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Zusammenfassung

In dieser Dissertation werden Methoden zur Segmentierung anatomischer Strukturen in Pla-

nungsbildern der Magnetresonanztomographie (MRT), sogenannten Localizer-Bildern, vor-

gestellt. Localizer sind schnelle MR-Scanprotokolle zur Untersuchungsplanung. Segmentie-

rungen anatomischer Strukturen aus diesen Bildern können für Anwendungen zur vollau-

tomatischen Untersuchungsplanung, z.B. Organlokalisierungen, Schichtpositionierungen, Se-

quenzanpassungen, etc. verwendet werden. Da Localizer-Bilder nicht hinsichtlich Bildqualität

sondern hinsichtlich Messzeit und Abdeckung optimiert sind, sind modellbasierte statistische

Verfahren für die Segmentierung vorteilhaft.

Zwei Methoden werden vorgestellt: Die erste ist eine Methode zur Rekonstruktion von Le-

berform, -position und -orientierung aus einer Serie von wenigen 2D-Planungsschichtbildern

mit großem Schichtabstand. Dazu wird ein Active Shape Model aus manuellen Lebersegmen-

tierungen von 3D Trainingsbildern erstellt, das die durchschnittliche Leberform und die Haupt-

komponenten seiner Varianz beschreibt. Korrespondierende Landmarkenpunkte auf der Ober-

fläche werden durch Remeshing mit Hilfe konformer Abbildungen in der sphärischen Domäne

initialisiert und verfeinert durch Optimierung eines Korrespondenzmaßes, welches auf Mini-

mum Description Length (MDL) basiert und die Kompaktheit des generierten statistischen

Modells beschreibt. Die Segmentierung der Leber aus den gestapelten 2D-Schichtbildern er-

folgt durch durch die Berechnung derjenigen Modellinstanz des Active Shape Models, welche

bestmöglich die Bilddaten beschreibt. Man erreicht dies durch iterative Berechnung optimaler

Verschiebungen der Landmarken. Die optimalen Verschiebungen beruhen auf Grauwertprofi-

len in den Bildern und einer normalisierten lokalen Statistik der Grauwertverteilungen in den

Trainingsbildern. Die Instanz des Active Shape Models, die die gefundenen Verschiebungen

der Landmarken am besten repräsentiert, wird durch eine Projektion auf den Linearraum des

Active Shape Models gefunden. Daraus erhält man eine gültige Modellinstanz, die die Ver-

schiebungen der Landmarken bestmöglich beschreibt.

Die Ergebnisse der Segmentierung aus generierten Localizer-Bildern werden mit den ma-

nuellen Segmentierungen mittels 4 Fehlermetriken verglichen. Die Ergebnisse zeigen, dass die

Methode gegenüber Lebersegmentierungen mittels Active Shape Models aus 3D Daten kon-

kurrenzfähig ist, wenn auch mit geringerer Präzision aufgrund der geringeren Bildqualität.

Die zweite Methode, die in dieser Dissertation vorgestellt wird, ist ein automatisches, ana-

tomisches Labeling oder eine Multiorgansegmentierung anatomischer Strukuturen in FastView-

Bildern. FastView ist ein modernes MR-Protokoll, welches 3D Localizer-Bilder produziert, in-

dem 2D-Schichten während kontinuierlichem Vorschub des Patiententisches gemessen werden.

Die Segmentierung basiert auf einem statistischen Atlas des menschlichen Körpers, der aus ei-

ner Gruppe repräsentativer FastView Datensätze gewonnen wird. Der Atlas enthält einerseits

ein statistisches Deformationsmodell, das verwendet werden kann, um unbekannte Datensätze

auf die durchschnittliche Körperform des Atlas zu verformen. Zusätzlich enthält der Atlas ein

statistisches Modell der Grauwertverteilungen, das verwendet werden kann, um gültige At-

lasbilder zu erzeugen. Beide statistischen Modelle können verwendet werden, um einen unbe-

kannten Datensatz auf den Atlas zu registrieren, indem die Modellinstanzen des Deformations-

feldes und des Atlas berechnet werden, welche die Ähnlichkeit zwischen dem Atlas und dem,

durch das Deformationsfeld verformten, unbekannten Bilddatensatz maximiert. Das Labeling

des unbekannten Datensatzes erhält man dann aus der Propagierung der anatomischen Labels



des Atlas auf den registrierten Datensatz. Da der Registrierungsprozeß die Optimierung einer

Multiparameter-Zielfunktion mit vielen Freiheitsgraden und die Berechnung ihrer Ableitun-

gen erfordert, und da jede Auswertung der Kostenfunktion eine 3D-Verformung der Eingabe

erfordert, müssen Strategien zur Verbesserung der Laufzeit in Betracht gezogen werden. Dazu

wurden das statistische Deformationsmodell und das statistische Grauwertmodell komplett auf

die GPU (Graphics Processing Unit) portiert, was die Berechnung der kompletten deformierba-

ren Registrierungen mit Grafikhardwarebeschleunigung erlaubt. Die Hardwarebeschleunigung

umfaßt somit die gesamte Berechnungskette der Registrierungen inklusive der Erzeugung der

Instanzen des Deformationsfeldes und der Grauwertverteilungen, welche die Auswertung der

linearen Modelle durch Matrixmultiplikationen und Vektoradditionen erfordert. Die Laufzeiten

des Registrierungsprozesses sind etwa 10-30s, was der Größenordnung der Dauer der Bildak-

quisition selbst entspricht. Diese Laufzeiten erlauben auch einen praktischen Einsatz in der

klinischen Routine.

Die Validierung der atlas-basierten Segmentierungen erfolgt durch manuelles Setzen korre-

spondierender Landmarken an definierbaren Punkten in den Eingabebildern und im Atlas. Die

Abweichungen der Landmarken im Atlas von den registrierten Landmarken im Bilddatensatz

werden als Fehlerkriterium für die Güte der Methode verwendet und mit der Reproduzierbar-

keit der manuellen Markierung von Landmarken verglichen.
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Abstract

This thesis presents methods for the segmentation of anatomical structures from magnetic res-

onance (MR) localizer images. Localizer images are obtained from fast pre-scan protocols and

are usually used for scan planning. Segmentations of anatomical structures from these images

can leverage applications in automated scan planning like organ localization, slice positioning

tasks, sequence adaptations, etc. Since localizer images are not optimized for image quality

but for scan time and scan range, statistical and model based approaches are preferred for the

segmentations.

Two methods are proposed: The first is a method for reconstructing liver shape, position

and orientation from a set of stacked sparse 2D localizer images. For this purpose an active

shape model, which represents the average liver shape and its major modes of statistical varia-

tion, is created from a set of liver segmentations from 3D training data images. Corresponding

landmark vertices on the surfaces are found by remeshing the surfaces using conformal map-

pings in the spherical domain and tuning of the correspondences by means of a measure based

on minimum description length (MDL) which describes the compactness of the model. Seg-

mentation of the liver from the stacked localizer image data is done by computing the model

instance of the active shape model which best fits the given image data. This is achieved by

iteratively computing optimal displacements of the landmark vertices based on image profiles

according to the statistics of local grey value appearance in the training image data. The in-

stance of the active shape model which best represents the displaced landmark vertices is found

by a projection to the linear space of the model. This yields the instance of the model which is

closest to the landmark displacements and ensures that the shape is valid.

The results of the segmentations from generated localizer images are compared to the

ground truths of the manual segmentations by comparing them according to four error met-

rics. The results show that the method can compete with standard 3D active shape model based

segmentation approaches, though with less precision due to lower input image quality.

The second method presented in this thesis is an automatic anatomical labeling or multi-

organ segmentation of anatomical structures from FastView images, which is a modern MR

imaging protocol producing 3D localizer images by acquiring 2D slices during continuous

movement of the patient table. The segmentation is based on a statistical atlas of the human

body created from an image data set of representative FastView images from a group of volun-

teers. The statistical atlas on the one hand consists of a statistical model of deformation, which

can be used to create valid instances of deformation fields to warp unseen image data sets to

the mean shape of the atlas. On the other hand, the atlas contains a statistical model of grey

value appearance, which can be used to create instances of atlas images with the mean shape

and valid grey value appearance. Both statistical models can be used to register an unseen data

set by finding the instances of the deformation and local model of appearance, which maximize

the similarity between the atlas with the grey values from the local model of appearance and the

unseen image, which is warped according to the deformation model. Propagating anatomical

labels from the atlas to the registered image then yields the anatomical labeling of the image

data. Since the registration process requires optimizing a multi-parameter cost function with

various degrees of freedom and computing its derivatives and since each evaluation of the cost

function requires a 3D image warp, performance speed-up strategies have to be considered. It

was decided to shift the statistical models of deformation and appearance completely to the



GPU (Graphics Processing Unit), which permits computing the complete non-rigid registra-

tions with GPU hardware acceleration, including the calculations of the instances of both the

deformation field and grey value appearance which require evaluating the linear models by

matrix multiplications and vector additions. The running times of the registration process are

about 10 to 30 seconds which is the same magnitude as the image acquisition itself. Running

times of this magnitude allow for practical usage of the method in clinical MR routine.

Validation of the atlas based segmentations is done by manually placing corresponding

landmarks at descernible points in the input FastView image data sets and the atlas. The dis-

placements between the landmarks in the registered data sets and the atlas are taken as an error

criterion for the exactness of the method and can be compared to the reproducibility of the

manual landmark placements.
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1
Introduction

1.1 Motivation

Automation and workflow improvements of magnetic resonance (MR) tomography examina-

tions become more and more important. With patient numbers increasing and reimbursement

rates being reduced, there is growing need for automation, simplicity and reproducibility of

MR examinations. As a matter of fact, the complexity, the lack of reproducibility and the long

examination times are among the main disadvantages of MR as an imaging modality in clini-

cal practice in comparison to other modalities like computed tomography despite all its other

advantages.

Automation and simplicity helps accelerating and standardizing examination processes and

reduces the need for highly trained staff to operate the scanners. Both of these factors lead to

a reduction of costs. The effects of shorter slot times have been studied in a variety of studies

like [JDBH07] and publications by [RSC02], [Ess00] or [WL01] . It is often also the only

solution to cope with increasing patient and case numbers [Yea07].

Increasing the reproducibility enhances the comparability of examinations of different in-

dividuals and follow-up examinations of identical individuals. Standardization neutralizes the

variability induced by different human operators. This can also lead to a significant gain in

quality because simplicity and standardization helps minimizing the likelihood of mistakes and

acquisition of useless images and data. Avoiding re-examinations and rescans also alleviates

the patients’ stress and discomfort.

Scan automation may include auto-align or positioning tasks, like automatic positioning

of slices, automatic adaptation of sequences and protocols, automatic hardware selection, etc.

to name but a few. Since MR is a non-invasive imaging modality and no long-term harmful

effects to patients undergoing MR exams are known, it is possible to acquire additional data

apart from the actual diagnostic images without ethical or regulatory objections. It is even pos-

sible to scan clinically irrelevant image data, which are later discarded. This opens up a variety

of possible applications by performing dedicated pre-scans and implementing post-processing

algorithms, e.g. for the automation of certain workflow steps in the MR examination work-

flow which are currently done manually. Scan planning and positioning of slices and ROIs are

examples of manual workflow steps that would benefit from algorithmic automation based on

processing of image data which are acquired using certain pre-scan protocols. The pre-scan

protocols which are used for scan planning and positioning purposes are also called scouts

or localizers. Protocols for the acquisition of localizer images are optimized with respect to
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different objectives than diagnostic images. Localizer protocols usually have short acquisition

times, large fields of view and moderate image quality. Often, the localizers only sparsely

cover the volume of interest, i.e. the volume is scanned in 2D slices with large gaps between

the slices. The general purpose of a localizer image series is to provide a large range of topo-

graphic overview of an individual’s anatomy within the shortest possible time. For automatic

positioning tasks, structural information has to be inferred from the localizer images, resp. the

structures have to be segmented automatically from the images. The goal is to establish spatial

correspondence in anatomical structures from one individual to another and equally important

for the follow-up case of one individual being scanned multiple times. Once the segmentations

have been calculated and the anatomical structures extracted, it is straightforward to find spa-

tially corresponding points, planes and slice positions, which are necessary for reproducible

positioning. As image quality can be poor in MR localizer images, fully automatic segmen-

tation can be challenging. For this reason, model and learning based approaches along with

statistical methods, which take prior knowledge of the structures to be segmented into account,

are most promising.

1.2 Contributions

This thesis presents two methods for the segmentation of anatomical structures from MR lo-

calizer images based on statistical models.

The first method uses a 3D active shape model to reconstruct liver position, orientation and

shape from a set of sparsely covering image slices. This can be used for scan automation tasks

like slice and navigator positioning and other applications that require 3D anatomical informa-

tion from localizer slice image data. The active shape model is created beforehand from a set

of 3D training data images by statistical analysis of the 3D liver surfaces obtained from manual

segmentations of the liver. The active shape model search algorithm then computes the most

probable position, orientation and shape for each individual being scanned given the sparsely

covering 2D image data of the individual. The contributions consist of the creation of the active

shape model from manual segmentations, including a solution to the correspondence problem

of the landmark vertices in 3D. This solution is based on remeshing and tuning the positions

of the corresponding landmarks by optimizing a compactness measure from information the-

ory based on minimum description length (MDL). For the segmentation resp. the active shape

model search, two strategies are proposed. The two strategies differ by the data structures and

comparison algorithms which are used as a local model of grey value appearance. The local

model of grey value appearance is necessary to quantify the quality of the segmentations by

establishing a correlation between the statistical shape model and the image data, i.e. how well

the model fits to the image data. The segmentation algorithm iteratively first searches for the

most probable landmark displacements of the surface of the active shape model. A subsequent

subspace shape model projection finds the most probable instance from the model space by

considering just a few hundred reliable vertex landmark displacements. This algorithm and the

results have been published in [FTS08b].

The purpose of the second method is a fully automatic labeling of anatomical structures

from a fast 3D whole-body localizer, the so called FastView imaging protocol. To this end, a

2
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statistical atlas is created consisting of a statistical model of deformation and a statistical model

of grey value appearance. The former is obtained from statistical analysis of the deformation

fields from non-rigid registrations of a set of representative training images to a reference im-

age. The latter is calculated by pixelwise statistical analysis of the normalized grey values

from the registered images. The organs and structures of interest are segmented in the atlas by

a human expert and the anatomical labels are assigned according to these segmentations. The

actual segmentation of an image from an individual is done by registering unseen image in-

stances to the atlas and propagating the anatomical labels from the atlas. A major contribution

is the complete implementation of the atlas and its statistical models on the graphics processing

unit (GPU), which provides a a huge gain in performance. All steps of the atlas based regis-

tration, i.e. the task of finding the instance of the atlas which is closest to the unseen image,

are computed using GPU based fragment shaders which benefit from the massive computation

power provided by modern GPUs. This algorithm and the results were published in [FTS08a].

1.3 Outline

The thesis is structured as follows: First, a short introduction into MR imaging is given with an

emphasis on the MR imaging techniques which are the basis for the scan protocols used in this

thesis. The purpose of this chapter is to make the reader familiar with the basic concepts and

terms of MR imaging in order to understand the possibilities and limitations, the strengths and

weaknesses also in comparison to other medical imaging modalities like computed tomography

from the point of view of a reader with a background in image post-processing.

The next chapter describes the algorithm and results for reconstructing liver shape and po-

sition from sparsely covering 2D MR slice image data. The first part of the chapter is dedicated

to the creation of a statistical surface model of the liver. The second part deals with the model

based segmentation guided by the active shape model.

The third chapter deals with the automatic labeling or multi-class segmentation of FastView

images using a statistical atlas. The first part of this chapter describes the creation of the atlas,

while the second part explains the segmentation method based on registering unseen data sets

to the atlas and propagating the labels from the atlas.

The thesis concludes with a summary and discussion of the methods described and provides

an outlook on possible future developments, applications and limitations.

3





2
MR Imaging

2.1 Introduction and History

This chapter provides a brief introduction into magnetic resonance imaging as a medical imag-

ing modality and as the basic technique used for the acquisition of the images for which the con-

cepts developed throughout this thesis are developed. The purpose of this chapter is twofold.

One the one hand the reader should be given a brief introduction into the basic concepts and

modern developments of magnetic resonance imaging (MRI or NMR1). On the other hand,

from a point of view of a reader with a background in image processing, it is important to be

aware of the possibilities and limitations of the MR image acquisition process. Often people

with profound knowledge in image processing make an enormous effort to come up with intri-

cate solutions for processing and analysis of MR images. However, tuning the acquisition side,

e.g. by making changes in the pulse sequence, the scanning parameters resp. protocol or the

image reconstruction from the raw data, the problems could be solved easily without sophis-

ticated post-processing algorithms. For example, the segmentation of a particular anatomical

structure may be impossible given a standard image contrast. By making use of another MR

imaging contrast, the segmentation can be done by a simple thresholding or windowing of the

grey values. It is therefore important in MR image processing to keep an eye on both the ac-

quisition and the processing of the images, the more so in the case of this thesis where steps

of human interaction the examination workflow should be automatized by means of image

processing algorithms.

Magnetic resonance imaging is a modality for in-vivo imaging of structures or functions

of the body. The term magnetic arises from its basic principle of the interaction of nuclear

magnetic spins with external magnetic fields. The external magnetic fields may be static or

varying over space and time. In the latter case they are also referred to as magnetic gradients

resp. as a sequence of gradients. The term resonance insinuates the interaction with external

radio frequency fields. In simple words, MR data represent the induction signal of macroscopic

magnetization of aligned nuclear spins in receiver coils.

The huge success of MRI is based on two facts: First, the ’non-invasive’ nature of mag-

netic fields allows for examinations without harming effects and without the use of ionizing

radiation. Second, MRI is extremely rich in information, as its data may not only deliver infor-

mation about the anatomical structure but also about physical properties like flow, temperature,

1nuclear magnetic resonance
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diffusion, etc. Physiological effects, like stimulation of brain activity as in fMRI [HBTV99]

can be observed, or even metabolic processes of certain parts of tissue, as in MR spectroscopy

applications.

Historically, the roots of NMR go back to the 1940s. Bloch [BHP46] and Purcell[PTP46]

described the quantum mechanical effects of nuclear spins in magnetic fields in 1946. They

managed to measure the signals of water and paraffin and were awarded the Nobel Prize for

their contributions in 1952. In 1973, Lauterbur [Lau73] and Mansfield [MK73] laid the foun-

dation for MR as an imaging technique by making spatial encoding possible, which 30 years

later resulted in being awarded the Nobel Prize for their breakthrough concepts.

The value of MRI as a diagnostic medical imaging modality was first discovered by Dama-

dian [Dam71]. He pointed out the value of MRI for medicine by examining that tumors can

have significant effects on the behavior of the magnetic signal, which means that lesions and

tumors may be detected from irregularities in the MR images.

2.2 Comparison to Computed Tomography

In common discussions, there is often a lot of confusion about the differences and similarities

of magnetic resonance imaging (MRI) and computed tomography (CT). Often the terms are

mixed up, and even if there is knowledge about the physical principles of the image acquisition

that the two modalities are based on, people are not familiar with the particularities of the two.

Often, it is assumed that the two modalities could produce equal images or that they could be

used interchangeably. As a matter of fact, this is not the case. This section will explain in short

terms the major particularities and differences between the two modalities.

The basic differences between MR and CT are best explained, if one considers the physical

principles that the image acquisition is based on. In MR, the interactions of the nuclear spins

with external magnetic fields and RF pulses are measured by detecting the resonance signal of

nuclei after excitation. CT images are reconstructed from multiple projection images, acquired

by a rotating X-Ray tube. Contrast in CT images is therefore mainly determined by the different

densities of the tissues with respect to the absorption of the X-rays. As for MR images, contrast

is determined by a whole set of parameters, like the density of protons in the tissue, their

relaxation times, chemical properties, etc. Depending on the scanning technique, it is also

possible to measure other physical values which may be related to physiological properties,

like flow or temperature, diffusion in diffusion weighted imaging, brain activity in functional

MRI, concentration of metabolites in chemical shift imaging, etc. [HBTV99].

In general, a CT exam is faster, cheaper and easier to perform than an MR exam. It is

usually the first imaging modality of choice for emergency patients with multiple traumata.

Because of its speed and high reproducibility it is also often and commonly used in many

clinical standard examination procedures. There is no general answer to the question which

modality is superior or produces better images. Both modalities have weaknesses and strengths.

Basically, MR is better for contrasts in soft tissue [DHL+89], whereas CT produces better

morphological contrasts. Therefore, MR is often superior for detection and identification of

tumors while CT is unrivaled in detecting bones and calcification.

Both modalities have certain hazards for patients being examined. Patients with metallic

6



2.3. BASIC PRINCIPLES

implants, cardiac pace makers or tattoos containing iron should not undergo MR examinations,

because movement of these objects caused by the magnetic fields or induction heating may

occur. Other hazards include claustrophobia from which patients being examined may suffer,

eventual peripheral nerve stimulation in the case of magnetic gradients being switched too

quickly and hyperthermia from absorption of radio frequency energy. Hyperthermia is avoided

by consideration of the specific absorption rate (SAR), which defines the ratio of temporal

increase in temperature caused by RF energy [DWRB02]. These calculations often require

complex calculations and modeling. Many of the other effects are avoided by hardware and

software limitations for the scanning parameters. Apart from that, no major negative long-term

effects have been observed for MR examinations in contrast to CT where ionizing radiation

is used, although there is a possibility of minimizing this effect by low-dose CT scans. As a

consequence of the fact that no long-term harming effects have been observed for MR, there are

no regulatory objections against acquiring additional MR images, which are of no diagnostic

value. This allows for setting up image processing applications which require additional special

images. Since these images are not further used, their contrast can be designed and optimized

for the need of the application or processing algorithm. For instance, this is the case for the

localizer images used in this thesis.

2.3 Basic Principles

2.3.1 Spins, Excitation and Relaxation

Spin Angular Moment

Depending on their composition of neutrons and protons, atom nuclei can have an intrinsic

spin angular moment or shorter a spin. In accordance with quantum theory, this spin can only

have discrete quantized values.

It turns out that nuclei with an impair number of protons and an impair number of neutrons

have integral spin values (e.g. deuterium 2H) and nuclei with with an even pair of protons and

an impair number of neutrons have half-integral spin values (like the most abundant isotope of

hydrogen 1H 2). Nuclei of atoms with even numbers of both protons and neutrons do not have

any value of spin at all. The latter type of atoms is not suitable for MRI.

The quantized angular spin moment can be expressed by the following equation:

L = �

√
I(I + 1)

�

�

�

�2.1

where L is the angular spin moment, � Planck’s constant3 divided by 2π and I the respective

integral or half-integral quantum number.

The nuclear spins cause a magnetic field of a strength B that is directly proportional to the

angular spin moment. The proportionality constant γ is called the gyromagnetic ratio, which

is a specific constant of every isotope.

2since 1H hydrogen nucleus consists of only one proton, it is common to use the expression proton equivalently
3
� = 1.0545Js

7
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�B = γ�L
�

�

�

�2.2

where �B is the magnetic field strength, γ the gyromagnetic ratio and �L the angular spin mo-

ment.

Because of its abundance in the human body and its high gyromagnetic ratio, 1H is the

most interesting isotope in terms of magnetic resonance imaging with a half-integral angular

spin moment of 1
2 .

Another phenomenon of quantum mechanics is that the expectation values of the angular

spin moments are not only quantized in their values but also in their orientations with respect

to a specific axis. It turns out that, if the quantum number of the angular spin moment is I ,

there exist 2I + 1 possibilities for the angular spin to orientate along a specific axis. These

orientations are characterized by the 2I + 1 values between −I and +I . These values are also

called the orientation quantum numbers.

For protons, for example, with an angular spin moment of 1
2 there exist two orientations

along a certain axis with the orientation quantum numbers −1
2 and 1

2 . For deuterium with an

angular spin moment of 1 there exist three orientations with the orientation quantum numbers

−1, 0 and +1, etc.

Interaction with an External Magnetic Field

Under normal conditions, the different states of orientation are energetically equivalent. Given

the presence of an external magnetic field, however, an effect called Zeeman interaction can

be observed: the energetic equivalence is split up into 2I + 1 different states, one for each

orientation quantum number along the axis defined by the direction of the given external mag-

netic field, as in figure 2.1 a): on the left side there is energetic equivalence, on the right side,

under the presence of the external magnetic field B0 the equivalence is split up in a state of

anti-parallel orientation and high energy and a state of parallel orientation and low energy. The

direction of the external magnetic field B0 defines the z-axis of the coordinate system.

In a classical description, under the presence of an external magnetic field, the angular mag-

netic moment rotates or precesses around the axis of the magnetic field. The axis of precession

is given by the direction of the z-axis as shown in figure 2.1. This phenomenon is caused by

the physical law of the constancy of an angular moment which is the same that makes a spinner

precess around the direction of gravity. The frequency of the precession is called the Larmor

frequency:

ωL =
γB0

2π

�

�

�

�2.3

The difference in energy between the two states of spins of the protons is directly pro-

portional to the Larmor frequency and therefore proportional to the external magnetic field as

well:

ΔE = hωL = �γB0

�

�

�

�2.4

where h is Planck’s constant, � = h
2π as before, B0 the magnetic field strength and ωL the

respective Larmor frequency.

8
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Figure 2.1: a) shows a Zeeman diagram. Whereas on the left side there is energetic equiva-

lence of the up and down spin states of a proton. On the right, situation under the presence

of an external magnetic field B0. The state with spin parallel to the external magnetic field

is energetically lower than the state anti-parallel. b) shows the orientation of the spins par-

allel (dashed) or anti-parallel (solid) to the external magnetic field B0. The direction of B0

determines the z-axis of the given coordinate frame.

In MR experiments the induction signal caused by precessing protons is measured. The

vast majority of the protons in biological tissues are bound either in water or in fat. Due

to their different chemical surroundings their Larmor frequencies differ by a small value. This

difference is called the chemical shift and can be a source for artifacts as section 2.5.6 explains.

Macroscopic Description and MR Signal

Because of the energy difference between the two states, they are not occupied equally by the

protons. The occupation difference can be quantized by a result from statistical thermodynam-

ics in the so called Boltzmann equation:

Nupper

Nlower
= e−

ΔE
kT

�

�

�

�2.5

In this equation Nupper and Nlower describe the number of nuclei in the upper respec-

tively lower level of energy. ΔE describes the energy difference between the states. T is the

temperature and k the Boltzmann constant4.

At room temperature of 293 K and a magnetic field strength B of 1 Tesla there is an excess

of 1 : 106 nuclei in the lower state in comparison to the upper state. To give an idea, in a probe

of 9 g water containing roughly 6 · 1023 protons, this means 6 · 1017 protons. This is enough to

4k = 1.3806 J
K
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observe a macroscopic net magnetization of the tissue under influence of the external magnetic

field: since more nuclei have their spins oriented parallel to external magnetic field than in

the opposite direction, the tissue has experienced a net magnetization in the direction of the

external magnetic field. That is the macroscopic description which is the overall vectorial sum

of all nuclear magnetic moments. The stronger the basic magnetic field, the larger the excess

of magnetization. Most modern clinical MR systems have magnetic fields of 1.5 or 3 Tesla.

However, there are also research systems with higher basic magnetic fields.

As the spins of the nuclei precess incoherently, their phases sum up to 0, so there is no

macroscopic net magnetization in a plane perpendicular to the basic magnetic field. As the B0

direction is the z axis, this perpendicular plane is called the transversal plane or the xy-plane.

If all nuclei were in phase, a net magnetization in the xy-plane precessing around the z-axis

could be observed. The next section shows how phase coherence and net magnetization in the

xy-plane can be achieved by means of RF pulses.

The measured signal in an MR experiment stems from the detection of the electromotive

force induced by the precessing magnetization. As the receiver coils are aligned perpendicular

to the xy-plane, the transversal net magnetization Mxy is the one which is measured as a com-

plex MR signal with the x component being the real and the y component being the imaginary

part.

RF Pulses

An RF pulse or simply pulse can be described as an electro-magnetic wave with periodic mag-

netic content B1, interfering with the net magnetization M and causing a rotation of the net

magnetization. The angle of the rotation of the magnetization is determined by the length, the

strength and the bandwidth of the pulse. The rotation axis is determined by the directions of

B0 and B1.

For example, a 90◦ pulse causes the net magnetization in z-direction to rotate into the xy-

plane, as delineated in figure 2.2. In the same way, other pulses, for example 180◦ pulses can

be applied, which cause the z magnetization to be inverted into -z direction.

After the application of the pulse the protons will gradually return to the equilibrium state,

which is a net magnetization in z direction, in the same way that a ball positioned at a steep hill

rolls downhill towards the lowest state of energy. This phenomenon is called relaxation and

has various reasons, among them the tendency for energy stability. The process of applying a

pulse to achieve a higher energetic state by rotating the net magnetization is called excitation.

Spin Lattice Relaxation

Spin lattice relaxation or longitudinal relaxation is the process in which macroscopic net mag-

netization along the z axis is restored. It is an enthalpy driven process, and it can be described

by an exponential decay:

Mz(t) = Mz0 · e−
t
T1

�

�

�

�2.6

Mz(t) is the net magnetization in z direction after time t. Mz0 is the net magnetization in z

direction before the experiment starts at t = 0. T1 is defined as the time needed by the system

10
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Figure 2.2: The effect of a 90◦ RF-pulse on net magnetization M. The direction of M is rotated

according to the rotation matrix R perpendicular to B0 and the rotation axis. R is defined

by the length and magnitude of the pulse. In this case it is a 90◦ rotation. The rotated net

magnetization M ′ keeps precessing around the z-axis.

to recover all but 1/e of the original net magnetization in z direction.

Considering T1 relaxation is very important to understand the effects of subsequent pulse

application experiments. If the delay time between two pulses is smaller than 3T1, which

normally is the case, it is insufficient for the tissue to recover all its initial z magnetization.

Therefore following pulses will result in considerably less net absorption and less measurable

signal. T1 depends on the type of tissue and its composition of fat and water but also on certain

extrinsic factors. T1 can be measured using the inversion recovery experiment [HBTV99].

Typical values of T1 for biological tissues are typically in the range of seconds.

Spin Spin Relaxation

Spin spin relaxation or transversal relaxation is an entropy driven process in contrast to longi-

tudinal relaxation. Entropy is a measure of disorder of a system and according to the second

fundamental law of thermodynamics, entropy in a closed system increases steadily towards a

maximum value. After the application of the pulse and the rotation of net magnetization into

the xy-plane all precessing protons are in phase, which corresponds to a high state of order.

As time elapses and the protons precess according to their Larmor frequencies this coherence

of phases gradually gets lost as the state of high order decreases. Eventually, all protons will

return to be out of phase. This state causes zero net magnetization because the vectors in the

transversal xy-plane sum up to 0.

Mxy(t) = Mxy0 · e−
t
T2

�

�

�

�2.7

where Mxy is the net magnetization in the xy-plane immediately after the application of the

pulse and T2 the time after which the net magnetization has decreased to 1/e of its initial value.

The value of T2 also depends on the type of tissue and additional extrinsic factors. Typ-

ically, liquids have small values of T2, while solids exhibit long T2 times. This makes liquid

structures appear bright in T2 weighted images.

11
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In reality the decay of the signal is stronger than only the thermodynamic effect T2 could

explain. There is also a loss of transversal magnetization due to external effects like the in-

homogeneity of the basic magnetic field caused by the probe. Both effects are combined to a

constant T ∗
2 .

T2 and T ∗
2 can be measured using the spin echo experiment [HBTV99]. T2 values are

typically in the range of tens of milliseconds.

1

T ∗
2

=
1

T2
+

1

T ′
2

�

�

�

�2.8

Contrast Agents

A boost in signal intensity can be achieved if contrast agents are applied to a patient being

examined. Usually, organic gadolinium (Gd) complexes and compounds are injected. These

agents have T1 and often also T2 shortening effects, resulting in a massive increase in signal

due to the shortened relaxation times. This makes organs or vessels containing the contrast

agent “stand out” against other structures that do no contain these agents [HBTV99].

2.3.2 Spatial Encoding

Magnetic Gradients

The former sections described a lot about nuclei, spins and their interaction with magnetic

fields. In order to obtain images, information about the spatial distribution of the nuclei has

to be inferred. Spatial information can be deduced from the Larmor precessing frequencies

by using a magnetic gradient G as proposed by Lauterbur [Lau73] and Mansfield [MK73].

Formally, the gradient is a magnetic field varying over space. It is preferable to use linear

gradients.

G =
∂B

∂x

�

�

�

�2.9

where G is the gradient, B the magnetic field strength and x a measure in a spatial dimension.

The application of a gradient results in a spatial dependence of the external magnetic field and

of the Larmor frequency of the precessing protons. Figure 2.3 a) shows the principle of spatial

encoding.

ωL(xi) = γ(B0 +G · xi)
�

�

�

�2.10

ωL(xi) is the Larmor frequency of a proton at position xi, B0 the basic magnetic field and G
the gradient applied.

Equation 2.10 states that each proton resonates at a unique frequency which is defined by

its spatial position within the gradient field.

12
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2.3.3 Effective Spin Density and k-Space Formalism

As described before, the MR signal is measured as the electromotive force induced by precess-

ing net magnetization. The image is obtained by converting the MR signal s to a spatial spin

density ρ(�r), where �r is a spatial position within the probe. It can be shown that the following

relation holds [HBTV99]:

s(�k) ∝
∫

d3�rρ(�r)e−i2π�k�r
�

�

�

�2.11

where �k(t) is a function of time and often called k-space. �k itself is defined in the following

way as the value to which the integral of all gradients over time sums up:

�k(t) = γ

∫ t

0
dτG(τ)

�

�

�

�2.12

The effect of the temporal variation of G accounts for a phase difference in the precessing

protons depending on their positions. This becomes clearer if a look at figure 2.3 b) is taken,

which presents a 2D MR imaging example.
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a) b)

Figure 2.3: a) shows how magnetic gradients contribute to spatial resolution. The magnetic

field with a constant gradient G varies over the spatial domain s. The Larmor frequencies at

positions of higher magnetic field strength are slightly higher than at positions of lower mag-

netic field strengths.

b) shows the relation of gradients over time and the respective positions in k-space. The cor-

responding points are connected by dotted arrows. The position at time ti is defined by the

integral over all gradients applied for t < ti. This yields the trajectory indicated by the dashed

grey arrows. Between t0 and t1 negative x and negative y gradients are applied, followed by a

positive x gradient.

Two things have to be kept in mind from the latter two equations: First, the signal s(�k)
is the Fourier transform of the spin density of the sample. This means that after collecting all

sample data from k-space, one can reconstruct ρ(�r) from s(�k) by an inverse Fourier transform

as follows:

ρ(�r) ∝
∫

d�ks(�k)e+i2π�k�r
�

�

�

�2.13
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The second thing to memorize is that the gradients are used to navigate through k-space

according to equation 2.12 where G denotes speed and direction. For being at a certain spot
�k′(t′) at time t′ it has to be made sure that the gradients G(t) for t < t′ are selected in a suitable

way such that one ends up in �k′. Usually, the gradients are selected in a way that ensures a

desired trajectory in k-space. Mostly, the trajectories are defined to cover the portion of k-space

which is necessary to reconstruct an image.

In a standard 2D MR imaging sequence, the gradients can be separated into 3 components:

a slice selection gradient, that ensures that during excitation only nuclei with a certain range of

Larmor frequencies are excited, a readout gradient, which is applied while data are sampled,

and the phase-encoding gradient which is applied between each two readout steps. The direc-

tions which correspond to the latter two gradients are also referred to as the readout direction

and the phase-encoding direction.

2.4 Sequence Families

A temporal succession of gradients, pulses and readouts, as described before, is called a “pulse

sequence” or shorter “sequence” of an MR imaging experiment. Based on the primary order

of RF pulses and gradient switches, the sequences can be classified into sequence families that

share a common name and paradigm. The parameters of a sequence, like the times between

pulses and gradients, the gradient strength, etc, are usually not specified or only limited to

certain bounds or ranges. For an actual scan with a given sequence, a specific parameter setting

must be defined. The combination of the sequence and a parameter setting are called an MR

protocol.

The simplest sequence is the one for measuring the free induction decay (FID). Other

common sequence families are the spin echo sequences and the gradient echo sequences.

2.4.1 FID sequence

The FID sequence experiment is the most simple of all sequences. It consists of just one RF

pulse, followed by a sampling phase. This is repeated after a time TR. The signal corresponds

to the overlay of damped complex exponentials. The inverse Fourier transform of the signal

generated by this sequence, yields the spectrum of Larmor frequencies contained in the probe.

2.4.2 Spin Echo Sequence

The spin-echo sequence is one of the most important ones in MRI routine. Depending on the

choice of the parameters TE and TR, contrast variations from T1 to T2 can be achieved. Most

importantly, spin echo sequences are capable of producing pure T2 weighted contrast without

T ∗
2 effects. The spin-echo sequence consists of the following phases:

1. application of a 90◦ pulse

2. short delay of time τ = TE/2

3. application of the readout gradient Gx and the phase-encoding gradient Gy for a time tg

14
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4. application of a 180◦ pulse

5. second delay of time τ = TE/2

6. application of the readout gradient Gx and sampling for a time tg

The effect of this pulse sequence experiment is the following (see figure 2.4): by appli-

cation of the 90◦ pulse net magnetization is rotated from the z-axis into the xy-plane. At this

moment all precessing protons are in phase as shown in figure 2.4 a). During the following

delay time, protons lose their phase coherence because of spin spin interactions of local field

inhomogeneities. Fast precessing protons rush ahead, slow precessing ones lag behind. After

the delay TE/2 each proton i has a phase of ωLiTE/2 (figure 2.4 b)). The application of the

180◦ pulse inverts this phase to φ − ωLiTE/2, which means that now the slowest protons are

in front and the fastest behind, as in figure 2.4 c). Allowing TE/2 to elapse again, causes all

protons to focus again at the phase of φ, as figure 2.4 d) shows. This is called the echo of the

original signal.

x

y

z

x

y

z

x

y

z

x

y

z

a) b) c) d)

Figure 2.4:

a) after phase 1

b) after phase 2, fast precessing protons dotted, slow ones dashed

c) after phase 3

d) after another elapse of TE/2 the echo has formed

2.4.3 Gradient Echo Sequence

The gradient echo is another important sequence in clinical practice. First, there is an initial

pulse, that can be a 90◦ pulse but the flip angle can also be smaller. This is followed by a

phase-encoding gradient and a defocusing gradient, making nuclei at higher gradient fields

rush ahead, while those at the smaller gradient field lag behind. Instead of refocusing the spins

by a 180◦ pulse as in the spin echo sequence, in a gradient echo sequence this is done by first

applying an inverse re-phasing gradient. Spins that have rushed ahead during the de-phasing

phase are then refocused. So the entire sequence can be characterized in the following way:

1. application of a 90◦ pulse

2. application of the de-phasing readout gradient −Gx and the phase-encoding gradient Gy

for a time τ
2
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3. application of the re-phasing readout gradient Gx and sampling for a time τ

2.4.4 Contrast, Resolution, SNR and the Relations

In order to obtain an optimal result from an MR examination a multitude of parameters of the

MR imaging sequences must be considered. Since standardization in contrast to CT is diffi-

cult, there no set of parameters that produces the “best” images. Hence, choosing the optimal

parameters for the acquisition of an MR image is a difficult task that strongly depends on the

requirements. It turns out that there are three major objectives in an MR exam. The three

objectives cannot be optimized simultaneously and they are not independent but correlated. So

for each examination a tradeoff has to be made that yields the best result for the given setting.

The three major objectives are: Maximizing the signal-to-noise-ratio (SNR), maximizing the

resolution and minimizing the scan time. Figure 2.6 shows the triangle with the three objec-

tives.

For an emergency patient, for example, a fast imaging sequence would be preferred, while

more noise, respectively less resolution would be acceptable. For tumor screening however,

the highest resolution is desirable while scan time is of minor importance.

As a rule of thumb, for a fixed magnetic field strength B0, the following relations hold:

SNR ∝ VV oxel ∝ Resolution−3
�

�

�

�2.14

where VV oxel is the volume of one voxel. The power of three applies to isotropic 3D acquisi-

tions. In other cases, the dimensions can be treated accordingly.

SNR ∝
√

TScan

�

�

�

�2.15

where the TScan is the total time of scanning consisting of the complete time, during which data

are sampled. The scan time is directly proportional to the number of sequence cycle repetitions

and to the repetition time of each cycle during which data are sampled.

Scan Time

Scan time is an important objective in MR imaging for two reasons. On the one hand, the

longer the scan time, the more discomfort is imposed on the patient, which may in turn affect

the patient’s willingness and ability for cooperation. On the other hand, longer scan times mean

longer examination slots and less scanner utilization. Increasing the utilization of a scanner is

an important issue, if the huge costs for investment and running expenses of an MR imaging

device are considered.

As mentioned before, the scan time is mainly determined by the number of sequence rep-

etition cycles, which is given by the number of phase encoding steps resp. resolution in phase

encoding direction, and the repetition time TR of the cycles themselves. The number of se-

quence repetitions is the product of the number of slices NZ , the number of phase encoding

steps NPE and the number of averages Navg per cycle.

TScan = NZNPENavgTR

�

�

�

�2.16
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Figure 2.5: Sequence diagrams of a) the FID sequence experiment, b) a 2D spin echo experi-

ment and c) a 2D gradient echo experiment.

The horizontal axis of the sequence diagrams shows the time domain. Sequence diagrams in-

dicate how and at which time point gradients are switched on and off, RF pulses are applied

and the sampling of values takes place. The sampling of data is also called ADC time.
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SNR

Scan Time Resolution

Figure 2.6: The triangle of the three major objectives in an MR exam.

The easiest way of reducing TScan is to reduce the number of averages to 1, which causes

a loss in SNR though. Another way is to decrease TR. This is not always possible though, be-

cause TR is determined by factors that may be beyond the operator’s influence, like relaxation

times, or a fixed time for TE needed for a certain contrast, etc.

A huge number of approaches for decreasing scan time focuses on reducing the number

of phase encoding steps NPE . This can either be achieved by redesigning the sequences in a

way that less phase encoding lines are needed. Multi echo sequences like turbo spin echo for

example differ from the original sequences by the fact that multiple phase encoding steps are

sampled after one excitation. In EPI sequences or HASTE sequences, all phase encoding steps

are done after a single excitation [HBTV99]. As a general rule, however, the more fast imaging

techniques are used, the higher the probability of image artifacts.

Other approaches like steady-state sequences or FLASH techniques have also reduced

scanning time significantly but are based on different premises. A powerful concept for fast

MR imaging that emerged in recent years is parallel imaging. The key idea in parallel imaging

is to reduce the number of phase encoding steps by omitting a fraction of them. Missing infor-

mation can for instance be recovered by collecting the data using multiple receiver coils and

knowledge of their sensitivity profiles. A more detailed description of parallel imaging can be

found in section 2.5.4.

Resolution

From equation 2.14 one can conclude that resolution has a strong influence on the SNR ratio.

However, if resolution is smaller than a threshold, small objects may not be distinguishable

from the surrounding any more. To be able to detect tiny lesions, the resolution of the image

should exceed a certain threshold. This can be best explained by illustrating the effects of the

resolution during image reconstruction. If the resolution is chosen to be Δx = L
N , where L is

the field of view (FoV) of the image and N the number of samples in a given dimension, the

following effect on the image quality can be deduced: As the samples are taken in the inverse

k-space domain, this transforms to Δx = 1
NΔk = 1

W . W is called the sampling window. It

corresponds to the range of frequencies in the k-space domain that are taken into account for

the image reconstruction. This is equivalent to a multiplication with a boxcar or rectangular

function in the frequency domain. According to the convolution theorem [HBTV99], in the
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a) b)

Figure 2.7: This figure shows a schematic example of aliasing. In a) the FoV is larger than the

object scanned. In b) the FoV is smaller. Aliasing occurs by a wrap around of the outer parts

of the image folding in on the other side.

spatial image domain, this results in a convolution of the image data with the point spread

function of the boxcar. A point spread function is defined as the response of an imaging system

to a point source or point object [HBTV99].

The point spread function of the boxcar is its corresponding Fourier pair, the sinc function
sin(x)

x . The period of the point spread function decreases with increasing resolution, so the

image appears to be less blurred, if the sampling window W resp. N are large.

A different reason for maintaining a minimum resolution arises from the fact, that the

samples measured in k-space with a resolution of Δk between each two of them are the Fourier

transform of the actual spin densities ρ(x). Due to the periodicity of the discrete inverse Fourier

transform, it turns out that the following spin densities are equal [HBTV99]:

ρ(x) = ρ(x) +
1

Δk

�

�

�

�2.17

1
Δk = L is the FoV. This measure delineates the aperture of the object being scanned in

which the spin densities can be assigned to different locations. If now for some reason L is

chosen to be smaller than the size of the object A, then consequently Δk would be larger than
1
A , thus causing the period in 2.17 to become smaller than the object. This means that parts

of the object outside the FoV would be wrapped around appearing on the opposite side of the

image. This phenomenon is called aliasing and is caused by undersampling. Figure 2.7 shows

an aliasing example caused by a FoV smaller than the object.

Another source of artifacts in MR images is, that if the sampling window W is chosen

too small, big steps in intensity in the image may not be reconstructed correctly but instead

an overshoot and undershoot in intensity can be observed. The effect is called Gibbs ring-

ing [HBTV99]. It is a direct consequence of the Fourier basis which is the canonical repre-

sentation of the MR data. Although the effect may be weakened if a Hanning filter with an

apodizing effect is applied to the raw data, it can still be a problem.

Another important problem arising from too small resolutions and which can be observed
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above all in slice selection direction is the partial volume effect. This is caused if slices are

chosen so thick that they contain various tissues. The reconstructed spin density is then a linear

combination of the spin densities of the separate tissues. Partial volume effects lead to blurred

images with weak edges although the in-plane resolution may seem adequate. A common

technique in MR imaging is to work with high in-plane resolutions and compensate for the loss

in SNR by extending the slice thickness. Thus, particularly anisotropic voxels are obtained,

which are prone to partial volume effects.

So obviously, there are many reasons for increasing resolution, however, as it has an influ-

ence on the SNR, a tradeoff has to be made. Increasing resolution, at least in phase encoding

direction, also has a direct influence on scan time.

SNR

The signal-to-noise ratio or SNR is the most important measure concerning MR image quality.

It makes a quantitative statement on how much of the scanned signal which is assigned to a

voxel is caused by noise. If the SNR is not high enough, an object may become indistinguish-

able from the background, so that maybe a lesion cannot be distinguished from the surrounding

tissue. It is evident that a minimum SNR is required for a reliable diagnosis from an MR im-

age. A shortcoming in MRI is that the SNR cannot be determined in absolute values, since

the values of the voxels have no absolute but only relative meaning. Therefore only relative

changes of the SNR can be quantified.

As stated before, the SNR depends on the resolution, the imaging time and the magnetic

field strength B0. At higher field strengths, the SNR is almost proportional to B0. This gain

in SNR can be used to increase resolution, however, it has to be kept in mind that other MR

imaging factors also depend on B0 so that not all sequences show better results if they are run

at higher fields. The receiver bandwidth, i.e. the strength of the readout gradient, also has an

effect on the SNR ratio. For example, more noise is collected if a larger bandwidth is chosen.

Contrast

The term contrast refers to a difference in visual properties that makes an object distinguishable

from others. According to Michelson [Mic27], contrast between two objects A and B is the

relative or absolute difference in signal intensity between the two objects.

CAB = SA − SB

�

�

�

�2.18

In the case of a gradient echo experiment with a flip angle of 90◦ as described before, this

definition converts to the following equation [HBTV99]

CAB = SA(TE)− SB(TE) = ρ0,A(1− e
− TR

T1,A )e
− TE

T∗
2,A − ρ0,B(1− e

− TR
T1,B )e

− TE
T∗
2,B

�

�

�

�2.19

where ρ0,XY is the spin density of tissue X , T1,X the T1 relaxation time of tissue X and

so on. The difference in signal between the two tissues is then a function of the parameters TR

and TE . The difference in signal is directly proportional to the spin densities of the respective
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tissues. The effects of the loss of signal due to spin-lattice relaxation, as described before,

account for the first exponential term. The entropy effects caused by the spin-spin relaxation

are responsible for the second exponential term.

Several special cases can be derived from this equation:

1. Proton Density Weighting:

If TE << T ∗
2,A and TR >> T1 equation 2.19 can be written like this:

CAB = SA(TE)− SB(TE) = ρ0,A − ρ0,B
�

�

�

�2.20

This special case is called proton density weighting because the contrast in the image is

mainly determined by differences in spin density of the different tissues. Figure 2.8 c)

shows an example of a proton density weighted scan.

2. T1 Weighting:

If only TE << T ∗
2,A equation 2.19 can be simplified like:

CAB = SA(TE)− SB(TE) = ρ0,A(1− e
− TR

T1,A )− ρ0,B(1− e
− TR

T1,B )

= (ρ0,A − ρ0,B)− (ρ0,A(e
− TR

T1,A )− ρ0,B(e
− TR

T1,B ))
�

�

�

�2.21

This contrast is called the T1 weighting because the differences in signal are mainly

determined by the different values of T1 of the tissues A and B. See figure 2.8 a) for an

example of a T1 weighted scan.

3. T2 Weighting:

If TR >> T1 and TE in the magnitude of T ∗
2 we get T ∗

2 weighting, with an example

shown in figure 2.8 b):

CAB = SA(TE)− SB(TE) = ρ0,Ae
− TE

T∗
2,A − ρ0,Be

− TE
T∗
2,B

�

�

�

�2.22

So, for the gradient echo sequence with flip angles smaller than 90◦ contrast is influenced

by the choice of the parameters TE and TR. Depending on the purpose of an examination, the

desired contrast can be determined. From the upper equations, also optimal parameter settings

for differentiating tissue A from tissue B can be derived by computing the derivatives with

respect to TR or TE , if the relaxation times T1 resp. T2 are known.

Similar observations, though not that straightforward, hold for other types of sequences.

However, by choosing TE and TR to generate a desired contrast, a lower bound for the scan

time is already defined since the latter two parameters have a direct influence on the time

needed for one scan cycle.

From figure 2.8 it can be concluded that small changes in the parameter settings of the

sequences, cause images to appear with completely different contrasts. Liquids like the cere-

brospinal fluid for example, which fills the ventricular system of the brain, show low signal

(dark spots) in T1 weighted scans as in a) but high signal (bright spots) in T2 weighted images

like b).
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a) b) c)

Figure 2.8: Similar head slices scanned at different contrast. a) shows an image of T1 weighted

MP-RAGE scan, b) is a T2 weighted turbo spin echo and in c) a proton density weighted slice

is shown.

2.5 Fast MR Imaging

After giving a general introduction into the concepts of MR image acquisition, this section

is dedicated to the methods and techniques for making an acquisition fast. Since this thesis

mainly deals with methods for extracting information from fast pre-scans, the focus on the MR

image acquisition side is to make the pre-scans really fast, and be more generous in terms of

resolution and SNR. Pre-scan images like localizers are images that are used for orientation

and positioning purposes but not for diagnosis, so the described shortcomings can be accepted.

2.5.1 Multi Echo Sequences

In multi echo sequences, n phase encoding steps are sampled in k-space after the excitation of

a single pulse. According to equation 2.16 this causes a reduction of scan time by the factor

n. In the extreme cases of EPI or HASTE sequences, all phase encoding steps are done after a

single excitation. These sequences are very fast but have shortcomings in image quality. They

often show artifacts that result from a variety of reasons, like motion, etc. As a rule of thumb

the more of the acceleration techniques are used, the higher the probability of imaging artifacts.

2.5.2 Half-Fourier-Techniques

The idea for Half-Fourier techniques stems from the observation of symmetry that is inherent in

k-space data. It is a well known property of Fourier transformations that the transformation of a

real object (which means that it has 0 content for all imaginary parts in complex representation),

is conjugate symmetric with respect to the origin. This means that s(�k) = s(−�k)∗ where the
∗ denotes the complex conjugate value. As all scanned objects are real, in theory, it would

be sufficient to measure only one half of the k-space and extrapolate the rest to the data by

complex conjugation. However, as information content in the center of k-space is higher, since

the values belonging to low frequencies are found there, usually a certain fraction more than
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2.5.3 Steady-State Sequences, FLASH

Steady-state imaging is a technique that evolutionarized MR imaging, when conventional scan-

ning methods reached their limits with TR times becoming shorter and shorter and reaching the

ranges of T1 and T2 of various tissues. The key idea in steady-state imaging is to apply a new

RF pulse long before the transversal magnetization has recovered its original state. This way,

only the longitudinal magnetization that has already recovered is flipped into to transversal

plane by the new pulse. If this experiment is repeated various times, the transversal magneti-

zation gradually approaches a steady state where relaxation and newly flipped magnetization

are at an equilibrium. This allows for very short TR times and thus greatly reduces acquisition

times, which leverages fast imaging of organs where performance is crucial like breath hold

methods of the abdomen or cardiac imaging. The approach to the steady-state depends on the

relaxation times of the tissues, on the repetition time TR and also on the flip angle θ caused

by the pulse. The signal and contrast depends on all of these parameters. A perfect flip angle

θErnst, which maximizes transversal magnetization and therefore also the MR signal, can be

calculated if the upper constants and parameters are known. The optimal angle is called the

Ernst angle [HBTV99].

Steady-state imaging methods are classified into coherent techniques, with the abbrevia-

tion SSC, or incoherent techniques also referred to as SSI [HBTV99]. The main difference is

the way in which the transversal magnetization is treated between two consecutive RF pulses.

Both methods entail different magnetization responses and therefore different contrasts. While

the incoherent steady-state approaches produce spin density or T1-weighted images, the coher-

ent state produces a T1/T2 weighting. Whereas in the case of coherent steady state imaging,

the transversal magnetization is left untouched, in the incoherent state the transversal magneti-

zation is destroyed or spoilt. Spoiling can either be done by applying gradients that effectively

defocus the spins in the xy-plane or by applying spoiling RF pulses.

One of the first steady-state techniques and one of the most successful sequences overall

was FLASH [HFM+86]. This is an incoherent steady-state gradient echo sequence with gra-

dient spoiling of the transverse magnetization. The FLASH sequence was the basis of many

sequences that were used for image acquisition in this thesis.

2.5.4 Parallel Imaging

Parallel imaging has emerged during the past couple of years. The gain in scan time by a factor

f is achieved by scanning only every fth line in phase encoding direction. Parallel imaging

methods generally need multiple receiver coils collecting data simultaneously resp. in parallel.

Since each receiver coil has a different sensitivity profile, which means that the signal from one

spatial sample causes different signal intensities in each coil, missing data can be reconstructed

by making use of the additional information content that is given by multiple coils and multiple

sensitivity profiles

In SMASH [SM97] or GRAPPA methods, the holes caused by the missing lines in k-space

are filled by using basis sets of spatial harmonics that are generated from the sensitivity profiles.
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This procedure allows for smooth interpolation of the missing data. In short terms, in SMASH

the complete k-space data is restored prior to the Fourier transform.
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In the SENSE method [PWSB99], aliased images are reconstructed and the original image

is obtained by inverting the system of linear combinations given by the weightings from the

sensitivity profiles. As the field of view of the acquisition remains unchanged, this procedure

results in an undersampling of the data and thus overfolding respectively aliasing. This means

that each voxel contains information which is a linear combination of the intensities from

various spatial locations. However, by using multiple receiver coils, with each coil having a

particular sensitivity profile for a given spatial location, which can be determined by a pre-

scan, this overfolding can be undone. Using the sensitivity profiles, the linear coefficients of

the aliased image can be determined and the original non-aliased image can be reconstructed.

Figure 2.9 shows the single steps of an acquisition sped up by SENSE.

As a matter of fact, the number of coils in phase encoding direction must exceed the factor

f of reduction of the number of phase encoding steps.

Coil 1
Coil 2

Coil 1Coil 1Coil 1

Coil 2Coil 2

Coil 1

Coil 2

a) b) c) d)

Figure 2.9: This figure shows a schematic example of parallel imaging using SENSE. a) shows

the schematic phantom that is scanned and the placement of the multiple coils in readout direc-

tion. b) shows the sensitivity profiles of the two coils depending on their positions relative to

the object. In c) the images are shown which have been independently reconstructed from each

coil, Aliasing due to the undersampling can be observed. d) shows the resulting image which is

reconstructed by solving the linear system of the aliased images and the coil sensitivity profiles.

Unfortunately, it turns out that the SNR ratio also drops by a factor of
√
f .

Still both methods produce good image quality. The crucial point in both methods is the

determination of the coil sensitivity profiles for arbitrary coil geometries. Since the sensitivity

varies with coil load, the profiles must be determined prior to each scan in an autocalibration

step. A shortcoming of parallel imaging with SENSE is that one has to make sure that all

aliasing effects are caused by the reduction of phase encoding steps and not by a field of view

that is chosen too small because otherwise the combined effects would cause strange image
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artifacts. Figure 2.10 shows the differences between SMASH and SENSE.
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kx

ky

kx

ky

Δk
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SENSE SMASH

Figure 2.10: This figure shows the difference between parallel imaging using SMASH and

SENSE. As the number of lines in readout direction is reduced, Δk increases. In SMASH

methods the missing lines are reconstructed using spatial harmonics generated from the coil

sensitivity profiles, so missing data are filled up in k-space. In SENSE methods aliased images

are reconstructed which can be correctly unfolded to the original image of the oval phantom if

the coil sensitivity profiles are known. In this case the missing data are reconstructed in image

space.

2.5.5 Continuous Table Imaging

Developments like parallel imaging lead to a drastic decrease of scan time, which allows for

performing a whole-body MR scan, as it is required for tumor screening for example, within

45 minutes. However, as the maximum FoV in MR scanners that are commercially available

is about 50 cm because of limitations of the homogeneity of the magnet, scanning a complete

body that measures about 1.80m has to be done in at least four or five stages. The number

of stages is determined by the effective FoV that can be used for each scan and the overlaps

that have to be considered to ensure complete coverage and to allow for a robust stitching and

composing of the images acquired at the single stages.

The idea of continuous table imaging is to increase the FoV in transversal direction by
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example by [KRGR02]. Doing a single scan instead of multiple scans at different stages has

various advantages [Bla06]:

• The lacking need of repositioning reduces the source of motion artifacts

• As the data are not scanned in stages, no stitching and composing of the images is re-

quired, which simplifies the processing workflow.

• As all slices are scanned when they are located at the isocenter of the magnet, the scan

can benefit from optimal homogeneity of the magnetic field and therefore provide opti-

mal image quality.

• Furthermore there is a gain in scanning time in comparison to a multistage scan. The

saved time results from the lacking need for repositioning and scanning of overlaps.

All the advantages mostly pay off in MR angiography scans, which was the main driver for

the development of continuous table imaging. A slight shortcoming of this technique is that it

is only feasible for very fast sequences, that are not affected by the continuous motion of the

table, like coherent steady-state, EPI or HASTE sequences.

2.5.6 Artifacts in MR Imaging

In MR imaging there are many sources for image artifacts, i.e. image may show features which

are not part of the anatomy but arise from shortcomings of the MR imaging technique. Some

of them can be compensated for easily, some are tricky or unavoidable. As mentioned before,

as a rule of thumb the following relation holds: the more acceleration techniques are used

during the image acquisition, the higher the probability of artifacts in the image. This section

summarizes some of the most important sources of artifacts.

Partial Volume Effects

Partial volume effects [HBTV99] arise from the fact that a voxel is so large that it contains

two types of tissue, resp. its content is a linear combination of tissues. If e.g. a voxel v at the

interface of tissue A and tissue B contains a fraction α of tissue A and a fraction of 1 − α of

tissue B, then the total signal in this voxel will also be the same linear combination of signals

s(A) and s(B).

s(v) = αs(A) + (1− α)s(B)
�

�

�

�2.23

These partial volume effects reduce the contrast between two voxels.

Gibbs Ringing

Gibbs ringing occurs at interfaces between objects of high intensity and objects of low intensity,

e.g. between the lung and surrounding tissue. An overshoot in the tissue of higher intensity and

an undershoot in the tissue of low intensity can be observed. This is a direct consequence of
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the signal being represented by a limited Fourier series, which restricts the possibility of repre-

senting high frequencies which appear at discontinuities as sharp edges. This kind of problem

can be solved by increasing the number of data samples, which allows the representation of

higher frequencies or by using apodizing filters like the Hanning filter [HBTV99], which is

applied to the raw data and avoids overshoots to a certain extent.

Motion Artifacts

MR raw data is usually collected in chunks, i.e. that k-space data is filled by repeatedly sam-

pling small fractions, e.g. in various phase encoding steps. The image is reconstructed after

all fractions have been collected. The underlying assumption of this procedure is, that the data

sampled this way are consistent, which means that the object does not move during the time of

acquisition between any of the data chunks. If there is movement between two lines in k-space,

this will have an effect on the reconstructed image. There are several artifacts which may be

caused by motion.

Translational motion of the object being scanned will result in a general blur and a general

loss of signal. Other artifacts may also occur depending on the type of motion and image

reconstruction. The main reason for the signal loss is that due to the motion the phase of the

time of the echo is not 0. For periodic motion with a period of the magnitude of the TR of

the acquisition, so called ’ghosting’ occurs. Such motion can be breathing motion for example.

These ghosts are periodic repetitions in phase encoding direction of the high-frequency content

of the original image overlayed to the original image. This results in partial signal enhancement

and partial signal nulling.

Bias Fields

MR images often show inhomogeneity of the grey values, which make equal tissues appear at

different grey values. This inhomogeneity is caused by the spatially varying signal response in

the coil that receives the MR signal. What is visible by the reconstruction is not the original

signal of precessing magnetization M(x) but a multiplicative overlay of the underlying true

magnetic signal with a local gain field of the receiver coil. So, if I(x) is the intensity of the

image at voxel x, then

I(x) = M(x) ·B(x)
�

�

�

�2.24

where B(x) is the local gain at the voxel x or the so-called bias.

Several approaches exist for removing the effects of bias fields. Most of them, like home-

omorphic filtering [GW02], rely on a high-pass filtering approach after taking the logarithm

of the image, which converts the multiplicative bias into an additive bias. The additive bias is

virtually removed by the high-pass filtering under the assumption that the spatial variance of

B is small.

Fat/Water Shift

Protons bound in fat molecules resonate at a different frequency compared to water-bound

protons. Because of the different chemical surroundings, protons in these two molecules expe-
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rience different shielding from the basic magnetic field [HBTV99]. So the effective magnetic

field Beff is:

Beff = B0 · (1− σ)
�

�

�

�2.25

with σ being the shift constant.

According to equation 2.3, this leads to a difference Δf in resonance frequencies of the

protons. If for a certain scan protocol, the receiver bandwidth (resp. the frequency spread of

a voxel) is smaller than Δf
2 , parts of the fat signal caused by the fat content of a voxel can

become misregistered to a neighbor voxel, which can lead to artifacts.

Gradient Distortion

In practice, the magnetic gradients, as described in section 2.3.2 are not perfectly linear. As

a matter of fact, the non-linearity increases with distance from the magnetic bore. This non-

linearity accounts for image distortion, as voxels in the non-linear tend to become stretched or

compressed. By knowledge of the nature of the non-linearity, these effects can be compensated

for by distortion correction algorithms, like [LDL99]. For morphological studies from MR

images, as it is the case for anatomical modeling, this correction is essential.
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3
Liver Segmentation from MR Image Slices Using

An Active Shape Model

3.1 Introduction

3.1.1 Motivation

In recent years abdominal MR imaging and MR liver imaging have entered clinical routine, par-

ticularly with multibreathhold and free-breathing methods using navigators [RE89] for breath-

ing motion compensation becoming available. Navigators allow for prospective motion com-

pensation by taking special “navigator” echo images interleaved with the original sequence.

The phase of the breathing cycle can be obtained from the navigator echoes. Positioning of

the slices for a liver examination and of the navigator for breathing motion compensation is

usually done on a set of stacked 2D localizer images, which are scanned using a fast prescan

protocol before the examination. Large fields of view and fast acquisition time but moderate

image quality and resolution are characteristic of these localizer images. There is also only

sparse coverage of the organ of interest by the sliced localizers. Positioning based on these

images can be tedious as the user working on 2D localizer images tends to forget to ensure

a correct placement of the objects in all three dimensions. This chapter describes an algo-

rithm for reconstructing position, shape and orientation of the liver from the series of stacked

2D localizer images. Knowing the position and the shape of the liver leverages an automatic,

well-defined and reproducible placement of slices, navigators but also entails a lot of possible

follow-up applications. The position and shape information of the reconstructed surface can

be used as an initialization for following detailed organ segmentations. It may also be helpful

to applications designed for assisting the image reading process by a physician, e.g. by pro-

viding a basis for functionality like automatically assigning findings and lesions to the correct

organ regions resp. regions of the image or searching for corresponding findings in follow-up

examinations.

The problem of reconstructing the position and the shape of the liver is closely related to

the segmentation problem. Liver segmentation is an active field of research, with a lot of publi-

cations and a variety of algorithmic approaches. Most promising and best results are obtained

by methods that incorporate prior knowledge and statistics by means of active shape models.

Given the particular difficulties of MR imaging and the additional quest of reconstructing a 3D

shape from sparsely covering 2D slices, which is an ill-posed problem, a model based approach

is considered to be the best choice.
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3.1.2 Model Based Approaches in Medical Imaging

The general goal of medical image analysis is to extract structural information from the medical

images that may be used for interpretation or analysis by experts. As medical images and MR

images even more tend to exhibit a large variety of quality in terms of noise and contrast, this

task is exceptionally hard. Moreover, the structures in the images may be incomplete or show

artifacts. This interferes with the huge variability of anatomical structures across the population

and results in an enormous number of possible cases which are to be expected.

Model based approaches for image analysis make an underlying assumption of the struc-

tures that are expected in the images. Prior knowledge of the structures is incorporated into a

model and algorithms searching for certain structures can make use this knowledge, limit the

search spaces and thus decrease running times and reduce the likelihood of failures. This ap-

proach can be characterized as ’top-down’ image analysis [CT99]. This means that with a clear

concept or model of the structures to be found, the image is browsed for possible occurrences,

while the standard or ’bottom-up’ [CT99] approach would be to cluster the image by grouping

local structures to objects which can be further examined if they fit the class one is looking for.

In general, in medical images and in MR images even the more, the latter approach is harder

and more error prone.

Hence, model based approaches leverage algorithms which are based on ’analysis by syn-

thesis’ approaches, which means the for the analysis of an image, first an instance of a reference

of known structure, a model, is ’synthesized’ and then compared to the actual image data. By

maximizing the similarity between the model and the data, information on the image structures

may be deduced.

A description of related work on model based medical image segmentation starts with

Staib and Duncan [SD92] who proposed model based image segmentation using Fourier de-

scriptors of closed 2D curves for the representation of the variability of the underlying object

shapes, which are to be segmented from the image data. Due to the nature of Fourier descrip-

tors an extension of this method to 3D objects and image data is not straightforward. Yuille

et al. [YHC92] used deformable templates for a complex eye model which is used for face

segmentation. Although being effective for the described problem, the modeling process is

complex and requires a lot of work for each new object. Active contour models or snakes as

proposed by Kass et al. [KWT88] are easy to implement in 3D but, in general, only consider

image data and smoothness conditions but no anatomical knowledge for the segmentations.

The quality of a model can be classified by the two terms generalizability and specifity. As

stated above, the model must be able to deal with a huge amount of variation. It is therefore

essential that it captures a large amount of natural variation. This ability can be described by

the term generalizability. There is a tradeoff to be made with the specifity of the model. On

the one hand, the model should be able to represent all possible instances of a natural class.

On the other hand, it should be specific enough to contain only valid instances of the structure.

In data driven approaches, generating a model requires a training step, during which typical

instances are presented to a learning algorithm. During the learning phase, the generalizability

and specifity must be weighted against each other by a careful design of the learning algorithm.
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If specifity dominates over generalizabilty too much, an effect which is called overfitting, can

be observed: The model may be capable of representing all instances of the training data set

but fail the generalize to instances which were not presented during the training phase. This

has to be avoided by adapting the conditions of the learning algorithm.

3.1.3 Active Shape Models

Active shape models were proposed by Tim Cootes [CT92] as an extension to active contour

models or snakes [KWT88] to overcome the shortcoming of not being able to consider prior

anatomical knowledge in segmentations. Both active contour models and active shape models

are techniques for model based image segmentation in the sense of section 3.1.2. Active con-

tour models or snakes are generally based exclusively on image data and smoothness of their

contours, although several extensions exist. Active shape models, however, contain statistical

information on the geometry and structure of the objects that are to be segmented from sets of

corresponding landmark points representing the contour of the object. From the corresponding

landmark points, information about their statistical distributions can be inferred. This infor-

mation is extracted from example data sets in a training step. Knowing about the statistical

distribution of the shapes, valid instances and their corresponding probabilities can be calcu-

lated. The statistical knowledge may direct a guided active shape model search towards the

most probable instance of the model.

Usually, the shapes or contours are represented by corresponding landmark points [CT92],

which may be the support points of any interpolating or approximating surface or curve repre-

sentation or the vertices of a discrete polygonal structure, etc. The statistics of the active shape

model are calculated by first assigning all elementary data elements, i.e. coordinates of the

landmarks, to a single vector. For instance, all items of all the dimensions of the corresponding

landmark points lj are assembled to one large vector.

xdim·j+i = lji
�

�

�

�3.1

where x is the assembled vector, dim the dimensionality of the landmark points and lj is the

jth landmark point with lji being its component in the ith dimension.

Usually, the shapes are normalized by geometrical transformations to make sure that the

statistical analysis includes only the actual variations of shape and not the variations imposed

by translations, rotations, scales, etc. The geometrical transformation for the normalization

may be rigid-body, similarity or affine transformations [CT99], depending on the application

that the model is designed for. So usually the original landmarks l′j are normalized by a trans-

formation T before assembling them to a vector, i.e. lj ← T (l′j). Algorithms for finding the

normalization transformations between point sets with known correspondences are described

in A.2 and A.3.

Statistical analysis of the data is done by principal component analysis (PCA) of the co-

variance matrix. PCA reveals the major modes of variation in descending order by computing

an orthogonal system of eigenvectors and eigenvalues of the covariance matrix S of the assem-

bled vectors xi. A more efficient way of finding the principal components and the principal

values is described in A.1. Computing the covariance matrix from a set of input data is well

known.
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S =
1

n− 1

∑
i

(xi − x̄) · (xi − x̄)T
�

�

�

�3.2

S is the covariance matrix and x̄ the mean value of all input data vectors xi.

Computing the PCA from S corresponds to a transformation of the principal axes towards

a coordinate system with minimal correlation. As the data of geometrical coordinates make

up a point cloud in n-dimensional space, PCA computes an orthogonal system of main axes

spanning the extent of the data cloud. The importance of the principal components decreases

with increasing index, so by removing the last n−m components, a reduction to a dimension-

ality of m can be achieved, while the variation covered by the m first principal components

is maximal. An instance x of the model can then be created by a linear combination of its m
principal components, which yields a linear model:

x = x̄+Φ · b
�

�

�

�3.3

where x̄ is the mean instance, Φ is a matrix with the principal components aligned as columns

and b is the feature vector containing the weights for the linear combination of the principal

components.

As Φ is orthonormal, for a given instance x, the feature values b can be computed simply

by

b = ΦT · (x− x̄)
�

�

�

�3.4

For a sufficiently large number of samples, the data point cloud can be assumed to be a

multi-variate Gaussian with the m principal components being the main directions of variation

and the principal values resp. eigen values λi the variances for these directions. Having com-

puted b, the probability p(b) resp. its logarithm log p(b) of x being an instance of the model

can be derived from the multivariate Gaussian distributions:

log p(b) =
∑
i

(
−0.5 · b

2
i

λi

)
�

�

�

�3.5

where bi are the feature values of the instance and λi the principal values resp. variations of

the principal components.

Cootes later extended active shape models to active appearance models [CET98]. Active

appearance models also include statistics on the grey value distributions of the image data

into the active shape model by sampling grey values at corresponding points in the image

and adding them to the assembled data vector x. Hence, correlations between the grey value

statistics and the shape statistics are established by PCA, which may lead to faster convergence

of the segmentation algorithm using the active appearance model. In order to make sure that

grey values of correct correspondence sample points are compared, the images have to be

rewarped to the mean geometry, so that appearance samples can be taken in coordinates of

the mean geometry. However, the assumption of having correlation between shape and grey

values is not always valid or desired, and even may introduce biases to the model, so often

active shape models are a better choice.
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x

y

Figure 3.1: This figure shows the principle of principal component analysis. The data cloud is

represented by the black dots. Principal component analysis computes an orthogonal system

of vectors (red arrows) which represent the directions of main variation of the input data.

3.2 Related Work

This section will briefly cover related work on segmentation in medical images using active

shape models or active appearance models. The first subsection will give a general overview,

the second an overview of related work in the context of liver segmentation.

3.2.1 Statistical Models and Active Shape Models in Medical Imaging

Ever since the first publication by Cootes [CT92] active shape models have enjoyed large

popularity in medical image analysis. Originating from the purpose of face segmentation,

the huge potential of active shape models was extensively used in the context of medical image

segmentation. This section will provide a brief overview of some of the most important papers.

Solloway et al. [STHW96] use an active shape model of the knee for cartilage segmenta-

tion. Duta and Sonka [DS98] use active shape models in the context of segmentation of struc-

tures of the human brain and a diagnostic interpretation of the shape segmentations which they

obtain. van Ginneken et al. [vGFS+02] build a statistical shape model of the corpus callosum

and also extend the active shape model search by using a different approach for finding optimal

landmark displacements. They use a kNN-classifier instead of the Mahalanobis distance. This

approach was also tested successfully for lung image segmentation.

A lot of work was published on building statistical shape models and active shape models

for the heart or for single chambers of the heart. Ordas et al.[OOL+07] build a 3D statistical

shape model of the complete heart and use it for segmentation of cardiac CT data. Lötjönen et
al. [LKS+03] create a 3D statistical model of the four heart chambers from short-axis and long-

axis MR images. A 4D cardiac active shape model is presented by Fritz et al. in [FRDS06]
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and used for segmentation purposes. An interesting publication was made by Kohlberger et
al. [KCR+06]. They come up with a 4D statistical shape model of the left ventricle using

an implicit surface representation which avoids finding explicit surface representations and

correspondences.

The abundance of active shape models in medical imaging literature and the variety of ap-

plications making use of them convey an impression of their power and their vast applicability.

3.2.2 Statistical Shape Models and Active Shape Models in Liver Segmentation

Lamecker et al. [LLS02] create a statistical shape model of the liver from a set of CT train-

ing data. In order to find corresponding points, the liver is partitioned into specific surface

patches. The 3D correspondence problem is solved by minimizing distortion between two

surface patches under the constraint of user defined feature points via a surface parameteri-

zation, which preserves arc-length and minimizes distortion. They apply their model to liver

segmentation [LLS04] using an active shape model approach. This means that landmark vertex

profiles are inferred from the training data as image data samples and used to calculate optimal

landmark displacements. The profiles are sampled from the image data which are preprocessed

using anisotropic diffusion filtering [WRV98] for smoothing the profiles. The model consists

of 43 data sets and is tested with 20 principal modes, which account for 95% of the variance of

their training data.

This approach was further tuned to a fully automatic shape segmentation of the liver con-

strained by a shape model and based on a heuristic intensity model [KLL07], which won

the first prize at a competition for liver segmentation during the MICCAI 1 conference in

2007 [HvGS07] and can therefore certainly be considered as the best among current state

of the art liver segmentation algorithms. The heuristic intensity model uses several histogram

statistics to separate liver tissue from non-liver tissue and tumor tissue. The additional shape

constraint keeps the segmentation within reasonable boundaries of the statistical shape model.

The authors also introduce a robust initialization heuristic based on finding the relative position

to the right lobe of the lung.

Heimann et al. published a paper [HWM06a] on liver segmentation which is similar to

Lamecker’s works [LLS04] but differs in detail. For finding 3D correspondences during the

creation of the liver model, Heimann uses a method based on conformal mappings, remesh-

ing and correspondence optimization using a measure based on minimum description length.

During the segmentation process, they compute optimal landmark displacements and instead

of producing a rigid projection to the model, they gradually relax the model from the displaced

model instance to the model instance from the projection.

Florin et al. [FPFLW07] present an approach for using a set of 2D liver segmentations

from dedicated slices and using a shape prior imposed by an active shape model to recover

the full 3D shape from few slices. They make quantitative analysis on how many and which

axial slices need to be segmented in order to compute a 3D shape segmentation with a defined

error boundary. Despite the similarities, Florin’s approach differs from the concepts described

in this chapter by the fact that only axial slices are used whereas in case given in this thesis

1Conference on Medical Image Computing and Computer-Assisted Intervention
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also coronal slices are considered for the segmentation and the slices can be located at arbitrary

relative positions of the liver depending on the initial placement of the patient. Nevertheless,

the fact proven by Florin et al. in his paper that the 3D shape of a liver can be recovered from

5 particular slices with a certain error threshold is remarkable.

3.3 Building the Liver Model

Building the liver model is a multi-step process. This section will describe the necessary steps

and processes starting from the acquisition of the images to the later fine-tuning of the result-

ing model for the specific purpose. Some steps are based on related work by other authors.

Whenever this is the case, the references are mentioned.

3.3.1 Liver Images

The images were acquired using a 3D FLASH-VIBE sequence with fat suppression [RLL+99].

This is a T1 weighted sequence with good morphological contrast, which is necessary for a

precise segmentation of liver surface from the image data. The images were scanned from 23

volunteers during breathhold to avoid motion artifacts. Most of the images were scanned with

192 slices, each one with a thickness of 3.92 mm, an in-plane resolution of 512x512 pixels

and a pixel size of 1.92 mm. As the breathhold interval of 35 seconds was too long for some

volunteers to maintain, some of the data sets were taken with less slices or smaller in-plane

resolution. A slice of an example data sets is shown in figure 3.2 a).

3.3.2 Manual Segmentations

High-quality gold-standard or expert segmentations are required to build a statistical shape

model with sufficient precision. Semi-manual segmentation by an expert with algorithmic

support remains the current gold standard. For 3D segmentation from CT image data, live

wire [BM97] based segmentation approaches of one slice after the other provide good results

within reasonable time. As segmentation of 3D objects from MR image data is challenging,

high-level algorithmic support is needed.

The segmentation tool developed for performing the semi-manual segmentations of the

liver was based on the following goals:

• Limit human interaction to a minimum: The less interaction is required from the user, the

less time-consuming and exhausting the segmentation will be and the more efficient and

exact the results will become. Therefore, different segmentation algorithms are provided

from which the user can select the one that is locally most efficient. It must be possible

to easily switch from one algorithm to another even within a single slice, if necessary.

• As MR images can be locally poor in contrast, high-level algorithmic support is needed

for the semiautomatic segmentation: contour-based paradigms, i.e. live wire meth-

ods [BM97] including path cooling concepts, are combined with region-based segmen-

tation algorithms based on minimal graph cuts [BJ00], and extended for the purposes in

the scope of the example segmentations of the training images.
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• Constrain user interaction to 2D, but augment his input making use of 3D image infor-

mation: Interaction between a human and a machine by means of a mouse device can

be more efficiently done in 2D. However, the software can use additional out-of-plane

information to steer the user’s input towards a more consistent result in 3D. Moreover,

in regions of weak contrast, additional information can be drawn from neighbor slices.

• Support visual control and correction from different angles: As MR images can be lo-

cally poor in contrast it may be difficult to distinguish certain structures given only one

viewing direction. Therefore the user can work in a convenient viewing direction. The

segmentation results are kept independent of this direction.

• Support segmentation of disjoint parts. It must be possible to segment different parts of

an organ or internal structures independently and later merge or split the segmentations

in an arbitrary way.

• Support manual and algorithmic post-processing. The final segmentation result may still

contain small errors like discretization artifacts or areas that have been segmented too

sloppily, which may make the contour appear to be inconsistent from a different point of

view in 3D. Several methods for enhancing 3D consistency are implemented.

The mentioned goals are realized in a segmentation software tool that allows for high-

quality 3D segmentations of the liver from the image data described [FTS07]. The software

tool supports different segmentation workflow modes, with one of those being the live wire

mode, in which the user can repeatedly click points on a contour and the algorithm traces the

path on the contour between those points. The second mode consists of a graph cut based fore-

ground/background segmentation similar to [BJ00], in which the user is required to mark areas

which are surely located inside the structure and points that are clearly outside the structure.

The algorithm computes the maximum discontinuity between inside and outside, which can

be verified by the user. By means of iterative refinement the user can gradually improve the

segmentation result. The third work mode is the ribbon mode, in which the initializations of

the graph cut model are made by drawing ribbons inside and outside the contour defined by the

projections of contours segmented in neighbor slices.

A description of the tool can be found in [FTS07]. Figure 3.2 shows the workflow and

the outcome of a liver segmentation done by use of the tool. The final surfaces are extracted

as discrete polygonal meshes from the segmentation results by means of the marching cubes

algorithm [LC87].

All liver training data sets were segmented and the initial surface representations were

produced by means of the segmentation software tool.

3.3.3 Correspondences

The manual segmentations in section 3.3.2 produce a set of polygonal meshes with different

numbers of vertices and triangles and with different connectivities. As mentioned in 3.1.3,

for the principal component analysis, the geometric coordinates of the landmark vertices are

assembled to a large single data vector. For capturing the correct variation of the surface
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a) b) c)

d) e) f)

Figure 3.2: a), b) and c) show a live wire based contour following segmentation of the liver, d)

shows a graph cut segmentation with the interior regions marked in red and the exterior regions

marked in green, e) the initializations of a ribbon mode search and f) the resulting surface.

geometry, these landmark vertices must refer to corresponding points on the polygonal surface

meshes. Finding correspondences among different surfaces is a non-trivial task. Even for

a human operator it is often not evident in complex 3D structures to mark correspondences

in different objects. Most promising approaches for building statistical models from medical

image data are based on remeshing the surfaces using an ideal surface parameterization like

Gu et al. [GWC+03] and optimizing the description length of the resulting active shape model

as proposed by Thodberg et al. [Tho03]. This was successfully applied and implemented by

Davies [DTC+02] and Heimann [HWWM05] and their groups.

Remeshing Using Conformal Mappings

Most anatomical structures and organs including the liver are so-called genus 0 manifolds. This

means that they are homeomorphic to an object with 0 handles [PS95]. The number of handles

denotes the number of holes inside the object. A sphere for example is an object with 0 handles.

Consequently the liver is homeomorphic to a sphere. Being homeomorphic to another object

means that it can be deformed to the other object by pure bending and stretching but without

cutting or gluing [PS95].
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The fact that the human liver is homeomorphic to a sphere and that it can be deformed to a

spherical object leads to the idea of expressing all landmark point coordinates in spherical coor-

dinates, i.e. one coordinate for longitude [0..2π] and one coordinate for latitude [0..π]. Fixing

one north pole point and the direction of the first longitude, as on the terrestrial globe with the

north pole and the Greenwich median as references, produces a one-to-one mapping from the

liver surface to spherical coordinates and vice versa. If all liver surfaces had a corresponding

north pole and longitudinal degree, a common coordinate system could be defined that could be

used for identifying and addressing corresponding points on the liver surfaces. Consequently,

if Mi is the mapping from the liver surface Si to spherical coordinates on the unit sphere S0, a

correspondence pSj of point pSi on surface Sj can be found by first transforming the point to

the unit sphere and then back to the surface Sj .

pSj = M−1
j (Mi(pSi))

�

�

�

�3.6

Robustly identifying a north pole point and a longitude on the different shapes manually

is not straightforward. However, as later the correspondences of the model are fine-tuned, a

rough guess is enough for the initial parameterization.

The procedure of mapping a polygonal mesh surface to its homeomorphic primitive, the

sphere in the case of genus 0 surfaces, is called a mesh parameterization. There is a survey

by Alla Sheffer et al. [SPR06] providing a good coverage of mesh parameterization methods

and applications. Mesh parameterizations can be classified into being length preserving, angle

preserving or area preserving. The term preserving in this context means that the differences

of this measure in the original surface and in the mapped surface should be minimal. While

preservation of the triangular areas is the strongest requirement, it is sufficient for most appli-

cations including the one described in this thesis to require preservation of angles. Changes in

the angles of a polygonal surface are often related to changes in quality of the triangulations

of the surfaces, so keeping the angles constant corresponds to maintaining a degree of surface

quality.

The method of choice for mesh parameterization is conformal mapping as proposed by

Gu et al. [GWC+03] because it is well established in the context of parameterizing genus 0

surfaces of medical objects and because it is conceptionally simple and easy to implement.

Conformal mapping is an angle preserving method for mesh parameterization. It is based on

minimizing the harmonic energy of a mesh. The harmonic energy is defined as a function

of the mesh connectivity C and the mapping function Ω(v), which maps the vertex positions

v to points on the unit sphere. A consequence of the latter fact is that ||Ω(v)|| = 1 for all

vertices [GWC+03]. Computing the mesh parameterization or conformal mapping Ω then

boils down to minimizing the harmonic energy E(C,Ω) with respect to Ω

E(C,Ω) =
∑

[u,v]∈C
ku,v||Ω(u)− Ω(v)||2

�

�

�
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where u and v are vertices of the mesh, [u, v] ∈ C is an edge from connectivity C and ku,v is

a weight for the edge between the vertices u and v.

Hence, Ω is computed as:

Ω = argminE(C,Ω′)
�

�

�

�3.8
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Setting the ku,v to 1 yields a Tuette or barycentric mapping where each vertex is located at

the center of its neighbors. For the conformal mapping, the energy coefficients for the edges

are given by the mean cotangent values of the two opposing angles αu,v and βu,v of each edge.

kharmonic
u,v =

1

2
(cotαu,v + cotβu,v)

�

�

�

�3.9

It can be shown that this function has a unique minimum, which can be found in a good

approximation in a gradient descent approach if after each step, the vertices are projected back

to the unit sphere Ω(v)′ ← Ω(v)
||Ω(v)|| [GWC+03].

Figure 3.3 shows an example of a simplified polygonal mesh surface of a liver and the

resulting conformal mapping on a sphere.

Having the initial mesh parameterizations of all liver surfaces, and having all of them

aligned by defining a north pole and a direction for the 0 longitude, an ’ideal’ meshing can

be designed for the surfaces on a unit sphere and transferred to all surfaces. This yields an

ideal remeshing of all surfaces with all landmark vertices located at corresponding surface

points.

The crucial step is designing an ’ideal’ meshing. The ultimate goal is to obtain surfaces

with uniform distributions of vertices. A good initial point is to start with a uniform meshing

of the spherical parameter map and to adapt it locally so that a uniform distribution of vertices

on the surfaces is achieved. It is commonly known that a good meshing of a unit sphere can be

obtained by starting with the polygonal mesh of a icosahedron, which is shown in figure 3.3 c)

and gradually subdividing this icosahedron [Zor00]. This leads to an equal distribution of the

landmark vertices on the sphere and a good connectivity of the mesh. It is a reasonable starting

point for the initial correspondences and later fine tuning.

MDL Optimization

The remeshing step is necessary but not sufficient for establishing robust corresponding land-

marks in active shape models. If statistical shape models are generated from erroneous or

unprecise landmarks, these errors are reflected in undesired additional variation of the statis-

tical shape model. It is therefore recommended to run an additional ’tuning’ step on the raw

correspondences which are obtained from the remeshing step. The goal is to separate unde-

sired random variation from systematic variation, which is necessary to describe the natural

variation of this class of shapes.

While most authors like [LLS02] describe quality of correspondences by geometrical prop-

erties like minimum distances, distortions of landmarks, curvature, etc., Davies et al. [DTC+02]

present an approach that tackles the problem from the point of view of the compactness of the

resulting statistical shape model. Compactness can be quantified by the dimensionality of the

model, which is defined as the number of modes, which are necessary to describe a certain

percentile of the variation [LLS02]. A perfectly compact statistical model contains all system-

atic variation of the class of shapes but ignores all random variation from noise or imperfect

correspondences.

Davies et al. introduce a different measure of correspondence quality of statistical shape

models. This measure is called description length and refers to the compactness of the model.
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a) b)

c) d)

Figure 3.3: This figure shows a schematic liver surface model with low resolution for more

clarity. Colors are used for better identification of corresponding vertices. a) shows the original

surface, b) the conformal mapping on the unit sphere. c) shows a regular icosahedron after one

subdivision step and d) the remeshed surface from a) using the subdivided icosahedron
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3.3. BUILDING THE LIVER MODEL

In other words, one tries to find the most compact model among all models with the same

specifity and generalization ability. While generalization ability refers to the capability of the

model to not only describe instances which are present in the training data, but also other valid

instances, as already explained in 3.1.2, the term compactness refers to the model’s ability to

describe the complete variance using as few modes resp. principal components as necessary.

This is motivated by the principle of Occam’s razor [Tho18], which is basic to science in

general, stating that of all possible theories the one that makes fewest assumption and postulates

the fewest entities is the best one. Compactness or the description length in the case of Davies’

work balances the complexity of the model, defined by the coding length of the model, against

its ability to fit to the training data. The coding length can be expressed in terms of the model

parameters, i.e. its principal values and a quantization constant.

Heimann [HWWM05] uses a simplified cost function based on minimum description length,

which was first published by Thodberg [Tho03]. The cost function is defined as follows:

Lm(M) =

{
1 + log λm

λcut
if λm > λcut

λm
λcut

else

�

�

�
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where the λm are the eigenvalues corresponding to the principal components of the statistical

shape model M built from the surface parameterizations Mi. λcut is a predefined threshold .

He uses an initial parameterization Ω. This parameterization maps each landmark vertex

vi to spherical coordinates (θi,Φi). Ω is used for remeshing each surface Si, resulting in

remeshed surfaces Si(Ω). The cost function 3.10 of the model M(S0(Ω), S1(Ω), ..., Sm−1(Ω))
is minimized by optimizing Lm(M) for Ω.

For modifying Ω during the optimization, a function Φ is used, which transforms Ω to

Φ(Ω). In their original publication, Davies et al. [DTC+02] use theta functions, which spread

the landmarks near the Cauchy kernel of the theta function and compress them in other ar-

eas. A combination of multiple kernels of different widths, amplitudes and positions are

capable of generating arbitrary parameterizations. The main disadvantage of this approach

is its global nature. Each transformation by a Cauchy kernel affects all of the landmarks.

Heimann [HWWM05] tries to overcome this problem by using local transformation kernels,

so-called Gaussian envelope functions. The transformation of the parameterization of each

landmark is then given by the movement Δk of the envelope, the distance of the landmark

from the center of the Gaussian kernel, and the kernel width.

Δk = (Δθkernel,ΔΦkernel)
�

�

�

�3.11

So each landmark parameterization is mapped as

(Δθi,ΔΦi) = g(x, σ) ·Δk = g(x, σ) · (Δθkernel,ΔΦkernel)
�

�

�

�3.12

with a Gaussian c, depending on the distance x of the landmark vertex from the center of the

Gaussian kernel. The weighting function g(x, σ) is defined as follows:

g(x, σ) =

{
e−

x2

2σ2 − e−
(3σ)2

2σ2 for x < 3σ
0 for x ≥ 3σ

�

�

�

�3.13
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So landmarks in the center of the Gaussian kernel move further, while landmarks outside a

3σ interval are not affected at all, which guarantees locality of the transformations.

As all landmarks should be treated equally, Heimann et al. [HWWM05] suggest to gradu-

ally increase the number of Gaussian kernels and randomly rotate the parameterizations relative

to the Gaussian kernel positions to ensure equal transformation of all landmarks. In order to ob-

tain the optimal movements of the Gaussian kernels Δk, a gradient descent method is chosen.

The derivatives ∂Lm
∂k are calculated and

kt+1 = kt +
∂Lm

∂k
·Δt

�

�

�
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is updated until the optimum is reached. Δt is a predefined step length.

This process is implemented in a multifold multi-scale sense: On the one hand, the number

of kernels is gradually increased, on the other hand, the number of landmarks of the surfaces

and their parameterizations is increased by a subdivision step after convergence of the MDL

cost function as described in the preceding section 3.3.3. After convergence of each MDL

optimization step, an additional subdivision step of particular triangles based on the variation

of their areas within the space of valid shapes of the statistical shape model can be performed,

which will be described in the following section. As a consequence, triangles with high vari-

ations of area undergo an additional local subdivision step. This results in a higher density of

landmark vertices, i.e. a finer meshing of the surface in this area with smaller triangles and less

variation of areas.

Reducing Triangle Area Distortions

After remapping the subdivided icosahedron optimized by minimum description length from

the parameterization on the spherical surface to the original liver surfaces, mesh quality can

be very poor, as figure 3.3 d) shows. Large triangles can cause large surface errors in areas

of large surface variation and curvature. A simple idea would be to increase the number of

landmarks, which, however, in turn also sacrifices computational efficiency.

Heimann et al. [HWM06b] solve this problem by measuring the average area distortions

between the triangles of the original surfaces and the triangles in the resulting conformal map-

ping. The value of average distortion is then converted to a color, which is assigned to the

respective triangle of the spherical map. This colored map is then used to produce a dithered

map, with dither point density increasing with increasing brightness. All dither points are then

considered to be vertices in the new mesh and a Delaunay triangulation is used to generate a

connectivity. After remapping this connectivity to the original surfaces, an ideal meshing is

obtained.

The approach used in this thesis is similar but not identical. The idea is to have an equal

distribution of landmark vertices not only in the training liver surfaces, but in the statistical

shape model built from the training surfaces. This is done by considering the variation of

triangle area in the resulting model and a local subdivision strategy. The variation of triangle

area is computed by generating different instances of the space of valid surface shapes, i.e.

the 3σ interval of feature values from equation 3.3 and considering the different areas of the

triangles.
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More precisely, model instances are generated by repeatedly setting each of the feature

values bi in the linear system from equation 3.3 to ±3. The statistics of all triangle areas in

all model instances are calculated. All triangles that differ by more than a threshold t from the

mean area, are subdivided by means of a locally smooth subdivision scheme.
√
3-subdivision

as introduced by Kobbelt [Kob00] was used for this purpose, because this scheme supports

local subdivision and because the number of triangles grows more slowly in
√
3-subdivision

than in other subdivision schemes.

This additional subdivision step leads to a statistical shape model with a high-quality sur-

face meshing and almost equally sized triangles over the entire space of valid shapes. It is also

easier to implement than the dithering method by Heimann and integration into the hierarchical

MDL based correspondence optimization algorithm is straightforward.

Putting it all together

The entire process of generating the statistical surface shape model is visualized in a flow-chart

of figure 3.4. The loop starts with an initial number of 842 landmark vertices. The process is

stopped after three subdivision steps and reduction of triangle area distortion steps, with a total

number of 2563 landmarks.

Manual Segmentation

Remeshing

MDL Optimization

Liver Surfaces

Correspondences

Reduce Area Distortion

Final Surfaces

Figure 3.4: Flow-chart of the steps for the generation of the statistical surface shape model.

3.3.4 The Model and its Principal Modes of Variation

The final statistical surface shape model is created from the coordinates of the optimized cor-

respondences. The coordinates of the corresponding landmarks are assembled to large vectors

and principal component analysis (PCA) yields a linear model, as described in 3.1.3. Be-

fore PCA can be applied to the coordinate data, the shapes are preprocessed by a normalizing
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geometric transformation, e.g. a similarity transformation, in order to remove the effects of

rotation, shift and scaling from the model’s actual variability in shape. The statistical variation

of shape should be examined free of biases caused by different transformation offsets.

If robust point-to-point correspondences between two shapes S1 and S2 are available, a

similarity transformation T with respect to a minimum least-squares-error ||T (S1)−S2||2 can

be efficiently found as described by Zinßer et al.[ZSN05] or in section A.2. Normalization is

done by selecting one of the shapes as a reference and transforming all other shapes to this

reference. All coordinates are then expressed within the coordinate system of the reference

shape. PCA computes the average shape and its principal modes of variation, the so called

eigen shapes .

Figure 3.5 shows renderings of the final average liver model instance x̄ and its eigen shapes,

the principal components of shape variation vi weighted by 3 times the roots of their principal

values
√
λi, which corresponds to 3 times the standard deviation in this direction, resp. an

interval of 99% in terms of the multivariate Gaussian.

3.4 Modeling Local Appearance

The statistical shape model can be used for generating valid instance of liver shapes and also

for finding the shape instance from the model which is the closest representation of a given

liver surface shape, but not the one which best fits given image data. Hence, the model is

only capable of describing the surface itself because there is no correlation to image data. For

image segmentation, however, this correlation is needed in order to assess how well the shape

model ’fits’ the image data. By optimizing the quality of this fit, the model instance that ’best’

describes the image data is found.

Active appearance models [CET98] establish a correlation between the statistical surface

model and the image data by extending the data vector on which the PCA is calculated from

pure geometric landmark vertex coordinates to additional grey value samples from the image

data taken at corresponding points. The differences between the samples in the image to be

segmented and the samples assigned to the model are used to update the model parameters

resp. feature values [CET99]. This procedure assumes that there is a statistical correlation

between the geometric data and the grey values of the image, which may not always be the case.

Moreover, for segmentation using active appearance models, the effects induced by geometry

and the effects induced by grey value intensities must be weighted against each other carefully

by finding robust empirical coefficients in an offline process.

Active shape models keep the statistics of the image data independent of the geometry by

maintaining separate grey value profiles or statistics of the grey value neighborhoods for each

landmark. The main difference to active appearance models is the local nature of the grey value

sample data resp. profiles and their independence of the geometry statistics. The segmentation

process consists of searching the best instance of the active shape model according to the local

grey value profiles. During the active shape model search, the profiles are used to update the

landmark vertex positions to the best matching displacements according to the image data. The

shape model statistics restrict the search to valid instances of the shape. A detailed comparison

of active shape models and active appearance models can be found in [CET99]
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Figure 3.5: The liver model and its eigen shapes, i.e. its major modes of variation. All liver

model instances are shown once in a coronal and once in an axial view.
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In this work, the former approach is implemented, so image appearance is modeled by

considering grey value statistics resp. profiles for each landmark vertex. The collection of all

profiles is called the local model of appearance of the statistical surface model and must not

be confused with an active appearance model. Two strategies of implementation of the local

model of appearance were assessed which will be described in the following sections.

3.4.1 Offline Strategy

The offline strategy is similar to the techniques described by Cootes in [CET98], Cootes

in [CET99], Heimann in [HWM06a] or Lamecker in [LLS04]. The name offline is chosen

because all image data are collected and processed in an ’offline’ process before the actual

segmentations. For each landmark vertex vi in each image data set Ij , a sampling ray is shot

in normal direction to the surface �ni and image grey value samples pjik are taken at equidis-

tant positions along the ray. Instead of shooting just one ray, a bundle of rays is used and the

profiles of all of them are collected weighted by a Gaussian kernel centered at the central ray.

The weight for a given ray is calculated according to the distance of the ray to the center using

a Gaussian kernel. Figure 3.6 a) shows a bundle of rays and the sample points for one land-

mark vertex. This has a low-pass filtering effect on the profiles and provides stability for subtle

variations in the normal direction, which may occur.

The collection pjik of all samples is called the profile pji of the landmark vertex vi in image

Ij . k denotes the index of the sample in the profile. Each profile is normalized by its maximum

absolute value to reduce its dependence on global grey value scalings.

pji ← pji
maxk |pjik|

�

�

�

�3.15

After normalization, for each landmark vertex a mean profile p̄i and a covariance matrix

Sp can be calculated.

p̄i =
1

n

∑
j

pji
�

�

�

�3.16

Sp =
1

n− 1

∑
j

(pji − p̄i)(pji − p̄i)
T

�

�

�

�3.17

Figure 3.6 shows a schematic overview of the offline strategy for creating a local model of

appearance.

For each landmark vertex, the mean profile and the covariance matrix are stored for several

image resolutions in a data structure which can be accessed easily during the active shape

model search.

3.4.2 On-the-fly Strategy

In contrast to the offline case, the on-the-fly strategy preprocesses the training image data

offline, but the actual local model of appearance resp. the grey value profiles are generated

from the preprocessed image data during the segmentation process on-the-fly. The advantage
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Figure 3.6: a) shows a bundle of sampling rays for a landmark vertex with dashed lines, the

samples and a resulting profile from the Gaussian weighting with the solid line. b) illustrates

the offline strategy for modeling appearance by shooting sample rays, averaging and calculat-

ing the covariance of the image.

of this strategy is that arbitrary samples or profiles can be taken from the prepared image

data, while in the offline case the sampling direction, the number of samples and the sampling

distance have to be determined beforehand and are therefore fixed.

During the image preprocessing, statistical images are generated from the training data

images, which can be used during the segmentation for on-the-fly lookup of arbitrary profiles

and grey value statistics. For this purpose, each training image is warped to a reference image

in a way that all the landmark vertices of the corresponding liver surfaces are aligned with the

landmarks of the reference liver surface. The reference of choice is the mean liver surface x̄
from equation 3.3 because choosing the mean ensures that minimal overall distortion is needed

for the warps of all image data sets. See figure 3.7 for a clarification of the warping to the

mean. A thin-plate-splines transformation [Boo89] is used for the image warps because this

transformation fulfills the interpolation condition, ensuring that each transformed landmark

vertex T (l) coincides with each corresponding reference landmark vertex l′.

T (l) = l′
�

�

�

�3.18

Besides, thin-plate-spline transformations provide smoothness between the interpolation

points by minimizing the following energy functional [Boo89]:

ETPS =

K∑
i

||l′i − T (li)||+ λ

∫
Ω

⎡
⎣∑

i

∑
j

(
∂2T

∂xi∂xj

)2
⎤
⎦ dΩ

�

�

�

�3.19

Consequently, the transformation T is the one which minimizes the given functional. Its

computation is described in [Boo89].

T = argminETPS

�

�

�

�3.20
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Smoothness is guaranteed because of the integral of norms of the second derivatives over

the entire image domain are minimized. All these properties [Boo89] make thin-plate-splines

a good choice for the warping transformation.

Figure 3.7: Example of a deformation warp using thin plate splines from the slice of a data set

to the mean. Surface points are warped to their corresponding mean positions. The rest of the

image is smoothly interpolated.

Warping all training data images produces n transformed images which can be averaged to

a mean image, representing the pixelwise mean over all warped training images and a standard

deviation image, which represents the pixelwise standard deviation over all training images.

Choosing the thin-plate-splines warp transformation with the correspondences of the liver sur-

faces ensures pixelwise correspondences in the surrounding of the liver surface. So for each

voxel j the mean image Imean is computed as:

Imean(x(j)) =
1

n

∑
i

Ii(Ti(x(j))
�

�

�
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where x(j) is the spatial coordinate of the voxel and Ti the transformation which transforms

the i-th liver surface to the mean surface, as defined in equation 3.20. The standard deviation

image Istddev is computed in a similar way:

Istddev(x(j)) =
1

n− 1

∑
i

√
(Ii(Ti(x(j))− Imean(x(j)))2

�

�

�

�3.22

Figure 3.8 shows the generated statistical mean and standard deviation images in high

resolutions.

3.4.3 Samples Outside of the Field of View

Reference publications seldom describe how sample rays which leave the available field of

view of the training images should be handled and how the missing samples should be treated.

One way would be to reduce the number of samples for landmark vertices close to the borders

of the FoV. However, this approach would artificially remove a lot of valuable information.
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a) b)

Figure 3.8: a) shows the mean image in high resolution for the local on-the-fly model of ap-

pearance. b) shows the image of the pixelwise standard deviation of the appearance model in

high resolution.

In this implementation a mixed approach is applied and found to be useful. For sample

rays leaving the field of view in sagittal and in coronal directions, all samples outside are set

to 0 making the valid assumption that the images are not truncated in these directions. For

sample rays leaving the field of view in axial direction, the latter assumption does not hold. In

this case, the sample values were set to values at the border and the variances of these samples

were set to some maximum in order to appropriately consider the uncertainty about the sample

values.

3.5 Active Shape Model Search

The actual segmentation or active shape model search consists of repeating the following steps

until the optimum has been reached:

1. Optimal landmark vertex displacements based on the image data are calculated according

to the profiles and the statistics of local surface appearance.

2. Normalization of the model shape with displaced vertices is done by the same transfor-

mation as during the model creation phase 3.1.3

3. The model instance which is closest to the model shape of displaced and normalized

models is calculated by projecting the vertex coordinates of the normalized model to

the linear system of the model in equation 3.3. Projections guide the model based

search within reasonable bounds and are also used by [CET98], [CET99], [HWM06a]

or [LLS04].
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In most publications, the step of finding landmark displacements is done by comparing grey

value profiles at different offset positions of the landmarks to the profile statistics contained

in the local model of appearance. The landmark vertex is then shifted to the position with

the highest ’similarity’ to the model of local appearance. Figure 3.9 shows an example and

a comparison of profiles at different vertex shifts. After the normalizing transformation, a

projection to the statistical model, yields the most probable instance of the statistical shape

model, given the image data profiles. The algorithm is also implemented in a hierarchical way,

which means that a Gaussian pyramid of the image data is used both for building the local

model of appearance and for the segmentation. The algorithm starts at a coarse resolution of

image and profile data and continues with a finer resolution after convergence. Convergence is

defined, if in three consecutive steps the vertex shape coordinates do not change by more than

an experimental threshold.

d

I

d

I

d

I

a) b) c)

Figure 3.9: This figure shows a schematic overview of different profiles of a vertex at different

offsets of the denoted landmark vertex. The profile of the local model of appearance is shown

with the thin line, while the actual profile of the vertex at the respective offset is shown with a

fat line. In b) similarity is maximal.

3.5.1 Profile Similarity Measures

For a quantitative assessment of the distance of a sample profile and a profile given by the local

model of appearance, a similarity metric is needed. As stated in section 3.4.1, the profiles are

low-pass filtered by sampling a Gaussian weighted bundle and normalized by the maximum

absolute value. Similarity is quantified by comparing normalized profiles.

Under the assumption of multivariate Gaussian distributions of the profile values, a measure

of how well a given sample profile pi fits to the local model of appearance at landmark vertex

i is given by the Mahalanobis distance distM [Mah36], which is defined by:

distM (pi) = (pi − p) · C−1
pi · (pi − p)

�

�

�
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where pi is a given sample profile, p the mean appearance profile at landmark vertex i. Cpi is

50

the covariance matrix of the normalized profile values at the vertex pi.



3.5. ACTIVE SHAPE MODEL SEARCH

The Mahalanobis distance is directly related to the probability that a profile pi is drawn

from the distribution, i.e. the smaller the distance, the higher the probability.

The Gaussian distance distG is a similar metric measure. It is directly obtained from the

Mahalanobis distance if the correlation between different items of the sample profile is set to

0, i.e. only the diagonal elements of the covariance matrix are considered. Its computation is

also more efficient.

distG(pi) =
∑
j

(pij − pj)
2

Cpi,jj

�

�

�
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where Cpi,jj is the jth diagonal entry in the covariance matrix C.

3.5.2 Initializing the Model

Good initialization of the model is crucial because the better the initialization, the faster and

the more robustly the model converges. The model is initialized at the average liver position

and shape within a given torso, using a statistical approach by learning the average positions

and scales from the training image data.

A coordinate frame is assigned to the torso of each 3D training image data set, which is

called ’torso frame’. All other geometric calculations are made in ’torso coordinates’. The

torso frame is defined by an origin �c and a right-handed vector system {−→v sag,
−→v cor,

−→v tra}
which are computed from the image data. The coordinate frame is determined by first trans-

forming the images to binary images by applying a noise threshold. The principal axes of the

binary torso are calculated by computing the eigenvectors and eigenvalues from the covariance

matrix of all pixel coordinates above the threshold. The principal components are assigned to

the vectors −→v sag, −→v cor resp. −→v tra. Scaling for −→v sag and −→v cor is done by the eigenvalues that

correspond to the eigenvectors. As the image extent in transversal direction can be arbitrarily

large or small, this strategy does not work for −→v tra. So the scale in axial direction is set to

||−→v tra|| ← 1

2
(||−→v sag||+ ||−→v cor||)

�

�

�
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The sagittal and coronal elements of �c are taken from the center of gravity of the binary

image. Again, the transversal component of �c is harder to determine. A stable approach is to

take the position of the diaphragm, which can be found by a simple threshold segmentation of

the lung.

Figure 3.10 a) shows the torso frame in one of the 3D training data samples while b) shows

a torso frame from a set of slice images.

Now the coordinates of each manually segmented liver li and its center of gravity x̄li ,
along with its scale can be expressed within its torso frame Ti. The scale of a liver shape is

determined using the Frobenius norm, as suggested in [SG02].

si =

√∑
j

(xj − xli)
2

�

�

�

�3.26
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a) b)

Figure 3.10: In a) an example of a torso frame from a 3D volume image, in b) from a 2D torso

frame image is shown with the arrows pointing in the directions of the principal components.

The arrows have been scaled by the principal values.

The average scale s̄ can be calculated from the scales sTi with respect to the torso frame Ti

s̄ =
1

n

∑
sTi
i

�

�

�
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and center of gravity

x̄ =
1

n

∑
xTi
li

�

�

�

�3.28

The model can be initialized using the average scale and center of gravity in the given torso

frame for the following active shape model based search. The liver coordinates can be easily

transformed from world coordinates lTw
i to the corresponding torso frame coordinate system

yielding lTi
i .

lTi
i = T−1

i · (lTw
i − cTw) + x̄

�

�

�
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In this equation, Ti is the matrix consisting of the right-handed vector system containing −→v sag,−→v cor and −→v tra as columns.

Ti ←
⎛
⎝ vsagx vcorx vtrax

vsagy vcory vtray
vsagz vcorz vtraz

⎞
⎠ �

�

�
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where vsagx is the x component of the vector −→v sag and so on.

In an unseen data set, first the torso frame Ti is calculated and each model point with

coordinates x is subsequently initialized according to the average center of gravity and scale of

this frame by calculating the corresponding world coordinates lTw
i .
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lTw
i = Ti · (s̄ · (x− x̄)) + c̄Ti

�

�

�

�3.31

For incomplete or sparse data like in the case of localizer images, the torso frame can be

calculated in the same way and the initialization of the liver shape is identical to the equa-

tions 3.29 and 3.31.

3.5.3 Active Shape Model Search on 3D Data

Although the active shape model has been designed for the purpose of segmentation from 2D

stacked localizer image slices, it can also be used for fully automatic segmentations of the liver

from 3D MR image data scanned with same MR imaging protocol as the training image data.

Application to segmentation from 3D image data can also serve as a test of the performance

and generalizability of the active shape model. Cross-validation experiments, as in [LLS04],

in which the training data are divided into a training subset and a testing subset, can be set up

in this way to check the quality of the active shape model.

The segmentation algorithm for 3D image data closely follows the standard 3D active shape

model search as described by Cootes [CT99], which was successfully used by Lamecker et
al.[LLS04] or Heimann et al. [HWM06a] for fully automatic liver segmentations from CT

image data.

The algorithm consists of the following steps: As a starting point, the active shape model

is initialized by computing the 3D torso frame and the segmentation runs as described for the

generic active shape model search. During the iterative search, both the reference profile sam-

ples and profiles statistics of the appearance model are sampled in normal directions of the

landmark vertices at the surface. The optimal landmark displacements are found by comparing

the two and taking the landmark displacements with the minimal distance of the profiles ac-

cording the Mahalanobis or Gaussian metric. The 3D active shape model search is later used

for validation of the active shape model by computing cross-validation segmentations on the

original data, from which the model has been created.

Since the cross-validation experiments showed good results (as described in the results

section 3.6 of this chapter), the active shape model and the 3D segmentation algorithm could

also be used for quantitative segmentation of 3D liver data in the clinical routine. Volumetric

quantification of the liver is a useful measure in various clinical questions.

3.5.4 Active Shape Model Search on a Sparsely Covering Set of 2D Data

Differences to the 3D Case

The 3D active shape model search on sparsely covering 2D slices of image data requires a

different way of sampling profiles from the image data and profile statistics from the training

data because, for a given landmark vertex, the 2D image slice plane need not coincide with the

normal direction of the liver surface. It would not be sufficient to take only those landmark

vertices into account, which have normal directions that coincide with the image slice planes.

However, holding statistics for an arbitrary number of image plane directions and vertex po-
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sitions would not be very efficient, either. The following sections will show how to obtain

reference profiles for the offline and the on-the-fly strategy in an efficient way.

Localizer Images

The main difference to the approach used by Heimann et al. [HWM06a] and Lamecker et
al. [LLS04] and which was described in section 3.5.3, the basic input images for the liver

segmentations in this case are not 3D volume images, but stacked slice images which sparsely

cover the volume of interest. Sparsely covering stacks of slice images are common in the

context of scan planning and also called localizer images or scouts. These images are scanned

using fast sequences and are characterized by large fields of view (400 mm), short acquisition

times (less than 30 s) and moderate image quality. Usually, fast FLASH sequences [HFM+86]

are used for abdominal scout images.

For the experiments of this chapter, between 3-6 coronal slices and 3-6 axial slices were

used with a inter-slice distance of 15 mm and a slice thickness of 10 mm. The contrast of

these images must be designed as similar as possible to the training image data from which the

appearance model has been generated. For testing purposes, ’artificial’ localizer images can be

generated from the high resolution 3D training image data by computing slice images with the

same parameters as in a localizer scan protocol.

Using the Offline Strategy

For the offline strategy where statistical reference sample profiles have been taken from the

training image data sets using sample rays in normal directions beforehand, the profile sam-

pling directions in the stacked 2D localizer image slices are projected from the normal direc-

tions to the image planes. In order to limit the error made by the projections, the accepted

difference in angle is set to cangle degrees. If the difference is larger, this landmark vertex is

excluded from the computations in the current iteration because of the possible error induced

by the projections. However, if cangle was chosen too strictly, the number of landmark vertices

with valid profiles would become too small. A threshold of cangle = 30◦ turns out to be a good

compromise.

This procedure is shown in figure 3.11 a).

Using the On-the-fly Strategy

For the on-the-fly strategy, where all training liver images have first been warped to fit to the

surface of the average liver shape, the sampling directions in the image planes can be trans-

formed to the respective directions in the mean and variance image. This is implemented by

setting up local coordinate frames for each landmark vertex in both the current shape and the

average shape. The sampling direction can then be transformed by a simple linear transfor-

mation resp. matrix multiplication into the coordinate frame of the mean and variance image.

Figure 3.11 b) and c) visualize how the sampling directions are transformed.

So, if
�
nTw
i is the sampling direction at landmark vertex i with coordinates vTw

i in the world

coordinate frame Tw, then let Ti be the local coordinate frame at i. Ti is a matrix composed of

3 orthogonal vectors as its columns �tx, �ty and �tz .
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a) b) c)

Figure 3.11: The three figures show a 2D scheme of a liver model and a set of stacked slice

images indicated by the bars. a) illustrates the offline strategy: the sampling directions are

projected to the image slice planes. The directions after the projections are shown with the

dashed lines.

b) and c) show an example of the on-the-fly strategy: the sampling directions in the slice

image planes are shown in b) along with the local coordinate frames (dashed grey arrows).

c) shows how the sampling directions have been converted to the statistical images according

to the local coordinate frames (again shown as dashed grey arrows). The converted sampling

directions indicate the sampling directions for the reference profiles from the statistical images.

The bounding box of the volume of the statistical images is delineated by the black rectangular

frame.

Ti ←
⎛
⎝ txx tyx tzx

txy tyy tzy
txz tyz tzz

⎞
⎠ �

�

�

�3.32

�tz is equal to
�
nTw
i . �tx and �ty are both located in the tangent plane D with the additional

constraint that the projection of the edge vector connecting i to an anchoring neighbor Nb(i)
to the tangent plane is perpendicular to �tx.

�t′y ← (�i− �Nb(i))− ((�i− �Nb(i)) · �
nTw
i )

�
nTw
i )

�

�

�

�3.33

�ty ←
�t′y

||�t′y||
�

�

�

�3.34

where �t′y is the connecting vector between i and Nb(i) with all normal content removed and �ty
the same vector with unit length.

�tx is chosen in a way that completes the right-handed orthonormal system:

�tx ← �ty × �tz
�

�

�

�3.35
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The sampling directions in the coordinate frame Tf of the mean and variance image
�
n
Tf

i

are then obtained according to

�
n
Tf

i = T−1
f · Tw · ( �

nTw
i )

�

�

�

�3.36

Figure 3.12 shows an example of how a local frame is set up at a certain vertex.

i

t
z

t
y

t
x

Nb(i)

D

Figure 3.12: This image shows a local frame with the three orthogonal vectors �tx, �ty and �tz
and the tangent plane D. Nb(i) is the anchoring neighbor vertex of i.

With this strategy, it is also possible to extend the search direction perpendicular to the

image plane. Additional profiles can be sampled by moving the sampling ray perpendicular to

the image plane. This means that the movement of a landmark may also obtain an out-of-plane

component, which in some cases makes the model search converge faster.

3.5.5 Subspace Shape Model Projection

After moving the landmark vertices to the optimal displacement positions, a projection to the

statistical model has to be performed to ensure a valid shape instance. In the standard active

shape model search [CT99], the closest instance of the class of shapes of the statistical shape

model is found after normalizing the shape by the parameters of a geometrical normalization

transformation [CT99]. The shape normalization step is identical to the one during the creation

of the statistical shape model in section 3.1.3. The feature vector b of the closest instance is

then given by

b = Φt · (x− x)
�

�

�

�3.37

where x are the coordinates of the shape after shape normalization by the normalizing trans-

formation. We obtain equation 3.37 by solving for b in equation 3.3. This corresponds to an

orthogonal projection to the space of valid shapes and yields the closest instance of the model

according to a least squares error metric of the coordinates [CT99]. After the projection, the

values bi are confined to a 3σ-interval of the implicit multi-variate Gaussian distribution of the

model.

bi ← min(3σi,max(−3σi, bi)) = min(3
√
λi,max(−3

√
λi, bi))

�

�

�

�3.38

where σi =
√
λi is the standard deviation corresponding to the i-th principal vector, with λi

being its principal value.
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Often, the dimensionality of the model is reduced by removing columns from Φ. For

example, if only the n most important modes of variation are considered, then Φ contains only

n columns and b only n entries. This corresponds to an abstraction reducing the complexity of

the model to the n degrees of freedom, which account for the maximum variance of any set of

n modes of variation.

For sparsely covering 2D slices of image data, the standard projection has to be adapted.

Due to the sparse coverage of the volume by the image slices, not all vertices of the normalized

model are located within at least one slice during the active shape model search but only a

subset. Hence, the set of landmark vertices V is partitioned into active landmark vertices U
located within at least one slice and having at least one sample profile available to be compared

to a reference and inactive landmark vertices Ū .

Figure 3.11 a) illustrates the partition into active vertices, containing shift arrows and inac-

tive vertices without arrows. The adapted projection may only include active landmark vertices.

This projection can be called subspace shape model projection.

The active shape model that corresponds to the subset of active landmark vertices is called

subspace shape model. As the slice images are 2D, only active vertices provide image samples

and profiles which can be used for the active shape model search, so equation 3.3 is no longer

sufficient. Instead it must be adapted to include a projection Π from the space of coordinates of

the vertices of the complete model V to the space of coordinates of the subspace shape model

U .

Π : x∗ = P · x
�

�

�

�3.39

x∗ = P · x+ P · Φ · b = x∗ +Φ∗ · b
�

�

�

�3.40

where x∗ is a vector containing only the coordinates of the active landmark vertices, i.e. vi ∈ U
and P is a projection matrix, transforming x to x∗.

In contrast to Φ, Φ∗ is not orthonormal. However, as only the n most important eigenvec-

tors are considered and as the number of active landmark vertices |U | is usually large enough,

Φ∗ has full rank, and equation 3.40 can be solved for b. The pseudo-inverse Φ∗+ can then be

calculated by means of a singular value decomposition [VF02]. So the subspace shape model

projection is calculated as follows:

b = Φ∗+ · (x∗ − x∗)
�

�

�

�3.41

Since by adapting the model, the partition of V into U and Ū can change, Φ∗ has to be

updated and its pseudo-inverse Φ∗+ has to be recomputed whenever the set of active landmarks

changes. In practice this makes the method a little bit less efficient than the 3D active shape

search, where because of Φ being orthonormal computing the inverse is straightforward and

only has to be done once for all steps.

57

3.5. ACTIVE SHAPE MODEL SEARCH



CHAPTER 3. LIVER SEGMENTATION FROM MR IMAGE SLICES USING AN
ACTIVE SHAPE MODEL

First, the soundness of the active shape model was evaluated by performing cross-validation

tests on the 3D training image data using a 3D active shape model search as described in 3.5.3,

based on the works published by Lamecker et al. [LLS04] or Heimann et al. [HWM06a]. This

yields information on the overall performance of the active shape model itself and its local

model of appearance.

Then the method was validated by generating slice images from the 3D data and comparing

the results of the algorithm to the results obtained using the 3D active shape model search.

Both leave-all-in and leave-one-out tests were performed on the data sets available in all

scenarios. A leave-all-in test consists of building the shape model and its local model of appear-

ance from all training data sets available. Then the algorithm is run on each of these data sets.

This yields information on the overall soundness of the method. A leave-one-out test consists

of building the active shape model and its model of appearance of all but one data set. Then

the algorithm is run on the data set left out. This yields information on the generalizability of

the model.

The manual segmentations of the input data were taken as the ground truths and compared

to the results of the surface reconstructions computed by the algorithm. Four error metrics

were chosen to measure the difference between a model m and the ground truth t:

• The average Euclidean distance between the landmark vertex positions in the ground

truth segmentations and the positions in the segmentation result.

• The volumetric error 2|Vm−Vt|/(Vm+Vt), which corresponds to the relative difference

in volume, with Vm being the volume of the model instance and Vt being the volume of

the ground truth surface.

• The RMS surface distance error, similar to [HWM06a], defining the fraction of the sur-

face area, which is further than 7.5 mm, i.e. three quarters of the thickness of a slice

away from the ground truth surface.

• The Tanimoto error [Tan58], which is defined as the fractional volume being part of the

combined volume but not of the overlap volume: 1.0−Vm
⋂

t/Vm
⋃

t. Here Vm
⋂

t is the

jointly covered volume and Vm
⋃

t is the combined volume.

The validation experiments were done using the 12 major modes of the active shape model.

The 2D slice adaptation examples were performed once with very sparse slice placement (3

coronal slices and 3 transversal slices of the abdomen with 15 mm slice distance) and once

with a denser placement of the slices (6 coronal slices and 6 transversal slices also with 15 mm

slice distance).

Table 3.1 summarizes the results. Given the fact that MR images provide lower resolution

and less morphological contrast than CT scans, the overall results are competitive to the ones

published by Heimann et al. [HWM06a]. One can see that, although the model is not the most

comprehensive one, consisting of 23 data sets, it generalizes well, since there is only a small

difference between the results of the leave-all-in and the leave-one-out tests.
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has an influence on the speed of convergence: As more slices provide more information, the

number of iterations and the overall running time of the algorithm is reduced if more slices are

used. Altogether, a complete hierarchical segmentation and reconstruction of a surface from a

set of 2D image slices takes about 20 seconds on an Intel Core Duo CPU with 3 GB RAM.

Data Test Strategy Slices Avg err. (mm) RMS err. (%) Vol. err. (%) Tanimoto err. (%)

3D all-in offline - 3.2± 1.0 3.3± 4.5 2.1± 1.9 8.7± 2.9
3D one-out offline - 5.9± 3.2 22.4± 28.6 2.6± 2.4 14.0± 4.0
3D all-in on-the-fly - 4.3± 3.0 12.4± 22.3 1.9± 1.7 9.8± 3.8
3D one-out on-the-fly - 6.6± 4.7 26.8± 32.4 3.1± 2.9 14.7± 4.9
2D all-in offline 12 3.8± 1.4 6.4± 13.2 1.8± 2.1 9.8± 3.7
2D one-out offline 12 6.6± 3.5 31.5± 24.8 2.7± 3.4 14.8± 4.2
2D all-in on-the-fly 12 4.8± 3.0 12.4± 22.0 1.7± 1.4 9.8± 3.2
2D one-out on-the-fly 12 6.2± 2.2 25.5± 22.9 2.3± 2.0 14.3± 2.7
2D all-in offline 6 7.9± 7.5 31.9± 33.7 2.7± 2.4 12.8± 5.0
2D one-out offline 6 10.1± 7.6 54.3± 15.6 3.9± 4.7 18.8± 7.9
2D all-in on-the-fly 6 6.8± 3.2 33.2± 28.3 3.0± 3.0 13.0± 5.6
2D one-out on-the-fly 6 8.7± 3.5 51.8± 27.2 4.0± 3.8 17.9± 6.3

Table 3.1: Validation Results: Average errors and standard deviations. All tests were done with

12 model modes and 12 resp. 6 image slices, half of them coronal the other half transversal.

The column ’Test’ specifies the kind of the respective validation test, which is either leave-all-

in or leave-one-out. The errors are given in mm resp. percent. The calculation times range

from 20 to 30 seconds on a Intel 3.2 Ghz dual core machine with 3 GB RAM.

a) b) c )

Figure 3.13: a), b) and c) show the result of the active shape model search with 6 image slices

and 12 modes. The segmentation result resp. the surface reconstructed is delineated by the

wire frame model.

The method and its results have been published in [FTS08b].

3.7 Discussion

From table 3.1, one can conclude that the overall performance of the method is competitive

to the results presented by Heimann et al.[HWM06a], given the lower resolution and weaker

morphological contrasts of the training MR images, compared to an average CT scan. For 3D
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One can also state that, if slice coverage is very sparse, as in the case with only 6 slices, i.e.

3 coronal and 3 axial slices, the on-the-fly strategy becomes superior. The number of slices also
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image data and not so sparse 2D image slices, the offline strategy is superior and also faster,

while for very sparse 2D data, the on-the-fly strategy yields slightly better results. However,

this conclusion would have to be confirmed by further experiments, e.g. with a different model

on different input images.

The method is well suited for the problem of reconstructing the 3D position, orientation,

shape and extent of the liver from a set of sparsely covering image slices, within the described

error boundaries. Its results provide a good basis for follow-up automatic applications like

scan planning on localizer images, etc. An example application and prototype implementation

for fully automatic liver scan planning including slice and navigator placement for a MR liver

exam can for example be found in [FTS06].

For high-quality clinical liver segmentations of the liver, however, more generalization and

extension abilities of the model towards unseen data sets during the search would have to be

implemented and integrated. Relaxing the model towards the model space after each iteration

step, as mentioned in [HWM06a] instead of simply performing a strict subspace shape model

projection could provide further generalization ability. However, this could interfere with the

subspace projection calculations of the model as mentioned, which are necessary in the 2D

case. A more comprehensive model with more generalizability created by extending the data

basis and including more training shapes would certainly help in terms of precision. Never-

theless, the presented results can be considered as good pre-segmentations, e.g. for volumetric

estimations, since the overall volume error is quite small. Still a lot of applications can be

developed based on the given statistical shape model and the active shape model algorithm,

including pre-segmentation, localization and positioning tasks.

Further algorithmic improvement, though, may still enhance the results e.g. by integrating

ideas like optimal appearance features, as published by van Ginneken et al. [vGFS+02]. There

are also plans to implement a different algorithm for the initialization of the model using robust

image features and integrating them into the shape model. Doing so would also allow for not

starting with the average shape but with an initial shape guess based on these features. This

could be achieved by joining the feature values with the statistical shape parameters prior to

the PCA analysis and exploiting statistical correlations between the feature positions and the

shape parameters resp. feature values.
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4
Anatomical Labeling of FastView Images Using

a Statistical Atlas

4.1 Introduction and Motivation

MR examination workflows are complex and require a lot of human interaction, like posi-

tioning, coil selection, sequence tuning, etc. Advanced knowledge and a lot of experience is

necessary to acquire high quality image data in every case. Reducing human interaction e.g.

by automation of certain workflow steps or suggestion of reasonable scan parameters would

help inexperienced operators to achieve high quality examinations. For this reason there is

growing need for more automation and standardization. This would also lead to more re-

producibility, better comparability of the examinations and to shorter examination slot times

and hence higher scanner workloads, as well. Methods that use image information from fast

non-diagnostic pre-scan acquisitions for the automation of otherwise manual steps in the MR

examination workflow are highly appreciated. To name but a few of these methods, van der

Kouwe et al. [vdKBF+05] presented a solution for reproducible MR head scan planning using

an atlas of the human brain. Peschl [PESH04] describe a method for fast and virtually auto-

matic scan planning for the spine. The previous chapter delineated a method that would allow

for fully automatic liver scan planning from fast localizer scans, which had been published

in [FTS06] and [FTS08a]. All the methods mentioned share the drawback that they all depend

on special acquisition protocols, which require adequate coil selections and pre-positioning of

the patient in a way that the region including the organ which is to be scanned and for which

the scan range is to be planned is within the field of view of the scanner. As the homogeneous

volume of the magnet is usually in the range of 40-50 cm, it is not possible to position for

various organs within a single scan.

Recent developments in the hardware of MR scanners have brought up continuous table

imaging, as described in 2.5.5. Whereas in multi-stage MR image acquisitions, whole-body

images are scanned as blocks of 3D volume which are retrospectively stitched together, the

idea of continuous table imaging is to scan a whole body image by moving the patient table

continuously in axial direction during the acquisition. This concept has been realized by vari-

ous groups like Barkhausen et al. [BQL+01] and Kinner et al. [KZZ+06]. In continuous table

imaging, the slice which is currently scanned is always located at the isocenter of the magnet.

This allows for acquiring whole-body images within a single scan without repositioning or

scanning in stages. This means that the complete image of a patient or of a torso of a patient is
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available without composing or stitching of image stages, which also eliminates the need for

overlaps, i.e. scanning certain regions twice for robust stitching. The advantages of continuous

table imaging have already been summarized in section 2.5.5. By scanning 2D slices during

continuous movement of the table, full 3D image information is available. If the scanning

protocol is fast enough, the image data can be used as a 3D localizer.

One of the protocols making use of continuous table imaging is FastView [Bla06]. FastView

is a FLASH [HFM+86] based (as described in subsection 2.5.3), proton-density weighted, 2D

axial acquisition technique with the opposed phase condition of fat and water signal. Opposed

phase [HBTV99] means, that the complex signals generated by fat and water have a phase

shift of 180◦ at the time of the rephasing of the precessing protons, which means that their

vectors point in opposite directions. This results in a complete extinction of signal for voxels

containing equal amounts of fat and water, which in turn causes strong discernible boundaries

of various tissues. Strong boundary information and contrast can be helpful for image pro-

cessing applications, so FastView images, provide good input for postprocessing applications,

although their resolution is only moderate.

The FastView protocol can be perfectly used as a 3D localizer, as it provides full 3D infor-

mation, large field of view, sufficient resolution (5 mm isotropic) and fast acquisition (about

20 seconds). This allows for using FastView image data for image-based automatic label-

ing of multiple organs or anatomical structures from the entire body or torso from one single

fast non-diagnostic prescan acquisition. Labeling of anatomical structures is equivalent to a

multi-class segmentation of the anatomical structures from the image data. This information

can be used for scan automation like automatic slice positioning, navigator positioning, SAR

value estimations, or adaptations of specific sequence and scan protocol parameter for a pa-

tient (fat saturation, resolution), etc. Other applications of the method could include automatic

pre-segmentations, croppings for visualization, volumetric estimations, etc. In short terms, the

FastView localizer opens up vast opportunities for image-based fully automatic whole-body

scan planning, reporting and processing algorithms.

The approach, which was developed in this thesis for the multi-organ segmentation prob-

lem is based on the creation of an atlas of the human torso from a set of FastView training

images. An atlas contains information about the complete spatial relationships of pixel values

of certain anatomical structures [RBM+05]. The atlas therefore represents an anatomical tem-

plate which can be used to align an unseen image. In the majority of cases, the template is an

average instance, created from a group of individuals. However, the atlas can also be a special

individual instance depending on the application. The spatial alignment can then be used to

infer information on the structures of the unseen image from the well-known structures of the

atlas. In particular for the given application, anatomical structures are labeled manually in the

atlas of the human torso. Registering an unseen FastView image to the atlas and propagating

the anatomical labels then yields the anatomical labeling or multi-class segmentation of the

unseen FastView image.

The atlas of the human torso used in this thesis is created as a statistical atlas. This means

that it does not only contain an average instance of the human torso but also its main modes of

statistical variation, which are obtained from principal component analysis. Statistical variation

of the atlas refers to both variation of the shapes and spatial relations which are represented

by deformation fields, but also grey value variation. The deformation field statistics capture
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naturally occurring variations in shapes and spatial relations in comparison to the average torso

represented by deformation fields. Grey value statistics can be used to describe the variation

of grey value appearance in different data sets caused by effects like different proton densities

resp. relaxation times of the organs among other effects.

4.2 Related Work

Atlas based methods are popular throughout medical image segmentation literature. A thor-

ough overview of existing techniques and publications can be found in a review by Rohlfing

et al. [RBM+05]. Most publications dealing with anatomical atlases have been made in the

context of MR brain imaging and diagnosis. Talairach presents an atlas and complete coor-

dinate system for the human brain [TT88] defined on an atlas created from a brain image of

60-year old left-handed female. Gee et al.[GRB93] use a human brain atlas from MR im-

ages for matching deformed instances by elastic warpings. The on-line positioning method

in [vdKBF+05] is also based on an atlas of the human head. Cootes introduces active shape

models and active appearance models and published their application to atlas based matching

in [CBET99]. Rueckert proposes statistical analysis of non-rigid deformation fields for the

creation of a statistical atlas [RFS03] of the brain, which can be used for brain segmentation.

In the field of whole-body atlas based segmentations, Park et al. [PBM03] use a proba-

bilistic abdominal atlas for supervised multi-organ segmentation from 32 abdominal CT-scans.

They use thin-plate-splines transformations for the deformable transformations between the

different data sets. A Bayesian framework is used for assigning segmentation class labels to

the voxels of unseen image data. Zhou and Bai [ZB05] create an abdominal atlas from CT

scans. They use atlas-based registration for an initial segmentation of the abdominal organs.

The initial segmentations are then fine-tuned by means of a novel connectedness approach

based on fuzzy functions.

4.3 Building the Statistical Atlas

This section covers the various steps which are necessary for creating the statistical atlas of the

human torso from FastView training images. The method presented in this section is closely

related to the concepts presented by Rueckert et al.[RFS03]. First, a representative group of

individuals is scanned using the FastView protocol. Then one data set of this group is selected

as the reference image. By performing non-rigid registrations of all data sets to the reference

image, a set of deformation fields is obtained. Applying principal component analysis on

the deformation fields yields the average deformation field and its eigen modes of variation.

Performing principal component analysis on the pixel values of the registered FastView images

of the individuals produces the average image and its eigen modes of variation. Backwarping

the average image and its eigen modes by the inverse average deformation then yields the actual

atlas in its natural coordinate system. For reasons of simplicity and generalizability, a single

atlas containing both male and female individuals is created. The selection of individuals for

the creation of the atlas was done in a way that a possibly vast variety of statures, size and ages

are taken into account in order to obtain representative statistics.
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4.3.1 FastView Image Data

The data basis of the atlas is set up from the scans of a group of representative volunteers

using the FastView protocol. FastView, as mentioned above, is a fast FLASH-based protocol

that produces 3D images with a proton density weighting during continuous movement of the

patient table. The FoV was fixed at 1000 mm, so that a huge portion of the volunteers’ bodies,

including head, torso, pelvis and a part of the upper legs is covered. Running the scan protocol

with these parameters takes about 20 seconds per individual.

Selection of the individuals is done in way to cover a preferably huge variety of height,

stature, age and sex. The image data are also acquired on different scanner devices with dif-

ferent basic magnetic field strengths B0, 1.5T resp. 3T , different bore dimensions, different

coils, etc in order to capture all potential variations of the image data. Figure 4.1 shows two

example FastView data sets in direct volume rendering.

a) b) c) d)

Figure 4.1: FastView images from two individuals in direct volume rendering. a) and c) with

large opacity values, b) and d) with a small opacity values.

4.3.2 Arm Stripping

As the images are acquired with the patients in supine position and no additional coils apart

from the body coil [HBTV99] are used which might constrain the patient positions, the vari-

ation of arm configurations is large. Since differing arm positions can affect the following

registration process in an undefined way and since this would add additional undesired varia-

tion and complexity to the image data, pure torso images are created by stripping off the arms

using an automatic algorithm.

The arm stripping algorithm is motivated by [GPAK08] but more intricate in its implemen-

tation. The first step is to make a segmentation of the torso including the arms using inverse

region growing from outside with an upper noise threshold, which yields a binary image. Each

axial slice of the binary image is analyzed and clustered into connected components. The

components of the slices containing 3 components are divided into left arm component, torso

component and right arm component.

The components of successive slices are then linked to the components of the predecessor

slices in a way that a metric of distance and difference in size is minimized. Missing com-

ponents are added by interpolating the components between adjacent slices. The clustered

and interpolated components of left and right arm are connected to tubular structures. The

surfaces of tubular structures are used as the initialization of a 3D active contour model or
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3D snake [KWT88], that snaps to the nearest edges of the image data, while maintaining a

smoothness condition. The snake is encoded as a level set [CKS95]. Zeroing the voxels inside

the snake then results in a FastView image without arms.

See figure 4.2 for an explanation of the concept of the arm stripping algorithm.

Slice 1

Slice 2

Slice 3

Slice 4

a) b) c)

Figure 4.2: a) shows the clustering step of the arm stripping algorithm. In slice 4 and slice 2

all components are separated. The tubular structure results from connecting the components

which are truly separated and interpolating between. b) and c) show an example of a FastView

image with arms and a FastView image without arms after application of the arm stripping.

4.3.3 Image Histogram Normalization

As grey values in MR images have no immediate physical meaning such as Hounsfield units

have for CT, which was already explained in section 2.2, the grey value appearance of the im-

ages can depend on a lot of parameters, like magnets, coils, signal encoding, etc. and thus cause

undesired variation of the image data. For statistical considerations, it is therefore important to

exclude some of those parameters by an initial image normalization.

A popular normalization method is the one published by Nyul et al. [NU99] that maps the

histograms based on normalization parameters which are learned from input histograms. These

normalization parameters are then used for a piecewise linear scaling of the image histogram

to the ideal histogram.

For the FastView image atlas, a simplified normalization method is used, which works by

scaling the image grey values in a way that the peak of the non-background component of the

two-modal histograms coincide. This is motivated by the fact that the statistical distributions

of the foreground voxels of the torsos should be equalized. Normalizing the mean values of the

foreground voxels reduces a large amount of variation of the grey value data. The intensities

between the peaks are adjusted by a linear scaling defined by the peak values which are to be

matched. The algorithm requires the histograms to be segmented into foreground and back-

ground components which can e.g. be done by expectation-maximization techniques [GW02]

or simpler and sufficient for this case by thresholding the histograms using the mean intensity

of the voxels [NU99].
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Figure 4.3.3 shows how the normalization is done.

I

p(I)

H1 H0

p(I)

I

H’1

Figure 4.3: The histogram H1 shown with solid lines is normalized by a scaling factor ac-

cording to the reference histogram H0 shown with dashed lines, such that max(p(I ′1)) =

max(p(I0)). The x-axes of the histograms represent the intensity values I , the y-axes show

the corresponding probabilities p(I)

4.3.4 Image Data Registration

The crucial step for building the atlas is finding spatially corresponding points for each pair

of training images across the collection of volunteer image data. This is done implicitly by

performing registrations of all data sets to a reference data set. The reference data set is a

randomly selected image data set with good overall image quality of an individual with prefer-

ably average anatomy. Image registration produces spatial correspondence by maximizing the

similarity between two images. Image registration is an optimization procedure in which, one

image is defined to be the fixed image, while the moving image is transformed and resampled

in a way that maximizes similarity between the two. This is typically done by iteratively warp-

ing the moving image according to a geometrical transformation, computing a similarity value

between the images, then updating the transformation in a way that the similarity is increased

and so on. The final transformation which maximizes the similarity of the moving image to the

fixed image is called the registration result.

If Ti is a transformation that registers image Ii to image Iref using backward warping, then

Ti(x) and x are corresponding points or pseudo-landmarks in image Ii and Iref . Backward

warping of the moving image means that the grey value for each target pixel in the image

is computed by transforming its spatial coordinates according to the warping transformation

and looking ’back’ at the grey value at the original position in the unwarped image using an

interpolation scheme. The advantage of using backward warping is that no undersampling or

holes can occur in the warped image, although it is conceptually less straightforward.

Depending on the degrees of freedom that the expected transformations can have, the trans-

formation of the registration can be set up in different ways. Because of the huge variation of

inter-individual whole-body anatomy, the transformation for the registrations in this context are
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assumed to be free-form non-rigid transformations with reasonable constraints. The complete

registration transformation Ti is therefore set up by a global affine transformation Tglobal and a

local free-form transformation Tlocal. The complete transformation Ti is then a concatenation

of the two: Ti ← Tlocal ◦ Tglobal.

Affine Preregistration

Before the actual non-rigid registrations can be computed, all data sets have to be transformed

to a common coordinate frame to compensate for different coordinate systems of the acquired

data sets and systematic offsets. This helps to obtain reasonable starting points for the registra-

tions.

To this end, manual landmark points are placed at discernible anatomical correspondence

points on the surfaces of the torso data sets. The discernible points, for example comprise the

tip of the nose, the hips, etc. Each data set is then warped to the common coordinate frame

of the reference image by applying an affine transformation TA. TA is a transformation which

minimizes the sum of squared Euclidean distances between the transformed landmarks li and

the landmarks in the reference data set lri .

TA = argmin
TA

∑
i

||lri − TA(li)||2
�

�

�

�4.1

The affine transformation is calculated from the correspondence points as described in

section A.3.

Non-rigid Transformation

There are many ways and methods for computing non-rigid registration and warping trans-

formations to maximize similarity between images. A collection of approaches can be found

in a thorough coverage by Modersitzki [Mod04]. This publication describes free-form defor-

mations with dense deformation vector fields and regularizers which are based on physical

diffusion, curvature, elastic or flow models. Dense deformation vector fields means that for

each voxel in the image, a transformation vector is computed which maps to a spatial posi-

tion in the reference image. Since this is an ill-posed problem, a regularization has to be done

which actually makes the difference between the several methods. In short terms, the regular-

izer constrains the problem by imposing physically motivated conditions, e.g. by punishing

large differences in the vectors of neighboring voxels.

Another kind of free-form deformation transformations is based on B-Spline tensor product

deformation fields. This is a powerful tool for modeling 3D deformable objects. The key idea

of this method is to superimpose a regular grid of M ×N ×K control points onto an object of

dimensions (xmax, ymax, zmax), e.g. the volume of a 3D image, and to deform the object by

moving the underlying control points. So each control point (i, j, k) is assigned a deformation

vector di,j,k and the deformation Tlocal(x, y, z) at an arbitrary point (x, y, z) can be described

as the tensor product of the 1D B-Spline curves that weight the deformation of the surrounding

control points [RFS03].
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Tlocal(x, y, z) =

2∑
l=0

2∑
m=0

2∑
n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n

�

�

�

�4.2

where

u =
x ·M
xmax

− 	x ·M
xmax



�

�

�

�4.3

v =
y ·N
ymax

− 	y ·N
ymax



�

�

�

�4.4

w =
z ·K
zmax

− 	z ·K
zmax



�

�

�

�4.5

and

i = 	x ·M
xmax



�

�

�

�4.6

j = 	y ·N
ymax



�

�

�

�4.7

k = 	z ·K
zmax



�

�

�

�4.8

and the B-Spline coefficients for a cubic B-Spline are defined as follows

Bl(u) = B(u− l − 1) = B(x) =

⎧⎪⎨
⎪⎩

(2−|x|)3
6 2 > |x| ≥ 1

(4−6|x|2+3|x|3)
6 1 > |x| ≥ 0

0 elsewhere

�

�

�

�4.9

The B-Spline tensor based transformation ensures both smoothness of the transformation

and strict local support of the parameters. Both of these properties are required for modeling

variations of anatomy. In addition the number of degrees of freedom can be directly controlled

by the number of control points and is not related to the resolution of the images, in contrast

to registration transformations using dense vector fields. The feature of strict local support of

B-Spline tensor based transformations is due to the fact, that changing one coefficient of the

deformation of an arbitrary control grid point only affects a 4×4×4 area of grid points around

that control grid point. See figure 4.4 for an example of a 3D control grid superimposed on a

3D image volume and a warping example of an image based on the underlying grid.

Similarity Measure

In order to assess the quality of an image registration, a similarity measure is needed that

makes a quantitative statement on how well two images are aligned and how well the spatial

correspondence is. An overview of common similarity measures can be found in [HHH01], in-

cluding summed squares of differences (SSD), cross-correlation or histogram based measures.
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a) b)

c)

Figure 4.4: a) shows an image volume represented by a stack of slices and the regular grid

of control points. b) shows how the grid is superimposed onto the image volume. c) shows a

warping example of a 2D slice, with the left showing one slice with superimposed grid points,

the center image showing a warped regular grid with a reference grid image for more clarity

and the right the original image warped by the deformation field.

A common histogram based measure is mutual information [PMV03] which is frequently

used in multi-modality and multi-individual registration applications. While SSD and cross-

correlation are calculated directly in image space, i.e. directly on the grey values of the image,

mutual information is calculated from a feature space defined on the two images. For mutual

information, the feature space is the joint histogram of the two images, which is subject to

change as the alignment of the images changes. The joint histogram can be calculated by

counting the joint occurrence frequencies p(i, j) of the each pair of pixel values i and j. Mutual

information is now calculated from the joint histogram based on Shannon’s entropy [Sha48]

which was introduced in information theory and describes the amount of uncertainty of a given

piece of information.

More specifically, if p(i, j) are the frequencies in the joint histogram of grey value i in

image A being aligned with grey value j in image B, then Shannon’s entropy H of this joint
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H(A,B) = −
∑
i,j

p(i, j) log p(i, j)
�

�

�

�4.10

The marginal entropies H(A) resp. H(B) are computed by summing up each column and

each row of the joint histogram and calculating the entropy on those.

H(A) = −
∑
i

(
∑
j

p(i, j)) log (
∑
j

p(i, j))
�

�

�

�4.11

Mutual information between two images A and B is defined as the difference of the joint

entropy and the sum of the marginal entropies. The formula is:

I(A,B) = H(B)−H(B|A) = H(A) +H(B)−H(A,B)
�

�

�

�4.12

This finally boils down to [PMV03]:

I(A,B) =
∑
i,j

p(i, j) log
p(i, j)

p(i)p(j)

�

�

�

�4.13

In short terms, mutual information makes a quantitative statement on the amount of cer-

tainty one has about the grey values in image B, given the grey values of image A under the

given alignment. Hence, maximizing mutual information means sharpening the distributions

in the joint histogram, because the sharper the clusters in the histogram, the more certainty

there is about the joint intensity pairs. Figure 4.5 shows examples of sharp and unsharp joint

histograms and the relation to changing similarity of moving and fixed images.

The huge advantage of using mutual information which makes it superior to other simi-

larity measures for multi-modality or inter-subject registrations is that it allows for non-linear

variation of contrast between different subjects which is particularly important in cross-subject

MR image registration, where different relaxation times or proton densities make similar struc-

tures appear at different grey values. The drawback is that its expensive computation. However,

since the registrations are only done once during the creation of the atlas, this shortcoming can

be accepted.

Since the mutual information term is sensitive to the size of the image overlap, usually a

normalized mutual information term is used, as explained by [PMV03].

NMI(A,B) =
H(A) +H(B)

H(A,B)

�

�

�

�4.14

The implementation of the mutual information similarity function for the creation of the

atlas is motivated by the paper by Thevenaz and Unser [TU00]. They use Parzen window-

ing [Par62] for the calculation of the joint histograms. This results in smoother and continuous

estimations of the joint probabilities and facilitates the computation of direct derivatives of the

metric [TU00]. The idea behind Parzen windowing is not to assign binary values to the fre-

quency bins in the joint histogram but to spread the information over neighboring bins using a

kernel function. This avoids discontinuities in the case of subtle changes of grey values, which
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a) b) c)

Figure 4.5: a) shows the joint histogram of two perfectly aligned volumes, b) after a rotation

of 10 degrees and c) after a rotation of 20 degrees. The larger the rotation and the spatial

misalignment between the two volumes, the unsharper the joint histogram becomes and the

smaller the value of mutual information.

is important to the computation of derivatives. See figure 4.6 for a visualization of Parzen win-

dowing. [TU00] suggest to use B-Spline kernel functions for the Parzen windows. B-Splines

have some useful properties, one of them being the partition of unity, which means that the

binary sample is partitioned into fractions which are spread over the bins and the values of

which sum up to 1.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Figure 4.6: The sample value is distributed to the different bins according to their distances to

the bins. A spline kernel function is used to obtain the weights of the fractional frequencies,

which all sum up to 1.

The mutual information term is integrated into a combined cost function. Minimization of

this cost function drives the registration process. For the optimal registration, the cost function

will reach its minimum value. In order to avoid unnatural or rupturing deformations an addi-

tional regularization term sums up the squared norm of differences of adjacent control point

shifts vi. This regularization term prevents neighboring control grid points from moving too

close or too far from each other. It also avoids overfolding of the control points, which can

happen in theory if no regularization is used. The regularization term is similar to the so-called

diffusion regularizer [Mod04] in free-form non-rigid registration. Computing its derivative is
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straightforward and can be implemented efficiently. The cost function also contains a term for

considering predefined correspondences, so called manual landmarks LM . If certain structures

need to be aligned beforehand to steer the registration process towards a desired solution, this

can be done by placing landmarks at the corresponding structures in the moving image and

the fixed image. So the combined cost function reads as follows with the empirical weighting

constants λ and γ:

c(T ) = −NMI + λ
∑

(i,j)∈NB

(vi − vj)
2 + γ

∑
xi∈LM

(
x′i − T (xi)

)2 �

�

�

�4.15

where T is the non-rigid deformation, NB is the 27-neighborhood on the grid of control points

vi is the movement of control point i, LM is the set of all manual landmarks, x′i is the land-

mark in the reference image and xi the corresponding landmark in the moving image. The

term for normalized mutual information NMI is subtracted because, thus, increasing mutual

information is correlated to decreasing the cost function and vice versa. λ and γ are empirical

coefficients that weight the different terms. The coefficients are determined experimentally

and globally for all data sets so that the effects by the different terms have appropriate relative

magnitudes for the cost function.

Optimization

The optimal similarity between the two images according to the given criteria is found when the

upper cost function is minimized. That is the case if and only if the following two conditions

hold:

∇c(Topt) = 0
�

�

�

�4.16

c(Topt) ≤ c(T ) ∀T
�

�

�

�4.17

A value which fulfills condition 4.16 can be computed using a gradient descent approach [VF02].

Starting from an initial transformation T0, the gradient of the cost function ∇c(T0) is calculated

at this position and then the transformation is updated by moving into the negative direction of

the gradient using a step size Δs.

T ←
{

T −∇c(T ) ·Δs if c(T −∇c(T ) ·Δs)) < c(T )
T else

�

�

�

�4.18

In order to increase the speed of convergence, a strategy for adaptive step size is used. This

means that Δs is a function of the iteration number resp. time t, i.e. s ← Δs(t).

Δs(t) ←
{

f ·Δs(t− 1) if c(T −∇c(T ) ·Δs) < c(T )
1
f ·Δs(t− 1) else

�

�

�

�4.19

with f being a constant and f > 1.

This procedure increases the step length as long as the cost function value decreases

steadily, but decreases its step length if it does not.
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The second condition 4.17 is harder to fulfill as the cost function is multi-modal and has

many local side optima. In order to avoid becoming stuck in local optima, a hierarchical multi-

scale approach is implemented. A Gaussian pyramid [GW02] is built from the input image

by successive low-pass filtering and downsampling. The control grid is also implemented as a

pyramid of control grids with different resolutions. Figure 4.7 shows the resolution pyramids of

the images and the control grid. Hence, the registration starts with the coarsest image resolution

of the pyramid and the coarsest grid from the pyramid of control points. After convergence of

the registration optimization, the next finer resolution of the control grid is used. As soon as

this registration setup has converged, the next finer image resolution is taken and so on. The

final registration result is obtained from both the finest image and finest grid resolution. In

the finest grid resolution, there is one control point for every four voxels. This means that the

maximum grid resolution is 20 mm.

a) b)

Figure 4.7: Visualization of the Gaussian image pyramid ( a) ) and the pyramid of control grid

points ( b) ).

Results

The images in figure 4.8 show the results of the registration process for three different data sets

after checkerboard image fusion. Checkerboard fusion combines two images to one by select-

ing image patches in an alternating fashion from the two inputs like the black and white fields

on a checkerboard. In a perfect registration, no discontinuities of the structures, except for dif-

ferent grey value levels of the individuals, should be visible at the borders of the checkerboard

fields.
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Figure 4.8: This figure shows the results of the registrations to the selected reference image

instance after checkerboard fusion, which means that alternating patches from the moving

image and the fixed image are combined to a single image. The first column shows slice 20,

the second slice 30 and the third column slice 40 of the registered image. Each row shows the

result of a different data set.
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4.3.5 Statistical Model of Deformation

Statistical models of deformation [RFS03] are an extension to standard active shape models

as proposed by [CT92] and as described in chapter 3. Instead of doing statistical analysis

on the large vector of the coordinates of corresponding points, principal component analysis

is directly applied to the underlying deformation fields. So, let di be the large vector of the

movements of all control grid points, which set up the transformation that warps image Ii to

the reference image Ir. The average deformation field can then be calculated according to:

d̄ =
1

n

n∑
i

di
�

�

�

�4.20

and the covariance matrix S

S =
1

n− 1

n∑
i

(di − d̄)(di − d̄)T
�

�

�

�4.21

Applying principal component analysis (PCA) to the covariance matrix yields the principal

components of deformation. Its linear model can be written as follows:

d = d̄+Φd · bd
�

�

�

�4.22

where Φd is the matrix of principal components and bd the feature values of deformation.

Varying the parameters of the feature vector bd then generates all valid instances of defor-

mation fields with the underlying assumption of the space of deformation fields being linear.

Before the deformation fields can be analyzed, it has to be made sure that any global resp.

affine content is removed so that only true variation between the subjects is taken into account

and that biases like different positions, orientations and sizes of the subjects are excluded from

the considerations. To this end, all affine content is removed from the deformation fields by

performing a least squares fit of an affine transformation to the deformation field. This content

is removed from the B-Spline transformations and the statistical analysis is made on those

deformation fields which have been ’cleaned’ from affine biases.

The atlas image a is then generated by pixelwise averaging the registered and warped

images Ii. However, the atlas which has been generated this way depends on the choice of the

reference image, which introduces an undesired bias. Even though the reference image may

seem normal, it may represent some abnormal anatomy. See figure 4.9 for an explanation. The

atlas is supposed to be independent of the choice of the reference. So in an additional step, the

atlas has to be computed in its natural coordinates, which are the coordinates that minimize the

overall sum of deformations over all registrations [RFS03]. The natural coordinates represent

the true average of the data sets instead of the average of all images registered to an arbitrary

reference.

There are different approaches for computing the true average resp. the atlas in natural

coordinates in medical imaging literature dealing with anatomical atlases.

Rohlfing et al.[RBJM01] suggest a method of iteratively registering all images to the aver-

age image. This gradually converges to the unbiased average in its natural coordinate system.

In the first iteration, one data set is chosen as the reference but only affine transformations
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Figure 4.9: a) shows a couple of data sets si which are registered to the reference sref . After

the registration, the atlas is in the coordinate system of sref . b) After backwarping by the

average deformation, the atlas is in its natural coordinate systems snat, which is located at the

center of all data sets. Hence, the sum of deformations is minimized.

are used to warp all other data sets to the reference. The average is computed by pixelwise

averaging all warped data sets. During the iteration, all data sets are repeatedly registered to

the average using affine and non-rigid transformations. This procedure converges to the actual

mean atlas in its natural coordinates.

Studholme [Stu03] comes up with a population based registration approach, that makes

use of simultaneous group-wise registration under the constraint of keeping the sum of all

deformations zero. This means that all data sets are registered and warped at the same time

while the sum of all deformations is fixed at 0. This leads to a registration of all data sets to the

natural coordinate system without the need to select a special reference or template data set.

Rueckert et al. [RFS03] use a reference template instead and register all images to this

template. The natural coordinate system is then obtained by a backwarp from the reference

coordinate system by the average transform. Therefore, the atlas must be transformed to its

natural coordinates x′, which are defined by each point x being shifted by the average defor-

mation field d̄.

x′ = x+ d̄(x)
�

�

�

�4.23

This corresponds to a backwarp of the atlas image with the inverse average deformation

field.

The latter approach is used for the implementation of the statistical atlas in this thesis.

Since, as mentioned above, a linear model of the deformation field is calculated, the aver-

age deformation field is easy to compute. However, in this implementation, the atlas is not

explicitly transformed to the natural coordinate system but the offset given by the average de-

formation is implicitly considered during the atlas based registration process. This has the

advantage that no real backwarp has to performed on the image data, which either requires a,
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possibly unstable, inversion of a deformation field or a forward warping step with the hazard

of undersampling artifacts.

Figure 4.10 shows an overview of the statistical model of deformation and its major modes

of variation. This version of the statistical atlas is created from 31 representative data sets.

Although 31 individuals are a sound number for a preliminary study, it should be mentioned

that adding an additional number of data sets could improve the generalization ability of the

atlas.

4.3.6 Statistical Model of Appearance

In order to be able to describe the variation of the appearance of the grey value intensities of

different organs in different subjects, a statistical model of grey value appearance is added to

the atlas. Principal component analysis (PCA) is applied to the voxel intensity values of the

registered data sets. Let ai be the assembled vector containing the normalized intensity values,

according to section 4.3.3, of all voxels of the input image Ii. Hence, the image of average

voxel intensity values is given by

ā =
1

n

n∑
i

ai
�

�

�

�4.24

and the covariance matrix S by

S =
1

n− 1

n∑
i

(ai − ā)(ai − ā)T
�

�

�

�4.25

Applying PCA to the covariance matrix yields the principal components of appearance and

the linear model of appearance similar to the linear model of deformation:

a = ā+Φa · ba
�

�

�

�4.26

Varying the parameters of the feature vector ba then generates valid instances of grey value

intensity distributions of the linear model.

4.3.7 The Statistical Atlas

Combining the statistical model of deformation and the statistical model of appearance results

in a powerful statistical atlas, which allows for generating arbitrary instances of FastView im-

ages. Linear combinations of the deformation parameters and the appearance parameters are

capable of representing the natural variability of training individuals scanned with the FastView

protocol. The more representative the training group, the more capable is the atlas to generalize

to all possibly occurring instances across the population.

In contrast to active appearance models [CET98], however, it was decided to keep the

appearance of the data independent of the shape and geometry resp. deformation model and

not to correlate the two. This is motivated by the fact that the appearance of intensities of

an image may be strongly influenced by external effects like the actual MR scanner device,

its basic magnetic field, hardware, etc. and not only by the proton densities of the actual
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Figure 4.10: This figure presents the statistical model of deformation of the atlas and its major

modes of variation. The center image shows the average instance of deformation. Each row

shows a different mode of the deformation, with the left and right column being the outer

extrema of the 3σ-interval of the underlying implicit multi-variate Gaussian.
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Figure 4.11: This figure presents the statistical model of appearance of the atlas with the av-

erage instance of intensity in the center and its major modes of variation. Each row shows a

different mode of the appearance, with the left and right column being the outer extrema of the

3σ-interval of the underlying implicit multi-variate Gaussian.
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organs. For example in 3T systems, B1-effects can have a strong influence on the overall

signal intensity with an overall or local loss of signal [Ros04]. Since many of these effects are

obviously independent of the deformation fields, they should be treated differently in order to

keep the atlas free from biases.

The quality of the atlas can be visually assessed by inspecting the sharpness of edges and

boundaries. A high-quality atlas should not appear more blurred than the input images, al-

though a slight blur results from the trilinear interpolation of the images. Visual inspection of

the overall quality of the computed atlas shows that its edges and boundaries compare well to

the quality of the registered input images.

Labeling of the anatomical structures in the atlas is done by means of a semi-manual seg-

mentation tool like [FTS07]. For the prototype, 4 organs were selected which are most inter-

esting in terms of fully automatic examination and MR slice positioning purposes: heart, spine,

liver and kidneys, which account for a large fraction of diagnostic examinations within the hu-

man torso and which can be potentially tedious and tricky for manual scan position planning.

4.4 Registration of FastView Image Data to the Atlas

As described before, atlas based segmentation of an unseen FastView image data set Iuns
resp. its anatomical labeling is done by first registering the unseen image to the atlas and

then propagating the labels to the unseen data set. In other words, one tries to find the in-

stance of the statistical atlas that best explains the unseen image data and then transform the

anatomical knowledge from the atlas to the unseen template. This can be considered as an

analysis-by-synthesis approach, which makes the method more robust against outliers of poor

image quality.

4.4.1 Registration Algorithm

Registering an unseen FastView image Iuns to the atlas requires finding a non-rigid transfor-

mation, i.e. an affine offset and a deformation field, and the normalized intensity appearance of

the atlas which maximize the similarity between the two. Considering the linear models from

equations 4.26 and 4.22 which define the atlas, the registration process computes the feature

values bd and ba plus an affine offset transformation A which was removed from the linear

model of deformation fields on purpose. As the deformation fields have been computed by

registering all data sets to the reference data set via backwarping, the atlas based registration

is also done by warping the unseen data set to the atlas instead of vice versa. This allows for

directly using the deformation fields from the atlas avoids the need for computing potentially

inconsistent inverse deformation fields. Furthermore, it allows for easier propagation of spa-

tial correspondence among the data sets. Hence, in terms of image registration, Iuns is the

so-called moving image and the instance of the atlas is the fixed image.

The complete registration process can be divided into a preprocessing step, which includes

a histogram normalization as described in 4.3.3, the arm stripping as explained in 4.3.2 and an

affine preregistration. The affine preregistration roughly aligns the unseen image Iuns to the

atlas by computing the bounding boxes of binary thresholded images and an affine transforma-

tion that maps the coordinates of the bounding boxes. The affine transformation is calculated
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according to equation 4.1 by using the corners of the bounding boxes as landmarks. This trans-

formation is used as the initial affine offset of the registration. Details for computing the affine

transform are explained in section A.3.

The non-rigid part of the registration finally computes the precise affine offset and the

instance of the deformation field and grey value appearance that best map the warped image

Iuns to an instance of the atlas. The number of degrees of freedom is reduced to a previously

selected number nd of modes of the statistical model of deformation and a number na of modes

of the statistical model of grey value appearance. Including the degrees of freedom of the affine

offset transformation, the registration is driven by 12 + nd + na degrees of freedom.

The actual registration algorithm repeatedly generates an instance of the intensity appear-

ance of the atlas and of the deformation field from the current optimization parameters. The

unseen input image is warped according to the affine offset and the deformation field. A sim-

ilarity score is computed between the instance of the appearance model of the atlas and the

warped image. This score is used by an optimizer to steer the registration towards the opti-

mum. Figure 4.12 shows the computational components and the data flow of the registration

algorithm.
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Figure 4.12: Data flow and computational components of the registration algorithm.

4.4.2 Similarity Measure

The registration is steered by a similarity measure which quantifies the amount of similarity

between the two images. The similarity between the warped image Iuns and the atlas instance

image is expressed by a distance function d. d itself is a function of the instance of the atlas

Iatlas and the warped image Iuns. Iatlas is a function of the appearance parameters ba, while

Iuns is a function of the transformation TA,bd , which in turn is set up of an affine offset trans-

formation A and the deformation parameters bd. So, in total, d is a function of A, bd and ba,
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Minimizing d(ba, bd, A) is equal to maximizing the similarity and leads to an optimal reg-

istration. Two types of distances are implemented and tested. One of them is the pixelwise sum

of squared differences between the instance of the atlas and the other one a pixelwise weighted

sum of squared differences.

The unweighted distance is computed as:

d(ba, bd, A) =

∑
xi∈Ω

(Iatlas(ba, xi)− Iuns(TA,bd(xi)))
2

|Ω|
�

�

�

�4.27

where Ω is the overlapping region of the two images. xi are the world coordinates of pixel

i and T (xi) its transformation according to the concatenation of the global affine and local

non-rigid transformation. The final score is divided by the size of the overlap resp. the number

of pixels in the overlap Ω.

The weighted distance extends the formula to:

d(ba, bd, A) =

∑
xi∈Ω

wi (Iatlas(ba, xi)− Iuns(TA,bd(xi)))
2

∑
i∈Ω

wi

�

�

�

�4.28

where wi a specific weight encoding the confidence one has in the value at xi. The final score

is divided by the total sum of weights over the image overlap domain.

If wi is set to

wi ← 1

σ(xi)2

�

�

�

�4.29

the pixelwise variance in the training images, a Gaussian-like distance between the atlas

and the image Iuns is obtained. Final division by the total sum of weights provides a normal-

ization with respect to the overlap region of Iatlas and Iuns. Weighting the contributions of

different pixels by the pixelwise squared standard deviations σ(xi) allows for considering the

degree of uncertainty that a given voxel may have. This is particularly important since cer-

tain structures with high variation, like the head, the legs or the stomach should not affect the

registration of organs with small uncertainties.

The parameters that minimize the cost function are then the registration parameters of the

optimum resp. of the atlas instance with minimum distance or maximum similarity:

(Aopt, bdopt , baopt) = arg min
A,bd,ba

d(ba, bd, A)
�

�

�

�4.30

4.4.3 Optimization

Gradient Descent

The simplest way of optimizing the registration cost function is by using a gradient descent

algorithm. This can be combined with an adaptive step size as described in section 4.3.4. This
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requires a computation of the gradient or the derivative of the cost function at every step. The

gradient ∇d is approximated as a first order difference:

∇d =
d(ba + εa, bd + εd, A+ εA)− d(ba − εa, bd − εd, A− εA)

2ε

�

�

�

�4.31

Although the gradient descent method with adaptive step size converges slowly and re-

quires many function evaluations, it allows for coupling the step sizes ε for the computation

of the numerical gradient to the current global step size of the gradient descent algorithm.

Hence, there is no need for additionally computing optimal step sizes for the calculation of the

gradients.

However, since the computation of the gradient is expensive and requires 2 times the num-

ber of degrees of freedom of evaluations of the cost function and since gradient descent algo-

rithms converge slowly, it is desirable to have an alternative optimization algorithm.

Gauss-Newton

The optimum of the registration cost function can be calculated by means of the Gauss-Newton

algorithm [Bjö96]. The Gauss-Newton algorithm is suitable for optimizing multi-valued least

squares problems with multiple input parameters.

This means that this algorithm finds a solution to the following problem: Given a number

of n observations yi and a n-valued non-linear function fi(x), find a parameter setting x such

that
∑

i(fi(x) − yi)
2 becomes minimal. The number of observations resp. the number of

values has to exceed the number of input parameters.

The upper distance functions 4.27 and 4.28 have multiple input parameters but a scalar

output, which means they are 1-valued in the terms of the upper description of the Gauss-

Newton algorithm. In order to obtain multiple values, the image has to be partitioned into

multiple blocks. See figure 4.13 for an example of the partitioning into blocks. The distance

function is evaluated independently in each of these blocks. Each block then provides a small

contribution to the overall optimization. Partitioning the images and the distance function in n
blocks consequently yields an n-valued distance function.

The basic idea behind the Gauss-Newton approach is a linearization of the problem by

making a first-order Taylor expansion. Let p be the union of all relevant parameters p =
{A, bd, ba} and p0 the starting parameters.

d(p) = d(p0) + Jd · (p− p0) +O(p)2
�

�

�

�4.32

where Jd is the Jacobi matrix of the distance function.

From equation 4.32 one can derive that minimizing d(p) means minimizing the zero and

first-order terms of the right hand side. The square term can be neglected if p is close enough

to the optimum. Consequently,

min ||d(p)||2 ⇐⇒ min ||d(p0) + Jd · (p− p0)||2 = min ||d(p0) + Jd · r||2
�

�

�

�4.33

with r ← p− p0 being the residual. Expanding the norm yields
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a) b)

Figure 4.13: a) shows a 2D block partitioning of a FastView data set, b) shows a 3D rendering

of the block partitions.

min(rT · JT
d · Jd · r + 2d(p0)

T · Jd · rT + d(p0) · d(p0))
�

�

�

�4.34

The cost function is minimized by computing the derivative of the scalar function, setting

the derivative resp. gradient to zero and solving the resulting equation for the residual rmin:

2JT
d · Jd · rmin + 2JT

d · d(p0) = 0
�

�

�

�4.35

JT
d · Jd · rmin = −JT

d · d(p0)
�

�

�

�4.36

This can be used to update the current parameters p0:

pt+1
0 = pt0 + rmin(t)

�

�

�

�4.37

Since the matrix product JT
d · Jd is symmetric and positive definite, equation 4.36 can

be solved using a Cholesky decomposition [VF02], which is faster and more robust than a

matrix inversion. In some cases JT
d · Jd may be ill-conditioned and therefore require prior

preconditioning before the Cholesky decomposition can be computed [VF02]. A simple linear

preconditioning is sufficient [Saa03].

After each step of the optimization, the deformation and appearance parameters are con-

fined to a 3σ interval of the multi-variate Gaussian in order restrict the search to the space of

valid instances:

pi ← min(3σi,max(−3σi, pi)) = min(3
√

λi,max(−3
√

λi, pi))
�

�

�

�4.38

where λi is the principal value, that corresponds to the i− th principal component.

The Gauss-Newton optimization algorithm is sensitive to the quality of the Jacobian Jd
resp. of the derivatives of the cost function. It is therefore essential to use symmetric differ-

ences for the estimation of the derivatives instead of forward differences. The step size for the

computation of the symmetric derivatives has an important effect on the performance of the
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optimization, too. If chosen too small, the derivative may be not robust, if chosen too large,

the derivative may be incorrect. For this reason, the step size for the derivative is determined

dynamically and individually for each parameter.

The individual step sizes for the geometric parameters, i.e. for the affine and the deforma-

tion parameters, are determined by considering their effects on all voxels in the image domain

Ω. Let TΔpi be the transformation T with parameter i changed by the value Δpi. Then the step

size Δsi for the computation of the symmetric differences of parameter i is set to the value that

the maximum coordinate shift of any voxel in Ω is at most the edge length e of one voxel.

Δsi = argΔpi sup
x∈Ω

||TΔpi(x)− x|| ≤ e
�

�

�

�4.39

As the geometric parameters are all linear, the actual values of Δsi can be determined easily

by pure linear algebra.

The step sizes for the parameters of the linear appearance model are fixed at an empirical

constant.

Again, the registration of an unseen FastView image to the atlas is computed in a hierarchi-

cal top-down multi-scale fashion. The algorithm starts with coarse image and atlas resolutions

from Gaussian pyramids, and refines the resolutions after the optimizer converges. The number

of degrees of freedom is also gradually increased. In the final stage of the algorithm with the

finest image and atlas resolutions, 12 affine, nd deformable and na appearance parameters are

used for the optimization. For the ith of n stages, this number is reduced to i·nd
n deformation

and i·nd
n appearance parameters. The number of affine parameters remains constant, of course.

This leads to better performance through faster convergence during the most time-consuming

high-resolution stages of the algorithm.

4.4.4 GPU Based Hardware Acceleration

Motivation

A straight implementation of the registration algorithm described is rather slow and requires

runtimes of more than one hour, which makes it infeasible for practical usage in clinical routine.

A common way of acceleration is to make use of the massive computation power available in

modern graphics card hardware. Modern GPUs 1 provide gigantic floating point computation

and parallelization capabilities off the shelf at reasonable prices. This development is driven

by the huge economic market of computer game and hardware industry which strives for ever

higher frame rates, complexity of scenes and more texture memory towards more and more

realistic rendering.

Due to this development, GPUs have been outperforming CPUs for some considerable

time already. The differences in computation performance are remarkable: While a common

CPU like the Pentium 4 3GHz supports up to 6 GFLOPS, the GPU which was used for this

thesis, an NVIDIA 8800 GTS, has a potential of 345 GFLOPS in theory [NVI06]. This gives

an idea of the possible performance boost, which can be exploited by porting applications to

the GPU. This enormous advantage in performance of GPUs in comparison to CPUs is due

1graphics processing units
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to their SIMD 2 architecture, their inherent parallelism, their specialization on floating point

computations and special hardware components for interpolation computations.

The intrinsic parallelism and floating point capabilities make GPUs also interesting for var-

ious problems in scientific computing. The activities of using the computation power of GPUs

for purposes other than rendering scenes are grouped under the term general purpose graphics

processing unit (GPGPU). A good overview of works on GPGPU can be found in [Pha04] or

in an introduction by Mark Harris [Har04]. The applications range from image filtering, over

flow simulation to fast Fourier transformations [Pha04]. A lot of these developments were

leveraged by the development of the programmable rendering pipeline and the development of

high level shader languages like GLSL, HLSL or CG. These programming languages greatly

reduce the complexity of shader programming. Writing a shader in these high-level languages

is almost as easy as writing a common piece of software.

Shader programs can be integrated into the rendering pipeline of the GPU. The rendering

pipeline can be roughly divided into a geometric part and a rasterizing part. See [Ros06] for

more details. The geometric part includes all vertex operations like transformations, lighting,

projections, clipping etc. The rasterization part does all pixel operations like texturing, depth

test, etc. Programmable shaders, i.e. programs which are executed on the GPU, can either be

plugged into the geometric part of the rendering pipeline, which means that they operate on

each vertex or, into the rasterizing part of the pipeline, which means that they are integrated

into the rasterization process and executed for each fragment, which is a pixel with additional

information of depth. The former shaders are called vertex shaders, while the latter ones, which

are more suitable for GPGPU computations are called fragment shaders. A more detailed

introduction into programmable graphics hardware can be found in [Ros06].

Despite the simplicity of actually writing and executing shader programs on the GPU,

there is one drawback about using fragment and vertex shaders for GPGPU applications. The

drawback is the fact, that almost always the algorithms have to be redesigned completely to fit

to the standard framework imposed by the rendering pipeline of a GPU. In many cases, this

generates huge efforts and sometimes it is not possible at all. Image processing algorithms,

however, can often be adapted smoothly to fit to the rendering pipeline framework which makes

this type of algorithms, e.g. registration tasks well suited for GPGPU adaptations.

Recent developments like CUDA3[Sil07] try to overcome the obstacle of the need of algo-

rithm and software redesign for GPGPU applications by providing tools and a special compiler

that supports particular language extensions to the C programming language. This allows the

user to program his GPGPU application in standard C and specify which parts are to be exe-

cuted on the GPU and which ones on the CPU. The compiled code is managed by the CUDA

runtime, which handles the management of components which are executed on the GPU and

components which are executed on the CPU.

For the reason of backward compatibility, however, it was decided to implement the GPGPU

based atlas registration described in this thesis using fragment shaders instead of CUDA. This

allows for running the algorithm also on non NVIDIA graphic cards or non-recent graphic

cards generations, as those which are used in current MR image scanner hosts and reading

2single instruction multiple data
3Compute Unified Device Architecture
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workstations, in order to faciliate practical implementations on current hardware and their us-

age in prototypes in clinical research or routine.

The main bottleneck in GPGPU applications is the transfer between RAM and GPU mem-

ory via the AGP or PCI express bus. Although the bandwidths for the upload, i.e. for the

transfer of data from RAM to the GPU, in modern systems are high with rates of about 3.2

GB/s, slow readbacks and latencies may often slow down computation if a lot of data transfer

is necessary [Pha04]. For this reason, this GPGPU based atlas registration algorithm is im-

plemented with the goal of bringing as many components of the calculation as possible to the

GPU and reducing the number of the upload and download operations. Figure 4.14 shows an

overview of the data flow and the computation components of the registration in the GPGPU

implementation.

As figure 4.14 shows, the statistical atlas and its components, the statistical model of defor-

mation and the statistical model of appearance reside completely as float textures on the GPU.

This reduces the amount of data transfer between RAM and GPU memory to a minimum, i.e.

the parameters of the optimization. All computations apart from the optimization itself can

be done using fragment shaders, which exploits the parallelity and floating point capabilities

of the GPU to a maximum. The following sections describe the fragment shaders resp main

computational components which are necessary for the registration in detail.
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Figure 4.14: Data flow and computational components of the GPGPU based atlas registration

algorithm. The white box indicates the computational components which are based on the

CPU, while the boxes shaded in grey indicate GPU based computational components.

Generation of an Atlas Instance on GPU

Generating an instance of appearance of the statistical atlas mainly consists of evaluating equa-

tion 4.26 and converting the resulting single vector of intensity values to an image of the correct
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dimensions. ā and Φa are encoded as float textures which have been uploaded to the texture

memory of the GPU. Generating the instance of appearance boils down to a matrix multipli-

cation, a vector addition and writing the result into another float texture. This target texture of

the atlas instance can be implemented using a frame buffer object [Gre05]. [Pha04] already

describes a GPU based matrix multiplication, but in the case of producing an instance of ap-

pearance from the statistical atlas, it is slightly more complicated, as the input data are encoded

as 3D float textures and not as 2D texture structures like an actual matrix in linear algebra.

The shader basically has to do a reformatting of the data by transforming the 3D texture

indeces to 2D matrix indeces. After reformatting, the shader does the multiplications and

additions of the correct values according to matrix algebra and transforms the indeces back to

3D. Special care has to be taken not to violate the hard constraints of maximum 3D texture

dimensions. Especially, matrix Φ has to be reformatted such that the hard constraints are

respected. See figure 4.15 for a clarification of the transformation of indeces.

x =+

x� ba
= a+ a

Figure 4.15: This figure shows the reformatting of the textures by converting the indeces from

3D to 2D and back. Linear algebra requires a memory layout as in the upper row. The data

structures used are represented as 3D textures as in the lower row. The shader has to convert

the coordinates.

Image Warping on GPU

Warping the unseen image Iuns on the GPU is done in several steps: First, Iuns is loaded offline

as a texture into the texture memory of the GPU. This can be done once before the actual regis-

tration starts. Next, the deformation field has to be calculated from the deformation parameters

bd. This requires evaluating equation 4.22, which is similar to generating the atlas instance

on the GPU: a matrix multiplication of the deformation field modes of variation followed by a

vector addition of the average deformation field. The only difference stems from the fact that
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the data structures that are associated with the deformation fields are encoded as RGB textures

while the data structures related to the scalar atlas image data are pure luminance textures. The

resulting deformation field is rendered to an RGB frame buffer object [Gre05].

The warped image is produced by having a warping fragment shader render to a frame

buffer object. This shader first transforms each fragment resp. voxel to world coordinates, ap-

plies the affine offset transformation and computes the B-spline tensor product of the deforma-

tion vector. The B-spline tensor product is obtained by evaluating equation 4.2. The resulting

deformation vector is added to the transformed world coordinates. The world coordinates are

then transformed back to texture coordinates and can be used for an interpolation lookup at the

respective texture coordinate in the original image texture of Iuns. Figure 4.16 shows a figure

of the GPU based image warping. All linear algebra operations can be efficiently implemented

on the GPU. The interpolation operations also greatly benefit from hardware accelerations.

Deformation FieldI
uns

Warped I
uns

Figure 4.16: This figure shows GPU fragment shader based warping. The warped output

image is rendered, by looking up the grey values in the original image after application of the

deformation field and the affine offset transformation to the world coordinates of the voxel.

Warping the image on the GPU results in a huge performance boost. By means of the GPU

based implementation, an image warp can be done in real time, i.e. in less than 0.02 seconds,

which is almost 100 times faster than the native implementation.

Similarity Measure on GPU

Porting the calculation of the similarity measure to the GPU requires a fragment shader which

evaluates the equations 4.27 and 4.28 by means of the GPU. This is done in a two step process.

First, the pixelwise contributions to the similarity measure, e.g. squared differences be-

tween the atlas instance texture and the warped image texture, are calculated and rendered to

an intermediate texture. For the weighted distance, another input texture is used which contains
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the weights, i.e. a texture which contains the pixelwise standard deviations of the image. In a

second step, all pixels in the intermediate texture are summed up by another fragment shader

to produce the final value. The most primitive approach for summing up all values would be to

render an output image with the dimensions of a single voxel by means of a fragment shader,

which iterates over all input voxels to calculate the final sum. The sum of the weights can be

cropped in the same way using the second output channel of the texture. However, this would

not be very efficient because huge amounts of the parallelization capabilities of the GPU would

be left idle. A better approach is to half the image dimensions iteratively by summing all voxels

in a local neighborhood at each step and replacing this neighborhood by a single voxel with the

value of the sum of its neighborhood. See figure 4.17 for details. This strategy best exploits the

parallelization capabilities of the GPU. The number of necessary summing steps is logarithmic

in the dimensions of the image. This value can be read back from the GPU and used to steer

the optimization process.

For the Gauss-Newton optimization approach, as described in 4.4.3, not a single similarity

value but a value for each block of the image has to be calculated. This can be easily achieved

by stopping the process of summing values and halving the dimensions at a level i at which the

number of voxels corresponds to the number of blocks.

Atlas Instance Warped Image

42

42

Figure 4.17: This figure shows how the similarity measure is calculated on the GPU. First, the

voxelwise distance is computed. Then the dimensions are iteratively halved and neighboring

voxels are summed up. This makes use of the parallelization capabilities.

4.5 Validation and Results

Validation of the atlas and the statistical models of deformation and appearance is done by

letting a human expert place manual anatomical landmarks at corresponding positions in all
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data sets. The corresponding landmarks are selected at anatomical points of interest, which

are discernible throughout all data sets. Three landmarks are placed at discernible points of

the liver, two on the heart, one at the top and the bottom of left and right kidney and two at

different vertebrae of the spine. The manual landmarks are placed using a software tool that

uses a combination of volume picking and marking of points in two perpendicular MPR4 slice

views based on the initial picking ray. This ensures consistent placement of landmarks within

the 3D volume by ensuring that the landmark point is confirmed in two perpendicular slices.

Reproducibility is studied by repeating the placements multiple times and with different

operators. The mean positions of these landmarks are then considered to be the ground truth.

The standard deviations were about 10.4 mm. The performance of the atlas based registrations

and labelings are assessed by calculating the displacements of the propagated landmark posi-

tions to the ground truth. All tests are performed in leave-all-in and leave-one-out scenarios.

Leave-all-in means that the atlas is built from all data sets and then compared to the result of the

registration of one of those data sets. In a leave-one-out test, which indicates the generalization

ability, the atlas is built from all data sets but one and tested against this data set. Table 4.1

gives an overview of the results. The tests are repeated with different numbers of modes of the

statistical atlas.

The average calculation times for the Gauss-Newton based optimization were about 10-30

seconds depending on the number of modes being used. For the gradient descent approach, the

running times are in the range of a minute. Although the results are a little bit more accurate,

this approach is not feasible in practice, so a practical application would be based on the Gauss-

Newton algorithm. The given results were published in [FTS08a]

4.6 Discussion and Future Work

This chapter presents a method for fast anatomical labeling in FastView MR localizer images.

The results are promising and suggest applicability of the algorithm to fully automatic po-

sitioning applications. Evidently, the results improve with an increasing number of modes.

Overall, the deviations converge to a σ resp. 2σ interval of the ground truth for the leave-all-in

resp. leave-one-out case. A obvious and non-surprising observation is that, using more modes

results in more exactness of the output of the algorithm. More modes, however, also lead to an

increase in running times, so a tradeoff between exactness and performance has to be made.

It should be noted, however, that the atlas would certainly benefit from additional training

data and an increase of generalizability. This can be stated by considering its leave-one-out

performance and its dimensionality. The dimensionality of a statistical model of deformation

is defined by the number of deformation modes necessary to explain a certain percentile (e.g.

95 percent) of the variation of deformation. Adding image data sets still has an increasing

effect on the dimensionality of the atlas. In a comprehensive and complete statistical atlas or

model, this incremental increase should be marginal and gradually converge to 0. As a rough

estimate from the numbers, another 20-30 data sets should be acquired in order to reach a

state of convergence and a asymptotic level of dimensionality. Similar observations hold for

the statistical model of grey value appearance. In a complete statistical atlas, there should be

4multi-planar reformatting
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# Deformation # Appearance Optimizer SM LM displacements (mm)

modes modes Type leave-all-in leave-one-out

0 5 GN U 23.7 28.5
10 5 GN U 17.4 25.4
20 10 GN U 13.7 24.0
30 15 GN U 11.7 22.4

0 5 GD U 30.5 29.1
10 5 GD U 14.9 25.9
20 10 GD U 12.8 23.8
30 15 GD U 10.7 23.0

0 5 GN W 27.4 27.4
10 5 GN W 17.3 23.6
20 10 GN W 14.1 23.0
30 15 GN W 13.3 23.0

0 5 GD W 25.7 27.6
10 5 GD W 22.6 25.6
20 10 GD W 21.7 25.5
30 15 GD W 20.6 24.7

Table 4.1: The experimental results of the displacements between the manual landmarks and

the landmarks determined by the atlas based registration. The four first columns indicate the

parameter settings of the test case, the number of deformation modes, the number of appear-

ance modes, the optimizer type, which is either Gauss-Newton (GN) or adaptive step gradient

descent (GD). The similarity measure (SM) is either the weighted (W) or the unweighted cost

function (U).

no significant difference between leave-all-in and leave-one-out test cases. However, specifity

may decrease in turn, if additional data are added which would slightly reduce accuracy in the

leave-all-in tests. Building a separate atlas for male and female, children and adults and each

specific scanner system could also be evaluated to increase the specifity of the atlas.

As for further applications, more exactness may be needed, future work will focus on ex-

tending and improving the data basis of the atlas and further tuning the performance by switch-

ing from numerical to analytical derivatives. Using analytical derivatives would significantly

reduce the running times of the algorithm but require implementing analytical derivatives of

the equations 4.28 and 4.27.

As mentioned, the search space of the registration is constrained to the space of valid de-

formation instances of the atlas. In future implementations, this could be extended to free-form

non-rigid registrations guided by deformation priors imposed by the statistical model of defor-

mation according to a Bayesian model. The registration process would then seek to optimize

the a-posteriori probability of the deformation field, given by the product of the likelihood of

the current image registration and the prior probability from the multi-variate Gaussian of the

statistical model of deformation similar to the works by Chen [CKPS99]. This would allow the

algorithm to leave the search space of the linear deformation model with its hard constraints of
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a 3σ-interval. The deformation prior, however, helps to avoid deformation fields that strongly

differ from the training data.

Future work will also evaluate if exactness can be improved by additional advanced reg-

istration techniques like the one by Park et al.[PBM03] who mask out certain pixels that do

not belong to the organs of interest. This forces the registration process to more exactness in

the regions of interest, while effects in other regions are neglected. This could help to prevent

the registrations of small organs from becoming dominated by registrations of large organs and

thus enhance the exactness of details of the segmentations. Exactness of the kidney registra-

tions and segmentations could benefit from this adaptation.

Another improvement could be a final multi-class fine-tuning segmentation of the initial

labelings provided by the atlas based segmentation. Fine-tuning would be done by using region

based active contours [CKS95], which consider local histogram based measures and shape

priors. Shape priors would be calculated from active shape models as described in chapter 3.

Histogram based measures could either be global models of appearance or local grey value

profiles as in the case of active shape models.
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1a) 1b) 1c)

1d) 1e)

2a) 2b) 2c)

2d) 2e)

Figure 4.18: This figure shows two results of the atlas based registrations: the original images

(a), the warped image (b), the best fitting instances of the atlas (c), difference images (d) and

slice images of propagated labels for heart, kidneys, spine and liver (e).
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5
Conclusion

5.1 Summary and Discussion

This thesis presented two algorithms for segmentation of anatomical structures from MR local-

izer images: A special technique for liver segmentation from a sparsely covering stack of 2D

localizer images and a more general technique for multi-organ segmentation from a FastView

3D localizer. Both methods are based on statistical models which are generated from training

data images. The main advantage of using statistical models is that the algorithms incorporate

prior knowledge of the structures which are to be expected by capturing their average shape

and their natural variability. This reduces the search space of possible solutions and is highly

beneficial if image quality is poor, which often is the case if localizer images are analyzed.

The segmentation process is steered by the statistics inferred from the training data towards the

most probable solution in the given input data. As shown by the results of the methods, this

approach is powerful enough for segmentations from low resolution, low quality image data.

However, it should be mentioned that the creation of the statistical model requires some

effort including image data collection, selecting a representative group of representatives that

covers the natural variability, preprocessing of the data and generation of a statistical model.

All the steps described are necessary for the creation of a compact model of high quality.

Although the model may be extended quite easily by adding additional data sets, substantial

changes in the image acquisition protocols or sequences may require collecting new data sets

and creating a new model. This is particularly important when the statistical models of appear-

ance or the statistical atlases are taken into account for finding the best solution, as those are

directly based on statistics of the grey value distributions of the images. This problem may be

partly solved by using image normalization strategies and collecting training data that cover

possibly large portions of the natural variability and the variation related to the MR image ac-

quisition itself. Normalization strategies can help to separate undesired variance or biases from

statistical variance and improve the generalization abilities of a statistical model. Still signif-

icant changes in the image contrast may require regenerating a statistical model. In practice,

however, this limitation is of minor importance as the localizer protocol can be adapted and

consolidated, within some basic constraints to optimally satisfy the needs of a given automatic

localization and alignment algorithm, because its images are not used for later diagnostic pur-

poses. The FastView protocol, for example, is a specialized protocol for obtaining a fast 3D

overview, with limited diagnostic value.



CHAPTER 5. CONCLUSION

5.2 Outlook

The described algorithms leverage a lot of possible applications, which can be created based on

these methods. Scan automation like slice positioning, sequence adaptations, placement of sat-

uration bands, SAR value estimations etc. can be done using anatomical information inferred

from localizer image data. For this reason, robust segmentation algorithms which extract rel-

evant anatomical information from localizer images are highly appreciated and beneficial for

more automatic, or ideally, completely automatic MR applications.

The method for the liver segmentation from stacked 2D slice images could also be extended

to other organs, like the kidneys or the heart. Since cardiac MR examinations require complex

positioning tasks, a more detailed model and segmentation method are needed. For this purpose

high quality localizer images with higher resolutions but a smaller fields of view (FoV) should

be used, which requires a prior rough estimate of the position and orientation of the heart for

the acquisition of high-resolution localizers with a smaller field of view.

A fascinating idea would be to combine the atlas based initial anatomical labeling of

FastView images with subsequent precise organ segmentations from high-resolution localizers

and detailed active shape models. This means setting up a hierarchical scanning and segmen-

tation workflow, which could be used for fully automatic scan planning: First, when a new

patient undergoes an MR scan of certain organs or regions of interest, a FastView protocol is

scanned which captures a 3D localizer image of the patient. The FastView image is submitted

to the automatic organ labeling algorithm. Estimations for the examination of the desired or-

gans are obtained from the anatomical labeling, as described. These rough positionings could

be used to set up high-resolution and high-quality localizers which are subsequently scanned

in the regions of interest, that have been determined. The latter scans can then be used for a

precise segmentation, e.g. based on a active shape model, like the one described in this thesis

for the liver.

The detailed localizer scans could also be 3D localizer acquisitions, e.g. from adequate fast

3D protocols in the regions given by the initial segmentations and ROIs from the atlas based

automatic labeling of the FastView images. 3D localizer images would allow for more high-

performance and precise active shape model based segmentations although the acquisition time

in general would be longer. For this reason, a tradeoff between scan time and precision of the

segmentations and the results has to be made.

In the described scenario, the diagnostic protocols could then be scanned based on the

detailed segmentations in the regions of interest and , ideally, with optimized parameter settings

that could be derived from these segmentations. This hierarchical procedure would allow for

detailed, robust and reproducible positioning of slices with respect to the individual anatomy.

All these steps could be done completely automatic.

As an example and proof of concept, this thesis presented two segmentation algorithms

from localizer images. Possible extensions and applications and their value for the MR exam

workflow were shown. A combination of these two methods, as explained, along with exten-

sions to one or two additional organs would account for a large portion of scans in clinical

practice, which could be run fully automatic. The individual chapters already discussed a

number of possible improvements and extensions of the methods themselves, which could be

implemented in order to increase precision an robustness. In fact, the prototypes in this thesis
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were developed by virtually taking practical applicability into account. Concepts and tests of

integrations of these methods into actual MR product software and hardware for basic auto-

matic positioning applications have been worked out and studied [FTS06]. Future work would

further intensify this aspect of the implementations. The thesis showed a proof of concept of

using statistical models like active shape models or statistical atlases for challenging segmenta-

tion topics like organ segmentation from fast localizer image and the applicability in practice.

The value of these methods in terms of increasing quality and reproducibility and reducing

time and costs of an exam would have to be assessed by clinical studies in the future.
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A
Mathematical Details

A.1 Fast Computation of the Principal Components

Usually, principal component analysis (PCA) is computed on the covariance matrix of the

input data. The principal components and their corresponding principal values can be found

for example by a singular value decomposition (SVD) [VF02]. A SVD is a decomposition of

a matrix A into three matrices U , D and V , with

A = UDV T
�

�

�

�A.1

It is commonly known that D2 is a diagonal matrix, that holds the eigenvalues of AAT and U its

eigenvectors. The computational complexity of a SVD on a k × l matrix is O(min (k2l, kl2)).
Let n now be the number of items in each data vector and m the number of data vectors, on

which the PCA is computed. For large data vectors, i.e. n � m, it is inefficient to compute

the principal components from the covariance matrix S with

S =
1

m− 1

m∑
i=1

(x− x̄)(x− x̄)T
�

�

�

�A.2

. As S is a n× n matrix, the cost of this SVD would be O(n3).
Let now S′ be defined as follows:

S′ =
1√

m− 1
(X − X̄)

�

�

�

�A.3

X is a n×m matrix containing the vector data as columns and X̄ a n×m matrix that contains

m copies of the average data vector as columns.

If the SVD is computed on S’ instead, the eigenvalues of S are directly obtained as principal

components along with eigenvectors of S’ [HWWM05]. The computational complexity is thus

reduced to O(n), if n > m, which in general is a huge advantage since in most cases n � m.

This method also benefits from better accuracy.

A.2 Similarity Transformation Estimation

This section is based on the works by Zinsser et al. in [ZSN05]. Given two point sets {ai}
and {bi} with n points and fixed correspondences given by the indices, one would like to find
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a transformation given by a translation, rotation and scaling, which best maps the {ai} to the

{bi}.

So the task is to find an orthonormal rotation matrix M , a translation vector v and a scale

factor s, so that that the following score is minimized:∑
i

‖s ·M · ai + v − bi‖2
�

�

�

�A.4

First, the centers of mass are calculated ā =
∑

i ai/n and b̄ =
∑

i bi/n Then the rotation

matrix is found by calculating the singular value decomposition of K:

K =
∑
i

(bi − b̄)(ai − ā)T = UDV T
�

�

�

�A.5

Then M = UV T , if UV T is a pure rotation, which is the case if det(UV T ) ≥ 0.0. In the other

case, multiplying the third column of U by −1 then yields a rotation. The scaling part s is then

computed by minimizing the following energy function:

s = argmin
s

∑
i

∥∥(bi − b̄)− s ·M(ai − ā)
∥∥ �

�

�

�A.6

s =

∑
i(bi − b̄)TM(ai − ā)∑

i(ai − ā)T ·MT ·M(ai − ā)

�

�

�

�A.7

The translational part v is then:

t = b̄− s ·Mā
�

�

�

�A.8

A.3 Affine Transformation Estimation

Given two point sets {ai} and {bi} with n points and fixed correspondences given by the

indices, one would like to find a transformation given by a matrix M and a translation t, which

best maps {ai} to the {bi}. Let without loss of generaliy {ai} and {bi} be centered at the

origin. Otherwise, the point sets are translated to the origin and the resulting translations are

later integrated into t.

More specifically, the following sum is to be minimized:

E =
∑
i

‖M · ai + t− bi‖2
�

�

�

�A.9

with the affine matrix

M =

⎛
⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠ �

�

�

�A.10
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A.3. AFFINE TRANSFORMATION ESTIMATION

Sxx =
∑
i

axiaxi
�

�

�

�A.11

Sxy =
∑
i

axiayi
�

�

�

�A.12

Sxz =
∑
i

axiazi
�

�

�

�A.13

Syy =
∑
i

ayiayi
�

�

�

�A.14

Syz =
∑
i

ayiazi
�

�

�

�A.15

Szz =
∑
i

aziazi
�

�

�

�A.16

Sxx′ =
∑
i

axibxi
�

�

�

�A.17

Syy′ =
∑
i

ayibyi
�

�

�

�A.18

Szz′ =
∑
i

azibzi
�

�

�

�A.19

Sx′ =
∑
i

bxi
�

�

�

�A.20

Sy′ =
∑
i

byi
�

�

�

�A.21

Sz′ =
∑
i

bzi
�

�

�

�A.22

�

�

�

�A.23

Deriving with respect to the single parameters mij and ti and setting the derivatives to 0

then yields the following equations:

tx = Sx′
�

�

�

�A.24

ty = Sy′
�

�

�

�A.25

tz = Sz′
�

�

�

�A.26

and

M = S−1 · S′ �

�

�

�A.27

with
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S =

⎛
⎝ Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞
⎠ �

�

�

�A.28

and

S′ =

⎛
⎝ Sxx′ Sxy′ Sxz′

Syx′ Syy′ Syz′

Szx′ Szy′ Szz′

⎞
⎠ �

�

�

�A.29
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