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Chapter 1
Introduction and motivation

Lightwave technology has been the backbone of long-haul communication and Internet
traffic for more than 20 years up to today. It offers enormous transmission capacity, dis-
tant repeater spacing, is non-emitting and immune to electromagnetic interference. It is
the only technology capable of meeting the vast and exponentially increasing demands of
global communication [1, 2]. Owing to the immense bandwidth of optical transmission
links and growing data rate demand, which is difficult to meet with electrical links, light-
wave systems begin to replace copper in intermediate and short distance communication
as well. Fiber to the home [3] and gigabit ethernet local area networks (LAN) [4] based
on optical fibers are examples of mature and readily available technologies.

For example, in 2009 Luxtera (www.luxtera.com) introduced a 40 gigabits per second
(Gbps) active optical cable transceiver with available cable lengths of 1 to 4000 m for
the application in LANs, storage area networks and high performance computing (rack-
to-rack and board-to-board interconnects). Apart from the data rate advantage, optical
fiber cables facilitate physical installation due to smaller cable diameter, bend radii and
immunity to electromagnetic interference compared to copper based interconnects | 5. All
these benefits make optical links attractive in a number of application in the near future,

where data rates will exceed the 1 Gbps threshold such as:

e Ultra high definition displays and display arrays with e.g. 3072 by 2304 pixels, 60 Hz
repetition rate and 24 bit color depth;

e Parallel data access to arrays of multiple solid state disks with more than 0.25 Gbps

data rate per disc;

e Data transfer in medical imaging, full body three-dimensional (3D) computed to-

mography (/& 20 gigabyte for one process).
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At even shorter link distances, namely chip-to-chip and on-chip (die-to-die) communi-
cation, optical data links are emerging as a necessary alternative to electrical links |6, 7, §|.
As postulated by Moore’s law, the integration density (i.e. transistor density on a chip)
has grown exponentially in the last 40 years and simultaneously the data processing ca-
pabilities within one chip. However, the electrical data input and output (I/O) does not
scale accordingly and requires increased power, reduced range and more sophisticated
signal processing to keep up with bandwidth demands |9]. To overcome the limitations of
electrical chip 1/0O, the introduction of optical I/O structures on microchips is necessary.
Major microelectronics companies such as Intel, IBM, and Sun Microsystems recognized
the advantages of lightwave technology and entered the active research of integrating
electronic circuits and components for optical 1/0.

Research of integrated lightwave technology encompasses six main areas or building
blocks. These include generating the light, selectively guiding and transporting it, encod-
ing light, detecting light, and intelligently controlling all of these photonic functions.

The focus of this thesis is on electro-optic (EO) modulators, which are essential on
the transmitter side of optical interconnects to encode the (electrical) information onto
a stream of photons. They convert an electric signal to an optical signal by modulating
amplitude, frequency or phase of the optical carrier wave. Of special interest for EO-
modulation is the Pockels effect, this second order effect, fundamentally a three wave
mixing process, connects a change in refractive index with an external electric field and
requires a second order nonlinear polarization. The EO-modulators developed in the
scope of this project combine the benefits of three kinds of optical media, namely photonic
crystals (PhC), silicon and nonlinear optical (NLO) organic materials, all three will be

introduced briefly in the following.

Photonic crystals

A photonic crystal is an optical medium with a spatially periodic variation of the dielec-
tric constant. Consequently they are built from at least two different materials, which are
structured on the wavelength scale of light. The interaction of an optical wave with a peri-
odic medium leads to the emergence of a spectral band structure, similar to the electronic
band structure found in crystalline solids |10, 11]. Choosing an appropriate dielectric
lattice geometry creates forbidden frequency regions, called photonic bandgaps (PBG), in
which the light wave cannot propagate [12]. This effect originates from destructive inter-
ference among the multiply scattered waves at the periodic dielectric boundaries. PhCs

are interesting for integrated optical circuits, since the PBG effect allows to manipulate



the propagation of light within a few lattice constants. Hence, they offer a high packing
density, which is necessary for highly compact optical devices.

Two-dimensional (2D) PhC slabs are slab waveguides periodically structured in both
in-plane directions. Consequently, the in-plane light propagation is governed by the band
structure of the PhC and out-of-plane confinement is achieved by total internal reflection.
These 2D PhC slabs have received considerable attention, because planar structures are
relatively easy fabricated using current nano-patterning technology. By introducing point
or line defects into the crystal lattice, resonant cavities or waveguides are formed respec-
tively. Variations of the lattice geometry in the vicinity of these defects create virtually in-
finite degrees of freedom to manipulate the properties of the associated defect modes. For
example PhC defect waveguides can be lattice engineered to have small group velocities
with almost vanishing dispersion or extremely large (negative) dispersion [13|. Similarly
PhC nanocavities have been shown to achieve quality factors exceeding 10°, while the
mode volume is only one cubic wavelength [14|. The resulting enhancement of the light
and matter interaction may be exploited to increase the efficiency of NLO-processes. Here,
the ability of PhC structures to form highly resonant cavities with a small geometrical

footprint is applied to design highly efficient and compact EO-modulator devices.

Silicon photonics

Silicon is the standard material for highly integrated electrical circuits. At the same time
it offers very attractive properties for integrated photonic circuits. These include a wide
transparency window from near to mid infrared wavelengths. Its high refractive index
(nsi = 3.5) at telecommunication wavelengths allows for waveguides with extremely tight
bending radii and very compact components, while maintaining a moderate waveguide
attenuation of 3 dB/cm [15]. The fabrication of silicon photonic circuits is fully compatible
to the Complementary Metal Oxide Semiconductor (CMOS) process of microelectronic
fabrication. The sum of these features offers the perspective of highly integrated photonic
and electronic circuits on the same silicon chip in the near future [8, 16, 17, 18].

The crystal lattice of silicon is centrosymmetric and hence pristine silicon does not
exhibit any x® nonlinearity, prohibiting EO-modulation. Research was very active in
overcoming this limitation. Jacobsen and coworkers broke the centrosymmetry in silicon
through strain induced on the atomic lattice and successfully demonstrated EO-activity
[19]. However, the achieved Pockels coefficient was one order of magnitude lower than in

the standard material used for EO-modulators today, Lithium Niobate (LiNbO ).

Other approaches for electrically driven modulation of the optical properties of silicon



based photonic devices rely on the refractive index change resulting from the modulation of
carrier density in silicon either by carrier depletion, injection or accumulation |20, 21, 22|.
The achievable modulation speed using these methods is limited by the time constants
with which the carriers can be injected into or removed from the area of the optical
mode, which is in the order of nanoseconds. However, through the use of reversed biased
pn-diodes, modulators with a 3 dB bandwidth of 30 GHz have been demonstrated [20].
The approach to be followed in the present thesis utilizes the excellent linear properties
for confining and guiding the optical mode of silicon and its mature fabrication platform.
For EO-modulation, the silicon device is to be hybridized with a nonlinear optical organic
material to overcome the speed limitations set by the free carrier plasma dispersion in

silicon.

Nonlinear optical organic materials

Typical organic NLLO-materials with second order hyperpolarizabilities are optical poly-
mers that have been functionalized either by doping of chromophores into the polymer
matrix (guest-host system) or covalently binding the chromophore to the polymer chain
(side-chain or main-chain systems). These chromophores are molecules, which have a
strong dipole moment and high hyperpolarizability, due to the electron donor-7 charge
transfer bridge acceptor (D-m-A) structure. The nonlinear effect originates solely from
the probability density distributions of different interacting electronic states and is hence
inherently ultra fast (< ps), enabling modulation bandwidths in the THz range [23].
Through polar alignment of the dipoles in the polymer along a preferential direction,
which means breaking the centrosymmetry of the matrix, the bulk material develops a
strong second order nonlinear polarization, manifesting in a y® susceptibility. Due to
their dipole character, the chromophores are oriented technically by a strong static electric
poling field. This process is referred to as poling.

Molecular engineering has led to a significant increase in the microscopic hyperpolariz-
ability of the chromophores, yielding NLO-organic materials with bulk Pockels coefficients
exceeding 300 pm/V at telecommunication wavelengths [24, 25, 26, 27]. This value sur-
passes LiNbO3 by one full order of magnitude. This is a very important aspect, as the
required drive voltage for modulation is inversely proportional to the Pockels coefficient.

Optical organic materials are a well suited material for optical applications because
these compounds can show very low optical waveguide losses in the near infrared regime
around the telecommunication windows of 1.3 ym and 1.55 ym (< 1.0 dB/cm) due to their

amorphous structures and the low absorption of their constituents [28]. The refractive



index of polymers is typically quite small (n &~ 1.6), which limits its light confinement
abilities, mandating large bend radii of waveguides and hence restricts the integration of
optical circuits on the chip level. However, in previous projects at this institute, it was
demonstrated that polymer waveguide slabs can be a structured on the scale of nanometers
to form two-dimensional photonic crystal slabs [29, 30].

NLO-polymers are typically applied on substrates by spin coating or, even simpler,
drop casting from solution. The residual solvent is removed by baking the sample at an
elevated temperature above the solvents boiling point. Depending on the solvent used, this
is done in a range of 80 - 140°C. These features allow polymer materials to be integrated

as a back-end process into the CMOS fabrication technology.

Objectives and outline of this thesis

The objective of this work is to develop concepts for EO-modulators, which meet the

following requirements:

e operation at modulation frequencies in the microwave regime (> 10 GHz)
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e low drive voltages (< 1 V), and

e ultra small geometrical footprint (on the scale of pm).

To fulfill the first two criteria organic NLO-materials are selected as the EO-functional
medium, due to their inherently fast nonlinear response (< ps) [23] and their ability to
produce very high Pockels coefficients (> 300 pm/V) [26]. To comply with the requirement
of a small geometrical footprint, the device design will focus on resonant PhC structures
in silicon.

This thesis is structured as follows. In chapter 2, the theoretical background and fun-
damental concepts required for the results presented in the remainder of this thesis are
revised. First, principles of second order NLO in organic materials are discussed and an
introduction to the propagation of electromagnetic waves in media with periodically vary-
ing refractive index, photonic crystals, is given. Furthermore, physical mechanisms and
effects of photonic cavities and resonant structures are reviewed. Finally, the simulation
concepts used in this thesis are briefly introduced.

Chapter 3 analyzes possibilities to achieve full three-dimensional light confinement in
resonant PhC slab structures (i.e. cavities) fabricated in NLO-polymers. Integrating the
resonator structures completely into the NLO-polymer intrinsically leads to maximum
field interaction with the NLO-material and hence ensures the largest possible spectral

shift of the resonant frequency at a given amplitude of index modulation. Experimental



evidence of an omnidirectional photonic band gap in low index contrast PhC is presented.
However, the subsequent detailed theoretical study concludes that highly resonant struc-
tures with small geometric footprint are not attainable in material configurations with
low refractive index contrast.

In the following chapters EO-modulator structures based on Silicon-on-Insulator (SOT)
substrates, which have been electro-optically functionalized with second order NLO-
organic materials are developed and experimentally validated. Chapter 4 focuses on the
design of PhC nanocavities in hybrid silicon-organic materials and the optimization of the
spectral properties to enable a maximum modulation sensitivity while minimizing optical
losses.

In chapter 5, EO-modulation in hybrid silicon-organic PhC devices with up to 40 GHz
modulation bandwidth are experimentally demonstrated. The complete fabrication pro-
cess with all relevant technological steps is explained. Issues of the high field poling pro-
cess of second order nonlinear organic materials in narrow slot geometries are addressed.
Finally, theoretical limitations of the proposed modulator concept are discussed.

Chapter 6 summarizes the results of the previous chapters and gives an outlook for

further research.



Chapter 2

Theoretical background

2.1 Second order nonlinear optics in organic materials

This section gives an introduction into the general concepts of second order nonlinear op-
tics (NLO) and into particular aspects of NLO-effects in organic materials. The discussion
is restricted to effects, which are of relevance to this thesis. Comprehensive discussions
of nonlinear optics can be found in references |2, 31| and of NLO in organic materials in
references [32, 33|. The introduction into the NLO-effects of bulk optical media is followed

by a discussion about the microscopic origin of NLO-effects in organic materials.

2.1.1 NLO-effects on the macroscopic scale

In a dielectric medium, the electric field E(t) of an electromagnetic wave induces dipole
moments, resulting in the polarization density P(¢). These two quantities are related to

the displacement field D(t) via:
D=¢E+P (2.1)
=¢ (1l + x)E, (2.2)
where the y is the electric susceptibility, directly linking E and P:
P = ¢xE. (2.3)

If the medium is anisotropic, the induced polarization density depends on the orientation
of the electric field, thus the electric susceptibility has to be regarded as a tensor. In a
nonlinear medium,  is not a constant but dependent on the electric field itself and hence

the relation between P and E can be expanded into a power series:

Pi = € <Xz(]1’)EJ' + XE?}?;E]Ek + Xz(‘j‘)])qlEjEkEl + .. ) , (2.4)



such that x(™ is a tensor of rank (n+1), which are responsible for nonlinear optical effects
for n > 2.

At this point, it should be noted that, in electric dipole approximation, only materials
lacking an inversion symmetry (i.e. noncentrosymmetric materials) can exhibit second
order NLO-properties. The rational behind this is that in media with inversion symmetry
the polarization induced by two electric fields pointing in opposite directions are equal
in amplitude and have opposite signs (P(—F) = —P(F)). Plugging this condition into

equation 2.4 yields that y(® = 0 for materials with inversion symmetry.

The second order nonlinear susceptibility Xg,l(—wg; wiy,ws) links the interaction of two
electric fields E(w;) and E(ws) via the tensor product to the resulting nonlinear polar-
ization response P(ws3). Important examples of second order nonlinear effects are second
harmonic generation, optical rectification, three wave mixing and the electro-optic ef-
fect. The latter describes the interaction of a quasi-static (i.e. much lower in frequency

compared to the optical field) electric field E(0) and the optical wave E(w), resulting in:
P(w) = 2e0x? (—w; w, 0)E(w)E(0). (2.5)

The degeneracy factor of 2 is introduced into the above equation to account for the possible
distinct permutations of the frequencies w; and w,. Thus, the displacement field can be

written as:
D(w) = ¢E(w) + P(w)

= ¢ | 1+ xY(~w,w) +2x? (—w;w, 0)E(0) | E(w) (26)

(. J
~~

€r

where ¢, is the relative permittivity or dielectric tensor with the elements ¢;; = nfj Its off
diagonal elements vanish, if the coordinate system is chosen along the material’s principal

axis and it is then given by:

The nonlinear contributions in equation 2.6 can be regarded as a perturbation Ag;; to the

corresponding tensor element:

AEij = 2nijAnij = 2X(2)(—w, w, O)E(O) (28)
and the refractive index change due to the EO-interaction can be written as:
(2) .
S (—w;w, 0

ni]‘



The electro-optic or Pockels coefficient is defined as the change of the impermeability
n=1/e

1

ij
Since the changes in An;; are small for nonlinear optical processes, the EO induced change
is:

ns.
An;; = _#TijkEk(O) (2.11)

and the tensor elements of the Pockels coefficient are linked to the counterparts of the

nonlinear susceptibility by:

2P (—w; w, 0
Tijk = X (4 ) (2.12)

2.1.2 Microscopic origin of NLO-effects in organic materials

The molecules, which are responsible for the second order nonlinearity in organic com-
pounds are referred to as chromophores. In these molecules, the centrosymmetry is bro-
ken by deforming the m-electron distribution along a conjugated path by attaching groups
with different electron affinity at both ends of the molecule. A simple example of such
a molecule is given in figure 2.1. An acceptor- and a donor-like functional group are
attached to an aromatic ring, which serves as a m-conjugated bridge. Due to an excess of
charge at the acceptor side, the molecule has a dipole moment in its ground state. The
response of the molecule to an electric field, or its polarizability, depends strongly on the
direction of the applied field with respect to the molecule: charge flow is favored towards
the acceptor, while hindered towards the donor. This asymmetric polarization provides
strong second order nonlinear optical properties [33|. The polarization p on a molecular

level can be written similar to equation 2.4:
pi = i + B + Bijr BBy + Yiju By EpEy + . . (2.13)

where g is the ground state dipole moment of the molecule, « is the linear polarizabil-
ity and § and ~ are the first and second order hyperpolarizabilities, respectively. These
coefficients are the microscopic counterparts of the susceptibilities in equation 2.4. Specif-
ically, 3 is linked to x® and hence second order NLO-effects originate from the first order
hyperpolarizability. Organic compounds offer a large flexibility of the molecular design,
and extensive research in NLO-chromophores has led to very sophisticated molecular en-
gineering with large [ values. Reviews of the recent progress in this area are given in [27],
[34], and [35].
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Figure 2.1: Ground state and first excited state of a chromophore molecule [33].

A simple model to predict the NLO properties of organic molecules is the two-level
model. Within this model proposed by Oudar and Chemla [36, 37|, the charge transfer
contribution to the hyperpolarizability is given by [33]:
€ (fe — ig) P . wee (3wl + wiws — w3)

AE? (w2, —wP) (w2 — w3) (w2 —w3)’

where p, and ji. denote the dipole moments of the ground and excited state, respectively.

Blws;wi,wa) =2 (2.14)

The transition dipole moment from is given by j. and the energy difference of the states

by AE. For EO-processes this expression simplifies to (w; = —w3 = w and wy = 0):
(1 — 22 (302 — W2
B(—w: w,0) = (fte /;g):uge Wee ( ge . ) (2.15)
ZEE (-
550

The term SE€ is referred to as the dispersion free or off-resonant hyperpolarizability since
it is not dependent on the frequency of the optical fields involved in the nonlinear process.
The two-level model has been used up to the 1990s to guide the design of NLO-organic
molecules. Today, calculations based on the quantum sum-over-states methods are used
to determine the largest off-resonance nonlinear susceptibility allowed by quantum me-
chanics [38, 39]. This approach aided the development of new molecular designs with
ultra-high intrinsic hyperpolarizabilities based on the modulation of conjugation [40]. M.
G. Kuzyk used this method to identify the fundamental quantum limit of hyperpolariz-
ability in second order NLO-molecules and concluded that bulk EO-coefficients exceeding
3000 pm/V in dye-doped polymers are feasible [41]. This value is one order of magni-
tude larger compared to the experimentally reported values [26], suggesting significant
improvement potential in the design of NLO-molecules. Reviews of molecular engineering
strategies for second order NLO-organic materials can be found in |27|, [34], and [42].
The delocalization of the intra-molecular charges along the the m-conjugated bridge
is almost instantaneous, resulting in response times in the femtosecond regime. This
is a very important advantage of NLO-organic materials, especially in the context of
broadband EO modulators with up to 100 GHz bandwidth. In fact, NLO-polymer based

EO-modulators operating above 1 THz were demonstrated [23].
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The molecular architecture of chromophores with strong donor and acceptor pairs con-
nected by a conjugated bridge makes them susceptible to photodecomposition, which
compromises their NLO-properties. This effect is most profound when the frequency of
the incident radiation is at or close to the absorption bands (typically in the ultra-violet
and visible spectrum) of the NLO-chromophore. This process leads to a reduction of the
refractive index and is also known as photobleaching, which can be used to define optical
waveguides in NLO-polymer films [43, 44|. In the near infrared part of the spectrum,
relevant for telecommunication, this effect is orders of magnitude smaller compared to
frequencies close to the absorption band [45]. However, it is also important to consider
the photochemical stability of NLO-polymers at near infrared frequencies for long lifetime
operation. Recent studies show that shielding the chromophores from ambient oxygen and
singlet oxygen in the polymer matrix is essential for long lifetime polymeric telecommu-
nication devices [46, 47|. Using these techniques, stable operation of EO-polymer devices

at light intensities of 1 MW /cm? has been reported [48].

Achieving high x(?) values requires strong first order hyperpolarizability molecules.
However, in amorphous polymers, the chromophores are randomly oriented, hence are
macroscopically centrosymmetric and x?» = 0. Consequently, the chromophores in the
polymer matrix have to be oriented in a preferential direction in order to observe macro-
scopic second order NLO-effects. Methods to orient the dipole moments are static field
poling, photoassisted poling and all optical poling. Detailed information on these tech-
niques can be found in reference [32|. In this thesis, the electrode contact static field

poling is employed and shall be introduced briefly in the following.

As the name suggests, for electrode contact poling, the NLO-polymer is sandwiched
between two electrodes (figure 2.2). Between these electrodes, the poling voltage Vo
is applied. The sample is then heated to the glass transition temperature Tj, where
the mobility of the molecules is increased, allowing them to reorient within the matrix.
Due to their electric dipole nature, the chromophores will then orient themselves along
the applied static electric field. The sample is then cooled down to room temperature,
still with the field turned on, thus freezing in the chromophore orientation. At room

temperature, the poling voltage is turned off.

This state of the molecule ensemble is thermodynamically not stable and the orientation
tends to decrease over time. The poled order relaxation of the chromophore molecules
over time results from rotational diffusion processes in the polymer matrix. The tem-
poral decay of the EO-coefficient is usually described by the Kohlrausch-Williams-Watt
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Figure 2.2: Schematic of the poling procedure. The chromophores are aligned at the glass
temperature T, by a static poling field £,q.

stretched exponential function [32]:
ras(t) = 133(0) [—(¢/7)"] (2.16)

where 7 is a temperature dependent relaxation time constant and w describes the width
of relaxation (deviation from monoexponential behavior). The values of these parame-
ters depend on the measurement temperature. The closer the measurement temperature
is to the glass transition temperature, the smaller the time constant and the larger the
relaxation rates. The parameters are typically found by fitting the function to experimen-
tally obtained data. Alternatively, a biexponential function can be used to describe the
temporal decay. Both methods have shown to provide accurate results.

Long term thermal stability of the macroscopic second order NLO-effect was demon-
strated in EO-polymers with high glass transition temperature (7, ~ 200°C), retaining
90% of their inital Pockels coefficient for more than 1000 h at an elevated temperature
of 100°C [49, 50]. By crosslinking the polymer matrix after the poling process, the ro-
tational flexibility of the chromophore is hindered due to increased 7, and interchain
entanglement of the polymer. Using this technique, thermal stabilities of up to 85°C were
achieved [51, 52].

The microscopic contribution from the first order hyperpolarizability [ is in general
not easily linked to the macroscopic x® response of the NLO-polymer. A simplified
treatment, however, is provided by the oriented gas model, giving a good approximation
for poled EO-polymers. This model provides a simple relation of the ( tensor elements
given in the molecular coordinate system (z,y,2) and the x(® tensor elements, which
are given in the laboratory frame (X,Y,Z7) (figure 2.3). The assumptions made by the

oriented gas model are:

e The chromophores are assumed to rotate freely under the influence of the applied

field at the poling temperature. Chromophore-chromophore coupling or interaction
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Figure 2.3: Laboratory (X, Y, Z) and chromophore (x,y, z) coordinate systems.

with the surrounding polymer matrix is ignored.

e The chromophores have cylindrical symmetry about the z axis and the only non-

vanishing hyporpolarizability tensor element is ...
e The chromophore’s dipole moment p is oriented along the z axis.
e The chromopores are not interacting with each other.

Using these approximations, only two independent elements remain in the macroscopic

second order susceptibility tensor, which are obtained from:

X(ZQ%Z - Nfﬁzzz <C053 0> (217)
X(Z2))(X = NfpB... <cos€sin2 9> /2, (2.18)

where N is the chromophore number density, f the local field correction factor and 6
denotes the angle between poling field and the molecular axis. The distribution of the
angular orientation can be expressed by Langevin functions of first and third order, which
in turn are typically approximated a Maxwell-Boltzmann distribution function, giving two
rather simple expressions for the averaging terms in the equations above (for a complete

derivation see for example [33]):

QNEZ
15k5T"’

pEz

3 ~
<cos 9> ~ SEaT

and  (cosfsin®f) ~ (2.19)

where E is the applied poling field, p is the dipole moment, kg is Boltzmann’s constant
and T is the temperature at which the polymer is poled. The molecules orient in the

direction of the applied field to reduce their interaction potential puF,. However, this
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effect is in competition with the thermal disorientation energy kp7'. The macroscopic

tensor components are found from:

0 _ npp..lEz 2.20
Xzzz fBzz kT (2.20)
@ =N nbz 2.91
Xzxx I Bz 15kpT (2.21)
Hence, within this model, the ratio between the two tensor elements is given as:
X(2)
277 _ 3, (2.22)

Xzxx
By using Voigt’s notation to express the tensor indices in contracted form, the above
elements become Xg? and X%)- Analogously, one finds for the Pockels coefficients r33 and
riz that r33 = 3ry3.
The above approximations of the Langevin functions are only valid if puEy/kpt < 1,
which is often satisfied in experimental conditions. However, for large degrees of angular
orientation (cos@), the linearized model of the Langevin function (equation 2.19) is no

longer valid and the ratio of x(? tensor components can be larger than 3.

2.2 Photonic crystals

Photonic crystals (PhCs) are artificial optical media, whose refractive index is varied pe-
riodically on the scale of the optical wavelength. This periodicity of dielectric interfaces
causes destructive multiwave interference for certain frequency regions, prohibiting prop-
agation of a wave inside the PhC. These frequency regions are called photonic band gaps
(PBGs), in analogy to the electronic band gaps in semiconductor materials.

PhCs are distinguished by the dimensionality of their periodicity in one-dimensional,
two-dimensional, and three-dimensional crystals. One-dimensional crystals are essentially
multilayer films, which have first been studied by Lord Rayleigh in 1887 [53]. However,
the notion of photonic crystals was first coined by Yablonovitch [10] and John [11] with
the introduction of 2D and 3D PhC structures. A standard text to the introduction to
PhC is the book by Joannopoulos et al. [54].

To understand the propagation of waves in a medium with a spatially periodic di-

electric constant one starts with Maxwell’s equations for time harmonic fields (A(r,t) =
A(r) exp(—jwt)):

VxH=—jwD+J V-D=p

V x E = jwB V-B=0

(2.23)
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and the material relations:
D(r) = e, (r)E(r) B(r) = pop, (r)H(r). (2.24)

The dielectric materials considered in this text are assumed to be free of charges (p = 0)
and currents (J = 0) and the magnetic permeability is unity (pu, = 1). The relative
permittivity e, is then related to the refractive index by n? = ¢, and the vacuum speed
of light is ¢ = 1/,/€ofto. The equations 2.23 and 2.24 can then be rearranged to give an

expression entirely in H(r), which is called the master equation:

V x (Lv . H(r)) - (E>2H(r), (2.25)

e (r) c

This is an eigenvalue problem for the eigenmodes H(r) with the eigenvalue (w/c)®. A PhC
has a periodic refractive index distribution €(r) = ¢(r + R), where R = Nja; + Nyay +
Nsag is the primitive lattice vector. Thus, the Bloch-Floquet theorem can be applied
to the solution of the eigenproblem. The field distribution for any given wave vector k
consequently is a periodic function in space multiplied by exp(jk - r) and can be written

in the form:

Therefore, the analysis of the problem can be restricted to the primitive cell of the lattice.
This solution is then easily expanded to the entire lattice. The primitive cell is a finite
domain leading to discrete eigenvalues i = 1,2,.... The eigenvalues w;(k) are continuous
functions of k, resulting in the discrete bands when plotted versus the wave vector. In
the context of PhC the dispersion relation w versus k is also called band diagram.

The master equation is scale invariant, in other words there is no fundamental length
scale. If the refractive index function is scaled in space by € (r) = ¢(r/s), the new mode
profile is obtained from rescaling the old mode profile H'(r') = H(r'/s) and similarly the
new mode frequency is rescaled to w’ = w/s. For this reason, the band diagram is typically
presented in a notation where frequency wa/2mc and wave vector ka/2m are normalized
to the lattice constant a.

Another important scaling property concerns the magnitude of the refractive index
function. If its value is increased by a constant factor s everywhere n’(r) = s - n(r), the
frequency of the mode decreases by the same factor w’ = w/s. However, the mode profiles

remain unchanged.
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Figure 2.4: Band diagram of an infinite 2D PhC and a PhC slab of triangular lattice of
air holes in silicon (ng = 3.5) in TE-like polarization, with the irreducible Brillouin zone

at the lower left.

2.2.1 Photonic crystal slabs

A photonic crystal slab is a slab waveguide, which has a periodic index variation in both
in-plane directions. The periodicity is two-dimensional and hence it could be regarded as a
2D PhC. However, due to the slab structure, its vertical translational symmetry is broken.
Therefore these structures are commonly referred to as 2.5D systems or photonic crystal
slabs. The latter will be used in this thesis. PhC slabs are of technological significance,
because they can be fabricated using standard planar lithography and etching processes.

Due to the vertical mirror symmetry at the center of the slab, the modes can be sepa-
rated into vertically even (H, and Ey, components having symmetrical field distributions
with respect to the mirror plane) and odd modes (antisymmetrical field distribution).
Consequently, in the zy-mirror plane itself the even mode has only H, and FEy, as its non
vanishing field components and is purely transverse electrically (TE) polarized. Analo-
gously the odd mode is purely transverse magnetically (TM) polarized at the slab mirror
plane [55]. Moving away from the center all field vector components are non-zero. Hence
the nomenclature of TE-like and TM-like modes is commonly used [54]. PhC slabs with
air holes in a high dielectric slab preferably sustain a band gap for the TE mode. Hence,
all following discussions of this text consider the TE polarized mode.

Photonic crystal slabs confine the light vertically within the slab via index guiding, a
generalization of total internal reflection. Due to the in-plane periodicity, the wave vectors
parallel to the plane k;| form a band structure when plotted versus the frequency w, which
is very similar to the band structure of the true 2D case (a direct comparison of the two
diagrams in displayed in figure 2.4). The bands in the PhC slab case are shifted to higher

frequencies because the effective refractive index of the slab is lower than the index of
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Figure 2.5: Schematic of line defect (left) and point defect (right) in a PhC slab.

the bulk material. The eigensolutions of the cladding medium are w = cgaq \/W,
where coaq is the speed of light in the cladding medium cgag = co/Ncaa. When plotted
against k| this forms the continuous light cone w > caqlky|, indicated by the darker
region in figure 2.4. Modes beneath the light cone are confined to the slab and their field
decays exponentially in the vertical direction. Since modes within the light cone radiate
energy to the continuum, they are also referred to as radiation modes.

When omitting or shifting holes from their lattice positions, the periodic translational
symmetry of the PhC is broken. Such deviations from the perfect PhC structure are
called defects and form allowed states (defect states) within the photonic band gap. The
most prominent examples of such defects are line defects and point defects (figure 2.5).

Line defects are formed by omitting a row of holes along one of the lattice directions.
This forms a waveguide effectively consisting of two photonic crystal mirrors, providing
confinement of the mode lateral to the propagation direction. The geometric structure
is periodic in the direction of propagation and hence the propagating modes are Bloch
modes. In principle for all modes below the light cone lossless operation is possible, when
neglecting absorption and scattering from geometrical imperfections of the lattice (e.g.
fluctuations in hole size, position and shape). PhC line defect waveguides have received
considerable attention in the research community because their dispersion relation can be
widely tuned by modifying the geometric properties of the PhC.

A point defect is formed by omitting or changing the size of one single or multiple adja-
cent holes in the PhC lattice. This type of defect can define localized modes for resonant
frequencies within the band gap, as propagation is hindered in all in-plane directions by
the PhC. Vertically the light is confined by the total internal reflection condition. The
defect serves as a microcavity resonator. The modal volume of the cavity is typically in
the order of one cubic wavelength, thus confining the optical energy very tightly. How-
ever, because translational symmetry of the PhC is broken and the resonant mode is
spatially localized, the mode now has a continuum of wave vector components, parts of
which can couple to the modes in the light cone and radiate energy. Consequently, these
localized modes are always lossy. Methods to reduce the vertical radiation losses in PhC

slab resonators are analyzed extensively in chapters 3 and 4. The losses of resonators are
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quantified by their quality factor. This quantity and its importance for resonant systems

will be discussed in the next section.

2.3 Cayvities and resonators

An optical resonator confines light at resonance frequencies, which are determined by its
configuration. It can be regarded as an optical transmission system with incorporated
feedback. The light circulates or is repeatedly reflected within the resonator. Optical
resonators are characterized by two key parameters, reflecting their ability to confine the
optical energy temporally and spatially: The former is quantified by the quality (Q) factor
and the latter by the mode volume V. Q is directly proportional to the storage time, a
large value indicates strong temporal confinement. The mode volume measures the volume
occupied by the optical mode, and a small value represents strong spatial confinement.
Resonators are generally frequency selective elements and may serve as spectral analyzers
and optical filters.

Assuming the energy stored in a resonator decays with the time constant 7, the optical

field of this mode then decays with:
E(t) = Eye iwote=t/2, (2.28)

where wy is the resonant frequency. The frequency spectrum of the output intensity of

this resonator is found by taking the Fourier transform of the previous equation:

1

[ F{E@)} oc [(w) = Iow;

(2.29)
yielding a Lorentzian function, with a spectral line width defined by the full width at half
maximum (FWHM) Aw = 1/7.

The Q factor of resonant circuits is defined as the ratio of stored energy (1) and the
energy loss per cycle (P). Since, by definition, the energy decays with the rate of 7, the
Q factor can be related to the ratio of resonance frequency wy to the line width Aw:

CU()W w wWo
= —= T = ——.
P 0 Aw

Q

(2.30)

Generally, multiple loss mechanisms are responsible for the resonator characteristic.
These include losses at imperfect and finite sized mirrors as well as material absorption
and scattering loss inside the resonator. An individual decay time 7; and hence indvid-

ual quality factor (); can be attributed to each of these dissipative mechanisms. These
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individual parameters are connected to the total decay constant and quality factor via:

-1

Qiot = WoT = Wy [Z Tl] [Z Qi] . (2.31)

7

Hence, the total Q is limited by the smallest individual Q factor, or, in other words, the
strongest loss mechanism.

A microcavity in an infinitely extended PhC slab of lossless material, exhibits only
vertical loss from coupling to radiation modes within the light cone. The associated
quality factor is typically referred to as vertical Q or intrinsic Q because it is an intrinsic
property of the isolated cavity. In the remainder of this text this value is expressed as
Q1. When the cavity is coupled to access waveguides, an additional loss mechanism is
introduced, which is denoted by the in-plane quality factor @||. The cavity acts as a filter
on the transmission function from the input to the output waveguide, transmitting only
the resonant frequencies.

The transmission characteristic of a resonator coupled to a waveguide can be derived
from coupled mode theory, which allows to express the transmission spectrum as a function

of Q factors (a thorough derivation can be found in [54| and [56]):
()
T(w) = m. (2.32)
Evidently, the spectral width of the transmission is the same as for the isolated cavity.

However, the peak transmission 7T at resonance is not 100%, but determined by the ratio

_ Qtot 2_( _Qtot)2
T0_<Q|> = (1 0. ) (2.33)

This means that the transmission at resonance is almost unity when @, > @). This

of total to in-plane Q:

is easily explicable, since the cavity mode decays much more quickly into the waveguide
than into the surrounding medium.

Here, the resonator shall be used for electro-optic modulation. A variation of the
refractive index within the resonator volume causes a shift of the resonance frequency Awy
and consequently a shift of the transmission spectrum, thus modulating the transmission
at a given frequency w, with the modulation depth AT (see figure 2.6). Clearly, the larger
the Q, the deeper is the modulation depth for a fixed shift in resonance frequency. From
this it follows that an efficient modulator should have its Q as large as possible to exhibit a
large modulation depth with small shifts in resonance frequency. However, using resonant

structures as modulators in high data rate communication schemes poses an upper limit
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Figure 2.6: Spectral shift of the resonator transmission by Aw, resulting in a modulation
depth AT at w, (left). Maximum transmission at resonance 7T plotted against the cavity

intrinsic Q factor (right).

on the permissible Q) factor of the device. The photon lifetime 7 should not exceed the
time spacing between two data symbols, as this would lead to inter-symbol interference.
Targeting 100 GHz operational bandwidth results in 7 < 10 ps. At the telecommunication
wavelength of A = 1550 nm, this yields a maximum total Q of Qo = 12 - 103.

The maximum transmission of a resonator based modulator determines the insertion
loss of the device and hence is desired to be close to to unity or 0 dB. From equation 2.33, it
is easy to find the maximum transmission of a resonant cavity once the total and intrinsic
Q are known. Obviously, the optimal cavity would have (), = oo, this, however, is not
possible in a PhC slab nano cavity. Even in a defect surrounded by a perfect PhC lattice
the intrinsic Q can only be finite, due to wave vector components that are inside the
light cone. In real world cavities this value will be further reduced by material absorption
of the dielectric slab and additional vertical scattering losses from imperfections in the

geometry (e.g. fluctuations in hole size, position and shape) of the PhC lattice.

In figure 2.6, Tg is plotted versus the vertical Q factor of a cavity with Q. = 12 -
103, which was identified to be the upper limit of the total Q factor in a resonant EO-
modulator. In view of these boundary conditions it is obvious that overall device design
has to primarily concentrate on the maximization of the intrinsic Q factor. At the same
time simplifying the simulation efforts, as only isolated cavities need to be considered in
the first design step. The minimum intrinsic Q factor QT® required for any PhC cavity
EO-modulator with given maximum transmission can be found from the right hand panel
in figure 2.6. Hence, for an insertion loss not larger than 1 dB resonators with @, > 10°

are a necessity.
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2.4 Simulation concepts

The description of electromagnetic problems is entirely contained in Maxwell’s equations
presented in 2.23, and thus all optical properties of PhCs can be inferred from the so-
lution of these equations. However, in complex two- and three-dimensional material ar-
rangements, an analytic solution is generally not available. Over the last decades, several
numerical techniques have been developed to efficiently solve partial differential equations
like Maxwell’s equations. Combined with the increase of computing power, this has led
to a multitude of tools, which are available in computational photonics for the design of
photonic structures. Numerical and experimental results are in fact in such a good agree-
ment that it has become common practice to optimize devices in "numerical experiments"
before the device is actually fabricated. For the design of the devices presented in the
following chapters, the Finite Integration Technique (FIT) and Guided Mode Expansion
method (GME) were used. Both shall be introduced here briefly.

2.4.1 Guided mode expansion

The GME method was developed by Andreani et al. for the efficient calculation of band
diagrams of PhC slabs [57]. Tt is a special implementation of the well-known plane wave
expansion method [58| to solve the master equation 2.25 and to obtain the mode fre-
quencies and field distributions for any wavevector k. An implementation of the code is
provided as free software by L. C. Andreani [59].

In the plane wave expansion method, the periodic Bloch envelope of the magnetic field

given in equation 2.26 is expanded into a three-dimensional Fourier series:
w(r) = ca(k)e' ™, (2.34)
G

where G is the reciprocal lattice vector. The master equation 2.25 is transformed into a

linear eigenequation by inserting the last expression and Fourier transformation:

w2

> e (k+G) x (k+G)x]cg = —Ca (2.35)
G
where EE;}—G is the Fourier transform of the inverse dielectric function. The above equation
is typically solved numerically by truncating the infinite sum over G by introducing a
wavevector cutoff |G| < A.
The guided mode expansion method uses a slightly different basis to expand the mag-

netic field. Since it is applied to PhC slabs, it represents the field as a combination of
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two-dimensional plane waves in the slab plane xy and as guided modes perpendicular to

the slab plane (i.e. along z). This is expressed as:

Hy(r) = Y c(k + G, a)HP G (r). (2.36)
G
The term Hilfgi(r) describes the guided modes of the effective waveguide at (k + G)
and « is the index of the guided mode. The effective waveguide is considered to have
a homogeneous refractive index distribution in its substrate, core and cladding layer.
The refractive index in each layer is found by taking the spatial average of its n(z,y)
distribution within the unit cell of the PhC.

The GME does not introduce any artificial periodicity in the vertical direction. In
the case of a monomode effective slab waveguide, the numerical effort is comparable to a
2D plane wave calculation. Hence, the calculation time for PhC slab band structures is
reduced considerably compared to a 3D plane wave calculation. Furthermore, the coupling
of modes above the light line to radiative modes of the continuum is quantified by this
method by by using time-dependent perturbation theory (in analogy to Fermi’s golden
rule for quantum mechanics), which yields the imaginary part of the frequency of these

lossy modes [57].

2.4.2 Finite integration technique

All FIT calculations presented in this thesis were obtained from the commercially avail-
able "Microwave Studio" program, which is maintained and distributed by the Computer
Simulation Technology (CST) company in Darmstadt, Germany. A thorough introduc-
tion to the application of this software for PhC problems can be found in [60]. In the FIT
algorithm, Maxwell’s equations are applied to a discretized simulation volume in integral
form.

Prior to the simulation of the actual electromagnetic problem, the simulation domain
is discretized into a rectangular grid, defining finite mesh cells. Along the edges of these,
the electric voltages e and through the facets the the magnetic fluxes b are defined as
presented in figure 2.7. Simultaneously, a secondary grid is created orthogonally to the
first one. The electric flux d and magnetic voltages h are defined along the facets and
edges of this secondary grid, respectively.

The Maxwell equations are then applied to each of the cell facets. Faraday’s law of

7{ Eds:_ﬁ//BdA (2.37)
oA ot J Ja

induction:
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Figure 2.7: Generation of the computational primary and secondary grid used for the
discretization in the FIT method. The electric voltages e and magnetic fluxes b are
defined on the edges and faces of the primary grid, while the magnetic voltages h and

dielectric fluxes d are defined on the secondary grid.

can be written at the facet n as:

0

P (2.38)

€i+€j_6k_el:_

Repeating this procedure for all available cell facets summarizes the calculation rule in
a matrix formulation, introducing the topological matrix C as the discrete equivalent of
the analytical curl operator: 5

_ 9y 9.
Ce atb (2.39)

The same procedure is applied to the secondary grid with Ampere’s law and the topological
matrix C. Similarly, the discretization of the remaining divergence equations introduces
discrete divergence operators S and S, belonging to the primary and secondary grids,

respectively. This results in the following notation of the Maxwell equations:

- )
Ch=j+.d 3d = q

e , (2.40)
Ce=——=b Sb =0

ot

which is referred to as the Maxwell Grid Equations (MGE) [61, 62|, where j are the electric
currents through the facets and q the electric charges in the grid cells.
For the complete description of the electromagnetic properties of the modeled struc-

tures, the material equations need to be written in the matrix notation as well:
D =¢E d =M.e
B =uH - b=M,h (2.41)
J=0E+J, j=M_,e+js
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Figure 2.8: The leap-frog scheme used for time domain calculations in the FIT algorithm.

These material relations introduce inevitable numerical inaccuracy due to spatial dis-
cretization. In defining the necessary relations between voltages and fluxes, their integral
values have to be approximated over the grid edges and cell areas, respectively.

Time domain calculations are implemented into the FIT algorithm by substituting the
time derivatives in the MGEs by the central time differences, which results in the so-called
leap-frog scheme (see figure 2.8). The time is discretized with intervals At and the fields
are updated from previous magnetic fluxes and electric voltages, which are shifted in time
by At/2. In other words, the electric voltages e"™'/2 are obtained at time step n + 1/2

from previous magnetic fluxes b™ and electric voltages "~ 1/2:

U2 = en 12 4 A (CM?b” + jQ) , (2.42)
and subsequently, the magnetic fluxes are computed using b™ and e+1/2;
b = b" — AtCe™ /2, (2.43)

This method allows to calculate the evolution of arbitrary time signals, which are launched
into the simulation domain. Using the grid vectors, the electric and magnetic field can
be calculated at any point in time and space within the simulation volume. With the aid
of the Fourier transform, the spectral characteristic of the modeled system is obtained
directly from the temporal field characteristics.

Alternatively, the FIT algorithm may calculate the eigenmodes and frequencies of the
simulation domain. For this purpose, the time dependence is eliminated from the MGEs
by substituting time harmonic fields exp(—jwt). The master equation 2.25 rewritten in

matrix form gives:

CM_'Ch = M,h. (2.44)

This technique is important to calculate band diagrams of PhCs. The eigenfrequencies
are calculated at a given wave vector k, by setting the phase shift between the bound-
aries in propagation direction to ¢ = ka, hence finding the Bloch modes as defined in

equation 2.26.



Chapter 3

Low dielectric contrast photonic

crystals

This chapter explores possibilities to achieve full three-dimensional light confinement in
resonant photonic crystal (PhC) structures (i.e. cavities) fabricated in nonlinear optical
polymer slab with air holes. At the resonant frequency, the optical field is strongly
localized in the cavity volume. Refractive index changes within this volume will therefore
have a considerable impact on the resonator spectral characteristics, most noteworthy
the resonant frequency. Integrating the resonator structures completely into the NLO-
polymer intrinsically leads to maximum field interaction with the NLO-material and hence
ensures the largest possible shift of the resonant frequency at a given amplitude of index
modulation.

To observe a photonic band gap (PBG) in a PhC of triangular lattice of air holes in a
true two-dimensional geometry (not PhC slab), a minimum contrast of 1.39:1 is required
[54]. Since the available contrast with polymers is near this mark (npe, &~ 1.6), it becomes
clear that the obtainable band gap size is very limited. Especially when PhC slabs are
considered, where the effective index of the slab mode is always below the core material’s
refractive index. Additionally, in the case of PhC in slab waveguides, modes above the
light line can couple to radiation modes and hence might limit the light confinement

abilities of the PhC structures. This necessitates a careful design of the PhC geometry.

3.1 Resonators in periodic ridge waveguides

A PBG can be formed in a ridge waveguide that has been periodically perforated with
air holes in the direction of light propagation. This geometry is comparable to one-

dimensional Bragg stacks in terms of its optical properties, however it offers a higher
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Figure 3.1: Geometry of a periodic ridge waveguide (left) and its photonic band structure
(right). The PBG opens between the first two modes with even symmetry (indicated with

solid lines). The dashed line represents a mode with odd symmetry.

mechanical stability than an alternating arrangement of dielectric material and air. By
introducing a defect into this periodicity an allowed energy state is formed within the
bandgap [63, 64|. Such a cavity makes use of the PBG effect in one direction (z) and
total internal reflection in the remaining two (y and z). Resonators with Q = 6 - 10*
[65] and @ = 7.5 - 10° [66], respectively, have been experimentally demonstrated in high
refractive index contrast systems based on SOI and air bridged silicon. In the following
the properties of such resonator cavities in low index systems, which use a NLO-polymer

as core material are investigated.

The basic geometry of this resonator type is sketched in the left panel of figure 3.1.
The right hand panel of the same figure displays the band diagram of a perfectly periodic
arrangement of air holes in a low index ridge waveguide (n = 1.54) suspended on an ultra
low index substrate (n = 1.19). The geometry of the ridge was chosen for single mode
operation at 1.3 pum operation wavelength, with a thickness of d = 1.35 ym and width
of w = 0.8 pum. The air holes have a radius of » = 136 nm while the lattice constant
is @ = 520 nm. This results in a relative photonic band gap of approx. 9%, centered
at 1.3 pm. The dashed line in the band diagram indicates a mode with odd symmetry,
which hence is orthogonal to the two modes with even symmetry (solid lines) defining the
band edges of the PhC.

M. Schmidt found that linearly tapering the radii of the three air holes closest to
the cavity from r; = 80 nm to » = 136 nm, substantially decreases vertical scattering
losses. From FIT simulations, Q values exceeding 10* for this cavity type were obtained.
Thus they are potential candidates for electro-optic modulators, if realized in a suitable

electro-optic polymer [30].
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Figure 3.2: Scanning electron micrographs (SEM) displaying a PhC ridge waveguide
cavity. The core is made from P(MMA /DR1), which is supported by mesoporous silica
as substrate material. The magnified image on the right emphasizes surface roughness
on the etched sidewall of the waveguide. The sponge-like topography of the mesoporous

silica is evident in both pictures.

For experimental validation of the simulation results presented in referecnce [30|, res-
onator structures according to the geometric features described above were fabricated.
The ridge waveguides used were made from a polymer guiding layer of poly(methyl
methacrylate) covalently functionalized with Disperse-Red 1 P(MMA /DR1) [67] (thick-
ness 1.35 um, n = 1.54 at 1300 nm excitation wavelength). The polymer was deposited
by standard spin coating technique on a low index substrate mesoporous silica material
(thickness 1 pm, n = 1.19 at 1300 nm excitation wavelength). To facilitate handling and
ensure mechanical stability silicon wafers (thickness 0.54 mm) were used as substrate.
The patterning of the ridge waveguide and photonic crystal structure were carried out at
the Institute for Photonic Technology Jena. On top of the NLO-polymer a 50 nm NiCr-
film is deposited and subsequently a 300 nm layer of PMMA electron beam resist. The
pattern is written into the top layer using standard electron beam lithography (EBL).
After development of the resist the structure is transferred into the NiCr hard mask by
Argon ion beam etching. The patterned NiCr layer then served as an etch mask for an
electron cyclotron resonance high-density plasma etching process to define the structure
in the NLO-polymer layer. A detailed description of the fabrication process can be found
in references [68] and [69]. The holes were etched into the core material (etching depth
1.5 pm), with a slight penetration of the substrate layer.

Scanning electron micrograph (SEM) pictures of the structures are presented in fig-
ure 3.2. The sponge-like topography of the mesoporous silica substrate is well visible in

these pictures. The high air content within the pores is responsible for the extremely low
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Figure 3.3: Left: Simulated (solid line) and experimental (dots) transmission spectra of a
polymer PhC ridge waveguide cavity. The three innermost hole radii are linearly tapered
from r; = 80 nm to r = 136 nm. The PBG mirrors of the resonator were 17 lattice
constants in length. The simulated data was red shifted by 22 nm. Right: Simulated and

experimental () values of a polymer PhC ridge waveguide.

refractive index of this material.

The optical properties of these structures were characterized using the prism coupling
technique. Tunable laser sources in the wavelength range of 1260 to 1495 nm served as
light source. The proper plane of polarization for the TE polarized mode was selected by
a Glan polarizer, before coupling to the waveguide. The out coupled light was detected

by a standard Ge-diode. The spectrum was scanned in 0.5 nm steps.

The transmission characteristic match the results from FIT simulations (figure 3.3).
The relative spectral position of the dielectric band edge and the resonance are in good
agreement. The air band edge lies outside the scanning range of the laser sources and
hence is not visible in the transmission spectrum. However, the difference in spectral

width of the resonance between simulation and experiment is significant.

The experimental quality factors of the fabricated samples with various PBG mirror
lengths are compared to those obtained from FIT simulations in figure 3.3. The quality
factors found in experiments deviate significantly from the predicted simulation results.
Even though the ) rises rise with each length increment of PBG mirrors in the ex-
periment, the increase is much less than expected from the numeric simulations. The
difference in the sample with 21 layers of PhC mirrors is more than one order of mag-
nitude (Qsim ~ 2300 against Qeyx, ~ 130). The significantly lower () values result from
additional losses present in the system, which are not modeled by the numeric simulation.

Most noteworthy are vertical scattering losses due to fabrication imperfections. Using the
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relation Qe_xlp = Qs_ii] + QI:);S, these scattering losses are found to be (o = 140+ 15 for all
measured samples. In figure 3.2, side wall roughness as well as imperfect hole placement
and hole shape are visible, which are limiting the value of Ql:);s, resulting in the low total Q
factor. Such low quality figures are insufficient for the application in effective broadband
modulation schemes. Further substantial improvement in the fabrication technology is
necessary before this type of structure in low refractive index material will be interesting
for the application envisioned here.

The electron beam lithography used to define the geometry pattern here is essentially
the same process, which is used to pattern structures in high index materials, where
placement accuracies below 2 nm were achieved [70, 71]. However, the etching process
and behavior of organic materials is different from semiconductors and not yet as well
understood [68]. Consequently, the structure quality in terms of side wall roughness and
vertical uniformity could be improved with an optimized etching process. In high refrac-
tive index structures, experimental Q factors above 10° were reported [65, 66| indicating
that the lossy Q factor in structures with optimized fabrication processes is at least on this
order of magnitude. Thus, resonators in periodically patterned low index ridge waveg-
uides could achieve the quality factors predicted from simulations ( Qg > 10* in [30]) if

fabricated in an optimized process with significantly reduced geometrical imperfections.

3.2 Omnidirectional photonic bandgap

In this section, the existence of a complete PBG in a polymer structure is theoretically
shown and experimentally proven. Kee et al. showed that polymer slabs immersed in air
with a triangular array of holes can, in theory, exhibit a complete PBG for TE polarization
[72|. Since in such air-bridge structures, a major part of the waveguide does not rest
on a solid substrate, they are intrinsically mechanically unstable and it is particularly
difficult when a dielectric access channel is to be attached to the PBG defect waveguide.
In the approach presented here, the polymer core is not suspended in air, an "air-like"
substrate material with a refractive index close to unity is used (ng,, = 1.15 at 1300 nm).
Mesoporous silica is such a material due to its air filling fraction of 70% [73|. Using
this substrate instead of air offers two advantages: An additional wet etching step after
structuring the waveguide core is not needed and the PhC slab has a good mechanical
stability residing on a solid substrate.

The GME method was used to calculate the photonic band diagram of the PhC slab
structure [57]. The structure is not vertically symmetric, however, following the argu-

mentation in [74] the modes can still be distinguished into TE- and TM-like. In order to
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Figure 3.4: Band diagram of a triangular photonic crystal of air holes in a polymer (npo1, =
1.54) slab waveguide suspended on an air-like mesoporous silica material (n = 1.15) for
TE-like (left) and TM-like (right) polarizations. An omni-directional PBG is visible for
TE-like polarized modes (left). The air light cone is represented by the shaded region.
The substrate light line is marked by the dashed line.

identify the TE- and TM-like polarized modes, the field profiles of the 3D calculation to
the results of 2D calculations of the corresponding polarizations were compared. The re-
sulting band diagram is shown in figure 3.4. This figure reveals the existence of a complete
in-plane band gap for TE-like polarized modes between 0.51 and 0.53 ¢/a. However, it
becomes apparent that considerable parts of this band gap are above the light line of the
substrate (dashed line), which implies that modes with frequencies above the air band
edge of the band gap can couple to radiation modes propagating inside the substrate.
Usually, it is desired to have the PBG as far below the light line as possible below the
light line, since otherwise the life time and, hence, the propagation distance of poten-
tial defect modes can be significantly reduced by this coupling mechanism. As shown
previously, this problem can be avoided by etching away the PhC underlying substrate
material, thereby removing the substrate material and creating an air-bridge structure
[75]. Under etched waveguide structures are undesired for the reasons mentioned above.
Below it will be shown that losses incurred from vertical radiation into the continuum of

substrate modes, however, are negligible in this experiment.

From the guided mode expansion method the intrinsic radiation losses of a mode above
the light line are found and described by the imaginary part $(w) of the eigenmode
frequency [57]. The mode is thus attenuated by exp(—S(w)7) per unit time 7. The
propagation distance is obtained from multiplication of 7 with the group velocity v, and
hence the power loss coefficient of the mode is given by s = 23(w) /v, [76]. Calculations

yielded that for this particular geometry these losses are below 1 dB/mm. Over a distance
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Figure 3.5: Band diagram and radiation losses of a triangular lattice photonic crystal of
air holes in a polymer (n = 1.54) slab waveguide suspended on an air-like mesoporous
silica material (n = 1.15) for TE-like modes in I'M and I'K directions. The losses of
modes above the light line (gray line) due to coupling to radiation modes were calculated

using the guided mode expansion method.

of a few tens (in this case 40) of lattice constants, the radiation losses are far below 1 dB
and thus negligible as can be seen in figure 3.5. Therefore, the additional fabrication step

of etching away the substrate material underlying the PhC was omitted.

In the next step PhC slabs were fabricated in order to experimentally confirm the exis-
tence of a complete in-plane PBG. Fabrication was carried out as described in section 3.1.
Figure 3.6 shows a SEM picture of the investigated structures. The slab waveguides was
made from low index substrate mesoporous silica (thickness 1 ym) and a polymer guiding
layer of P(MMA/DR1) (thickness 1.5 pum). The triangular lattice was chosen to have a
lattice constant of @ = 650 nm and a hole radius of 280 nm. The bulk PhCs extended
40 lattice constants parallel to the direction of propagation and 8000 lattice constants
perpendicular to it. In order to allow measurements where the light propagates in the
I'M and I'K direction, two sets of structures were fabricated, one for each propagation

direction.

To measure the transmission spectra of the structures, a measurement setup suitable
to control the plane of polarization was chosen. It consisted of a white light source (100 W
halogen lamp), monochromator (1/4 m, excitation wavelength range 600—2400 nm), Glan
polarizer and a Fresnel rhombus to select the desired polarization. The light was coupled in

and out of the waveguide by means of prism couplers. The out coupled light was detected
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Figure 3.6: SEM displaying the cleaved edge (left) and the top view (right) of a 2D
polymer triangular photonic crystal made from a P(MMA /DR1) core, with mesoporous
silica as the substrate material (¢ = 650 nm, » = 280 nm). Holes were etched into the

core material, with a slight penetration of the substrate material.

by a standard Ge-diode and registered using the lock-in technique. All transmission
spectra were measured with a resolution of 2 nm in a range from 1000 — 1600 nm. The
spectra of the patterned waveguide were divided by the spectra of an unpatterned slab
waveguide in order to obtain the transmission characteristic of the PhC without the
influences of the waveguide material. The results of these measurements are depicted in
figure 3.7, where the transmission spectra of the bulk PhC for each crystal orientation
(I'M and I'K) are shown. In the I'M, direction both the dielectric and air band edge
(1400 and 1150 nm respectively) are easy to identify. The dielectric band edge in the 'K
direction is also apparent, whereas the air band edge is outside of the measurement range.
All theses values match the results obtained from the guided mode expansion method
calculations. Between 1170 and 1235 nm, a region with a signal suppression of 15 dB
is clearly visible, which corresponds to the bandwidth of the omnidirectional PBG. The
transient solver of CST Microwave Studio was used to calculate the expected transmission
spectra. The result is plotted in Figure 3.7 and is in accordance with the experimental
results.

In summary, bulk PhCs were fabricated with a triangular lattice in polymer slab wave-
guides on low-index air-like substrates. E-beam lithography was used and a subsequent
refractive ion etching step. Band diagram calculations predicted an omnidirectional PBG
for TE-like polarized modes. This prediction was confirmed by transmission measure-
ment in the I'M and I'K direction of the crystal. Furthermore the experimental results

are in accordance with the results obtained from FIT calculations. For future applica-
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Figure 3.7: Simulated (lines) and experimental (dots) transmission spectra of a bulk 40
lattice constant triangular photonic crystal in a polymer slab waveguide. The simulated
and experimental results are in excellent agreement. A band gap between 1170 and 1235

nm is clearly visible.

tions, especially resonant structures and PhC waveguides realized in polymer materials,
an etching method needs to be developed, which allows the selective under etching of the
PBG structure without the destabilization of the access waveguides. This is necessary in
order to lift the light line completely above the PBG and avoid losses from defect modes

due to coupling to radiation modes.

3.3 Microcavities in 2D low index photonic crystals

Defects can be introduced into the PhC lattice to break its translational symmetry, and
hence create defect states, whose frequencies lie within the photonic band gap [54|. In
a 2D PhC slab, light confinement of the microcavity is governed by distributed Bragg
reflection in the slab plane and total internal reflection (TIR) perpendicular to the plane of
the slab. Such resonant structures with potentially high quality (Q) factors are interesting
in telecommunication applications as narrow band filters. If the resonator material is an
electro-optic polymer, the optical volume and hence the resonant frequency can be shifted
by modifying the polymer’s refractive index. Consequently, the wavelength filter becomes
tunable and can also serve as an electro-optic modulator.

Numerous geometries have been proposed to achieve extremely high Q (> 10°) cavities
with modal volumes on the order of one cubic wavelength in high index (n & 3.5) semicon-

ductors [77|. Quality factor to mode volume ratios of this magnitude lead to very strong
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light-matter interaction and are required to realize low threshold lasers [78]|, single-photon
emitters |79| or compact optical buffer memories [80|. High index systems are preferred
for these types of applications as they intrinsically offer better light confinement prop-
erties. However, here the PhC microcavities are to be integrated into a material system
with low refractive index contrast, which naturally makes their design more challenging.
At the same time, the requirements on Q) factor and mode volume are slightly loosened, if
the PhC cavity is to be used as a filter in a wavelength division multiplex communication
scheme or as a broadband EO-modulator, as intended in this work. In the envisioned
applications, mode volume is of secondary importance since a strongly enhanced light
matter interaction is not necessary. For filter applications Q values of 12 - 10% are suffi-
cient (see also section 2.3) and EO-modulators with ) > 10* prohibit modulation speeds
in the GHz frequency range due to the photon lifetime in the cavity [30].

In this section, three different PhC microcavity designs are presented and their geome-
try optimized in terms of ) factor. Finally, an analysis will be carried out to determine the

intrinsic limitations of PhC microcavities in low refractive index contrast environments.

3.3.1 H1 and L3 cavities

Among the most thoroughly studied microcavity types are the so called H1 and L3 cavities.
An H1 cavity is formed by omitting a single hole in an hexagonal lattice, whereas the
L3 cavity is formed by omitting three holes in the 'K direction (see figure 3.8). In
silicon based systems, Q factors of several 10° have been obtained with such cavities by
appropriate engineering of the lattice geometry (hole position and radius) in immediate
vicinity of the cavity [81, 82, 83, 84, 85].

In general, the quality factor of a cavity is determined by its losses, i.e. the photon
lifetime inside the cavity. If the cavity material itself is assumed lossless, the only two
remaining loss mechanisms are radiation losses perpendicular to the slab plane (@) and
in-plane losses due to energy leakage through a finite number of PhC layers (Q)). The

total Q can be expressed as:
1 1 1

Q Q.o

If the number of surrounding PhC layers is made sufficiently large ()| — oo and the total

(3.1)

Q is determined by the radiation losses only, this value is also referred to as the intrinsic or
unloaded @ factor of a cavity. Only the intrinsic quality factors (@) of defect structures
in low index PhC slabs are presented and discussed in this section and hence the subscript
L is dropped here.

The radiation losses of PhC slab microcavities arise from k-vector components of the
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Figure 3.8: Schematic layout of the H1 (left) and L3 (right) cavities. The dashed circles

indicate which holes have been shifted relative to their original position.

cavity mode, which violate the total internal reflection condition. This leaky region is

determined by the in-plane k-vectors (kj), which satisfy the condition:
W
K| < Freac = ?0 (3.2)

where wy is the angular frequency of the resonant mode and c is the speed of light in
the cladding material. The field distribution in k-space is connected to the optical field
distribution in real space through the spatial Fourier transform. This property is exploited
in the referenced works above to optimize the Q factor. By modifying the dielectric
function in space, the distribution of the optical field is also altered. Hence, by proper
choice of the geometry parameters, the k-vector components in the leaky region can be
minimized. The details of this theory will be discussed thoroughly in section 3.3.3.

In the following, the effect of lattice geometry modifications on the quality factor of H1
and L3 cavities in low index contrast PhC are studied. Adawi et al. [86] performed such
a study by shifting the innermost hole (a; in figure 3.8) of a L3 cavity. They found that
the influence on the QQ in a low index contrast PhC is more than an order of magnitude
lower than a comparable variation in a semiconductor system with high index contrast.
However, Akahane et al. showed in [84] that in high index contrast PhC slabs, the
structural tuning of the second and third row of holes has a strong impact (factor 3) on
the quality factor of a PhC cavity. Thus, the influences of the positions and geometries
of the second and third nearest neighboring holes are investigated and discussed in the
following.

Obviously, if one was to modify every individual hole in terms of displacement and
radius, the degrees of freedom approach infinity. Here, parameter space scans were per-
formed to study the effect of displacement of the first three hexagons of air hole layers
of the H1 cavity and the displacement of the nearest three holes in ['K direction of the
L3 cavity (a1, ay and a3 in figure 3.8). Following the approach in [84|, the parameter
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Figure 3.9: Cavity Q factors obtained numerically for H1 and L3 cavities in low index

PhC

sweeps were carried out incrementally for each parameter. Therefore, not the full param-
eter space was scanned, but the optimal position of the first parameter was determined
before optimizing the second parameter, while keeping the first at its optimal value and
so on. This incremental procedure does not necessarily yield the highest possible Q factor
of the PhC cavity. However, this method was chosen to keep the computational effort
within limits. A full scan of all possible parameter permutations would have required an
unfeasible amount of computing time. A rigorous analytical method to optimize the Q
factor of a PhC cavity in low index slabs will be presented in section 3.3.3

The simulations were carried out using the transient solver of CST Microwave Studio.
The bulk lattice parameters were lattice constant a = 650 nm, air hole radius r = 0.34a,
slab thickness h = a and slab refractive index n = 1.6. The structure is assumed to
be air-bridged, hence the cladding and substrate index is unity. The quality factor was
calculated using the full-width-half-maximum (FWHM) criterion taken from the frequency
spectrum recorded by a field probe located inside the cavity. The cavity was surrounded
by 20 layers of air holes, which was found to be sufficient to eliminate the contribution
of in-plane losses to the total Q. A larger simulation volume did not increase the quality
factor and hence the Q is determined by radiation losses only.

The results in figure 3.9, evidence that indeed the modification of the lattice geometry

surrounding the cavity improves the intrinsic ) factor from initially ~ 300 to almost 800
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in both cases. However, this value is still one order of magnitude below the required value

for efficient EO-modulators.

3.3.2 Double heterostructure cavity

The highest reported simulated (Q ~ 10° [87]) and experimentally (Q > 10° [14]) achieved
Q factors in PhC microcavities are based on photonic double heterostructures [77|. In
these geometries, the microcavity is formed by joining PhC defect waveguides with slightly
different longitudinal lattice constants. The change in lattice constants shifts the fre-
quency of the defect mode. As a result, a mode gap is opened between the sections of the
PhC waveguides and photons with a specific frequency can exist only in the cavity region
(see figure 3.10). When the waveguide with the cavity lattice constant is short enough,
the frequencies that photons can take in this region become quantized and a photonic
microcavity is formed.

In the waveguide direction, the confinement is achieved by the mode gap effect and is
not caused by the band gap effect due to the periodic variation of the dielectric function.
This leads to an exponential decay of the envelope function of the optical field outside
the cavity in ['K direction. Proper choice of lattice constants along the waveguide allow
the approximation of an Gaussian envelope function for the field profile of the resonant
mode and hence an extremely reduced amount of k-vector components inside the leaky
region, explaining the enormous reported Q values.

Using the same geometry parameters for the PhC lattice and simulation techniques
as described in the previous section, QQ factors of a double heterostructure cavity in low
refractive index contrast PhC were investigated. The lattice constant in the cavity region
was chosen to be ac,, = 660 nm and ac,y = 655 nm, respectively. The Q values computed
to be Q(acay = 660 nm) ~ 1500 and with Q(acy = 655 nm) ~ 2500. Compared to the
results from the H1 and 1.3 cavities, this is a more than two fold increase. However, in
high index contrast systems, the introduction of double heterostructure cavities has led
to a more than one order of magnitude increase in quality factor. In the next section, the
origin of these dramatic differences in photon confinement in low and high index systems

are analyzed.

3.3.3 Limits of low index contrast microcavities

It is intuitively clear that integrated optical systems with high index contrast offer bet-
ter light confinement capabilities than low index systems. Therefore, the results of the

previous section might not be unexpected. However, the observations do not answer the
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Figure 3.10: Schematic layout of a PhC waveguide (upper left) and its typical band
structure (lower left). The double heterostructure is formed by changing the longitudinal
lattice constant in the desired cavity region (upper right). Band structure along the I'K
direction of the waveguide (lower right). Photons with specific frequency can only exist

in the cavity waveguide [14].

question whether there is a general upper limit to the achievable Q factor of a PhC cavity
in a low index contrast system.

In an ideal isolated PhC cavity, as in the cases described above, the only loss mechanism
is vertical scattering determined by those in-plane k-vector components, which violate the
total internal reflection condition given in equation 3.2. Srinivasan and Painter therefore
suggested the simple rule to minimize the optical field components in k-space to achieve
high Q values in 2D PhC slab cavities [88, 89|. Furthermore, Englund et al. derived
an expression that relates the total radiated power from the cavity to the 2D Fourier
transforms (denoted by F3) of the electric and magnetic field distributions in a surface

just above the slab |90]. They express the radiated power with:

n dk,dk, 1 9 9
P~— k, |—|FAE, FolH, , 3.3
o B LA AT 53)
where EH = (ky, ky) and lgz are the in-plane and out-of-plane k-components respectively.

Furthermore, 7 = \/o/€o, A is the mode wavelength in air and E, and H, are the vector
components of the electric and magnetic field perpendicular to the plane of the slab. In
the case of TE-modes, only the optical field (E,, E,, H,) are unequal to zero at the slab

center, hence for such modes the term |Fo{H,}|*> will be dominant just above the slab
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Figure 3.11: H, field profile of the resonant mode in a double heterostructure PhC cavity
in polymer (left). Fourier space representation of the H, field component just above the
slab (right). Both representations are in false color with logarithmic scaling. The leaky

region is indicated by the white circle.

surface, and |Fo{E.}|? can be neglected in the analysis of the radiation loss above). Since

Q is defined as the ratio of energy stored in the cavity U and energy lost per optical cycle

P:

U
Q= WOF’ (3.4)
it becomes clear that the quality of a cavity can be optimized by proper engineering of
the k-space distribution of H.,.

Theoretically, it is possible to start from a desired field distribution in k-space, deduce
the field distribution in real space by Fourier transform and then find a function of the
dielectric constant in space €(r), which satisfies these conditions. In practice, however,
the rigorous approach of momentum space design is not practicable as it may lead to
impractical values in the dielectric function (e.g. negative) or with today’s technology
unachievable distributions of € in space.

Here, the theory of momentum space design is used to investigate the feasibility of
high-Q cavities in low index polymers. To understand the difficulty of high-Q in low
index compared to high index materials, it is helpful to consider the case of a double
heterostructure cavity (section 3.3.2). Following the argumentation in [90, 91], the reso-
nance frequency wy of the cavity mode is given by the cut-off frequency of the PhC defect
waveguide mode and the maxima kg of the mode distribution in k-space is given by the
edge points of the first Brillouin zone of the hexagonal lattice. Hence ko, = £% in 'K

and ko, = :I:% in I'M direction.
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Figure 3.12: Band diagrams of W1.0 PhC defect waveguides in high index and low index
materials. The defect mode is represented by the thick black line. The bulk PhC modes
are indicated by the lightly shaded regions and the continuum of modes above the light
line is marked by the dark shaded region.

Figure 3.11 displays a typical field distribution in real and wave vector space of the
vertical component of the magnetic field of a PhC double heterostructure resonant mode
just above the slab. The k-space field profile unveils that the majority of the field compo-
nents within the leaky region are oriented along the k, axis. It is therefore reasonable to
reduce the complexity of the problem to one dimension and focus on the mode shape in
x direction only to understand the difficulty of achieving high Q values in low refractive
index PhC cavities. To tackle the problem analytically the envelope shape in x direction
will be approximated by a Gaussian function with a width of o. The approximation with
a Gaussian envelope function is justified under the condition to find an upper estimate of
Q. H. is then given by:

H.(z) = \1/%0 exp {—% (2)1 cos(hosz) (3.5)

in real space and the Fourier transform F {H.} gives the k-space distribution:

FiH) =/ (oo —%(U@—km)f + oxp —%(a(kJrkox))Z (36
VT

The prefactor is needed to keep the mode energy, which is proportional to ffooo |H.|*dx

constant.
Figure 3.12 shows the band diagrams of a PhC defect waveguide formed by omitting
one row of holes in the 'K direction in a low index (n = 1.6) and a high index (n = 3.5)

core material, respectively. From the location of the cut-off frequency of the defect mode,
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Figure 3.13: Profile of a resonant mode with Gaussian envelope function in momentum

space

it is obvious that the resonant frequency of a cavity in the low index material (wy ~ 0.48)
will be substantially higher than in the high index material (wg &~ 0.26), resulting in a
substantially increased leaky region of wave vector components in the low index case.
Figure 3.13 gives an impression of the massive increase of the integral over k within the
leaky region if extension of the mode in x direction is assumed to be equal for the low
and high index cases.

To compensate for the increased leaky region, the width of the mode profile in momen-
tum space needs to be reduced. Figure 3.13 shows how an increase in ¢ leads to narrower
profile in k-space, while increasing its maximum value due to conversation of energy. By
evaluating the integral over the wave vector components in the leaky region, one finds that
the result decreases monotonously with increasing mode width o. Thus, theoretically, the
Q value of a low index PhC cavity could indeed be driven to arbitrarily large Q factors by
increasing the mode volume and maintaining a Gaussian envelope profile. Tanaka et al.
[87] derived a design rule of multistep PhC heterostructures in high index waveguide cores
to achieve a Gaussian envelope profile of the resonator mode with an arbitrary width in
the 'K direction. It should be noted that this method can be arbitrarily demanding on
the fabrication quality and the achievable quality facotor is hence principally limited by
the placement accuracy of the PhC holes. Here, this concept is adopted to low index PhC

cores and the associated limits on the Q factor will be discussed.

Multistep heterostructures

The general geometry of a multistep heterostructure is displayed in figure 3.14. Through

modification of the properties (i.e. lattice constant, radius, waveguide width, etc.) of
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Figure 3.14: Schematic geometry (top) and band structure (bottom) of a multistep PhC

heterostructure cavity.

each PhC section PhC,, the cut-off frequency is modulated along the direction of the
waveguide. It will be shown in the following that by appropriate selection of the spatial
cut-off frequency distribution, the desired Gaussian field envelope of the cavity mode can
be achieved.

In a standard heterostructure cavity as displayed in figure 3.10, the evanescent behavior
of the field in the reflector region is determined by the imaginary part of the complex wave

vector, which is denoted with (k) = ¢. The field decays exponentially with:
H x exp(—qx), (3.7)

where ¢ is the imaginary part of the wave vector within the modegap at the resonance

frequency wy. However, for a Gaussian envelope the magnetic field should adhere to:

1 2
H o exp <_§x_2> : (3.8)
o

From equations 3.7 and 3.8 it becomes clear that ¢ needs to be a linear function in the

spatial coordinate x and hence:
x

1= 5.3 (3.9)

The complex dispersion relation of the PhC waveguide can be found with the analytic
continuation method [92]. With this method, the real dispersion relation of the PhC mode
is expanded into its complex form. Assuming the real part of the dispersion relation is

known (either from the plane wave or guide wave expansion method), the function f(k)
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Figure 3.15: Complex dispersion relation of a W0.7 polymer PhC waveguide. The symbols
indicate the results from the band diagram calculation using the plane wave expansion

method. The gray lines plot the result of a second order polynomial fit.

can be fitted by a Taylor expansion of the term (k — 0.5) at the Brillouin zone boundary
(k = 0.5). Due to the even symmetry of the dispersion relation around this point, only

even order terms need to be considered in the expansion:
w=w"+ 0 (k=05)*+Cy- (k—05)"+Cs-(k—0.5)5+ ... (3.10)
Substituting k£ = 0.5 — 1q yields the dispersion in the mode gap region:
w=w"—C -+ Cy-qg*—C5-¢°+ ... (3.11)

The knowledge of the complex dispersion relation of the waveguide mode allows for
an analytic design of the multistep heterostructure cavity. Inserting the cavity resonance

v and equation 3.9 into the previous expression and rearrangement yield

frequency w
the required spatial dependency of the cut-off frequency in the reflecting section of the
heterostructure:

WO () = W 4 O (i>2 e (i)4 40y (i)ﬁ . (3.12)

207 202 202
Thus equation 3.12 gives the required distribution of the cut-off frequency along the PhC
waveguide shown in figure 3.14.

A polymer PhC waveguide with a defect width W = 0.7v/3a yields a dispersion relation
of the defect mode that is well approximated by a second order Taylor expansion (see
figure 3.15). This waveguide type is chosen to simplify the derivation of the necessary
geometry variations. The operating frequency of a PhC is inversely proportional to its

lattice constant. The cut-off frequency can therefore be tuned locally by adjusting the
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Figure 3.16: The quality factor of a multistep heterostructure increases drastically with an
increase in transition steps (left). Optical field | H,| distribution in a multistep heterostruc-

ture, the dashed lines indicate a fitted Gaussian envelope function to the simulation results
(right).

lattice constant in the respective PhC section according to:
w"(z)a(z) = wi™ag. (3.13)
Together with equation 3.12, this gives a rule for the required spatial dependence of the

lattice constant:
Qo

= . 3.14
1) = T (Aot (3.14)

As long as Ch2?/(40*wi") < 1 is satisfied, this can be simplified to:
a(z) = ap (1 — Cy2*/(40*wi™)) . (3.15)

As indicated in figure 3.14, the lattice parameters are changed stepwise rather than con-

tinuously and thus the distances x,, are approximated using:
Ty = (2m + 0.5)ao. (3.16)
Yielding for the lattice constant in each section:
am = ag (1 — C1(2m + 0.5)%ag/(40'w§™)) . (3.17)

This design rule is applied to fine tune a PhC heterostrucutre with cavity lattice con-
stant ap = 660 nm and bulk lattice constant a = 650 nm using between 2 and 5 transition
steps. The results are displayed in the left panel of figure 3.16. Using more transition steps

and thus achieving a smoother approximation of a(x) given in equation 3.15 drastically
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increases the quality factor of the cavity. The right panel of the same figure demonstrates
how well the optical field envelope follows a Gaussian envelope function. However, the
incremental difference in lattice constant especially of the first transition is below one
nanometer. Today’s nanofabrication technology allows for a placement accuracy of 2 nm
or 1 nm at best and hence the actual fabrication of such structures is not feasible.

To determine an upper estimate of the realistically achievable quality factor, simula-
tions were carried out under the boundary condition that the minimum step size between
two PhC sections must not be smaller than either 1 nm or 2 nm. Due to the required
parabolic dependence of a,,, the cavity lattice constant ay exceeds the value of 660 nm
already at either 3 (Aa = 2 nm) or 4 (Aa = 1 nm) transition steps. This leads to a
resonance frequency, which is below the band gap of the bulk PhC and allows the optical
field to couple to PhC slab modes, giving rise to unwanted in-plane losses. Hence, the
maximum number of transition steps is very limited, resulting in a maximum Q of roughly
1.3-10%* in both cases. Following the argumentation of section 2.3 this value would result
in an insertion loss of at least 20 dB, if the cavity is loaded to a waveguide. Clearly, this

performance is not acceptable for any serious application in optical data transmission.

3.3.4 Cayvity definition by photobleaching

The refractive index of polymers with electro-optic chromophores can be permanently
altered by photobleaching. In this process the, m-bridges in the chromophores are broken
by irradiation of high energy photons (typically in the UV) and the refractive index can
be decreased by up to An = 6-1072 [44, 93, 94]. The magnitude of the index change is
determined by the exposure dose and can therefore be controlled by the intensity and the
exposure time.

In general, the frequencies of PhC modes do not scale linearly with the refractive index
of the wave guide core. However, for the variations achievable with photobleaching, which
are on the order of 1072, the position of the cut-off frequency can be approximated by a

linear function in refractive index. Thus, the cut-off is described as:
W (n) = w™(ne) + Cp(n — ng), (3.18)

where (), is a constant that depends on the particular PhC geometry. Using the same
argumentation as above, a condition for the spatial distribution of refractive index in z

direction is found to be:

n(z) =nyg — C), (%)2 . (3.19)
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Figure 3.17: The quality factor a multistep heterostructure increases drastically with an
increase in transition steps (left). Optical field in a multistep heterostructure. The dashed

lines indicate a fitted Gaussian envelope function to the simulation results (right).

This theory was tested using FIT simulations completely analogous to the case dis-
cussed above. The simulation results are summarized in figure 3.17. Most noteworthy is
the almost one order of magnitude increase of the quality factor to Q ~ 9 -10* compared
to the geometry variation optimization presented above. Similarly to the previous results,
the quality factor increases with a rising number of transition steps. The simulation re-
sults with more than 4 transition steps are not presented here because the cavity started
to support a second order mode due to the increased cavity volume. The low quality
factor values at larger index variations is a result of coupling to PhC slab modes equally
to the case of a too large Aa explained previously. However, it becomes clear that defining
multistep PhC heterostructures using photobleaching can be a very interesting alterna-
tive to overcome fabrication limitations in the positioning accuracy of today’s lithography
methods. The insertion loss of the loaded resonator would amount to 1.3 dB, which might

still be acceptable for application in some optical transmission systems.

3.4 Conclusion

In summary, possibilities of full three-dimensional light confinement in PhC nano cavities
using low dielectric contrast materials were evaluated. Cavities in periodically structured
ridge waveguides were fabricated using a polymer material as the waveguide core. The
performance of these resonating cavities observed in experiments (Qex, ~ 10%) was more
than order of magnitude poorer than predicted from simulations. This deficiency was

attributed to fabrication imperfections. Assuming that the same fabrication quality of to-
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day’s semiconductor technology can be achieved in polymer based PhC ridge waveguides,
cavities with loaded @ above 10* are feasible.

An omnidirectional PBG with gap to mid-gap ratio of ~ 5% for TE polarized light
in a polymer slab waveguide was experimentally demonstrated. Based on these results,
the achievable performance of H1, L3 and double heterostructure type PhC nanocavities
in low refractive index material was numerically studied by systematic geometry varia-
tions. The H1 and L3 type cavities, which employ light confinement by Bragg scattering
in both in-plane directions, the intrinsic quality factor did not exceed 103. The double
heterostructure, where light confinement is based on the mode gap effect in one in-plane
direction and Bragg scattering in the other, a (), = 2500 was possible. PhC nano cavities
in low refractive index contrast cavities suffer from the intrinsic disadvantage of a reso-
nance much closer to the air light line compared to the same structures in high dielectric
materials. Theoretically, it is possible to achieve arbitrarily high intrinsic Q factors also
in low refractive index PhC cavities by increasing the mode volume, while maintaining
a Gaussian envelope function of the resonant mode’s optical field. However, this would
require an arbitrarily fine (sub nanometer) positioning accuracy of the fabrication tech-
nology. With the placement accuracy of today’s microstructuring technology, theoretic Q
values of up to ~ 10* are possible. However, according to the argumentation in section
2.3, the intrinsic Q factor should be on the order of 10° for an EO-modulator device.
To circumvent these strong requirements on placement accuracy, photobleaching of the
NLO-polymer material can be used to define a multistep heterostructure type cavity. This
option theoretically allows for the fabrication of PhC nano cavities with quality factors of
almost 10°. The highest reported experimental quality factors of silicon PhC slab cavities
exceed 10° [14, 70]. Therefore, it can be assumed that the simulated Q factors of 10° in
low index PhC cavities are confirmed experimentally, if fabricated with the same quality

as the high index structures.






Chapter 4

High dielectric contrast hybrid

silicon-organic photonic crystals

This chapter analyzes the possibilities of EO-modulation in 2D PhC slab components,
whose core is silicon (neere = 3.5) and completely surrounded by NLO-polymer (np0, ~
1.6). The high refractive index of the core offers stronger light confinement, compared to
the situation described in the previous chapter, thus reducing the component’s geometric
footprint. Furthermore, it enables access to very mature silicon nano fabrication processes.
The disadvantageous lack of an intrinsic Pockels effect is mitigated by infiltrating the
silicon PhC structure with second order NLO-polymer. The modulation of the background
material’s index is translated into a modulation of the effective index of the complete
device. This effect is optimized by careful structure design and maximizing the integral

of the optical field in the EO-active regions.

4.1 Photonic bandgap in infiltrated systems

The impact of the waveguide core’s refractive index on the position of the PBG of a
2D PhC was briefly illustrated in section 3.3.3 and figure 3.12. Infiltrating the holes of
a silicon based PhC slab with a dielectric material, gives rise to a new situation. The
effects on the properties of the PhC shall be discussed in the following in detail. As in
the previous chapter, the discussion is restricted to TE polarization.

The left hand panel in figure 4.1 shows the relative gap size of a 2D PhC with a
triangular lattice of lower index holes in a high index material as a function of the hole
radius 7. The relative gap size is defined as the gap-midgap ratio Aw/w., where Aw is
the width of the PBG and w. is its center frequency. Displayed are curves for various core

indices with air holes. The case of a silicon core with polymer filled holes is marked by the
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Figure 4.1: Relative PBG size (left) and PBG center frequency (right) as a function of
hole radius. The relative gap size rises with the ratio of 7core/nnole, While the position of

the gap is decreasing with increasing effective refractive index.

solid line, since it is of particular interest here. The relative gap size is a monotonously
increasing function of the ratio of the core refractive index to the hole index [54|. This
ratio is, in the case of a hybrid silicon-organic PhC:

nsi 3.5

= — =219 4.1
Npoly 1.6 ' ( )

resulting in a relative gap size of 25%, which is about half the value of silicon with air
holes, however, more than 4 times the value of polymer with air holes.

The center frequency of the gap decreases in frequency as the average refractive index
of the medium increases as depicted in the right panel of figure 4.1. This is not surprising
as the frequency of a mode scales with 1/n in a medium with refractive index n [54|. The
solid line again represents the hybrid silicon-organic PhC. It is clear that its average index
is higher than the silicon perforated with air holes. From the discussion in the previous
chapter it is known that a reduction in the PBG center frequency is beneficial for PhC
devices as it increases the mode region below the light cone and hence keeps vertical losses
low. However, in this case the light cone is shifted to lower frequencies as well, because
the cladding material is not air but polymer. Figure 4.2 illustrates the band diagrams
of 2D PhC slabs in three different scenarios: polymer slab with air holes and cladding
(left), silicon slab with air holes and cladding (middle), and silicon slab with polymer
holes and cladding. Obviously, the polymer cladding has significantly reduced the light
cone frequency, almost offsetting the advantage of a reduced PBG frequency.

In PhC slabs, the slab thickness d affects the gap size and position as well and thus
needs to be considered in the design. Figure 4.3 shows the gap size and position for a

set of slab thicknesses and hole radii. Slabs where d/a > 0.7 are not considered as the
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Figure 4.2: Photonic bands diagrams of the TE polarization in 2D PhC slabs with trian-
gular lattice and hole radius r/a = 0.36 made of polymer core material (left, slab thickness
d/a = 1.0), silicon core material (middle, d/a = 0.5) and silicon core with polymer filling
material (right, d/a = 0.7). The band gap increases with increasing index contrast and

the center frequency decreases with increasing core index.

waveguide then sustains more than one vertical mode, leading to a closing of the PBG.
For the rest of this chapter, a radius of 0.3a is chosen. Even though this does not yield
the maximum gap size, it is considered to be a good trade off to keep the gap far enough
below the light line, while obtaining a sufficient gap size. Furthermore, it reduces the
requirements on the lithography and etching process, keeping the minimum structure size
of the remaining silicon above 100 nm. To have the PBG located at A = 1550 nm, the
lattice constant is @ = 410 nm. The SOI substrates available have a thickness of 220 nm,

consequently its ratio to the lattice constant is 0.52.

4.2 Photonic crystal waveguides and resonators

With the knowledge of the bulk properties of a PhC in a hybrid silicon-organic envi-
ronment, this section evaluates the possibilities of using a microcavity resonator as an
EO-modulator in this material composition. Chapter 3 demonstrated that the best res-
onator performance in terms of spectral line width and mode volume is obtained from
PhC heterostructures.

For proper resonator design the properties of the defect waveguide’s modes are required.
The optimal performance in a heterostructure cavity is expected from a defect mode that
is farthest from the light line. This criterion is best satisfied by the defect mode of a
W — 1.1 waveguide (see figure 4.4), however a resonator mode in a heterostructure with

Aa = 5 nm could couple to bulk PhC modes and would hence be lossy. Therefore, the
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Figure 4.3: Relative PBG size (left) and PBG center frequency (right) as a function of

hole radius and slab thickness.
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Figure 4.4: Defect modes of a line defect waveguide in hybrid silicon-organic material
(r/a — 0.3, @ — 410 nm). The patterned regions indicate the mode gap between two

waveguides where Aa = 5 nm.

W = 1.0 waveguide is considered to be the better option to form a high Q resonator.

Numerical simulations of a PhC double heterostructure design in hybrid silicon-organic
material yielded intrinsic quality factors of 7 - 10 (acay = 420 nm) and even 1.7 - 10°
(acay — 415 nm) for a two lattice constant long cavity. This is more than an order
of magnitude increase as compared to the similar design in a purely organic PhC and
would fulfill the requirements for an EO-modulator (section 2.3). Using the method of a

multistep heterostructure could improve the @ value even further.

Even though this structure offers sufficient resonant properties, it is not well suited for
efficient EO-modulators, which will be shown in the following. From simulations, where
the cladding refractive index has been incremented by An = 1073, it is found that the
resonance shifts by A\g = 0.169 nm. The refractive index of the NLO-polymer cladding
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can be varied by applying a voltage to metal electrodes, which need to be located above

and below the cladding. The required modulation field strength can be calculated from:
L 3
An = §npO|yT13Emod. (42)
Due to the anisotropy of the second order nonlinearity and the perpendicular orientation
of the optical field in TE polarization to the modulation field, the coefficient 73 is used.
As explained in section 2.1, this means the effective EO-coefficient is reduced to at least
one third of its value, compared to the case when the electric modulation field and the
optical electric field are parallel.
The electric modulation field induced in the polymer by a potential difference V,0q

between the electrodes is given by:

€siVmod

Brmod = (4.3)

€si dpoly + 6po]dei

For simplicity, the silicon is assumed to be a solid, perfect dielectric. Assuming a cladding
thickness of 1 pm above and below the slab, and a state of the art NLO-polymer with
rs3 = 150 pm/V, the modulation voltage computes to be 20 V to achieve a spectral
shift of A)\g = 0.169 nm. In other words, the FWHM switching voltage of a @ = 10*
resonator would be 20 V in this geometry, which is far above the anticipated 1 V. The

poor performance of this device is attributed to three factors:

e Relatively wide electrode spacing, which is necessary to avoid additional optical

losses,
e Limited optical field energy in the NLO-material,
e Perpendicular orientation of optical field and modulation field.

In the next section, the slotted photonic crystal waveguide is introduced, which mitigates

all three issues.

4.3 Slotted photonic crystal waveguides and resonators

The conceptual structure of the EO-modulator device, which will be discussed and ana-
lyzed in this section, is presented in figure 4.5. The device is again based on a resonant
PhC double heterostructure waveguide. To enhance the nonlinear interaction of the elec-
tric modulation field and the optical mode, a narrow slot is introduced in the middle of

the PhC defect waveguide. Almeida et al. showed that a slot on the scale of hundred
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Figure 4.5: Schematic of the proposed slotted PhC waveguide heterostructure modulator.
The resonator is defined by the cavity region and the reflector, in-plane light confined is
achieved by the mode gap effect. To facilitate coupling to the cavity, an injector section
between reflector and the slotted ridge waveguide is designed. The stripe electrodes are

placed alongside the PhC waveguide.

nanometers leads to an enhancement of the perpendicularly polarized optical field (i.e.
TE polarization) in the slot region, due to the discontinuity of the refractive index and
the merging of the evanescent tails of the mode inside the polymer region [95]. The mod-
ulation signal is applied to metal electrodes placed alongside the PhC, thus generating
an electrical field across the slot. Due to the small dimensions of the slot, the required
voltages are by more than an order of magnitude smaller at any given field strength than
in the case of the sandwich electrode configuration in the previous situation. Furthermore,
the dominating optical field component £, is oriented parallel to the modulation field,
thus making more efficient use of the anisotropy of the Pockels effect in NLO-polymers.
Baehr-Jones et al. used this field enhancement in an EO-polymer filled slotted silicon
waveguide to achieve EO-modulation with below 1 V switching voltages in a classical
Mach-Zehnder geometry, however with a rather large geometric footprint (arm lengths of

2 ¢cm) and time constants above 1 ms [96].

The resonant cavity design presented here enables large modulation depths while, at
the same time, maintaining an ultra compact geometrical footprint. Both aspects are
optimally accounted for in a heterostructure type photonic crystal cavity, as these devices
have the highest reported Q values with a minimal modal volume [91]. The heterostructure
is formed by joining PhC waveguides with slightly different lattice constants. The cavity

section has a larger lattice constant (ac.y > @) compared to the reflector section (as =



%)

a) to create a mode gap between the sections and confine light in the cavity region.
By creating a heterostructure cavity using a slotted PhC waveguide filled with a NLO-
polymer, it is possible to shift the position of the resonance peak in the frequency spectrum
via modulation of the refractive index of the NLO-polymer by means of an external electric
field. As will be shown in section 4.3.2 this can be done with a considerably reduced
voltage, than in the unslotted case of the previous section. The PhC in this design offers
the two fold functionality of being optically shielding and electrically conducting at the
same time, thus allowing the modulation field to be applied to the electro-optical polymer
inside the slotted region while keeping the optical field from reaching the contacting metal
electrodes and introducing additional losses. The injector section between the reflectors
and the slotted waveguide is used to facilitate coupling from the slot waveguide mode to

the Bloch mode of the slotted PhC waveguide. Its effect will be discussed in section 4.3.2.

4.3.1 Unloaded resonator performance

In this section, the design and performance of the unloaded PhC heterostructure resonator,
i.e. without access waveguides, is considered. Figure 4.6 shows the band structure of a
slotted PhC waveguide of silicon (ng = 3.5) embedded in polymer material (npo, = 1.6).
The geometry parameters are chosen to be: lattice constant a = 410 nm, radius » = 0.3a,
waveguide width W = 1.4\/§a, slot width Wy, = 150 nm and slab thickness dg; = 220 nm.
The parameters are based on the design proposed by Brosi et al. [97]. From the band
diagram presented in figure 4.6, two defect modes are found, both with considerable field
enhancement in the slotted region. The lower mode is not useful here, due to its vicinity to
the dielectric band edge. Hence, the following will concentrate on the defect mode at the
center of the bandgap. Narrower slot widths would create an even stronger enhancement
of the electric field; however, here the above value is chosen to facilitate fabrication of the
device.

By slightly increasing the lattice constant in propagation direction of the waveguide
the defect mode is shifted to lower frequencies, thus creating a mode gap. This mode
gap is used to form a heterostructure resonator by elongating the lattice constant in a
two lattice constant long cavity section of the slotted PhC waveguide. Optical fields with
frequencies within the mode gap will be trapped in this cavity region. Obviously, choosing
a larger step of the lattice constant will result in a larger mode gap. Next, the influence
of the difference in lattice constant of cavity and reflector on resonant behavior, namely

the Q factor, will be examined.

Three-dimensional numerical simulations using CST Microwave Studio were performed
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Figure 4.6: Defect modes of a slotted PhC waveguide (W = 1.4v/3a, Wy = 150 nm).
The insets show the |E,| field distribution of both defect modes in the PhC slab plane at
k = m/a. The field enhancement of the E), field in the slotted region is apparent in both

cases.

to calculate resonant behavior and field distributions. For all simulations, meshings with
discretization fine enough such that further detailing only marginally improved the quality
of the results were chosen (mesh size was typically Apa:/10). The simulation volume
was chosen to be 25 lattice constants lateral and 50 lattice constants along the defect
waveguide. The intrinsic Q of such a cavity was compared to the penetration depth,
which is the 1/e value of the optical field strength, in propagation direction of the electric
field into the reflector section. The lattice constant in the cavity region a.,, was increased
in 5 nm steps, the results are summarized in figure 4.7. The largest Q of 3.7 - 10° is
obtained for the smallest elongation of Aa =5 nm. However, this geometry also exhibits
the largest penetration depth, which implies the necessity of a longer reflector section,
thereby increasing the device footprint. Possibilities of further Q factor enhancement by

virtue of multistep heterostructures and polymer bleaching are discussed in section 4.3.4.

A reduction in the intrinsic Q factor of a PhC cavity implies an increase in vertical losses
due to vertical scattering. This effect is clearly observable in the field distribution in the -
z-plane (upper panel of figure 4.8). A larger step in lattice constant leads to an envelope of
the electric field function, which deviates stronger from a GGaussian shape and consequently
results in a decreased quality factor as already explained in section 3.3.3. To study this
behavior, two-dimensional spatial Fourier transforms of the electric field distribution of
the cavity mode (lower panels in figure 4.8) were performed. The white circles in the
field plots indicate the leaky region into the polymer cladding (k = nyoy27/Ng). For
wave vector components within these regions (light cones), the total internal reflection

condition is not satisfied. These k-vector components can serve as escape routes for the
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Figure 4.7: Intrinsic quality factor and penetration depth in the reflector section of the
PhC heterostructure resonator as a function of cavity lattice constant (left) and the field

distribution of the resonant mode (right).

optical energy and are responsible for vertical scattering. It can be seen that the lower Q
heterostructures show stronger k-vector components within the light cones.

These results clearly indicate a trade-off between high Q and low penetration depth,
i.e. device size, when choosing the cavity lattice constant. At the same time, a trade-off
results for the free spectral range of the device and the achievable Q. The free spectral
range is predisposed by the mode gap width, which itself is determined by the difference
in cavity lattice constant. If a larger free spectral range is desired, a longer cavity lattice
constant, should be chosen, however at the expense of a reduced Q. For the remainder of
this section and the next section, a cavity lattice constant of a.,, = 420 nm is considered.
This results in a free spectral range of approximately 25 nm.

The intrinsic QQ factors reported here are about a factor of 4 smaller compared to the
slotted heterostructures reported in [98|. This is not surprising, since the cladding material
here is polymer as opposed to air and leads to a larger leaky region. Consequently, more
wave vector components are inside the light cone, due to the reduced refractive index
contrast between cladding and core material. However, as discussed in section 2.3, this
is not necessarily disadvantage a for the envisaged electro-optical modulation device, as

long as the intrinsic Q is well above 10°.

4.3.2 Injector section

To operate the proposed device in transmission, slotted ridge waveguides are added as
shown in figure 4.5. A cavity with a.,, = 420 nm and reflector section with length

Nyt = 8a is considered. Simulations showed that simply butt coupling the slotted ridge
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Figure 4.8: The two top panels show the real space field distribution of the H, component
at y = 0 in logarithmic scale. Enhanced vertical scattering at the larger cavity lattice
constant ac,, can be observed. The two bottom panels show the k-space field distribution
of the same field vector component at z = 0 in false color representation of identical scale.

For wave vectors inside the white circle the total internal reflection condition is violated.
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Figure 4.9: 3D band diagram of the slotted PhC waveguide defect mode. By choosing a
larger lattice constant, the light at the resonance frequency (wyes) is first coupled to a fast
light mode of the injector section and then excites into the slow light mode of the cavity.
The fast light region of the transition section is above the light cone, however, this section

is just 4ain; short.

waveguide to the PhC heterostructure waveguide results in a very high insertion loss of
the device at resonance of more than -16 dB. To mitigate these insertion losses, an injector
section of just four lattice constants in length was introduced between the reflector section
and the ridge waveguide. In a first step, the lattice constant of this transition section was
chosen to be the same as the lattice constant of the cavity region (acay = ainj), allowing
optical waves at the resonance frequency to propagate in this region. This increased the
transmission to approximately -8 dB. It is reasoned that by first coupling to a Bloch mode
of the PhC waveguide, optical tunneling through the reflector region to the cavity region
is facilitated, which results in less vertical scattering. Hence, the maximum transmission

of the resonator is increased.

However, at the resonance frequency, the defect mode of the cavity and the injector are
operating in the slow light regime (figure 4.9), which causes back reflections at the interface
from fast light ridge to the slow light PhC waveguide. These back reflections originate
from the group velocity and thus group refractive index mismatch of the waveguides [99].
In a second step, to compensate for this effect, the defect mode of the injector is shifted
to operate in the fast light regime at the resonance frequency (figure 4.9). This can
be achieved by either elongating the lattice constant (ai,;) or widening the defect width
(Winj)-

The transmission was increased at the resonance frequency to roughly —3 dB from ini-

tially —8 dB, demonstrating that the theory presented in 99| for standard PhC waveguides
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Figure 4.10: Maximum transmission vs. Q factor of in-line coupled cavities without
and with an injector section of elongated lattice constants a;,; (left). Same plot but for
increased defect width Wiy (right). The reflector length is varied between 8 and 14 lattice

constants in both cases.

can also be applied to slotted PhC waveguides to enhance the light injection efficiency
and, consequently, the transmission performance. A transition section of just four lattice
constants is sufficient to achieve this improvement. It is desirable to keep this region as
short as possible, not only to minimize the geometric footprint of the device, but also to
avoid significant radiation losses from the injector due to operation above the light line
(figure 4.9).

Naturally, in a coupled system as considered here, the total (or loaded) ) factor and
maximum transmission at resonance depend on the intrinsic Q of the cavity and the
coupling strength of the system. The former was discussed in the previous section and
the latter is controlled by the length of the reflector region. When prolonging the length of
this region, the reflectivity and the total Q of the device are increased, while the maximum
transmission is decreased. Analytically, this is expressed by the following relations already

presented in section 2.3:

1 11 Qior
= - - nd Tmax =|1- ) 4.4
Qtot QH * Q1L * ( Q1 ) ( )

where horizontal (@) and vertical Q factor (()1) represent the in-plane and vertical

energy decay respectively. The vertical Q is comparable to the intrinsic or unloaded Q
of the cavity and the horizontal Q increases when elongating the reflector sectio