. This is emphasized in Fig. 4.20 (and inset), where the peak

structure is exemplarily resolved into S+−(π, ω) and S−+(π, ω) contributions for the
case B/J = 0.2. The inset clearly shows the linear opening, respectively closing of the

triplet branches with the applied field in agreement with [173, 203]. Small deviations

from the linear behavior are most likely finite temperature or continuation effects.

Thirdly we find, that the major contribution to the total spectral weight can be found

at short wave lengths. This is even more emphasized in Fig. 4.23 where Sxx(q, ω → 0)
data is displayed for finite fields at T/J = 0.1. Such concentration of spectral weight

in the direct vicinity of q → π yields a T1-relaxation rate which is largely independent

of the form factor choice as long as short wavelengths are probed. Therefore a purely

on-site form factor A(r) ≈ A0δ(r) as in the spin S=1/2 case would be well founded in
order to compare with NMR experiments. Finally it is interesting to note, that the ab-

solute scale of Fig. 4.15 starts to decrease coming from zero fields due to the splitting
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Figure 4.20: Shown here is the field dependence of the gap at T/J = 0.1 for five

different magnetic fields ranging from B/J ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We find that the
sharply peaked one magnon line at ω/J = 0.41 for zero field (see Fig. 4.16 is broken

up into the two splitting triplet branches at finite fields. The linear closing, respectively

opening of +- and -+ contributions are exemplarily shown for B/J = 0.2 and the

maximum positions of S+−(π, ω) and S−+(π, ω) are presented in the inset.

of the triple excitations. Near the critical field Bc1 = Δ it starts to increase strongly

again, since the ground state of the spin chain fills with gapless excitations, leading to

a high density of states at q = π. Beyond the critical field at B/J = 0.5, the absolute

scale decreases again (not depicted).

The case Bc1 ≤ B ≤ Bc2: Once the lower triplet branch crosses the ground state

of the Haldane-chain, the system becomes gapless and can be described by a sea of

interacting fermions. Such a system is known as Luttinger liquid which has been an-

alyzed in regard to the Haldane-chain in some detail [26, 173, 174, 203, 204, 231].

In the context of magnon fractionalization there exist numerous and, in some cases,
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Figure 4.21: Results for the transverse DSF at T/J = 0.25 for six different magnetic

fields B/J ∈ {0,Δ, 1, 2, 3, 4}, normalized by the static structure factor in the corre-
sponding insets. qF stands for the incommensurate Fermi wave vector of the Luttinger

liquid regime given by recent field theory predictions [230].

very recent results of ESR and INS on the Haldane chains NDMAP [68, 84–87, 232],

NDMAZ [192] and on a spin S=1/2 ladder material TlCuCl3 [24, 199, 200].

Fig. 4.21 shows our QMC results for the transverse DSF in this intermediate mag-

netic field regime at a temperature T/J = 0.25 for five different magnetic fields

B ∈ {Bc1, Bc2/4, Bc2/2, 3Bc2/4, Bc2}.
Following the trend of Fig. 4.19, the gap at q = 0 keeps opening linearly with the

applied magnetic field. It should be noted that the weight of the low-q regime is

steadily increasing with increasing fields, matching the behavior of the static structure

factor Sxx(q) [142, 220], which is coupled to the DSF by sum rules (see section 4.2.6).
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At wave vectors near the zone boundary the system remains gapless, and, as already

known from spin S=1/2 chain calculations [142, 220, 228], small magnetic fields

initially lead to an increase of the transverse spectral weight at the antiferromagnetic

wave vector. For magnetic fields beyond Bc2/2, the absolute scale decreases and the

weight shifts from q = π to q = 0 with relatively low weight at intermediate wave

vectors. This behavior matches earlier results on the spin S=1/2 chain [228] very well.

However, for the intermediate field and wave vector region we find weight extending

nearly over the whole displayed frequency interval in contrast to results of the spin

S=1/2 chain. Much less pronounced than for the S=1/2 system is the expected

weight at the incommensurate Fermi wave vector qF , moving from q = 0 to q = π

by qF = π〈Sz〉 [230] as predicted by field theory results of Tvselik’s Majorana fermion
theory [204]. While at low magnetic fields, we find clear indications of finite spectral

weight at qF , it becomes increasingly harder to spot at fields B ≥ Bc2/2.
At the upper critical field Bc2 one finds a coherent picture of S=1/2 and S=1 again

as the spectrum becomes a magnon cosine dispersion with increased weight at q = 0

and q = π due to finite temperatures (see Fig. 4.8). At zero temperatures one

would expect an cosine dispersion with constant spectral weight, which finally becomes

gapped for fields B > Bc2 (not displayed here).

4.2.5 NMR rates

There exist numerous measurements of NMR T−11 -relaxation rates on AgV p2S6 [235,
236] and on NENP [237–239] where two major effects have been observed – the most

basic effect of temperature and magnetic field in the region 0 ≤ B ≤ Bc1 is the linear
closing of the Haldane-gap, which generally leads to an exponentially activated relaxation

rate 1/T1 ∝ e−(Δ−B)/T . As the second major effect, the rate initially decreases with
1/T1 ∝ B−1/2 into a global minimum [235, 239], which was remarkably well explained
by results of Yamamoto et al. [234] (modified spin-wave theory) and Damle et al. [233]

(semiclassical picture). Unfortunately, this effect has to be considered as beyond the

scope of this work due to the coarse field and temperature resolution. In addition to our

resolution with respect to field, the effect is also very small compared to the absolute

scale of the spectrum (see q → 0 versus q → π contributions in Fig. 4.23).

To access the NMR-rate by QMC we integrate over the wave vectors at the NMR

resonance frequency

1/T1 ∝
∑
q

A0S
⊥(q, ω → 0) (4.12)

where we implicate that the hyperfine coupling tensor Aαβ(q), α, β ∈ {x, y , z} does
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Figure 4.22: Temperature dependence of the transverse dynamic structure factor at

ω → 0. The inset shows the T1-relaxation rate with constant form factor for tem-
peratures T/J ∈ {1.0.0.5, 0.25, 0.1} and an error bar estimated by Bryan (most ad-
vanced) versus historic (least ambitious) MaxEnt approach. The strong weight increase

with temperatures at the zone center due to diffusive behavior and the zone boundary

due to closing of the Haldane-gap drives the rate into exponentially activated behavior

1/T1 ∝ e−Δ/T in agreement with other theories [233, 234].

not mediate longitudinal spin fluctuations which can be achieved my measuring in the

principle coordinate system. Following up our findings of subsection 4.2.4 that the most

dominant contribution to NMR rates stems solely from the direct vicinity of q = π, we

consider a constant A(q) → A0 (on-site relaxation only). This is justified in a sense

that the form of A(q) can be chosen without noticeable impact on the relaxation rates

as long as short wavelengths are probed.

In Fig. 4.22 and Fig. 4.23 we present QMC results for the temperature and field

dependence of the transverse DSF at the NMR resonance frequency S(q, ω → 0).
Starting with Fig. 4.22, we find negligible weight for T/J = 0.1 at all wave vectors.

On the one hand the gap at q = π is still open at such low temperatures, on the
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Figure 4.23: Field dependence of the transverse dynamic structure factor at ω → 0 and
the resulting T1-relaxation rate in the inset. Error bars are as in the preceding picture

estimated by Bryan versus historic MaxEnt procedure. Again we find exponentially

activated behavior. Unlike experiments [235, 239] however, we cannot spot the initial

1/
√
B decrease of the rate, since its contributions stemming from the zone center [234]

are just too small at elevated temperatures T/J = 0.1 and fields (note the cut of the

q-scan data into separate scales) to be picked up in our coarse field resolution. At

higher temperatures this behavior becomes more pronounced due to strongly enhanced

spectral weight at the zone center and therefore should become detectable by QMC.

other hand the magnon linewidth allows for only a negligible amount of intra-band

excitations, leading to a low q = 0 contribution as well. Further warming increases

weight at both q-positions while widening the q-interval with finite weight noticeably.

Interestingly, at the highest temperatures T/J = 1, absolute weight at q = π is

decreasing compared to lower temperatures T/J = 0.5 due to thermal fluctuations,

instead the thermally activated spectral weight spreads over a much larger q-region.

The behavior described in S(q, ω → 0) translates into the 1/T1 relaxation rate by

eqn. (4.12) in the inset of Fig. 4.22. At the lowest temperatures the system is
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gapped and relaxation cannot take place, resulting in a close to zero 1/T1 with only

minor contributions stemming from q → 0. Increasing the temperature exponentially
activates the relaxation rate proportional to 1/T1 ∝ Ae−Δ/T [202, 234, 240] which was
used to fit the displayed four data points within their errors estimated by comparing

Bryan versus historic regularization parameter choices.

For the field dependence displayed in Fig. 4.23, a similar exponentially activated relax-

ation rate is expected [234, 240], however the underlying wave vector dependency is

fundamentally different as indicated by the two different scales in Fig. 4.23. While the

spectrum at q → 0 becomes immediately gapped at Bc1 due to the Zeeman energy (as
visible in Fig. 4.19), the Haldane-gap at q = π gets linearly closed by S+− processes
(see Fig. 4.20), leading to a strong increase of spectral weight with fields close to

the lower critical field Bc1. As shown in the inset, the 1/T1 relaxation rate reflects

this strong increase with exponentially activated behavior which is solely driven by zone

boundary excitations. Comparisons with Ae−(Δ−B)/T , respectively by expressions from
Yamamoto et al. [234] and Sagi et al. [240] confirm this. Beyond the closing of

the gap the system reaches the Luttinger liquid regime as mentioned in the preceding

subsection and the relaxation rate loses its exponential growth. A similar exponential

behavior of the rate should be visible at the upper critical field Bc2 as a consequence

of magnon condensation which has been presented in earlier calculations and verified

experimentally on the spin S=1/2 chain [31].

4.2.6 Sum rules

As in section 4.1.4, we assess the quality of the analytic continuation by sum rules for

the static structure factor Sαβ(q) and the static susceptibility χαβ(q), following eqn.

(4.8) and (4.9) and repeated here for convenience:

Sαβ(q) =
1

π

∫ ∞

0

dω(1 + e−βω)Sαβ(q, ω) (4.13)

χαβ(q) =
2

π

∫ ∞

0

dω ω−1(1− e−βω)Sαβ(q, ω). (4.14)

While Sαβ(q, ω) on the right-hand side of eqns. (4.13) and (4.14) involve MaxEnt-data,

the static structure factor Sαβ(q) and static susceptibility χαβ(q) can be evaluated

directly by the QMC.

In Fig. 4.24 we compare the left- and right-hand sides of eqns. (4.13) and (4.14) for the

transverse components αβ = xx and find excellent agreement (even on a logarithmic



132 CHAPTER 4. DYNAMIC PROPERTIES OF 1D QUANTUM MAGNETS

Figure 4.24: Sumrules for four different Temperatures T/J ∈ {0.1, 0.25, 0.5, 1.0}.
Static structure factor and static susceptibility obtained by QMC free of the MaxEnt

procedure in direct comparison to the integral equations on the DSF (4.8, 4.9) given

in the text. Static results χ(π) and S(π) are in agreement with static QMC results by

Kim et al. [212].

scale) of QMC data involving analytic continuation to that free of the MaxEnt procedure

for the static structure factors and static susceptibility. This agreement persists for all

temperatures, wave vectors and also for field dependent data not displayed here.

4.2.7 Conclusion

In conclusion, using MaxEnt continuation of QMC results, we analyzed the transverse

spin fluctuations of a Haldane chain with 128 sites as function of finite temperatures

0.1 ≤ T/J ≤ 1 and finite magnetic fields 0 ≤ B ≤ Bc2. Our temperature dependent

results are consistent with previous QMC results and field-theories with the latter also

being complemented by our results for fields below the Luttinger liquid phase 0 ≤ B ≤
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Bc1. A direct comparison with field-theories was given for the T1-relaxation rate and

for the maximum position of the structure factor at zone center and zone boundary

as the accessible limits of field theory approaches. We show that the limits q → 0
and q → π are in fact well founded for low temperatures, as low-frequency spectral

contributions to the relaxation rate stem for the most part from those wave vectors

and their direct vicinity. We confirm the picture of two π-magnon excitations as lowest

energy boundary in the low-q region and resolve a yet unseen double-peak structure of

higher-magnon contributions. For the evaluated temperature T/J = 0.1 we document

the condensation of magnons in the dynamic structure factor and the relaxation rate as

in the spin S=1/2 chain, although this time we linearly close the gap upon increasing

the magnetic field. Beyond the first critical field, we show results of the transverse

dynamic structure factor in the Luttinger liquid regime Bc1 ≤ B ≤ Bc2 and find hints
of incommensurate Fermi wave vectors as in previous studies on the spin S=1/2 chain.

We finalize our results again with a sum-rule consistency check which proves excellent

agreement with the zeroth-momentum static structure factor and the low-frequency

probing sum-rule for the static susceptibility. Again our results may be of high-relevance

to INS experiments and help to understand the spectral evolution and contribution to

the NMR experiments.

While we overall showed good agreement with field theory results for 0 ≤ B ≤ Bc1,

open questions remain for the Luttinger liquid phase where we hope to achieve better

continuation results to clearly identify Fermi wave vectors. Furthermore our data quality

for the longitudinal dynamic structure factor needs to be improved in order to yield a

better basis for the MaxEnt. Finally, similar calculations for single-ion anisotropy and

eventually disorder are highly desirable since most Haldane chains exhibit anisotropies

due to orbital quenching.
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4.3 Hydrodynamic limit for the spin dynamics of the

Heisenberg chain

In the last section, the issue of spin diffusion for the spin S=1/2 Heisenberg chain has

been out of reach due to the numerical difficulties with the analytic continuation to

the real axis. In this section, we propose a method to circumvent the continuation by

working directly on the imaginary time axis.

To get started, we look at the linear response theory [167], which shows the zero

momentum, frequency dependent spin conductivity

σ′(ω) = Dδ(ω) + σ′reg(ω) (4.15)

to consist of the Drude weight

D =
β

N

∑
m,n

Em=En

e−βEm |〈m|j |n〉|2 (4.16)

and a regular spectrum

σ′reg(ω) =
1− e−βω

ω

1

N

∑
m,n

Em �=En

[
e−βEm |〈m|j |n〉|2δ(ω − En + Em)

]
(4.17)

where j = jq=0 is the z-component of the spin current with jq =

(iΔJ/2)
∑
l e
(−iql)(S−l S

+
l+1 − S+l S−l+1) and m, n are the eigenstates with energies Em,n.

For the Drude peak no generally accepted picture has emerged yet, since a nonzero

Drude weight would imply dissipationless transport in a correlated system [208], despite

[j, H] �= 0 for the XXZ model. Here we give a brief summary regarding the status
of this issue and refer to [138] and refs. therein for a more extensive summary. At

T = 0 and in the massless regime |Δ| < 1 of the XXZ chain, the zero temperature
Drude weight is known to be finite [241]. At T �= 0, Bethe-Ansatz (BA) calculations
arrive at contradictory results regarding the temperature dependence of D(T ) [242–

244]. The same holds for the question whether D(T > 0) is finite or not at the SU(2)

symmetric point Δ = 1 [242, 243]. Recent numerical studies using QMC [245, 246],

exact diagonalization (ED) at zero [167, 247–249], as well as finite magnetic fields

[250], and master equations [251, 252] are consistent with D �= 0 for |Δ| ≤1 and
T ≥ 0, supporting a ballistic contribution to the conductivity at finite temperatures.
Recent time-dependent density-matrix renormalization group (tDMRG) studies have

given evidence for ballistic spin dynamics for |Δ| ≤1 in the out-of-equilibrium case [253].
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The regular finite-frequency contribution σ′reg(ω) has been considered by ED studies
[254, 255], which however leave many open issues. Very recently, spin diffusion has

been conjectured to govern the low-frequency spectrum of the regular conductivity [32],

based on real-time transfer matrix renormalization group (tTMRG) and a perturbative

analysis using bosonization. The latter provides for an approximate expression for the

Fourier transform of the retarded spin-susceptibility χret(q, t) = iΘ(t)〈[Szq(t), Sz−q]〉
which reads

χret (q, ω) = −Kvq
2

2π

1

ω2 − v 2q2 − Πret (q, ω) , (4.18)

with

Πret (q, ω) ≈ −2iγBω − bω2 + cv 2q2 , (4.19)

where at Δ = 1, K = 1 + g/2 + g2/4 + g3/8, v = π/2 (see e.g. [7]), 2γB = πg
2T ,

b = g2/4 − g3(3 − 8π2/3)/32 + √3T 2/π, and c = g2/4 − 3g3/32 − √3T 2/π have
been obtained by perturbative expansions (PE) at T � J [32] in powers of the running

coupling constant 1/g + ln(g)/2 = ln
(√

π/2 exp(G + 1/4)/T
)
and G ≈ 0.577216 . . .

is Euler’s constant [256].

Some remarks are in order. First, for ω � γ, eqn. (4.18) displays a diffusion pole

with a diffusion constant Γ = (1 + c)v 2/(πg2T ). I.e. within this approximation the

spin dynamics of the Heisenberg chain would allow for a plain hydrodynamic limit.

Second, eqns. (4.18) and (4.19) do not incorporate the finite width of the spectral

function χ′′ (q, ω) = Im[χret(q, ω)]/π at T = 0, which is dominantly set by the two-
spinon continuum. However, at q/π � 1 the latter width is of order πJq3/16, which
for those wave vectors and temperatures which we will be interested in is negligible

against γB. Third, for any finite momentum q �= 0, the isothermal susceptibility χq =∫∞
−∞ dωχ

′′(q, ω)/ω obtained from eqn. (4.18) is identical to the isolated susceptibility
χret(q, 0) =

∫∞
−∞ dωχ

′′(q, ω)/(ω− i0+), since χ′′(q �= 0, ω → 0) ∝ ω. Therefore χq =
K/(2πv(1 + c)). Furthermore, the isothermal susceptibility of the Heisenberg model

is a continuous function of q. Its limiting value limq→0 χq = χ0 at zero momentum is
known from thermodynamic Bethe Ansatz (TBA) [7, 256]. Therefore

K/(2π)

v(1 + c)
= χ0 ≈ 1

π2
(1− g

2
+
3g3

32
+

√
3T 2

π
) = χPE , (4.20)

should be satisfied, where χPE is a known PE of the TBA result [7, 256] and which is

consistent with the parameters listed following eqn. (4.19)

The spectral function χ′′(q, ω) is related to σ′reg(ω) by means of the lattice version of
the continuity equation ∂tS

z
q = (1− e−iq) jq through

σ′reg(ω) = lim
q→0

ω

q2
χ′′(q, ω) . (4.21)

135CHAIN
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Therefore, the spectrum of the regular part of the optical conductivity can be deduced

from eqns. (4.18) and (4.19).

The main goal of this section is to analyze, to which extent eqns. (4.18) and (4.19)

are consistent with QMC calculations. The significance of such comparison is with the

regular part of the spin conductivity. It will not clarify the size of the Drude weight,

as any discrepancy arising may be due to partial spectral weight transfer into a Drude

weight. Furthermore, we focus on the isotropic point Δ = 1, which may be different

from the anisotropic case. To begin, we note, that eqns. (4.18) and (4.19) approximate

the on-shell part of the spectrum for |ω ± vq| � T . Yet, similar to the comparison

with tTMRG in eqns. (C2) and (C3) of ref. [32], we will assume them to be valid

for all ω. Furthermore, χq is known to monotonously increase for the Heisenberg

model as q → π/2. However, χq = K/(2πv(1 + c)) from bosonization is momentum

independent. Therefore, a momentum dependence K → Kq, v → vq – albeit weak at

q � 1 – is to be allowed for, when matching up eqns. (4.18) and (4.19) with QMC.
We perform the comparison to QMC by transforming χret(q, ω) onto the imaginary

time axis

χ (q, τ) = 2

∞∑
n=0

cos(ωnτ)χ(q, ωn)− χ(q, 0)

χ(q, ωn) =
Kqvqq

2/(2π)

(1 + b)ω2n + (1 + c)v
2
q q
2 + 2γq|ωn| (4.22)

The main point is, that a corresponding χQMC (q, τ) can be obtained directly from QMC,

following preceding work employing the stochastic series expansion method [228]. This

involves only the statistical error, which is well controlled. Uncontrolled sources of error,

due to e.g. transformations to real or Matsubara frequencies, do not occur. χ (q, τ)

is gauged against χQMC (q, τ) by fitting Kq, vq, and γq at small momentum, while

retaining b and c as given by bosonization. This is justified, because the latter two

constants do not enlarge the space of fitting-parameter, as any modification of them

can be absorbed into a renormalization of Kq, vq, and γq. Regarding the temperature

range, we confine ourselves to T/J ≤ 0.25. This is motivated by the PE to O(g3, T 2)
for thermodynamic properties to agree rather well with QMC results up to T/J � 0.1

[7], while for T � 0.25 the PE starts to fail significantly.

Fig. 4.25 shows the result of the comparison of QMC with eqn. (4.22) for the smallest

non-zero wave vector q = π/64 of a 128-site system for two temperatures T/J = 0.1

and 0.25 allowing for three different choices of γq, namely (i) γq,QMC as optimized by

fitting, (ii) γB taken from the bosonization, and finally (iii) γq = 0 forced to be zero

[257]. The upper panel b) of this figure clearly demonstrates, that QMC is inconsistent

with γq = 0 and that increasing γq above zero improves the quality of the fit. In
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Figure 4.25: Imaginary-time susceptibility χQMC(q, τ) at q = π/64 on 128 sites, for

two temperatures T , fitted to χ(q, τ) from eqn. (4.22) (lines) in three ways, namely:

γq,QMC optimized (solid), γB taken from ref. [32] (dashed), and γ forced to zero

(dotted). The index ’i’ on the y-axis refers to χ(q, τ) from eqn. (4.22) for the lines

in panels a) and b) as well as to QMC for the symbols in panel a). Panel a) Global

behavior of χQMC(q, τ)/χQMC(q, 0) for T/J = 0.1 (QMC, squares) and 0.25 (QMC,

circles). In this panel the three fits (lines) are indistinguishable on the scale of the

plot. Panel b) Error 2σ of χQMC(q, τ) for each τ evaluated (error bars) and difference

χ(q, τ) − χQMC(q, τ) between QMC and the three fits (lines). 2σ for the QMC data
is O(10−7). Plots corresponding to T/J = 0.1 have been shifted by 2× 10−6.

particular the best fit, i.e. for γq,QMC, is identical within the standard deviation 2σ

(error bar) to QMC for almost all τ ∈ [0, β] at both temperatures. Yet, we find
γq,QMC > γB, and moreover there are systematic oscillatory deviations. While the

latter seem a subdominant effect, which could be due to the on-shell approximation
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in eqns. (4.18) and (4.19), these deviations may also indicate relevant corrections to

diffusion and should be investigated in future studies. We emphasize the vertical scale

on panel b) of Fig. 4.25 which demonstrates that high-precision QMC is mandatory

for the present analysis. Fig. 4.25 is a central result of this section. It shows that

QMC is consistent with a dynamic structure factor of the isotropic antiferromagnetic

Heisenberg chain which is approximately diffusive at intermediate temperatures in the

long wave-length limit with a diffusion kernel (1 + c)v 2/(2γq,QMC). Any momentum

dependence of γq,QMC, to be discussed later, implies corrections to this diffusion. Next,

and to further support our approach, we will also discuss the Luttinger parameters we

find.

In table 4.1 we compare the parameters obtained from the fit to QMC with results from

TBA, PE and tTMRG. This table shows, that χq,QMC = Kq/(2πvq(1+c)) at q = π/64

is in excellent agreement with the isothermal susceptibility at q = 0 from the TBA for

both temperatures which we have studied. This result should not be confused with the

well known agreement between static QMC and TBA for the isothermal susceptibility

[7], but rather it is a satisfying consistency check for our approach. In fact, fitting

the imaginary-time transform of an approximate χ(q, ω), i.e. eqn. (4.18), to QMC

could require values for Kq, vq, and γq which deviate from exactly known values for

these quantities on a scale which is unrelated to the error 2σ of the QMC. As will be

shown later the variation of Kq and vq with momentum is very weak as q � 1, i.e. we
expect no relevant change for χq,QMC as q → 0. Yet we are tempted to point out, that
χq=π/64,QMC in table 4.1 is barely larger than χ0, which is consistent with the momentum

dependence for the exact χq. The fact that χq,QMC/χPE > 1 and is increasing as T

increases, evidences that χPE on the l.h.s. of eqn. (4.20) increasingly underestimates

the TBA result as T increases beyond T/J � 0.1. In Fig. 4.25 we have shown,

that γq,QMC �= γB. Yet, table 4.1 demonstrates that γq,QMC and γB are comparable

to within factors of order 2. Most important, the relaxation rate γq,QMC we find is

much larger than the width of the two-spinon continuum, yet, very small compared to

temperature γq,QMC � T . We note, that fits to tTMRG [32] at T/J = 0.2, lead to

γtTMRG/γB ≈ 0.64.

T/J χq,QMC/χ0 χq,QMC/χPE γB[32] γtTMRG [32] γq,QMC

0.1 1.0005 1.0032 0.0096 0.0191

0.25 1.0005 1.0248 0.0440 0.0511

0.2 0.0297 0.0190

Table 4.1: Columns 2 and 3: Comparison of χq,QMC = Kq/(2πvq(1 + c)) from QMC

at q = π/64 with χ0 from TBA [258] and χPE from the l.h.s. of eqn. (4.20). Columns

4, 5, and 6 display γ from bosonization, tTMRG, and QMC.
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Figure 4.26: Momentum dependence of the renormalized Luttinger parameter Kq,

spinon velocity vq, and scattering rate γq,QMC/γB for the first non-zero six momenta

on a 128 site system for two temperatures T/J = 0.1 (white symbols) and 0.25 (black

symbols). Note that γq,QMC/γB for T = 0.1 has been scaled by 2 to fit into the plot.

Next we discuss the momentum dependence. Fig. 4.26 displays all three fit parameters

Kq, vq and γq,QMC versus the first six non-zero momenta and the two temperatures

T/J = 0.1 and 0.25 which have also been considered in Fig. 4.26. vq and γq,QMC
have been normalized to their values given by bosonization, i.e. π/2 and γB. Obviously

all momentum variations are very smooth and rather weak. As can be seen from this

figure, most of the renormalization of the ratio Kq/vq from its bare value of 2/π stems

from Kq > 1. The spinon velocity vq deviates slightly from π/2, however only to

within O(1%). As discussed in the previous paragraph, this is necessary to obtain an

optimum fit of the QMC to the approximation eqn. (4.22) and does not imply that

QMC is at variance with the bare spinon velocity. Kq displays a very weak upward

curvature, while vq shows a small downward curvature. The latter can be understood

in terms of the O(q3) corrections to the linear on-shell dispersion ω(q) which are not

contained in bosonization. The combined momentum dependence of Kq/vq leads to
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Figure 4.27: ωnσQMC(q, ωn) from QMC for the first three non-zero Matsubara frequen-

cies ωn = 2πnT and wave vectors q = nπ/64, with n = 1, 2, and 3 as compared to

ω2n χ(q, ωn)/q
2 using eqn. (4.22) with γ = 0 (dashed) and γ = γq,QMC (solid) on a 128

site system for a) T/J = 0.1 and b) 0.25. (See text regarding statistical error.)

the expected increase of the static susceptibility with q. Finally, γq,QMC/γB also displays

a weak momentum dependence which is larger for T/J = 0.1. The latter may signal

the onset of finite size effects. In fact, γq,QMC �= 0 implies a length scale l of order
O(v/(2γq,QMC)) for the regular current relaxation. l is less than the system size for

both temperatures studied. Yet, 128/l ≈ 9 for T/J = 0.25 and and 128/l ≈ 3 for
T/J = 0.1. With momentum dependence, γ as extracted from a real-space quantity

[32] will differ from that obtained by QMC at fixed small momenta.

While the preceding has been exact up to the statistical error of the QMC, we would

like to conclude this section by speculating on the line-shape of the regular part of the



conductivity on the imaginary frequency axis at ωn = 2πnT . In principle this requires

a careful analysis of the error introduced by the Fourier transform χQMC(q, ωn) =∫ 1/T
0
exp(iωnτ)χQMC(q, τ)dτ . This error will increase as ωn increases. Here we refrain

from analyzing this, since our goal is merely to demonstrate to which extend our QMC

data discriminates between a conductivity with γ = 0 and one with γ = γq,QMC �= 0.
To this end Fig. 4.27 displays ωn σQMC(q, ωn) = ω2n χQMC(q, ωn)/q

2 as compared to

ωn σ(q, ωn) = ω2n χ(q, ωn)/q
2 with χ(q, ωn) taken from eqn. (4.22) and with γ = 0

or γ = γq,QMC. Without any further ado, this figure clearly demonstrates that γ = 0

in σ(q, ωn) from eqn. (4.21) and (4.22) is inconsistent with our QMC which however

agrees very well with σ(q, ωn) for γ = γq,QMC
2. This implies that QMC is consistent

with a Drude type of behavior of the frequency dependence of the regular conductivity

with a relaxation rate 2γq,QMC. While future studies, may focus on finite size scaling,

to perform the limit of q → 0, as required in eqn. (4.21), this is beyond the scope of
the present analysis.

Conclusion In conclusion QMC is consistent with spin dynamics of the isotropic 1D

Heisenberg antiferromagnet which is primarily diffusive in the long wave-length limit

and at intermediate temperatures, implying a regular part of the spin conductivity

with a finite relaxation rate γ � T . This corroborates recent findings by bosoniza-

tion and tTMRG. Our analysis does not allow conclusions on the pending open

questions on the Drude weight at Δ = 1, yet based on the numerical evidence for

D(T > 0) > 0, our findings may open up the intriguing possibility of a finite temper-

ature dynamical spin conductivity of the isotropic Heisenberg model which comprises

of both, a finite Drude weight and a regular part with a very large mean free path at

low temperatures. Future analysis should focus on the relevance of corrections be-

yond the on-shell approximation, on the case Δ < 1, and on higher temperatures T � J.

2For a different QMC approach, not suited to clarify the role of γ in σ(q, ωn) see ref. [32]
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Conclusion

In my thesis, static and dynamic properties of low-dimensional spin models were studied

by means of a state of the art QMC method (SSE). As one among many numerical

algorithms (e.g. DMRG, ED), the QMC proved to be a very flexible and high-

performance tool with access to dynamic correlation functions at finite temperatures

and finite magnetic fields within the thermodynamic limit1. After detailed introduction

of the QMC’s basic implementation, I provided yet unpublished information about the

measurement of transverse (and longitudinal) imaginary time correlation functions

for the spin S Heisenberg model. In addition to that, complications of the analytic

continuation to the real axis were explained and two common Maximum Entropy

algorithms (Bryan and Meshkov) introduced briefly. In my thesis, both algorithms

have been implemented and contrasted in regard to their performance and quality of

the continuation, clearly favoring Bryan’s method which is a standard least square

algorithm based on Newton iterations with however highly optimized search directions

in the multi-dimensional solution space.

As far as physics are concerned, we have shown published and unpublished results on

very different low-dimensional Heisenberg spin systems with very different static and

dynamic properties. Among them essentially zero-dimensional grid systems, critical

half-integer spin chains and gapped spin liquids such as integer spin chains and ladder

systems. In chapter 4, we focused entirely on static observables, starting with suscep-

tibilities of quantum spin chains with variable spin magnitude S ∈ {1/2, 1, 3/2, 2, 5/2}

1Only very recent developments based on DMRG [40, 41] offered first finite temperature results on the

spectrum of the spin S=1/2 Heisenberg chain in the thermodynamic limit outside finite size dominated

ED, two- and four-spinon results by Bethe ansatz and QMC. Both methods proved consistency with our

results published earlier in [228].
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in comparison to classical S → ∞ results by Fisher. After a finite size analysis of
our results for temperatures down to 0.01 ≤ T/J, we found that, regarding the

maximum position of the susceptibility and its low-temperature behavior, even for

largest evaluated spins the deviations from classical results were still significant. To

provide analytical access to our data, we performed Padé-fits and compared our results

to high-accuracy Bethe-ansatz data for spin S=1/2. For spins of larger magnitude,

our fits suggests improvements of commonly used fit formulas available in literature.

With the addition of an interchain-coupling, we analyzed a spin S=1 two-leg ladder

system as function of leg/rung-coupling and single-ion anisotropy next. The predom-

inant effect of variable rung/leg-coupling is a strong weakening of the spin gap in

the intermediate regime, even though a two-leg ladder, uncoupled dimers as well as

uncoupled Haldane chains show a large gap. With an additional easy-plane anisotropy

the gap was lifted completely, resulting in a finite susceptibility down to T/J = 0.001

within the thermodynamic limit. After this surprising result, we turned to experimental

data by Mennerich et al. of the Ni(II) two-leg ladder material Na2Ni2(C2O4)3(H2O)2.

With the extraction of coupling constants as well as single-ion anisotropies for

experimental susceptibility and high-field magnetization data, we confirmed the picture

of weakly-coupled dimers with a small easy-plane anisotropy which however is not

enough to close the spin gap of the system [28].

Coming from systems in the thermodynamic limit in the previous two sections, we

investigated thermodynamical properties of an essentially zero-dimensional Mn-[3× 3]-
grid system with large spin S=5/2 as function of center-spin and ring-coupling as

well as the single-ion anisotropy D in the final section of chapter 4. While the

effect of center-spin coupling is marginal (ultimately due to an odd total number

of spins) with largest (albeit small) impact in the intermediate temperature region

1 ≤ T/J ≤ 10, the response even to small single-ion anisotropies was significant.
In fact, magnetization as well as (staggered) static structure factor agree on an

Ising-like picture in the case of easy-plane and easy-axis anisotropies with a minimum-

respectively maximum-z state of total spin S=1/2 in the case of easy-plane and S=5/2

in the case of easy-axis anisotropy. This becomes obvious in the low-temperature

limit of the structure factor compared to results of a classical Neél state and in the

step signature of the magnetization, showing the initial polarization of a spin S=1/2,

respectively S=5/2 with adjacent ΔS = 1 excitations. This strong impact of even

small |D| is a direct consequence of the large spin magnitude entering the Hamiltonian
as square. In an attempt to fit the three parameters center-, ring-coupling and

single-ion anisotropy Jc , Jr , D of the Mn-based material by means of the experimental
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susceptibility provided by O. Waldmann, we narrowed the center- to ring-coupling ratio

down to 2 ≥ Jr/Jc ≥ 1 in combination with a small easy-plane anisotropy D=0.07K.
Furthermore our magnetization data showed the expected level crossing of higher total

spin S states with the ground state, leading to a step-like magnetization profile which

qualitatively explained observed periodic oscillations in magneto-torque measurements

in [30].

In chapter 4, we focused on dynamic properties of isotropic quantum spin chains

with spin S=1/2, respectively S=1. We have shown the fundamentally different

dynamic structure factors of these two systems and their evolution under different

temperatures and magnetic fields up to (and beyond) saturation field. While the

effects of temperature predominantly comes down to softening sharp structures into

a broad energy continuum which ultimately leads to very similar dynamic structure

factors of S=1/2 and S=1 for T ≥ J, the role of the magnetic field changes the

system’s dynamics completely. In the case of S=1/2 and longitudinal excitations, the

impact of a magnetic field was manifold. Firstly we found a strong concentration of

spectral weight at q → 0 and ω → 0, due to Szz(q, ω) being proportional to the square
of the magnetization at zero frequency which lead to an increased concentration of

weight into the static structure factor at q=0. Secondly, the spectrum developed

a gap at q = π with a field driven incommensurate mode moving from the zone

boundary to the center with qs = π(1− 2〈Sz〉). In the case of the transverse dynamic
structure factor, long wave-length excitations experience the Zeeman energy, which

lead to a spin gap of size B/J at q=0. Additionally, and as in the longitudinal case, an

incommensurate zero mode was observed. In the transverse case however, it developed

out of the zone center and moved to the zone boundary with qs = 2π〈Sz〉. At critical
magnetic fields the system is fully polarized at T=0. Consequently we found the

expected magnon cosine dispersion, however with a a nontrivial finite temperature

q-dependence which was explained by a model-calculation of two-magnon excitations

in a polarized background. Beyond the critical field the sharp magnon dispersion finally

became gapped while the finite temperature signature on the q-dependence persisted.

Coming from this gapped state, we showed a condensing of magnons upon decreasing

the magnetic field through the saturation field by means of a diverging NMR-rate

- interestingly however, the maximum of the rate was observed slightly below the

critical field, most likely due to thermal broadening of spectral features. The extracted

1/T1-rates as function of temperature and magnetic field were successfully compared

to NMR experiments on CuPzN by H. Kühne in [31, 259] for three different magnetic

fields with each having about 50 temperature points. This considerable numerical

effort was rewarded with excellent qualitative agreement of the three most significant

choices of the field: at essentially zero field we found 1/T1 to be largely proportional
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to the temperature as suggested by zero-field Luttinger liquid results (Korringa law).

At the critical field, we find a diverging rate at low temperatures as an indication for

the magnon excitations crossing the ground state. Finally, beyond the critical field, the

system becomes gapped, resulting in a vanishing 1/T1 rate once thermal excitations

freeze out. The shift of the rate’s maximum with increasing temperatures proved to

be consistent with the experimental data even on a quantitative level. To achieve best

agreement of experiment and theory, the longitudinal spin fluctuations were suppressed

by careful sample orientation and we adjusted the form factor to reflect the asymmetric

carbon nucleus position with respect to the Cu(II) ions. The results, published in [31],

were later elected as scientific highlight by the Los Alamos National High Magnetic

Field Laboratory [260] and received further attention as Editor’s Choice of Physica B

in march 2010 [259].

While the spin S=1/2 system starts with a gapless continuum of states at zero

magnetic field, the Haldane system displays a gapped excitation spectrum. The

particular form is divided into a sharp magnon-mode at large q-vectors with the

smallest gap Δ at exactly q = π while we found signs of a continuum for q ≤ π/3

with very low overall weight. We detailed the low-q behavior by looking at the eight

lowest q-vectors to confirm field theory and tDMRG predictions of a two-magnon

excitation with energy 2Δ and wave vectors π,−π. Additionally we found a secondary
peak at higher frequencies which is probably caused by higher magnon excitations.

The overall weight distribution of the spectrum reflects that of the static structure

factor with very low weight at the zone center, following its quadratic dependency with

respect to q. For the zone boundary, we identified the Haldane-gap and confirmed its

exponential opening with temperature, as suggested by other theories and experimental

data. Additionally, we extracted 1/T1-relaxation rates for each of the four evaluated

temperatures T/J ∈ {0.1, 0.25, 0.5, 1.0}, which clearly show an exponentially activated
form. It is interesting to note the origin of the weight contribution to the 1/T1 rate.

At high temperatures, intra-band excitations resulted in high spectral weight at the

zone center and likewise, by thermally populating the gap, high weight contribution

stem from the zone boundary as well. There is no contribution from intermediate wave

vectors. For lower temperatures, the gap opens and intra-band excitations freeze out,

suppressing the relaxation rate already at T/J = 0.1.

Upon applying a magnetic field, the transverse dynamic structure factor displayed a

linear closing of the Haldane-gap. After resolving the spectrum into S+S− and S−S+

contributions, we found the linear closing attributed to S+S− contributions while
S−S+ was linearly opening with the field. This behavior lead to a splitting of the sharp
magnon-dispersion at q = π with thermal smearing of the two sharp contributions. At

the zone center we found the expected linear opening of a gap, owing to the Zeeman
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energy as in the case of spin S=1/2. Both, the opening of a gap at q = 0 and the

closing of the gap at q = π, lead to an exponentially increased NMR-rate, driven

solely by spectral weight at the zone boundary. Therefor the weight distribution is

fundamentally different compared to that of the zero field temperature dependence

where zone center and zone boundary contributed nearly equally.

Beyond this first critical field Bc1, we found Luttinger liquid behavior in the dynamic

structure factor, conceptually equal to the region 0 ≤ B ≤ Bc of the spin S=1/2

system, with however very faint incommensurate Fermi vectors. Finally at saturation

field, the Haldane system is described by a sharp magnon cosine dispersion and we

find the very same q-dependence of the weight as for the S=1/2 systems which we

explained with higher-magnon excitations over a polarized background. To close both

sections, we assessed the quality of our analytic continuation by utilizing sum rules

for the static structure factor and the static susceptibility, as two quantities which

can be obtained by the QMC free of the analytic continuation. For both systems, we

proved excellent agreement for all evaluated temperatures and magnetic fields as all

comparisons were within QMC error bars.

On basis of the high-precision imaginary time QMC data evaluated for the isotropic

spin S=1/2 chain, we finally presented an excursion to spin transport properties by

supporting the claim of a diffusive channel in the regular part of the spin conductivity

[261] in section 4.3. Our analysis was based on an approximate expression for the

fourier transform of the retarded spin susceptibility χret(q, ω), given by bosonization

[32]. Instead of working in real space where the QMC is subject to errors introduced by

the analytic continuation, we transformed the susceptibility onto imaginary time χ(q, τ)

in order to compare with QMC free of the MaxEnt. On that basis, we performed fits

of the analytic results for the six lowest q-vectors with respect to three parameters:

the Luttinger parameter Kq, the spinon velocity vq and the scattering rate γq. For the

latter, we allowed three different choices, namely (i) γq,QMC as optimized by fitting,

(ii) γB taken from bosonization, and finally (iii) γq = 0. Our fit results demonstrated

clearly, that QMC is inconsistent with γq = 0 for both evaluated temperatures T/J =

0.1, 0.25 and that increasing γq significantly increases the quality of the fit up to a point

where the analytic form is identical to QMC within standard deviation 2σ for almost

all τ ∈ [0, β]. As consequence, our analysis opens up for the intriguing possibility of
a finite temperature dynamical spin conductivity which comprises both, a finite Drude

weight and a regular part with a very large mean free path at low temperatures. Besides

the clear inconsistency with γq = 0, we found that γq,QMC > γB, which could indicate

relevant corrections to diffusion. As consistency check, we related our fit parameters

to the isothermal susceptibility at q = 0 and compared with Bethe ansatz results from

[7]. Even though Kq is renormalized considerably, the fit parameters show excellent
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agreement with the BA results. As for the q-dependence of the fit parameters, we found

that Luttinger parameter and spin velocity are largely independent of q. The scattering

rate γq,QMC however showed a strong momentum dependence only for T/J = 0.1 which

may be related to on-setting finite size effects. Finally, we speculated on the line-shape

of the regular part of the conductivity on the imaginary frequency axis at the Matsubara

frequencies, which, despite the lack of a thorough error analysis of the fourier transform,

clearly discriminates between a conductivity with γ = 0 and one with γ = γq,QMC �= 0.
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[102] A. Klümper and D. C. Johnston, Phys. Rev. Lett. 84, 4701 (2000).

[103] W. Hiller et al., J. Am. Chem. Soc. 106, 329 (1984).

[104] R. B. Griffiths, Phys. Rev. 133, A768 (1964).

[105] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).

[106] X. Wang, S. Qin, and L. Yu, Phys. Rev. B 60, 14529 (1999).

[107] C. H. Weng, PhD thesis, Carnegie-Mellon University, Pittsburg, 1968.

[108] A. Meyer, A. Gleizes, J.-J. Girerd, M. Verdaguer, and O. Kahn, Inorg. Chem.

21, 1729 (1982).

[109] S. Eggert, I. Affleck, and M. Takahashi, Phys. Rev. Lett. 73, 332 (1994).

[110] E. Dagotto and T. M. Rice, Science 271, 618 (1996).

[111] E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999).

[112] E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45, 5744 (1992).

[113] I. Afflek, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Ref. Lett. 59, 799 (1987).

[114] T. Takeuchi et al., J. Phys. Soc. Jp. 61, 3255 (1998).
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[165] K. Fabricius, U. Löw, and J. Stolze, Phys. Rev. B 55, 5833 (1997).

[166] K. Fabricius and B. M. McCoy, Phys. Rev. B 57, 8340 (1998).

[167] F. Heidrich-Meisner, A. Honecker, D. C. Cabra, and W. Brenig, Phys. Rev. B

68, 134436 (2003).

[168] J. Sirker, Phys. Rev. B 73, 224424 (2006).

[169] M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

[170] J. Deisz, M. Jarrell, and D. L. Cox, Phys. Rev. B 42, 4869 (1990).

[171] J. Deisz, M. Jarrell, and D. L. Cox, Phys. Rev. B 48, 10227 (1993).

[172] O. A. Starykh, A. W. Sandvik, and R. R. P. Singh, Phys. Rev. B 55, 14953

(1997).

[173] I. Affleck, Phys. Rev. B 41, 6697 (1990).

[174] I. Affleck, Phys. Rev. B 43, 3215 (1991).

[175] E. S. Sorensen and I. Affleck, Phys. Rev. Lett. 71, 1633 (1993).

[176] A. Oosawa, H. A. Katori, and H. Tanaka, Phys. Rev. B 63, 134416 (2001).
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Phys. Rev. B 79, 214409 (2009).
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