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1 Einleitung

Der atomare oder molekulare Aufbau eines Stoffes bestimmt seine Eigenschaften. Dies gilt
jedoch nicht nur auf solch elementarer Ebene. In der Natur finden sich eine Vielzahl soge-
nannter kompositer Materialien, deren Merkmale sich aus dem Aufbau sowie aus der Art
der Grundbausteine ergeben, wie z.B. Holz, Knochen, Schnee und Sand. In vielen inge-
nieurwissenschaftlichen Disziplinen werden diese Konzepte aus der Natur zur Herstellung
kiinstlicher Werkstoffe aufgegriffen. Ein populidres Beispiel aus dem Maschinenbauwesen
sind Verbundwerkstoffe aus Glasfaser und Kunststoff. Auf allen Gebieten erfordert der
systematische Entwurf kompositer Materialien das Verstindnis der Abhingigkeit des ma-

kroskopischen Verhaltens von der Mikrostrukur.

In der Hochfrequenztechnik sind vor allem die elektromagnetischen Eigenschaften von In-
teresse. Insbesondere periodisch aufgebaute Materialien und Strukturen geraten in jiings-
ter Zeit immer mehr in den Blickpunkt des wissenschaftlichen Interesses. Beispiele hierfiir
sind photonische Kristalle |1] und frequenzselektive Oberflachen |2|. Nicht zuletzt bestim-
men Ansitze zur Synthese von Medien, deren Eigenschaften nicht aus der Natur bekannt
sind [3|, und deren denkbare Applikationen die gegenwértige Literatur und Forschung auf
dem Gebiet der kompositen Materialien mafigeblich. Eine umfassende Ubersicht findet sich
z.B. in [4]. Je nach Geometrie und Anordnung lassen sich sehr verschiedene makroskopische
Eigenschaften einstellen. Die in dieser Arbeit verwendeten Grundbausteine sind kleine me-
tallische Helices, die vor allem auf dem Gebiet der chiralen Materialien Verwendung finden
(z.B. [5-7]).

Chirale Materialien

Die hervorstechende Eigenschaft chiraler (hdndischer) Materialien ist eine Unsymmetrie.
Die Grundbausteine (von nun an auch Einschliisse, Partikel oder Streukorper genannt) las-
sen sich, wie bei der menschlichen Hand, nicht mit ihrem Spiegelbild in Deckung bringen.
Innerhalb des Materials bewirkt dieser Umstand unterschiedliche Ausbreitungsgeschwin-
digkeiten und Dampfungen von links- und rechtszirkular polarisierten elektromagnetischen
Wellen. Eine anfangs linear polarisierte Welle weist damit nach Transmission durch ei-

ne chirale Scheibe im Allgemeinen eine elliptische Polarisation auf. Auf makroskopischer
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Ebene ist zur Beschreibung chiraler Medien ein zuséitzlicher Materialparameter, der Chi-
ralitidtsparameter, erforderlich [8]. Er verkoppelt sowohl den elektrischen Fluss mit dem
magnetischen Feld als auch den magnetischen Fluss mit dem elektrischen Feld.

Im optischen Bereich schon im frithen 19. Jahrhundert von Arago und Biot experimentell
untersucht |9, 10|, stehen chirale Materialien fiir Mikrowellen erst seit Anfang der 1990er
Jahre vermehrt im Blickpunkt des wissenschaftlichen Interesses. Einige Pionierarbeiten
auf diesem Gebiet reichen aber bis in die Anfinge des 20. Jahrhundert zuriick [11]. Ein
historischer Abriss findet sich in [8, Kap. 1]. Mit dem Chiralitdtsparameter glaubte man
zunachst, einen neuen unabhéngigen Parameter zur Realisierung funktioneller Schichten
im Mikrowellenbereich gefunden zu haben. Theoretische Studien zeigten aber bald, dass
der Chiralitdtsparameter nicht vollstindig unabhéngig gewihlt werden kann, sondern iiber
Nebenbedingungen (Passivitét, Reziprozitét etc.) mit der Permeabilitdt und Permittivitét
eines Materials verkniipft ist [12]. Gleichzeitig ist Chiralitéit ein schmalbandiges Phanomen
[13]. Die Ausnutzung der chiralen Eigenschaft fiir Anwendungen ist folglich durch diese

Nebenbedingungen eingeschriankt.

Im Mikrowellenbereich sind keine natiirlichen chiralen Materialien bekannt. Sie miissen
daher kiinstlich hergestellt werden. Kleine metallische Helices (oder dhnliche Strukturen
mit Symmetriebruch) kénnen dafiir regellos positioniert und orientiert in ein Wirtsmaterial
eingebracht werden [14,15|. Die Bedingungen, die an ein Komposit gestellt werden, um
zumindest in einiger Entfernung von einer Materialprobe als homogenes Medium zu gelten,

sind damit im Allgemeinen erfiillt:

e Jeder Einschluss selbst und auch der mittlere Abstand zwischen den Partikeln ist

klein gegeniiber der betrachteten Wellenldnge.

e Die Probe hat eine gewisse Mindestgrofe, so dass geniigend Partikel mit dem an-
regenden Feld interagieren und die exakten Positionen und Orientierungen keine

iibergeordnete Rolle spielen.

Aus der angesprochenen Realisierung ergibt sich eine zusétzlich nutzbare Eigenschaft, die
aus den Materialgleichungen nicht direkt ersichtlich ist und nachfolgend erldutert wird.
Interessant ist vor allem der Bereich der ersten Resonanz, da die Gesamtabmessungen der
Grundbausteine in der Regel klein sind gegeniiber der Wellenlénge. Der auf der Oberfla-
che der Helix hervorgerufene Strom ist dennoch fiir ein starkes Streufeld verantwortlich.
Langs zur Ausbreitungsrichtung auftretende Stromkomponenten sorgen fiir Streuung elek-
tromagnetischer Energie quer zur anregenden elektromagnetischen Welle. Dieses Verhalten

préadestiniert chirale Einschliisse z.B. fiir den Einsatz in Mikrowellenabsorbern, vorwiegend
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im unteren Frequenzbereich, in dem die meisten Absorber konzeptbedingt schlechte Damp-
fungseigenschaften aufweisen' [16-18]. Abhiingig von der Anordnung der Helices sind aber
auch andere Applikationen denkbar. Hierauf wird im spéteren Verlauf der Arbeit noch
nidher eingegangen. Im Folgenden werden zunéchst einige Punkte angesprochen, die es bei
der Modellierung zu beachten gilt.

Modellierung

Grundsétzlich gibt es fiir die elektromagnetische Analyse eines kompositen Materials kein
Patentrezept. Die Herangehensweise ist immer von der Art der Einschliisse, dem Fre-
quenzbereich, der Anordnung und nicht zuletzt auch von den erwiinschten Informationen
abhéngig. Der Entwurf periodisch aufgebauter Strukturen gestaltet sich z.B. durch die Tat-
sache, dass nur noch die Losung fiir eine Einheitszelle gefunden werden muss, als relativ
einfach. In diesem Fall kdnnen Standardmethoden fiir die Losung des komplexen dreidi-
mensionalen Feldproblems herangezogen werden (siehe z.B. [19,20]). Die Analyse zufillig
aufgebauter Strukturen wie beim chiralen Medium stellt hohere Anforderungen. Um die
statistische Verteilung korrekt zu erfassen, miissen prinzipiell alle Grundbausteine, oder
zumindest eine geniigend grofe Anzahl davon, bei der Berechnung beriicksichtigt werden.
Abgesehen davon, dass Speicherbedarf und Rechenzeit schnell mit der Zahl der beriick-
sichtigten Grundbausteine ansteigen, sind bei hochresonanten Einschliissen auch Probleme
der numerischen Stabilitit zu erwarten. Eine Moglichkeit, solche Berechnungen zu umge-
hen, besteht in der Homogenisierung, also der Betrachtung eines kompositen Materials als
homogenes Medium mit ortsunabhingigen Materialeigenschaften. Sind letztere bekannt,
konnen Reflexions- und Transmissionsparameter einer Schicht analytisch berechnet wer-

den [21,22|. Folgende Vorgehensweisen haben sich etabliert:

Mischformeln

Klassische Methoden fiir die Extraktion effektiver Eigenschaften sind aus der Theorie
der effektiven Medien (engl.: Effective Medium Theory (EMT)) bekannt [23,24]|. Konkret
handelt es sich um Mischformeln, die die Eigenschaften der Grundbausteine und des Hin-
tergrundmaterials gewichten. Die zugrundeliegende Idee bei einem verbreiteten Vertreter,
dem Clausius-Mossotti-Ansatz, zeigt Bild 1.1. Die elektromagnetischen Verhéltnisse inner-
halb des Materials werden hierbei durch eine homogene Polarisation um jeden Einschluss
wiedergegeben. Das dadurch erzeugte lokale Feld am Ort des Einschlusses ruft ein Dipolmo-
ment p hervor, welches wiederum selbst zur Polarisation beitrégt. Die Kopplung der Parti-

kel untereinander ist damit auf Basis von Dipol-Interaktionen beschrieben. Zur Simulation

'Im Frequenzbereich von etwa 10 bis 1000 MHz sind beispielsweise auch Ferritabsorber-Kacheln nutzbar.
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Bild 1.1: Das Clausius-Mossotti
Model.

—
ko]

Homogene Polarisation

des Materials geniigt in diesem Modell folglich die Kenntnis des Zusammenhangs zwischen
anregendem Feld und hervorgerufenem Dipolmoment: die Dipol-Polarisierbarkeiten. So-
fern letztere beziiglich des Hintergrundmediums bekannt sind, ldsst sich die Mischformel

analytisch unter Beriicksichtigung der Dichte der Einschliisse formulieren.

Die Herleitung der Clausius-Mossotti Beziehung beruht auf verschiedenen Naherungen,
die die Giiltigkeit einschrénken. So wird bei der Betrachtung immer ein in drei Dimen-
sionen unendlich ausgedehntes Medium vorausgesetzt. Tatsédchlich interessieren bei der
technischen Realisierung héufig diinne Schichten. Bei experimentellen Arbeiten werden
z.B. Randeffekte durch entsprechend grofe Proben und eine lokal begrenzte anregende
Welle vermieden [14,15,25|, so dass in guter Ndherung zumindest die transversale Aus-
dehnung der Probe - bezogen auf die Ausbreitungsrichtung der Welle - als geniigend grofs
angesehen werden kann. Im strengen Sinne fiihrt die Beschrinkung der longitudinalen Di-
mension dazu, dass die Mischformeln ungiiltig werden. Eine umfangreiche Diskussion findet
sich z.B. in |26]. Aufgrund des Potentials fiir technische Anwendungen riickt das Problem
der Homogenisierung und Modellierung diinner Schichten in jiingster Zeit vermehrt in den
Vordergrund (siehe [27 30]).

Eine zweite Einschriankung betrifft die verwendeten Grundbausteine. Fiir einen ausgeprag-
ten Effekt muss eine einfallende elektromagnetische Welle méglichst gut mit der Schicht
wechselwirken. Typischerweise bedient man sich zu diesem Zweck, wie im Fall der chiralen
Medien, resonanter Strukturen. Durch die starke Streuung kann die umgebende Polarisa-
tion in der Ndhe der Resonanz nur noch in grober Nédherung als homogen angenommen
werden. Die Frage, ob bzw. unter welchen Einbufen an Genauigkeit ein Material mit
Mischformeln homogenisiert werden kann, wird in der Literatur meist nicht oder nur sehr
vage beantwortet, was nicht zuletzt auch daran liegt, dass solch eine Aussage nur sehr
fallspezifisch getroffen werden kann. In [31] wird z.B. die Mdglichkeit der Homogenisie-
rung periodisch platzierter resonanter Objekte (sog. Split-Ring-Resonatoren und induktiv
belastete kurze Drihte) im dreidimensionalen Raum fiir gewisse Einfallsrichtungen der an-

regenden Welle in Frage gestellt. Andererseits haben sich Mischformeln zur Vorhersage der
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Bild 1.2: Modell zur numerischen Bestimmung effektiver Materialparameter. Hier bei-

spielhaft im zweidimensionalen Raum mit homogenen Kreisscheiben als Einschliissen.

Eigenschaften chiraler Medien in experimentellen Studien |6, 14,32| und zum Entwurf ei-
nes mehrschichtigen Mikrowellenabsorbers bewéhrt [17]. Gleichsam werden Mischformeln
haufig, wie z.B. in [33], genutzt, um das prinzipielle Verhalten eines kompositen Materials

zu illustrieren.

Mittelungsansatz

Eine Klassifizierung der Anwendbarkeit der Mischformeln ist durch die komplexen Ver-
héltnisse innerhalb des Materials nicht a priori méglich. Eine alternative Methode zur Be-
stimmung effektiver Eigenschaften ist der in Bild 1.2 illustrierte Mittelungsansatz |34, 35|.
Die gestreuten Felder mehrerer zufillig gewéhlter kleiner Proben eines Materials werden
hierbei mit Hilfe eines numerischen Verfahrens, also unter Einbeziehung der gegenseiti-
gen Kopplungen, berechnet. Fiir eine geniigend grofe Anzahl gewdhlter Proben fiihrt die
Mittelung der so erhaltenen Streufelder zum kohérenten Feld, welches eine homogene Re-
ferenzprobe gleicher Probengeometrie streuen wiirde. Ein Vergleich und die Anpassung
der homogenen Referenzprobe liefert schliefslich die gewiinschten effektiven Materialpa-
rameter des kompositen Materials. Fiir ein chirales Material wird dieser Ansatz in [36]
genutzt. Zur effektiven Berechnung der gestreuten Felder wird dabei eine Randelement-
methode herangezogen, die lediglich die Diskretisierung der Metalloberflichen erfordert.
Das gleiche Material wird in 37| untersucht, jedoch auf Basis der Dipolpolarisierbarkei-
ten der chiralen Einschliisse. In beiden Féllen ist das entsprechende Referenzvolumen eine
Kugel, da sich deren gestreute Felder fiir den abschliefsenden Vergleich schnell berechnen
lassen. Die aufgefiihrten Literaturbeispiele beriicksichtigen nicht den interessanten Fall der
Resonanz der Einschliisse. Zudem lassen sich durch das kugelférmige Referenzvolumen die

Eigenschaften einer Schicht, dhnlich wie im Fall der Mischformeln, nur bedingt ableiten.
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Ziel und Gliederung dieser Arbeit

Die gegenseitige Kopplung in Strukturen, gebildet aus kleinen metallischen Helices, ist noch
nicht vollends verstanden. Zudem ist die schichtférmige Anordnung bisher nur indirekt

iiber die Mischformeln beriicksichtigt worden.

Ziel dieser Arbeit ist es, das Streuverhalten der Helices in Schichten mit einer vorgegebenen
Ordnung zu untersuchen. Der Ubergang von einer in zwei Dimensionen rein periodisch auf-
gebauten Schicht zum Fall der Regellosigkeit (chirales Material) soll fliefend erfolgen, um
den Raum moglicher Konstellationen systematisch abzudecken. Fiir ein physikalisches Ver-
stdndnis der gegenseitigen Kopplungen der Grundbausteine bietet sich die Formulierung
der Interaktion auf Basis von Multipolfeldern an. Hierfiir muss eine geeignete Streutheorie
aufgestellt werden. Der Einfluss der entsprechenden Multipolmomente soll frequenzabhén-

gig, den Resonanzfall inbegriffen, quantifiziert werden.

Im folgenden Kapitel werden zunéchst einige theoretische Grundlagen dargestellt. Diese
umfassen vor allem die Darstellung einer Stromverteilung durch Multipolmomente, die
Eigenschaften der entsprechenden Streufelder und die Reprisentation gegenseitiger Kopp-
lungen mit Hilfe eines linearen Gleichungssystems. Eine Voraussetzung zur Beschreibung
der Interaktion ist die Kenntnis der fiir jeden Streukorper charakteristischen Transfer-
Matrix, die, wie erarbeitet wird, die Multipolpolarisierbarkeiten bzw. den Zusammenhang

zwischen anregendem Feld und gestreuten Multipolfeldern darstellt.

Die Einbeziehung von Multipolmomenten beliebig hoher Ordnung in die Transfer-Matrix
einer Helix wird in Kapitel drei diskutiert. Die Herleitung basiert auf der Losung fiir
den Strom auf der Oberfliche einer einzelnen Helix im freien Raum. Das Modell wird
durch einen Vergleich mit einem frei erhéltlichen Computerprogramm verifiziert. Es wird
ebenfalls beleuchtet, wie gut das Streufeld einer einzelnen Helix in Abhéngigkeit von der
Entfernung durch Multipole einer bestimmten Ordnung approximiert wird. Untersuchun-
gen zur Interaktion zweier Helices geben weitere Aufschliisse zu Art und Ordnung der zu

beriicksichtigenden Multipole.

Das vierte Kapitel hat die Implementierung periodischer Randbedingungen zum Thema.
Hier wird die Formulierung der Wechselwirkungen aus Kapitel eins angepasst. Es wird
zudem gezeigt, wie ein elektrisch leitender metallischer Schirm, wie er z.B. bei Absorbern
Anwendung findet, implementiert werden kann. Vergleiche mit Simulationsergebnissen aus
einem kommerziell erhéltlichen Programmpaket und eine erste Studie zum Streuverhalten

streng periodischer Schichten runden das Kapitel ab.

Fiir Schichten, die nicht streng periodisch aufgebaut sind, wird ein Mittelungsansatz dhn-

lich dem unter ,Modellierung”“ angefiihrten Ansatz gewihlt. So werden die Ergebnisse
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mehrerer periodischer Schichten mit zufillig gewdhlten Einheitszellen gemittelt. Kapitel
fiinf gibt schliefslich Aufschluss dariiber, wie grof die Einheitszelle sein muss bzw. wie viele
Helices in einer Einheitszelle platziert sein miissen, um konsistente Ergebnisse zu erhalten.
Die Untersuchungen in Kapitel fiinf sind zugleich Ausgangspunkt der im anschliefenden
Kapitel untersuchten mehrlagigen Schichten und Materialien. Hier werden Variationen der
Positionen und der Orientierung der Einschliisse untersucht. Fiir den Fall, dass die Anwen-
dung effektiver Materialparameter durch eine gewisse Mindestdicke der Schicht denkbar
erscheint, wird stichprobenhaft gepriift, unter welchen Umstinden und mit welchen Rest-

fehlern Mischformeln zur Charakterisierung herangezogen werden kénnen.

Bevor die Arbeit mit einer Zusammenfassung schliefst, werden in Kapitel sieben einige
Messungen an ausgewihlten Schichten vorgestellt, die das Modell und die enthaltene Mit-
telungstheorie erhirten sollen. Die Einbeziehung von Herstellungstoleranzen der Helices

nimmt dabei einen wichtigen Platz ein.



2 Kugelwellenentwicklungen

Dieses Kapitel erlautert einige theoretische Grundlagen zum Verstindnis der im folgenden
Kapitel vorgestellten Methodik. Ein Grundbaustein der Theorie ist die Losung der quel-
lenfreien Feldgleichungen in Kugelkoordinaten. Darauf aufbauend wird die Verkniipfung
der anregenden Quellen mit den zugehdrigen Streufeldern auf Basis der Multipolmomen-
te besprochen. Die Eigenschaften und Vorteile einer solchen Zerlegung werden illustriert.
Dabei helfen mathematische Theoreme, die an dieser Stelle der Ubersichtlichkeit halber
nur prinzipiell und ohne genaue mathematische Herleitung aufgefiihrt werden. Sie wer-
den jedoch im Anhang ausfiihrlich diskutiert. Die Darstellung der Interaktion mehrerer

Streukorper fiihrt am Ende des Kapitels zum Begriff der Transfer-Matrix.

2.1 Allgemeine Losung

Bei allen Betrachtungen dieser Arbeit wird der eingeschwungene Zustand harmonischer
Zeitabhingigkeit der Art Re{e’*'} mit der Kreisfrequenz w = 27 f und der Zeit ¢ zugrunde
gelegt. Zeitabhéngige Grofken werden folglich durch komplexe Phasoren beschrieben. Die
Maxwellschen Gleichungen lauten fiir diesen Fall

VxH=jwD+J, (2.1)
V xE=—jwB, (2.2)
V-D=gq, (2.3)
V.-B=0. (2.4)

In obigen Gleichungen treten die elektrische Stromdichte J und die mit ihr iiber die Kon-
tinuitétsgleichung
V-J=—juq (2.5)

verkniipfte elektrische Ladungsdichte ¢ als Quelle fiir die elektrische und magnetische Feld-
starke E und H auf. Vektorielle Grofen werden hierbei durch einen Unterstrich hervorge-
hoben. Analog bezeichnen im Verlauf der Arbeit auftretende Mehrfachunterstreichungen

Tensoren entsprechender Ordnung. Die zu den elektrischen Quellen dualen magnetischen



2.1 Allgemeine Losung

Grofen sind in den Gleichungen (2.1)-(2.4) nicht aufgefiihrt. Sie stellen im Prinzip Er-
satzgrofen dar, auf die im Rahmen dieser Arbeit verzichtet werden kann. Ferner wird

vorausgesetzt, dass keine freien Ladungen vorhanden sind, d.h. es gilt ¢ = 0.

Eine weitere Vereinfachung ergibt sich aus der Tatsache, dass in dieser Arbeit ausschlieflich
Streukorper betrachtet werden, die von einem isotropen, linearen und homogenen Medium
wie z.B. Luft umgeben sind. Die elektromagnetischen Eigenschaften eines solchen Mediums

werden durch die skalare Permittivitdt € und Permeabilitit p in den Materialgleichungen

D = ¢cE = ¢ E,

- (2.6)
B = tH = popH,

also in der Verkniipfung der Feldstirken mit den entsprechenden Flussdichten D und B,
beriicksichtigt. Es gilt 9 ~ 8.854-107'2As/(Vm) und o = 47-107"Vs/(Am). Anzumerken
ist, dass die relative Permittivitit e, = €/ —je” und die relative Permeabilitét p, = p, —jpu!
im Allgemeinen frequenzabhingig sind. Dielektrische und magnetische Verluste werden
durch einen negativen Imaginarteil der Materialparameter € und p modelliert. Ein passives
Medium wird folglich durch €/ > 0 und ! > 0 beschrieben.

Fiir Punkte im Raum, die quellenfrei sind (d.h. J = 0), erhdlt man aus den Gleichungen
(2.1)-(2.6) die Wellengleichung fiir das elektrische und magnetische Feld [38]:

AE + E*E =0,

(2.7)
AH + k*H =0.

Die Wellenzahl £ ist gegeben durch k = w,/eu. Wie spiter noch erlautert wird, erweist
sich fiir die in dieser Arbeit angestrebten Untersuchungen die Wahl von Kugelkoordinaten
(Bild 2.1) als vorteilhaft. Mogliche Losungen homogener Differentialgleichungen der Form
aus Gleichung (2.7) in Kugelkoordinaten sind Vektorwellenfunktionen N, - und M, . fiir
die gilt [39]:

N, = VxM,,. (2.8)
1
Mn,m - EV X Han (2.9)
und
N, = 2000 4 1) Py (cos e e,
’ r
1 d ime 4 —imeJMP (cos 0
+ T [z, (kr)] {e J ¢@Pn (cosf)e, —e™’ ¢#g¢] , (2.10)
. ' d

M, = —imo | I pm e . 2.11
Mo = anlr)e ™ | =20 P coste, — P (eos)e,) 2.11)



2 Kugelwellenentwicklungen

&
__________________ €y
b8 Bild 2.1: Die Kugelkoordinaten
0 (r, 0, ¢) und die zugehorigen Ein-
0 . heitsvektoren (e,, e, e,).

Die Abhéngigkeit der im Folgenden auch vereinfachend ,Kugelwellen“ genannten Felder
N, ,, und M, . von der #-Koordinate wird durch die sogenannten zugeordneten Legendre-
Polynome P™ (Definition wie in [39]) beschrieben. Fiir |m| > n ist P = 0, unabhéngig
vom Argument. In der obigen analytischen Losung stehen die z,(kr) stellvertretend fiir die
Art der verwendeten sphérischen Funktion [40]. Im mathematischen Sinn erfiillen N,, . und
M, ., die Gleichung (2.7) fiir jede sphérische Funktion. Soll das betrachtete Gebiet jedoch
den Ursprung enthalten, so konnen nur mit sphérischen Besselfunktionen j,(kr) gebildete
Wellenfunktionen zur Beschreibung herangezogen werden. Sie fiihren auf gegenléufige, ge-
dampfte (fiir & komplex) Wellen und sind im Gegensatz zu sphérischen Hankelfunktionen
nicht singuldr im Ursprung. Fiir den Fall, dass Strahlungsphinomene untersucht werden,
eignen sich nur sphérische Hankelfunktionen zweiter Art hg)(k:'r). Die damit modellierten
Wanderwellen in positiver r-Richtung verschwinden fiir » — oco. Zur Unterscheidung er-
halten die Kugelwellen von nun an die Bezeichnung N;J  und M fiir z,(kr) = j,(kr)
baw. N2 und MY fiir z,(kr) = b (kr).

Es lisst sich zeigen, dass die Kugelwellen eine vollstindige Basis des divergenzfreien Lo-
sungsraumes der Wellengleichung (2.7) bilden. Zudem gilt: M, = N, = 0. Das abge-
strahlte elektrische Feld auferhalb eines Gebietes, welches alle Quellen einschliefst, kann

folglich immer durch die Linearkombination

Er) =) Y (anmNI,(r) +bymM, (r)) (2.12)

n=1m=-n

mit den skalaren Entwicklungskoeffizienten a,,, und b, ,, dargestellt werden. Aus den
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2.2 Quellen von Kugelwellen

Gleichungen (2.3) und (2.9) folgt mit den gleichen Koeffizienten fiir das magnetische Feld:

jk Z Z M (1) + by NG (1)) (2.13)

n=1m=-—n

Die sphérische Vektorwellenfunktion M, ,, besitzt keine radiale Komponente. Zur Ausbrei-
tungsrichtung transversal-elektrische (TE) Feldverteilungen werden folglich durch b,, ,, # 0
und a,,, = 0 représentiert. Fiir transversal-magnetische (TM) Felder gilt a,, # 0 und
bym = 0.

2.2 Quellen von Kugelwellen

In dieser Arbeit werden ausschliefslich passive Strukturen betrachtet. Bei Anregung durch
eine einfallende Feldverteilung flieken — zur Erfiillung der Randbedingungen — Ausgleichs-
strome. Das Gesamtfeld ergibt sich aus der Uberlagerung des einfallenden und des abge-

strahlten Feldes. Letzteres wird fortan als Streufeld bezeichnet.

Ein Weg zur Bestimmung des Streufeldes fiihrt iiber das magnetische Vektorpotential A.
Am Ort r errechnet es sich aus der gewichteten Integration der elektrischen Stromdichte

tiber alle Quell-Koordinaten r’ im Volumen V' [41]:

6]k\rr| .
A(r 4ﬂ// |r_r/|__)dv. (2.14)

Fiir das Vektorpotential A lisst sich ebenfalls eine Wellengleichung der Form aus Gleichung
(2.7) herleiten, so dass es, laut den Uberlegungen des vorherigen Abschnitts, ebenfalls
als Kombination von Kugelwellen darstellbar ist. Angenommen das Vektorpotential liegt
entwickelt nach Kugelwellen vor, lasst sich das gestreute magnetische Feld leicht aus dem

Zusammenhang

H=VxA (2.15)

und Gleichung (2.9) herleiten. Das entsprechende elektrische Feld folgt durch Koeffizien-
tenvergleich der Gleichungen (2.12) und (2.13).

Die angesprochene Entwicklung des magnetischen Vektorpotentials nach Kugelwellen ist
aus Gleichung (2.14) nicht direkt ersichtlich, zumal das Integral fiir jeden Beobachtungs-
punkt r neu ausgewertet werden muss. Ferner ist zu beachten, dass die Vektorwellenfunk-
tionen M und N zwar eine vollstindige, aber nicht die einzig mdgliche Basis der Losungen
bilden. Die Auswertung des Integrals fiihrt also nicht zwangsldufig zu einem Ausdruck

11



2 Kugelwellenentwicklungen

des magnetischen Vektorpotentials A in Kugelwellen. Die Tatsache, dass die Abbildung
H = V x A nicht eineindeutig ist, zeigt jedoch, dass eine Kugelwellenentwicklung von A
fiir eine Darstellung der Felder geméf Gleichungen (2.12) und (2.13) gar nicht zwingend
erforderlich ist. In jedem Fall stellt sich das Problem, wie man das berechnete Vektor-
potential auftrennt, um die Koeffizienten a, ,, und b, ,, zu erhalten. Abhilfe schafft eine
Taylor-Reihenentwicklung der skalaren Funktion

e—Jklr—r'|

g(r,r') = 9(r,0) + Vg(r, ') |peo - '+ ..., (2.16)

dr|r — 1’|
die hier nur bis zum zweiten Glied dargestellt ist. Als Entwicklungspunkt wurde hier der
globale Ursprung gewéhlt. Prinzipiell ist er beliebig wéhlbar, fiir die folgende Betrachtung

erweist sich diese Wahl jedoch als sehr niitzlich. Setzt man den Ausdruck aus Gleichung

(2.16) in (2.14) ein, ergibt sich nach einigen Umformungen [42, Kap. 2|:
. e 1 m 1 . e
A(r) = g(r,0)jwp® — ;Vg(g, r')|w—o X p" + §jng(g, r')|v—o R SR (2.17)

wobei in obiger Gleichung das elektrische und magnetische Dipolmoment p¢ bzw. p™ und

das elektrische Quadrupolmoment qe gemafs

/// v, (2.18)
/// v x J() dV' (2.19)
/// (K')r') V', (2.20)

auftreten. Hohere Momente ergeben sich, wenn weitere Terme der Entwicklung in Glei-

chung (2.16) beriicksichtigt werden.

Die Multipolmomente sind einzig von der Quellenverteilung abhéngig. Die obige Analy-
se gestattet zudem die Interpretation der Multipolmomente als infinitesimal kleine und
am Ursprung positionierte Punktquellen. Eine Separation des Ausdrucks fiir das Vektor-
potential nach Ursache (Stromdichte J(r')) und Wirkung am Beobachtungspunkt r ist
somit gegliickt. Die aus dem Vektorpotential folgenden, gestreuten elektromagnetischen
Felder kénnen mit Hilfe von Gleichung (2.15) und getrennt nach den einzelnen Termen der
Entwicklung (2.17) berechnet werden. Aus dem ersten Term folgt durch einen einfachen
Vergleich, dass lediglich ein Entwicklungskoeffizient
ks

jame

Q10 = (221)

12



2.2 Quellen von Kugelwellen

in Gleichung (2.12) und (2.13) fiir die Streufelddarstellung eines Dipolmoments p® = pte,
ausreichend ist [37]. Um, ausgehend von dieser Losung, eine systematische Beschreibung
der verbleibenden Komponenten zu erhalten, kann man sich des Rotationstheorems fiir
Kugelwellen [43,44]

M0 (r1, 01, 61) = Z Dy (00, B,7) - M (r,60, )
e (2.22)
M7{m1 7’1,91,¢1 Z Dmml 577> NJH(T 9 ¢)

bedienen, welches gestattet, Kugelwellen beziiglich zueinander gedrehter Koordinatensys-
teme r und r, in das jeweils andere System umzurechnen. Die Lage der beiden Koordina-
tensysteme ist iiber die Euler-Winkel o, # und v definiert - eine Hintereinanderausfithrung
von Rotationen um die 2-, die neu erhaltene y- und die wiederum aktualisierte z-Achse
(siehe dazu Anhang A). Jede Komponente des Dipolmoments p® kann in einem gedrehten
Koordinatensystem mit dem Koeffizienten a; aus Gleichung (2.21) dargestellt werden.

Im globalen Koordinatensystem ergibt sich nach Auswertung der Rotationskoeffizienten

Dy, . fiir das gestreute elektrische Feld [45]:
streu ok Z ay m 1 m (223)
m=—1
mit
A1 & 3 -1 0 P
= -p° = : 1 1- ¢ . 2.24
10 j47reld P Jjame 0 ,0 Py (224)
ai,1 1/2 j/2 0 s

Die Felder der Dipolkomponenten p§ und pj, setzen sich demzufolge aus zwei Kugelwellen
verschiedener Amplituden und Umfangsordnungen m zusammen. Das Rotationstheorem
erleichtert an dieser Stelle die Identifikation der beteiligten Wellen.

Aus der Analyse des zweiten Terms in Gleichung (2.17) folgt, dass auch hier ein Entwick-

lungskoeffizient

wp k3pm wkpm
m:j—g-ﬂi;:— 4:2 (2.25)
zur Darstellung der gestreuten Felder eines magnetischen Dipolmomentes nétig ist, fiir das
p" = ple, gilt. Beriicksichtigt man Gleichung (2.13), wird ersichtlich, dass dieser Entwick-
lungskoeffizient dual zu (2.21) ist. Die anschliefende Anwendung des Rotationstheorems
fiir Kugelwellen fiihrt auf identische Koeffizienten D, ., wie zuvor, da diese unabhingig

von der verwendeten Vektor-Wellenfunktion sind.
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2 Kugelwellenentwicklungen

Das Vorgehen im Fall der Dipolmomente ist mit Einschrankungen auch fiir das elektrische
Quadrupolmoment, folglich den dritten Term des Vektorpotentials in Gleichung (2.17),
anwendbar. Fiir die einzelne Komponente ¢Z, des Tensors zweiter Stufe q° folgt [46]:
k4
= —q, . 2.26
420 = o are T2 (2.26)
Die Ableitung fiir andere Komponenten kann wiederum auf Basis des Rotationstheorems
erfolgen [45]. Der Ubersichtlichkeit halber wird an dieser Stelle auf die Darstellung der
erforderlichen Schritte verzichtet. Es bleibt zu erwahnen, dass q° symmetrisch ist, d.h.

Gow Qoy Qoo

A= Gy Gy - (2:27)
Qe ye 4o

ist durch die Kenntnis von sechs Eintrdgen vollstindig erfasst. Die Amplituden der ge-

streuten Felder ergeben sich damit aus dem Zusammenhang:

ag,—2 3 —76 0 -3 0 0 qix
ag, 1 i 0 0 -3 0 i3 0 qiy
20 | =- ~1/2 0 0 -1/2 0 1 -z (2.28)
’ j24me . q
21 0 0 1/2 0 j/2 0 Zy
aga 1/8 j/4 0 —1/8 0 0 Iy
qZZ

Eine Erweiterung der analytischen Zerlegung auf héhere Multipole ist schwierig. Die Griin-
de sind zum einen in der Multipolentwicklung des Vektorpotentials zu suchen. Der alge-
braische Aufwand steigt sehr schnell, sobald hohere Terme der Taylorentwicklung (2.16)
beriicksichtigt werden. Zum anderen folgt die Verkniipfung der einzelnen Komponenten
der Momente mit den entsprechenden Kugelwellen keiner erkennbaren Systematik, die
eine automatisierte Entwicklung bzw. einen umfassenden Ausdruck zuliefse. Zusammen-
fassend lésst sich sagen, dass ein elektrisches Moment n-ter Ordnung durch Felder mit
ap,m 7# 0 charakterisiert wird und ein magnetisches Moment n-ter Ordnung durch Felder
mit b, ., # 0 [47]. Diese Verkniipfung ist jedoch nur richtig, wenn der Stiitzpunkt der Tay-
lorentwicklung mit dem Koordinatensystem der Quellverteilung, und damit laut Gleichung

(2.14) auch mit dem Koordinatensystem der Beobachtungspunkte, iibereinstimmt.

Einige Eigenschaften der beschriebenen Entwicklung des Streufeldes in Multipolfelder las-
sen sich anhand der radialen Abhéngigkeit der Vektor-Wellenfunktionen Hﬁm und Mfm
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2.2 Quellen von Kugelwellen

ableiten. Abgesehen von einem Exponentialterm sind die hierfiir zu untersuchenden sphé-
rischen Hankelfunktionen zweiter Art durch Potenzen von 1/(kr) gegeben [40]:

B (k) = nﬂekfr’” ;0 Uv((_zﬁ) EZ : z;: , (2.29)

Aus dem Grenziibergang kr — oo folgt

h® (k "He—jkr 2.30
(k) — € (2.30)

was dazu fiihrt, dass sowohl die Ngm als auch die Mgm fiir jede Ordnung n mit 1/(kr)
abklingen (vergleiche dazu (2.10) und (2.11)). Dieses Ergebnis ist gegensétzlich zu den aus
der Elektrostatik bekannten Multipolen, die aus Ladungsverteilungen gebildet werden und
deren Potential desto schneller abklingt, je héher die Ordnung ist. Letzteres folgt jedoch
zwingend aus der Tatsache, dass die abgestrahlte Leistung jedes Multipols im verlustfreien

Raum nicht verschwindet.

Die héchste auftretende Potenz von 1/(kr) in Gleichung (2.29) ist 1/(kr)™"!. Fiir kleine
Argumente kr < 1 stellt die Kugelwellenentwicklung folglich eine schnell konvergierende
Reihe zur Beschreibung singuldrer Felder in der Nihe von Quellverteilungen dar. Die
Giiltigkeit der Felder Nnm und Mfm ist jedoch, gemdf der Annahme zur Herleitung
der Wellengleichung (2.7), auf quellenfreie Gebiete beschrénkt. Fiir einen festen Abstand
r und beliebige Winkel 6 und ¢ folgt schlieflich ein kugelférmiges Gebiet, das alle Quellen
einschliefit. Fiir eine schnell konvergierende Reihe muss daher analog zu obiger Aussage
fiir die Quellverteilung kr’ < 1 gelten. Auf diese Forderung wird im Verlauf der Arbeit
noch haufiger eingegangen. Sie ist zwar nicht fiir die Gesamtheit der Streukorper in den
in dieser Arbeit untersuchten Schichten erfiillt, wohl aber fiir jeden einzelnen Streukorper
selbst. Eine geeignetere Darstellung des gestreuten Feldes einer Anordnung mit insgesamt

N beliebig verteilten Streukorpern ist deswegen durch den Ausdruck

N 7NStreu,i

EStreu Z Z Z i, mN r(z)) + bi7n7mMrI;I,m (g(z) )) (231)

n=1 m=-n

gegeben, wobei die Urspriinge r; der lokalen Koordinatensysteme r;) zweckméfigerweise
im Mittelpunkt des jeweiligen Streukorpers liegen. Aus praktischen Griinden wird die
zweite Summation nur bis zur Ordnung ngey i, welche fiir die gewiinschte Genauigkeit
notig ist, durchgefiihrt. Da sich der Zusammenhang fiir das magnetische Feld dhnlich wie
in Gleichung (2.13) direkt aus den Entwicklungskoeffizienten a; ,, ,, und b; ,, , ergibt, ist er
hier und im Folgenden nicht explizit erwdhnt.
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2 Kugelwellenentwicklungen

2.3 Partikelinteraktion

Bislang ist lediglich die Verkniipfung der in den Streukérpern hervorgerufenen Strom-
verteilungen mit den zugehorigen Streufeldern besprochen worden. Die Ursache dieser
Stromverteilung ist die Uberlagerung des von extern eingepriigten anregenden Feldes und
der Streufelder aller anderen Partikel. An dieser Stelle ist es zunichst angebracht, die
Basis der Anregung zu definieren — sinnvollerweise ebenfalls in Kugelkoordinaten. Wie in
Abschnitt 2.1 schon angedeutet, eignen sich Vektor-Wellenfunktionen gebildet mit sphéri-
schen Besselfunktionen j,, also H;{’m und Mim In der Literatur ist auch eine alternative
Mbglichkeit mit sphérischen Hankelfunktionen erster Art b erwihnt (z.B. [48]). Obwohl
beide Methoden ineinander umrechenbar sind, wird auf die erste Methode mit z, = 7,
zuriickgegriffen, da fiir z, = A ein Korrekturterm in den gestreuten Feldern erforderlich

ist.

Es ist zweckmifig, die Anregung beziiglich des gleichen Koordinatensystems zu definieren
wie die gestreuten Felder. Es ergibt sich analog zu Gleichung (2.31):

N NAnri

E4,, (r Z Z Z Ciyn,mDN r(z)) + di,“,mMi,m(E(i))) (2.32)

i=1 n=1 m=-—n
mit den Entwicklungskoeffizienten c; , ,,, und d; 5, ,,,, sowie den zur Konvergenz des anregen-
den Feldes notigen Parametern n4,,,. Die in dieser Arbeit vorwiegend genutzte Art der
Anregung ist eine homogene ebene Welle. Die dafiir bendtigten Entwicklungskoeffizienten

folgen aus [49| und sind im Anhang B néher erldutert.

Um die gegenseitigen Wechselwirkungen der Partikel beschreiben zu kénnen, wird in ei-
nem ersten Schritt ein einzelner Streukdrper betrachtet. Fasst man alle zur Beschreibung
N, s MH und N;{m, Mim in den Vektoren QH und g‘] Zu-
sammen, lassen sich das externe und gestreute Feld durch die Skalarprodukte
Egpen(r) = QH(E) ‘b,
E ., (r) =%’(r) - d

in kompakter Weise ausdriicken. Alle unbekannten Koeffizienten a,, ,, und b, ,, bilden den

notwendigen Kugelwellen N

(2.33)

Vektor b, wihrend d die bekannten Anregungskoeffizienten ¢, ,,, und d,, ,, enthdlt. Einen
allgemeinen linearen Zusammenhang zwischen einfallendem und gestreutem Feld gibt folg-
lich die Abbildung

b=

l=

.d (2.34)

wieder. Dabei bezeichnet T die fiir den betrachteten Partikel charakteristische Transfer-

Matriz oder auch kurz T-Matriz. Mit ihr ergibt sich das gestreute Feld zu
EStT6u<£) = iH(i) ’ g : Q . (235)

16



2.3 Partikelinteraktion

Beriicksichtigt man fiir die gestreuten Felder Kugelwellen bis ng.c,-ter Ordnung und an-
regende Wellen bis zur Ordnung n4,, enthélt T insgesamt 2n5tren(Nstren + 2) Reihen und

2N Anr (N any + 2) Spalten.

Die T-Matrix {ibernimmt die Rolle einer inversen Systemmatrix des einzelnen Streukor-
pers: Ist sie bekannt, lassen sich die Streukoeffizienten fiir beliebige Anregungen durch
Matrix-Vektor-Multiplikationen berechnen. Vorausgesetzt ist allerdings, dass die anregen-
den Wellen auf den gleichen Ursprung wie die gestreuten Wellen bezogen werden. Die
Herleitung der T-Matrix fiir Helices wird im néchsten Kapitel besprochen. Als einfaches
und bekanntes Beispiel lassen sich jedoch homogene isotrope Kugeln anfiihren. Deren
T-Matrix lésst sich analytisch durch Anpassung der Randbedingungen auf der Kugelober-
fliche formulieren [50]. Es tritt keine Verkopplung von TE- und TM-Moden auf. Da alle
TE- und TM-Moden auch untereinander entkoppelt sind, ist die T-Matrix eine quadrati-
sche Diagonalmatrix. Die Koeffizienten dieser Matrix sind auch als Mie-Koeffizienten [51]

bekannt. Eine tiefergehende Schilderung dieser Koeffizienten erfolgt in Abschnitt 3.3.

Bei der Anwesenheit mehrerer Partikel addieren sich zum externen Feld die Beitriige al-
ler anderen Streukorper. Die Streufelder anderer Partikel sind hingegen beziiglich eines
anderen Koordinatensystems definiert, so dass die T-Matrix nicht unmittelbar Verwen-
dung finden kann. An dieser Stelle hilft das translatorische Additionstheorem fiir Vektor-
Wellenfunktionen [52], welches gestattet, den Bezugspunkt der Wellen vom Ort j auf den
Ort ¢ zu verschieben. Je nach Art der Wellen ergibt sich:

a) %H(E(j)) QH(E(Z‘)) Q(Ez - Ej) fiir |£(z’)| > Ty
b) o (r) P (ry) - alr, —x;) fir [rg| <rp, (2.36)
) ¢(ry) = ¥'(ry) Bl —r;) firaler;),

wobei 7, der Abstand der beiden Koordinatensysteme ist. Die Anzahl der zur Entwicklung
bendtigten Wellen, also die Grofe des Vektors QH’J@(Z-)), hdngt im Wesentlichen von r;
in Relation zum betrachteten Aufpunkt r(; ab (siehe auch [53]). Zur Veranschauung sind
die drei Fille in Bild 2.2 skizziert. Fiir Fall a ist unmittelbar kenntlich, dass sich die An-
zahl der Moden zur Beschreibung der Felder beziiglich des Ursprungs ¢ im Allgemeinen
erhoht: Am Ort 7 liegen die Felder der Multipole entwickelt nach Kugelwellen vor. Wech-
selt man nun das Bezugssystem, erhéht sich der Abstand der Quellen vom Ursprung und
die Quellverteilung erscheint beziiglich Koordinatensystem ¢ rdumlich ausgedehnter. Die
Multipoldarstellung des Feldes konvergiert daher geméfs der im vorigen Abschnitt getrof-
fenen Aussagen langsamer. Dieser Sachverhalt wird auch bei der Giiltigkeit der T-Matrix
fiir Helices eine Rolle spielen. In Fall b ist die Umrechnung von Wanderwellen in stehende

Wellen in Bezug auf den Ursprung ¢ formuliert. Letztere Entwicklung interessiert bei der
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a

N
§\.ﬁ‘(rzr]) .

awbrg) = WPkrg)  wkrg) = ga(krg)
Zlkra) = Jn(kre) zn(kriy) = Jnlkre)

Bild 2.2: Die Mdoglichkeiten zur Ursprungstransformation sphérischer Wellen. Die maxi-

malen Giiltigkeitsbereiche sind schraffiert dargestellt.

Interaktion der Partikel, so dass fiir den Vektor b, jedes Streukorpers geschrieben werden
kann:
N
b, = ll : <di + Z g(& - £j) ) bj) . (2.37)
J=1j#i

In der Nihe des Ursprungs j kann die Singularitit nur mit sehr vielen Kugelwellen mit
sphéirischen Besselfunktionen als radiale Abhéngigkeit nachgebildet werden. Da die be-
trachteten Partikel endliche Ausdehnungen haben und sich nicht iiberlappen, ist ein be-

schrankteres Giiltigkeitsgebiet nétig und damit einige wenige Moden ausreichend.

Die dritte Art der Ursprungstransformation (Fall ¢) ist beispielsweise bei der Entwicklung
der externen Anregung fiir die verschiedenen Streukorper relevant (siehe Anhang B). Auch
hier gilt, dass der Giiltigkeitsbereich monoton steigt, wenn eine steigende Anzahl von
Kugelwellen beziiglich des Ursprungs ¢ beriicksichtigt wird. Da stehende Wellen keine
Singularitidten aufweisen, ist die entsprechende Entwicklung im Gegensatz zu den vorigen
fiir alle Raumgebiete giiltig.
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3 Modell der helixformigen Einschliisse

Dieses Kapitel stellt das fiir diese Arbeit benotigte Modell der Helix dar. Dazu wird zu-
nichst die allgemeine Beschreibung des Streufeldes einer Helix auf Basis eines vollstandi-
gen Multipolansatzes entwickelt. Im Prinzip ist damit die Berechung einer beliebig grofen
T-Matrix moglich. Voraussetzung ist die Kenntnis der Stromverteilung auf der Helix fiir
verschiedene Anregungen. Fiir die numerische Losung konnen grundsétzlich mehrere Ver-
fahren genutzt werden; hier wird auf eine Randelementmethode zuriickgegriffen. Es wird
zudem besprochen, wie eine Helix modelliert werden kann, die in ein kugelférmiges, ho-
mogenes und isotropes Material eingebettet ist. Dieser Fall ist z.B. fiir die physikalische
Realisierung zufillig orientierter Helices interessant. Einige erste Untersuchungen schliefen
das Kapitel. So wird die Konvergenz der Multipolldsung fiir einzelne Helices und bei der In-
teraktion zweier Helices betrachtet. Die Verifikation der Implementierung erfolgt zunéchst

durch einen Vergleich mit einem verbreiteten und frei erhéltlichen Computerprogramm.

3.1 T-Matrix einer Helix

Zunichst soll eine Losung vorgestellt werden, welche die aus der Elektrodynamik bekann-
ten Polarisierbarkeiten [54] nutzt. Diese sind fiir jeden Streukorper charakteristisch und
verkniipfen das anregende Feld am Ursprung mit den hervorgerufenen Multipolmomen-
ten. Beriicksichtigt man nur die elektrischen und magnetischen Dipolpolarisierbarkeiten
a, kann die T-Matrix mit Hilfe von Gleichung (2.24) und (2.25) analytisch formuliert
werden [37,55]:

APV CNTYE Wk Ny
T_ jame ) Lo " ar 1, Lo 2o a1
T=| "7 : : (3.1)
= wk ~ - X TYz k ~N TYZ

47 =4 =me =0 j47‘(}t =4 =mm =0

Das elektrische wie auch das magnetische Feld haben ein elektrisches und magnetisches Di-
polmoment zur Folge. Die zur Beschreibung nétigen Polarisierbarkeiten sind in Gleichung
(3.1) durch die Indices ,e“ und ,m“ kenntlich gemacht. Fiir die anregenden Felder folgt,
dass einzig die Kugelwellen Hi{m am Ursprung Beitrige liefern. Sie stehen, ausgedriickt in
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3 Modell der helixformigen Einschliisse

kartesischen Koordinaten, in der Matrix

1
3
Nev = (N2 (0) NIgv(o) N{3(0)) = | 2 (32)

whho O© O
) w‘[‘\;wn\:
<.

Da in diesem Fall sowohl das Streufeld als auch das anregende Feld nur bis zur Ordnung
n = 1 entwickelt ist, besitzt die T-Matrix insgesamt 6 x 6 Eintrige.

Der Vorteil einer solchen, zunéchst allgemeinen Beschreibung ist, dass Ausdriicke fiir die
Polarisierbarkeiten, z.B. aus Antennenmodellen [56] oder numerischen Simulationen [57],
direkt iibernommen werden kénnen. Umgekehrt konnen die Dipolpolarisierbarkeiten aus
dem entsprechenden Teil einer bekannten T-Matrix berechnet werden. Dieser Umstand

wird noch in Kapitel 6 bei Vergleichen mit dem Clausius-Mossotti Materialmodell genutzt.

Andererseits lisst eine Entwicklung auf Basis der Polarisierbarkeiten, wie schon im vorigen
Kapitel dargelegt, fiir hohere Ordnungen n keinen bzw. nur einen analytisch aufwindigen
Ausdruck fiir die T-Matrix zu. Ziel muss folglich sein, fiir gréfere Ordnungen der her-
vorgerufenen Multipole automatisiert auf die T-Matrix zu schlieffen. In der Literatur wird
dieses Problem haufig mit Hilfe der Extended Boundary Condition Method (EBCM) [58,59]
gelost. Die dafiir angesetzten Wellenentwicklungen sind jedoch nur fiir homogene und iso-
trope Partikel giiltig. Zudem ergeben sich numerische Probleme fiir Partikel, deren Form
sehr stark von einer Sphére abweicht. Ein weiterer Ansatz, der ebenfalls in dieser Arbeit
verfolgt wird, ist die spaltenweise Berechnung der T-Matrix. Als Anregung dient hierbei
eine einzige Kugelwelle Him oder Mim Das gestreute Feld wird mit Hilfe einer geeigne-
ten numerischen Methode berechnet und anschliefsend in Kugelwellen entwickelt. Die so
erhaltenen Koeffizienten bilden direkt die entsprechende Spalte der T-Matrix. Der Schritt
der Identifikation der gestreuten Kugelwellen kann z.B. durch Ausnutzung von Orthogo-
nalitétsrelationen [48] oder punktweises Testen [60] erfolgen. Ein fiir diese Arbeit inter-
essanter Aspekt ist in [61| zu finden: Berechnet man das gestreute Feld mit der Methode
der diskreten Dipole (engl.: Discrete Dipole Approxzimation (DDA)), liegt die sich erge-
bende Polarisation im Material in der Form elementarer Dipole vor. Auf deren Streufelder
konnen die im ersten Kapitel erarbeiteten Formalismen angewendet werden. Die DDA ist
auf Materialien mit niedriger relativer Permittivitit e, und relativer Permeabilitat u, be-
schrinkt und nicht nur aus diesen Griinden fiir metallische Helices nicht anwendbar. Setzt
man den auf der Oberfliche des Drahtes hervorgerufenen Strom jedoch als gegeben an, ist
die Identifikation aller gestreuten Kugelwellen ebenso moglich [62]. Dieser Weg wird nun

skizziert.

Die Geometrie der Helix ist in Bild 3.1 illustriert. Die Liange des abgewickelten Drahtes
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3.1 T-Matrix einer Helix

P Bild 3.1: Geometrie der Helix
(Radius 79, Drahtradius a und

Steigung p).

2a

entspricht in etwa der Hélfte der Wellenléinge der ersten Resonanz. Damit ist sowohl die
Drahtlédnge als auch die betrachtete Wellenldnge wesentlich grofer als der Drahtradius a.
Unter diesen Bedingungen sind Stromkomponenten quer zur Drahtachse vernachlissig-
bar. Ebenso ist die Stromverteilung iiber den Umfang nahezu konstant. Der Strom auf
der Oberflache des Drahtes kann dann durch einen Linienstrom I im Zentrum des Draht-
querschnitts repriasentiert werden. Diese Annahme ist gemeinhin als Ndherung fiir dinne
Drdihte (engl.: Thin- Wire Approzimation) bekannt und wird am Ende des Kapitels noch

numerisch verifiziert.

Ist die Helix am Ursprung zentriert positioniert und die Achse in z-Richtung orientiert,
beschreibt der Stromfaden einer Helix mit insgesamt w Windungen die durch s’ parame-
trisierte Kurve
o cos(mws’)
r'(s) = | drosin(rws’) | mit =1 < <1. (3.3)

1 !
§wp5

Der Drehsinn der Helix ergibt sich aus dem Parameter 9:

5 { 1 fiir rechtsgedrehte Helices, (3.4)

—1 fiir linksgedrehte Helices.

Damit folgt fiir das Dipolmoment der Stromverteilung auf der Helix nach Gleichung (2.18):

1
p°=— [ I{t) dd'dy'd’
- Jw r
I d I (3:5)
— ‘y_w 711(£/(S/))‘ |@(£/(S,))|d8,: j_w 71](£,(8/))'£,(8/) dSl
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3 Modell der helixformigen Einschliisse

mit dem aus der Parametrisierung r/(s’) erhaltenen Tangentialvektor t'(s):

—romw sin(rws’)
t'(s") = | orogmwcos(rws’) | . (3.6)

1
wp

Eine Auftrennung des Integrals aus Gleichung (3.5) in Teilintegrale bedeutet eine Auftei-
lung des Gesamtdipolmomentes in einzelne, diskrete, elektrische Dipole. Deren Streufelder
kénnen geméf Gleichung (2.24) effizient und vollsténdig in Kugelwellen H{{m bezogen auf
die lokale Position der Stromelemente entwickelt werden. Unter Ausnutzung des Transla-
tionstheorems (2.36) zur Entwicklung aller Dipolfelder in Kugelwellen beziiglich des Ur-
sprungs und Betrachtung von infinitesimalen Teilstiicken ergibt sich:

[ B ), ) 87

—d

In obiger Gleichung enthélt der Vektor b die Koeffizienten aller beriicksichtigten Kugel-
wellen — somit auch jene, die die Streufelder hoherer Momente beschreiben. Unter der
Bedingung, dass der Strom I(r(s’)) Wirkung der Anregung mit einer Kugelwelle Ei’m
oder Mim ist, entspricht b der entsprechenden Spalte der T-Matrix. Insgesamt muss der
Strom folglich 27 4., (1 4n + 2) mal berechnet werden. Das dafiir genutzte Verfahren wird
im néchsten Abschnitt kurz vorgestellt.

Die hochste Ordnung der beriicksichtigten gestreuten Wellen (ngg.e,) ist nur von den
Dimensionen der Matrix B(—1'(s")) abhidngig. Deren Eintrige kénnen mit Hilfe endli-
cher Summen berechnet werden. Somit ist eine automatisierte Bestimmung der T-Matrix
fiir beliebig hohe Multipol-Ordnungen mdoglich. Wie man anhand von Gleichung (2.36)
bzw. Bild 2.2a sehen kann, ist die T-Matrix nur fiir Raumgebiete giiltig, die alle Quellen
umfassen. Im Fall der Kugelwellen bezogen auf den Mittelpunkt der Helix ergibt sich eine
umhiillende Kugel mit minimalem Radius 7, = [r'(1)| = |r/(=1)] = /72 + (wp/2)2.
Fiir Gebiete innerhalb dieser Kugel existiert kein Modell der Helix durch am Ursprung
konzentrierte Multipole. Dieser Umstand stellt jedoch nur eine geringe Einschréankung fiir

die in dieser Arbeit untersuchten Strukturen dar.

Nach Gleichung (3.3) ist die Helixachse festgelegt. Prinzipiell kann die Parametrisierung
fiir andere Orientierungen angepasst werden. Ein effektiver Weg im Hinblick auf die nétige
Rechenzeit ist hingegen die zweimalige Anwendung des Rotationstheorems aus Gleichung
(2.22). Diese besteht zuniichst in der Umentwicklung der anregenden stehenden Wellen
in solche beziiglich der gedrehten lokalen Koordinaten der Helix. Beziiglich dieses Koor-

dinatensystems kann die aus der Parametrisierung (3.3) erhaltene T-Matrix angewendet
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3.2 Numerische Lésung fiir den Strom

werden. Anschliefend werden die gestreuten Kugelwellen in das globale Koordinatensys-
tem riickiiberfiihrt. Beide Abbildungen konnen durch Matrizenmultiplikationen realisiert
werden. Das Vorgehen ist im Kontext der dargestellten Theorie selbsterkldrend, so dass

auf eine mathematische Darstellung verzichtet wird.

3.2 Numerische Losung fiir den Strom

Im Folgenden wird ein Draht endlicher Leitfihigkeit o betrachtet. Bei Einfall einer an-
regenden elektromagnetischen Welle muss auf der Oberfliche des Drahtes die Stetigkeit
des tangentialen elektrischen Feldes gewéhrleistet sein. Mit Hilfe des Einheitsvektors n

senkrecht zur Stromdichte J 4 ldsst sich diese Bedingung wie folgt schreiben:

1
nx (ESt'reu + EAm") - EJA : (38)

Im Kontext der in dieser Arbeit genutzten Ndherung fiir diinne Drihte, also der Repra-

sentation der Stromdichte J, durch einen Linienstrom I/, ergibt sich

nx EAn'r =-nx EStreu + IddlZ : (39)

Die Geometrie und die endliche Leitfdhigkeit des Drahtes spiegeln sich in der inneren

Impedanz pro Langeneinheit

%Z _J. 1/ QJ;’L; ( Ber(g) + jBei(q) ) mit ¢ = a\/27 fuo (3.10)

a dider(q) +jd%Bei(q)

wider |63, Kap. 5.18]. Die Definitionen der beiden Kelvin-Funktionen Ber(q) und Bei(q)
finden sich in [40]. Der Ausdruck fiir den Impedanzbelag beriicksichtigt den Skin-Effekt,
d.h. die Stromverdriangung im Inneren des runden Leiters. In Analogie zur Niaherung fiir
diinne Drihte wird auch hier bei der Herleitung eine achssymmetrische Stromverteilung

angenommen, die keine Querkomponente aufweist.

Zur Losung von Gleichung (3.9) muss das gestreute elektrische Feld als Funktion des
Stromes I ausgedriickt werden. Aus Gleichung (2.14) und den Maxwellschen Gleichungen

folgt mit einigen Umrechnungen:

Egireu = —jwit /// (; - %VV) g(r,x')J(x") dV’ (3.11)

= —jon [ (1= 5OV ) sler@OREOIE) 4 (312)

1
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3 Modell der helixformigen Einschliisse

Der unbekannte Strom steht im Integranden der letzten Gleichung. Eine analytische Ex-
traktion des Stromes aus der Integralgleichung ist folglich nicht méglich. Fiir den Fall einer

verlustfreien Helix (0 — o00) ist in [64] eine numerische Implementierung der Lésung von
n x EAm“ =—nx EStreu (313)

mit Eg,,., aus Gleichung (3.12) zu finden. Sie basiert auf der Methode der gewichteten
Residuen! [65|. Die Darstellung aller Details ist an dieser Stelle nicht ergiebig, so dass
lediglich Grundziige vorgestellt werden. Ausgangspunkt ist die Darstellung des Stromes

als Summe von Basisfunktionen

Vmaz 2

I () = > ) ivaBuu(s) (3.14)

v=1 [=1
mit
B,i(s") = cos((v—1/2)n¢)

fir —1<s<1. 3.15
B,s(s") = sin(vms') } - (3.15)

Mit Hilfe von sogenannten Testfunktionen, die hier als Spezialfall wie die Basisfunktionen
gewéhlt sind (Galerkin-Methode [66]) und der Definition und Anwendung von linearen
inneren Produkten erhilt man ein lineares Gleichungssystem fiir die unbekannten Koeffi-
zienten i,;. Dieses wird wie alle linearen Gleichungssysteme der vorliegenden Arbeit mit
Hilfe einer LU-Zerlegung [67,68] gelost.

Die Linearitat der inneren Produkte erlaubt die getrennte Auswertung der rechten Seite
von Gleichung (3.9), so dass der Fall mit Leitungsverlusten auf der Losung fiir die ver-
lustlose Helix aufbaut. Es ergibt sich, dass aufgrund der Orthogonalitit der Test- und
Basisfunktionen lediglich die Diagonalelemente der Systemmatrix fiir den verlustlosen Fall

(ZO) korrigiert werden miissen. Fiir den verlustbehafteten Fall lautet sie:

d
Z,=Z,+(GoIIL=Z,

d Z)y/ (romw)? + (wp/2)2L . (3.16)

H@

In [64] wird das Konvergenzverhalten der Losung in Abhéngigkeit von der Anzahl der
Basisfunktionen v,,,, ausfiihrlich behandelt. Fiir den folgenden Teil der Arbeit wird ange-
nommen, dass das prinzipielle Verhalten der Konvergenz unter Einbeziehung von Draht-
verlusten nicht deutlich abweicht und der Parameter v,,,, immer geeignet gewahlt ist, falls

er nicht explizit erwidhnt wird.

"Weitaus hiufiger wird der Ausdruck ,Momentenmethode“ als Synonym gebraucht. Dies wird in dieser
Arbeit unterlassen, um Verwechslungen mit den untersuchten Multipolmomenten zu vermeiden.
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3.3 Helix im Kugelvolumen

stehende Welle

Wanderwelle

Bild 3.2: Darstellung von Transmission und Reflektion an einer Kugel. a) Stehende Welle

als Anregung, b) Fall einer in der Kugel nach aufen laufenden Wanderwelle.

3.3 Helix im Kugelvolumen

Um ein Material mit regellos verteilten, d.h. rein zufillig orientierten und positionierten,
Helices technisch realisieren zu koénnen, bietet sich das Einbringen jeder einzelnen He-
lix in ein kugelférmiges Wirtsmaterial an |69]|. Diese Vorgehensweise wird auch bei der
experimentellen Validierung in Kapitel 7.3 angewendet. Fiir einen Vergleich mit der Simu-
lation muss allerdings das Helixmodell angepasst werden, da die Bestimmung der T-Matrix
gemif den vorigen Abschnitten zunéchst auf unendlich ausgedehntem Raum konstanter
Materialeigenschaften beschrankt ist. Zu diesem Zweck werden vorab die Eigenschaften

einer Kugel im freien Raum behandelt.

Eine isotrope Kugel der Materialparameter €; und g ist umgeben vom Hintergrundma-
terial e5 und po (siehe Bild 3.2). Auch hier ist die Entwicklung der Felder in Kugelwel-
len vorteilhaft. Die Eigenschaften des Materials spiegeln sich lediglich in den sphérischen
Funktionen, also in der radialen Abhéngigkeit, wider. Bei der Betrachtung von Randbedin-
gungen auf der Kugeloberfliche entspricht diese Tatsache einer vollstindigen Entkopplung
aller Moden, so dass eine getrennte Betrachtung der Moden zuléssig ist. Der Fall der An-
regung mit einer Kugelwelle ist in Bild 3.2a illustriert. Im Allgemeinen kommt es an der
Kugeloberfiche (r = 1) sowohl zu einer Reflektion der ,einfallenden* stehenden Wellen
Hi,m und Mim als auch zur Transmission. Es ergeben sich Wanderwellen im &duferen
Gebiet und stehende Wellen innerhalb der Kugel. Geméfs den vorher definierten Darstel-

lungen fiir anregendes und gestreutes Feld ergeben sich auf der Kugeloberfliche fiir alle
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3 Modell der helixformigen Einschliisse

Winkel 6 und ¢ die Beziehungen

Crm (N (Ko, 7)) + Ry m NI (Koy ) = TN (ke re)

= n,m 21,n=—"nm 21l,n="Inm

(3.17)
d’n,m (Mz,m(k)Qu Tk) + Rgangm(kQa Tk?)) = TﬁiMi’m(kh Tk) y

wobei zur Kennzeichnung des betrachteten Gebietes die Abhéngigkeit der Kugelwellen von
der Wellenzahl k; und k5 explizit angegeben ist. Die Reflektions- und Transmissionskoef-
fizienten Ry;, und 75, lassen sich getrennt fiir TM- und TE-Moden aus der Stetigkeit
fiir tangentiales elektrisches und magnetisches Feld berechnen [50, Kap. 3.5|. Sie sind, ab-
gesehen von den Materialparametern und dem Kugelradius rj, nur von der Ordnung n,
nicht aber von m abhéngig. Aus (3.17) ldsst sich das Verhiltnis der komplexen Amplitu-
den der gestreuten Wellen zu denen der anregenden Welle (¢, ,,, und d,, ,,) direkt ablesen.
Die T-Matrix einer isotropen Kugel bestimmt sich daher aus den Reflektionskoeffizienten

Rg% und RQTfn, die auf der Hauptdiagonalen platziert sind.

Bild 3.2b verdeutlicht den Fall einer nach aufen laufenden Wanderwelle (z.B. aufgrund
einer Quelle) in Medium 1. An der Grenzschicht kommt es zur Reflektion und es bildet sich
eine stehende Welle in Medium 1 aus. Gleichzeitig entsteht eine Wanderwelle in Medium 2.

Wie zuvor lésst sich analog fiir die Feldkomponenten auf der Kugeloberfliche schreiben:

TN (ko ri) = apm (NI (R re) + RISENG (K, me)

12,n=—n,m

(3.18)
TgiMim(kz, %) = bum (Mﬁm(kl, k) + R{ani,m(kl, ) -

Fiir die Reflektions- und Transmissionskoeffizienten R;5, und T3y, gilt dhnliches wie zuvor:
Sie lassen sich aus den Randbedingungen der tangentialen elektrischen und magnetischen
Felder berechnen. Der Ubersichtlichkeit halber wird hier wie im Fall a) auf eine Dar-
stellung der Herleitung verzichtet. Analytische Ausdriicke fiir simtliche hier aufgefiihrten
Reflektions- und Transmissionskoeffizienten finden sich in [50]. Die in der Literaturstelle
dargelegten Zusammenhénge beziehen sich im TM-Fall allerdings auf die Komponenten
des magnetischen Feldes. Geméf Gleichung (2.12) und (2.13) leitet sich das magnetische
Feld in dieser Arbeit aus dem elektrischen Feld ab. Bei der hier verwendeten Konvention
fiir die Entwicklungskoeffizienten a,, ,,,, by m, Cnm und d,, ,,, ergibt sich, dass die Transmis-

sionskoeffizienten T4 bzw. TLM aus [50] angepasst werden miissen.

Mit den Reflektions- und Transmissionskoeffizienten aus den Gleichungen (3.17) und (3.18)
stehen nun analytische Mittel zur Beschreibung von Randbedingungen an der Kugelober-
fliche zur Verfiigung. Ist eine Helix, wie in Bild 3.3, in einen kugelférmigen Einschluss
eingebettet, sind die Randbedingungen auf einer imaginiren Kugeloberfliche um die He-
lix unter der Voraussetzung formulierbar, dass die T-Matrix aus der Berechnung fiir ein

Hintergrundmaterial &1, py vorliegt. Prinzipiell ldsst sich daraus, wie in [50, Kap 3.6] fiir
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3.3 Helix im Kugelvolumen

Bild 3.3: In Medium 1 eingebette Helix.
Darstellung aller bendtigten Reflektions- und

Transmissionsparameter.

| Ty

sphérisch geschichtete isotrope Einschliisse durchgefiihrt, die T-Matrix des gesamten Ein-
schlusses (T ) beziiglich Medium 2 berechnen. Im Gegensatz zu einer isotropen Kugel ist
die T-Matrix einer Helix (T) keine Diagonalmatrix. Daher konnen die Moden nicht mehr
getrennt voneinander betrachtet werden. Das leicht angepasste Vorgehen wird nachfolgend

beschrieben.

Entsprechend Abschnitt 3.1 wird gges spaltenweise berechnet, d.h. die Anordnung wird
jeweils mit nur einer Kugelwelle Hi’m oder Mim angeregt. FEine stehende Welle in Me-
dium 1 ergibt sich zugleich aus der Transmission der Anregung mit T4 bzw. THE und
der Reflektion der von der Helix erzeugten Wanderwellen an der Grenzschicht. Fasst man
die Koeffizienten aller angeregten stehenden Wellen in Medium 1 im Vektor d, und die
benétigten Reflektionsparameter R7)M und RTF als Diagonalelemente der Matrix r, zu-
sammen, ergibt sich:

d, =ty +r,-T-d;. (3.19)

=12 =
Auf gleiche Weise lassen sich alle Transmissionsparameter T5M und T'LE durch die Dia-
gonalmatrix t  reprasentieren. Fiir die Koeffizienten der gestreuten Wellen in Medium 2
folgt:
byes =1y +t,-T-d;. (3.20)

Die Vektoren t,; und r,, enthalten jeweils nur einen von Null abweichenden Eintrag:
Den zur anregenden Mode entsprechenden Transmissionsparameter T4 oder TLE bzw.
Reflektionsparameter RIM oder R3F. Losen der Gleichung (3.19) nach d; und Einsetzen
in (3.20) fithrt schlieflich zu

by, =1y + t, I I-r '2)71 "ty (3.21)

g = = =12

als entsprechende Spalte der Matrix gges.
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3 Modell der helixformigen Einschliisse

3.4 Beispiele

Die im Folgenden gegebenen Beispiele dienen zum einen der Verifikation und Plausibili-
tatspriifung der numerischen Implementierung und zum anderen der ersten Einschéitzung
der Stérke bzw. Relevanz der verschiedenen Multipolfelder. Dabei werden zuerst eine ein-
zelne Helix und spéter die Interaktion zweier Helices betrachtet. Diese grundsétzlichen
Betrachtungen werden ohne eine umbhiillende homogene Kugel geméf vorigem Abschnitt
durchgefiihrt. Die korrekte programmtechnische Umsetzung letzterer wird in Kapitel 4

untersucht.

3.4.1 Streuverhalten einer einzelnen Helix

gleich wird ein fiir den Entwurf von Antennen verbreitetes und lizenzfreies Programm
(Numerical Electromagnetics Code 2 (NEC-2)) |70| herangezogen, das ebenfalls auf der
Methode der gewichteten Residuen beruht. Wahrend im Rahmen der Nidherung fiir diinne
Dréhte Verluste ebenso gemifs Gleichung (3.10) behandelt werden, besteht der wesent-
liche Unterschied der Implementierung in der Art der verwendeten Basisfunktionen. Sie
sind jeweils beziiglich eines linearen Teilsegmentes der Struktur definiert. Auf die genaue
mathematische Formulierung wird an dieser Stelle jedoch nicht niher eingegangen (siehe
dazu |70]).

Gegenstand der Untersuchung ist eine rechtsgedrehte Helix mit insgesamt 5 Windungen
und parametrisiert durch Gleichung (3.3). Fiir die Helix gilt ferner: ry = 0,8525 mm,
a = 0,05 mm und p = 0,35 mm. Als Anregung wird eine in Richtung der Helixachse
polarisierte und in negative y-Richtung fortschreitende, homogene, ebene Welle gewihlt.
Ausgewertet wird der Riickstreuquerschnitt (engl.: Radar Cross Section (RCS)) - eine

Fernfeldgrofe, die anregende und gestreute Leistung in Beziehung setzt |71]:

RCS = lim g2 Esrenl’ (3.22)

roo | E anyr |?
Dafiir muss das Streufeld auf der positiven y-Achse berechnet werden, und zwar in solch
einer Entfernung r von der Helix, dass nur noch die ~ 1/r-Abhéngigkeit der Feldstérke
relevant ist. Bild 3.4 vergleicht die Ergebnisse, erhalten durch Anwendung von Gleichung
(3.12) und aus NEC-2 fiir verschiedene elektrische Leitfihigkeiten des Drahtes. Dargestellt
ist lediglich ein sehr kleiner Frequenzbereich um die Resonanz. Man sieht insgesamt eine

sehr gute Ubereinstimmung. Die grofiten Abweichungen lassen sich fiir den Fall einer ideal
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Bild 3.4: Vergleich der Riickstreuquerschnitte einer Helix (ry = 0,8525 mm, a = 0,05 mm
und p = 0,35 mm) fiir verschiedene Leitfihigkeiten (0 = 1,1 MS/m, 0 = 11 MS/m, ¢ =
58 MS/m und o0 — o).

leitenden Helix erkennen. In dem Fall betrigt der Frequenzversatz der Maxima ca. 0,8 MHz,

was einem relativen Fehler von weit unter 1 %o entspricht.

An dieser Stelle muss erwiahnt werden, dass sowohl die Implementierung mit harmoni-
schen Ganzbereichsfunktionen als auch die Umsetzung in NEC-2 mit stiickweise definierten
Funktionen nicht absolut konvergiert, d.h. eine Erhohung der Anzahl an Basisfunktionen
bzw. Segmenten iiber eine gewisse Zahl hinaus kann zur Divergenz der Losung fiihren.
Es muss also jeweils sichergestellt werden, dass die erhaltene Lésung stabil ist. In obigem
Beispiel wurden insgesamt 10 Ganzbereichsfunktionen (v,,, = 5) genutzt, wohingegen die

Ergebnisse aus NEC-2 durch Darstellung der Helix mit 134 Segmenten erzielt wurden.

Dass die Wahl harmonischer Basisfunktionen geeignet ist, verdeutlicht Bild 3.5, welches
die Stromverteilung entlang des Drahtes einer ideal leitenden Helix in Abhéngigkeit von
dem Parameter s’ zeigt. Ausrichtung und Anregung der Helix sind wie zuvor gewéhlt. Fiir
einen {iibersichtlichen Vergleich sind die Verldufe fiir verschiedene Frequenzen auf den je-
weiligen Maximalwert normiert. In einem weiten Bereich um die technisch haufig genutzte
erste Resonanz (f ~ 4,96 GHz) éndert sich die Stromverteilung nur wenig und ist weit-
gehend kosinusformig. Somit bilden schon Basisfunktionen mit kleinem Parameter v den

tatsdchlichen Strom gut ab.

Das Ziel der nachfolgenden Untersuchung ist eine Antwort auf die Frage, wie hoch die
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3 Modell der helixformigen Einschliisse

1,0 ]
08 i
064 i
HE
0.4 i
] 4 GHz
------- 4,96 GHz
0.2 ——  B6GHz N
0,0 4"
T T I T I T T I T I T I T I T I T

T T
-0 -08 -06 04 -02 00 02 04 06 08 10
S|

Bild 3.5: Auf den jeweiligen Maximalwert normierte Stromverteilung auf der Helix. Die
Berechnung erfolgte mit Hilfe der Methode der gewichteten Residuen, wobei die Anregung
und die Geometrie gemaf Bild 3.4 gewdhlt wurden.

Ordnung nggre, der Multipolfelder sein muss, um das gestreute Feld einer Helix mit einer
definierten Genauigkeit wiederzugeben. Die Helix wird erneut wie in Bild 3.4 angeregt.
Fiir konsistente Ergebnisse ist es vorteilhaft, das gestreute Feld nach Gleichung (3.12),
fortan als Referenzfeld Ep, , bezeichnet, mit dem Feld berechnet iiber die T-Matrix und
Gleichung (2.35) zu vergleichen. Die Grofe der T-Matrix wird dabei variiert. Um eine mog-
lichst allgemeine Aussage zu erhalten, findet eine Abtastung des Streufeldes an mehreren
Punkten statt, die exemplarisch auf einer imaginiaren Kugel um die Helix positioniert sind.
Die Streufelder variieren umso mehr in 6- und ¢-Richtung, je hoher die Ordnung n ist.
Daher ist eine von n abhidngige Verteilung der Punkte sinnvoll. Diese Verteilung erfolgt
analog zum Vorgehen bei der Vermessung von Antennen im Nahfeld [48], bei dem zur
zweifelsfreien Identifikation von Kugelwellen das Abtasttheorem zu erfiillen ist. Demnach
ist das maximal erlaubte Winkelinkrement fiir Abtastung des Feldes in 6- und ¢-Richtung:

2

AG:A¢:72N+1,

(3.23)
wobei N die héchste Ordnung der tatsdchlich abgestrahlten Kugelwellen ist. Im Folgenden
wird diese Forderung durch die Wahl von N = ngy.., + 3 sogar iibertroffen. Bild 3.6
zeigt die Abtastpunkte auf der Kugeloberfliche fiir den Fall, dass Kugelwellen bis zur
Ordnung ngy.., = 3 Beriicksichtigung finden. Als Maf fiir die Ubereinstimmung der beiden
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3.4 Beispiele

Bild 3.6: Abtastpunkte zur Be-
stimmung der Giite der Multipol-
Approximation fiir den Fall N =

6 = ngiren + 3
Feldverteilungen an jedem Punkt ¢ wird mit
61; _ ‘Streu,z ~Ref,i . ‘ ~Ref,i (324)
ERef,i ERef,ma:(;

ein relativer Fehler definiert, der Betrags- als auch Phaseninformationen vergleicht. Die
abschliefende Skalierung auf den gréften Wert aller Punkte (|Eg,;,,4,|) beriicksichtigt
eine unterschiedlich grofte Relevanz. Auf diese Weise fallen Fehler bei hohen Feldstarken
starker ins Gewicht als solche bei niedrigen. Bild 3.7 zeigt die bendtigte Ordnung ngieq,
die fiir 99% aller Punkte einen relativen Fehler ¢ sicherstellt, der unter einer definierten
Obergrenze liegt. Der Abstand r der Punkte vom Helixmittelpunkt ist hierbei normiert
auf den minimalen Abstand 7,,,, fiir den das Multipol-Helixmodell noch Giiltigkeit be-
sitzt. Allen Kurven gemein ist das starke Ansteigen der Ordnung bei kleiner werdenden
Abstdnden ein Umstand, der der Singularitit des Feldes jedes Elementardipols geschul-
det ist. Weit ab von der Helix reduziert sich das Streuverhalten auf das eines Dipols. Die
Daten aus Bild 3.7 beziehen sich auf eine Frequenz von f = 4,96 GHz - der Resonanz-
frequenz der ideal leitenden Helix. Das Verhalten dndert sich aber kaum in einem weiten
Bereich um die erste Resonanz, was letztlich an der sich nicht d&ndernden Verteilung des
Stromes ldngs des Drahtes liegt. Obige Untersuchung wurde zunéchst mit einer quadrati-
schen T-Matrix durchgefiihrt, d.h. es fanden jeweils gleich viele anregende wie gestreute
Kugelwellen Beriicksichtigung. Eine Erh6éhung der anregenden Moden unter Beibehaltung
des Parameters ngy., verandert die Streufelder nicht oder nur sehr geringfiigig. Der Ein-
fachheit halber wird daher fiir den Rest der Arbeit immer eine quadratische T-Matrix
angesetzt.

Die gleiche Untersuchung wie in vorherigem Abschnitt wird nun fiir Helices unterschied-

licher Windungszahlen unternommen. Die genauen Geometriedaten sind in Tabelle 3.1
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Bild 3.7: Benétigte Ordnung der Multipole zur Erfiillung der verschiedenen Fehlerklassen.

Typ i ii iii iv % vi vii viii
Windungen w Y 4 3 2 Y 3 ) 3
Radius rg in mm | 0,8525 | 1,06 | 1,41 | 2,10 | 0,85 | 1,41 | 0,85 | 1,41
Steigung p in mm | 0,35 0,53 | 0,94 | 2,10 | 0,23 | 0,63 | 0,49 | 1,34

Famin il TN 1,22 | 1,50 | 1,99 | 2,97 | 1,03 | 1,70 | 1,49 | 2,46
Drahtléinge in mm | 26,84 | 26,72 | 26,73 | 26,72 | 26,73 | 26,64 | 26,82 | 26,88
2o/ (wp) 0,97 | 1,00 | 1,00 | 1,00 | 1,48 | 1,49 | 0,69 | 0,70

Tabelle 3.1: Parameter der untersuchten Helices (Drahtradius a = 0,05 mm).

gegeben. Alle Helices sind so dimensioniert, dass sie in etwa die gleiche Drahtlange, folg-
lich auch vergleichbare Resonanzfrequenzen besitzen. Bild 3.8 zeigt die Ergebnisse fiir die
Helixtypen i-iv. Zur besseren Ubersicht wurde dabei eine leicht andere Klassifizierung der
Fehler gewéhlt. Zudem reprisentieren nicht ganzzahlige Ordnungen ngy..,,+1/2 die Beriick-
sichtigung aller Multipolmomente mit n = ngy., und der elektrischen Multipolmomente
(nggrew + 1)-ter Ordnung. Auffallend ist, dass fiir Bereiche nah an der Helix (r < 47,,:,)
meist das elektrische Dipolmoment zur Verbesserung der Multipol-Approximation bei-
tragt; nur vereinzelt wird sie durch magnetische Momente verbessert. Bei groferen Entfer-
nungen sind elektrisches und magnetisches Dipolmoment gemeinsam verantwortlich fiir das

Streufeld. Dies ist einsichtig, da die hervorgerufenen Dipolmomente eines chiralen Streu-
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Bild 3.8: Benotigte Ordnung der Multipole fiir verschiedene Helixtypen aus Tabelle 3.1.

korpers iiber die Dipolpolarisierbarkeiten a und a fiir die spezielle Zusammenhinge
gelten [72|, miteinander verkniipft sind. An dieser Stelle erweist sich die Skalierung auf
den minimalen Radius 7,,, als vorteilhaft, da das Streuverhalten der Helices vom Typ
i bis iv grofe Ahnlichkeit besitzt. Obwohl diese Helices unterschiedliche Geometrien be-
sitzen, gibt es einen Parameter, den alle Helices teilen: Den Quotienten aus Durchmesser
und Hohe (2r¢/(wp)). Bild 3.9 zeigt die Ergebnisse fiir die Helices vom Typ v bis viii,
die zwar andere, aber jeweils paarweise vergleichbare Verhéltnisse von Durchmesser zur
Hohe aufweisen. Die erhaltenen Kurven untermauern, dass das Multipol-Streuverhalten
einer einzelnen Helix wesentlich von dem Parameter r,,;, und dem Quotienten aus Durch-
messer und Hoéhe bestimmt wird. Die Frequenz hat in einem weitem Bereich um die erste
Resonanz nur sehr wenig Einfluss. Zudem ldsst sich sagen, dass die durch die Abbildun-
gen 3.7-3.9 vorgestellten Untersuchungen unabhingig von den Drahtverlusten sind. Diese
Tatsache lasst sich damit erkldren, dass der Strom sich entlang des Drahtes, wie in Bild
3.5 fiir eine ideal leitende Helix illustriert, bei Einbeziehung endlicher Leitfdhigkeit nur in

der maximalen Amplitude verdndert, nicht aber in der Form.

3.4.2 Interaktion zweier Helices

Bei der Modellierung der gegenseitigen Kopplungen zweier Helices interessiert vor allem,
dass das Streufeld einer Helix auf der Oberfliche der jeweils anderen korrekt vorliegt.
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Bild 3.9: Benoétigte Ordnung der Multipole fiir Helices unterschiedlicher Verhéltnisse von
Durchmesser zur Hohe (siehe Tabelle 3.1).

Bild 3.10: Zufillige Position der

Helices.

D

Gemif den Ausfithrungen des vorigen Abschnitts ist im Rahmen eines gewissen Fehlers
prinzipiell festgelegt, bis zu welcher Ordnung Multipole zur Beschreibung herangezogen
werden miissen. Die Form des aufgewickelten Drahtes bedingt, dass mit verschiedenen
Abstdnden zum Zentrum einer Helix abgetastet wird. Daher sind die Verhéltnisse bei
der Interaktion zweier Helices etwas komplexer, zumal sich eventuelle Fehler abhingig
vom betrachteten Drahtabschnitt unterschiedlich stark bemerkbar machen kénnen. Im
Folgenden sollen einige wichtige Aspekte daher ausschliefslich an einer einzigen Helixsorte

aufgezeigt werden.

Zwei Helices vom Typ i aus Tabelle 3.1 sind wie in Bild 3.10 angeordnet. Die Position
und die Orientierung der beiden Helices sind beliebig gewéhlt. Hierbei wird die Distanz
zwischen den Helixmittelpunkten zunéchst fest auf den Wert D = 27,,;, + 3a eingestellt,

so dass zwischen den Drihten in jedem Fall ein Mindestabstand von einem Drahtradius
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Bild 3.11: Berechneter Riickstreuquerschnitt einer zufélligen Anordnung geméfs Bild 3.10.

a sichergestellt ist. Ein elektrischer Kontakt ist somit nicht mdéglich. Die Anordnung ist
zudem am globalen Ursprung zentriert, der hier nicht explizit eingezeichnet ist. Bild 3.11
zeigt den aus der Losung des Gleichungssystems (2.37) erhaltenen Riickstreuquerschnitt
einer typischen Anordnung. Zum Vergleich wird zusétzlich das Resultat aus einer konsis-
tenten Erweiterung des in Kapitel 3.2 bzw. in [57| aufgezeigten Verfahrens fiir zwei Helices
aufgefiithrt. In Bild 3.11 ist letzterer Ansatz durch den Ausdruck ,direkt* gekennzeichnet.
Die Helices sind wieder ideal leitend gewahlt. Auffallend ist, dass die Helices so stark mit-
einander verkoppelt sind, dass sich die Resonanz aufspaltet. Wie erwartet verbessert sich
die Ubereinstimmung, wenn die Ordnung der beteiligten Multipole erhéht wird. Hier ist
sogar schon eine gute Approximation fiir ngy.., = 3 und eine sehr gute fiir ng;., = 5 7u
erkennen. Der Fall ng;.., = 1 zeigt deutlich, dass die Fehler frequenzabhéngig sind, was das
Treffen einer allgemeinen Aussage wie im vorigen Abschnitt erschwert. Eine Méglichkeit,
die bendtigte Multipolordnung trotzdem zu klassifizieren, wird nachfolgend vorgestellt.
Insgesamt werden 500 verschiedene und zufillig gew#hlte Anordnungen wie in Bild 3.10
berechnet. Die Lage der unteren und oberen Resonanzen wird abhingig von ng.e, sta-
tistisch ausgewertet, indem die Methode der gewichteten Residuen erneut als Referenz
gewahlt wird. Die Genauigkeit der Bestimmung der Resonanzfrequenz ist auf den kleins-
ten Frequenzschritt beschriankt. Hier ist er zu A f = 2,5 MHz gewihlt. Die Haufigkeiten der
berechneten Resonanzdifferenzen von oberer und unterer Resonanzfrequenz, ausgedriickt
als Vielfaches des Inkrements Af, sind in Bild 3.12 illustriert. Das Einbeziehen der Qua-
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Bild 3.12: Abweichungen der Resonanzfrequenzen von der Referenz in Abhéngigkeit von

der Ordnung der hoch

sten Multipole.

2) bewirkt wie zuvor bei den Untersuchungen zu einzelnen Helices

n =

drupolmomente (

erbesserung der Multipoldarstellung. Gleiches gilt

und in Bild 3.11 keine nennenswerte

4), weshalb sie hier nicht aufgefiihrt sind.

fiir Multipolmomente vierter Ordnung (n

5 sind nur noch kleine

Wichtiger erweisen sich die ungeraden Ordnungen. Fiir ng.c,

Abweichungen in der Grofke von einem bis drei Frequenzschritten vorhanden. Bezogen auf

f

4,96 GHz, der Resonanzfrequenz einer isolierten Helix, wiirde eine Abweichung von

einem Frequenzinkrement einen relativen Fehler von ca. 0,05 % bedeuten.

Obige Untersuchung wird nun getrennt nach elektrischen und magnetischen Multipolen
durchgefiihrt. Zur besseren Ubersicht und Vergleichbarkeit ist in Bild 3.13 jedoch lediglich

die absolute Héufigkeit von Abweichungen bis zu maximal einem Frequenzschritt darge-

stellt. Wie im vorigen Abschnitt ist auch hier eine Auftragung nicht ganzzahliger Ordnun-

gen gewahlt. Damit ist z.B. ngye, = 1.5 gleichbedeutend mit der Beriicksichtigung von

elektrischen und magnetischen Dipol- und den elektrischen Quadrupolmomenten. Zudem

sind neben dem Verlauf fiir D = 2r,,;, + 3 auch die Ergebnisse fiir weiter entfernt vonein-
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Bild 3.13: Helixtyp i: Haufigkeit der Abweichungen von maximal einem Frequenzschritt
fir a) D = 27, + 3a, b) D = 31, und ¢) D = 4r,,,,.

ander platzierte Helices (D = 3r,,;, und D = 4r,,;,) dargestellt. Aus Bild 3.13 lassen sich
im Wesentlichen drei Punkte ablesen:

e Vergrofert man den Abstand der Helices zueinander, sinkt die Ordnung der erfor-
derlichen Multipolmomente sehr schnell, wie aus den vorigen Ergebnissen erwartet

werden kann.

e Die Bedeutung des magnetischen Dipolmomentes wurde schon bei den Untersuchun-
gen einer einzelnen Helix aus dem vorigen Abschnitt erwidhnt. Dass der kreisformige
Strom auf der Helix inhédrent zu einem starken Dipolmoment fiihrt, ist besonders im
Fall ¢) unverkennbar. Davon abgesehen haben héhere magnetische Momente wie im

Fall einer einzelnen Helix nur sehr wenig Einfluss auf die Losung.

e Inshesondere in den Féllen a) und b) wird deutlich, dass hier ungerade Ordnungen
elektrischer und magnetischer Momente eine stirkere Rolle bei der Verbesserung
der Approximation besitzen als gerade Ordnungen. Um auszuschlieffen, dass sich in
diesem Verhalten die ungerade Windungszahl der Helix widerspiegelt, wurde obige
Untersuchung auch fiir eine Helix vom Typ ii aus Tabelle 3.1, folglich eine Helix
mit vier Windungen, durchgefiihrt. Die entsprechenden Ergebnisse finden sich im
Anhang E. Prinzipiell sind die erhaltenen Kurven dhnlich, allerdings ist die in Bild
3.13 im Fall a) erkennbare leichte Verbesserung der Approximation fiir das elek-
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3 Modell der helixformigen Einschliisse

trische Multipolmoment vierter Ordnung bei Typ ii stirker ausgepréigt. Gemein ist
beiden Untersuchungen jedoch die geringe Signifikanz der Momente zweiter Ordnung
— ein Umstand, der fiir eine Helix stark abweichender Abmessungen ebenso in [46]

festgestellt wurde.

Zieht man in Betracht, dass im Fall a), einem Fall sehr dicht benachbarter Helices, eine
gute Ubereinstimmung schon fiir ng;e, = 5 zu beobachten ist, wird deutlich, dass die In-
teraktion im Prinzip eine Art Mittelungsprozess ist: Die Fehler des gestreuten Feldes einer
Helix auf der Oberfliche der anderen machen sich wegen der Uberlagerung mit méglicher-
weise andersphasigen Fehlern an anderen Stellen der Oberfliche nicht stark bemerkbar.
Das Verhalten einer Einzelhelix fiir » — r,,;,, aus den Bildern 3.7 bis 3.9 ist demnach
nur bedingt geeignet zur Bewertung der fiir die zur Beschreibung der Interaktion notigen
Ordnung ng.... Eine tiefer gehende Quantifizierung des erwidhnten Mittelungsprozesses ist
an dieser Stelle nur wenig erkenntnisfordernd. Da zudem die folgenden Kapitel weiteren

Einblick bieten, wird dieser Aspekt hier nicht ndher beleuchtet.
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4 Modell einer periodischen Schicht

Ein wesentlicher Eckpfeiler fiir die angestrebten Untersuchungen, d.h. fiir die Berechnung
unendlich ausgedehnter Schichten, ist die Implementierung periodischer Randbedingun-
gen. Zunichst wird daher vorgestellt, wie Periodizitdt im Streuansatz Beriicksichtigung
finden kann. Die Extraktion von Reflektions- und Transmissionsparametern sowie die Be-
trachtung eines metallischen Schirms hinter einer Schichtanordnung bilden weitere Schwer-
punkte dieses Kapitels. Ein Vergleich mit Ergebnissen, die mit Hilfe eines kommerziellen
Programmpaketes erzielt werden, gibt schlieflich Aufschluss iiber Genauigkeit und Kon-
sistenz der Losung, nicht nur was die numerische Implementierung betrifft, sondern auch

in Hinblick auf die verwendete Nédherung fiir diinne Drihte aus dem vorigen Kapitel.

4.1 Randbedingungen im Streuansatz

Bild 4.1 veranschaulicht den in dieser Arbeit betrachteten Fall. Fiir die untersuchten
Schichten werden die Streukdrper zundchst innerhalb einer am Ursprung zentrierten qua-
derformigen Einheitszelle (grau dargestellt) angeordnet. Die Schicht ergibt sich anschlie-
fsend durch periodisches Platzieren dieser Einheitszelle in z- und y- Richtung. Die Mittel-

punkte aller Zellen lassen sich demnach durch

r,, = blpe, +qe,)lp.q € Z} (4.1)

beschreiben. Bei Einfall einer homogenen ebenen Welle mit Wellenvektor
(4.2)

ergibt sich nach dem Theorem von Floquet [73] fiir die hervorgerufenen Stromverteilungen

jeder Einheitszelle J, :

Jpa=Joo" e IhaPbe kb — Joo - e KT, (4.3)

Die Streukoeffizienten der Einschliisse aus Zelle (p,q) sind damit aus denen der Einheits-

zelle am globalen Ursprung, versehen mit dem Phasenfaktor e /%%r.a, berechenbar. Fiir
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4 Modell einer periodischen Schicht

b
/ / / / / Bild 4.1: Zweidimensionale periodi-
/ / / / / / | v sche Wiederholung der quaderformi-
b// / / / / yr V¢ gen Einheitszelle der Grundfliche b?
/ / / / / und Héhe d.

L [ 1 Vd

den Fall, dass jeder Zelle insgesamt N, Partikel zugeordnet sind, bestimmt sich der Vektor

b, jedes Partikels 7 in Analogie zu Gleichung (2.37) aus dem linearen Gleichungssystem

Nc
bi = IZ : (dl +K’i + Z g(L _£j> : bg) : (4‘4)

Mit dem Vektor X, werden die Felder aller Partikel, die aufterhalb der urspriinglichen Zelle

platziert sind, erfasst. Er berechnet sich zu:

o0

Z Z Op.q (e LMZa r)~bj> (4.5)

p=—00 g=—00

0 firp=qgq=0
5p,q = { 1 . (4-6)
sonst

Nachteilig ist, dass der umklammerte Ausdruck in Gleichung (4.5) fiir jede Kombination
der Variablen p und ¢ ausgewertet werden muss. Zudem erfordert eine Anderung der
Zellgeometrie, der Einfallsrichtung oder der Positionen der Partikel eine Neuberechung
der Mehrfachsumme. Mit Hilfe der Additionstheoreme aus der Gleichung (2.36) gelingt

eine Vereinfachung bzw. Auftrennung von (4.5). Es ergibt sich:

= B(x;) - (Z Z Opge Erray(— ) ZB (4.7)

pP=—00 g=—00

Die Interaktionen werden also nicht direkt iiber alle a(r; — r,,, — r;) berechnet, sondern
als Hintereinanderausfiihrung von Kugelwellenentwicklungen. Fiir die Partikel einer Zelle
bedeutet dies zunéchst die Entwicklung der gestreuten Felder in Wanderwellen beziiglich
des Ursprungs r,, iiber die Matrix B(—r;). Anschliefend erfolgt die Interpretation der

Wanderwellen in einfallende Wellen beziiglich des globalen Ursprungs (a(-r1,,)), gefolgt
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=
Il
-

=y

Bild 4.2: Darstellung der rechteckférmigen

Erweiterung der betrachteten Zellen.

von einer weiteren Translation des Bezugsursprungs auf denjenigen des Streukorpers ¢
(B(r;)). Damit ist lediglich die in Klammern eingefasste Doppelsumme von den Parametern

djr Zelle und der einfallenden Welle anhéingig.

Aus anschaulichen Griinden kann die Summation in Gleichung (4.7) nicht fiir unendlich

groke p und ¢ durchgefiihrt werden. Im Folgenden wird daher das Konvergenzverhalten
des Ausdrucks

l ! Ne
X,(1) = B(x,) (Z > 6p,qe—j‘°*’pﬂqg<—zp,q>> D _B(-1)) b, (48)

untersucht. Bild 4.2 zeigt die Anordnung der beriicksichtigten Nachbarzellen, wenn der
Parameter [ schrittweise erhoht wird. Als einfacher Testfall werden an den Zellmittelpunk-
ten zentrierte Dipole (N. = 1) als Quellen betrachtet. Die sechs zur Beschreibung der
Dipolfelder notigen Streukoeffizienten im Vektor b, werden beispielhaft jeweils zu 1 V/m
angesetzt. Ferner gilt f = 4 GHz und b = 6 mm. Bild 4.3 zeigt den Beitrag von X, (/)
zur Stirke des elektrischen Feldes am globalen Ursprung fiir verschiedene Winkel o mit
k, = |k|sin(«) und k, = 0. Die Ordinate ist zudem auf den Mittelwert des Ergebnis-
ses fiir @ = 0° im Intervall [Ib/A = 80...1b/A = 100] normiert. Die Kurven zeigen eine
regelméfige, wenngleich auch sehr langsame Konvergenz. Dabei nimmt die Konvergenz-
geschwindigkeit fiir steigende Winkel o ab. Fiir den Fall a = 0°, was einer senkrecht auf
die Schicht einfallenden Welle entspricht, kann die Konvergenz, wie in 74| gezeigt, mit
Hilfe eines Extrapolationsverfahrens [75] effektiv beschleunigt werden. Fiir den generel-
len Fall ist dieses Verfahren jedoch nicht bzw. nur unter Inkaufnahme von extrem langen
Rechenzeiten und Verlust an Genauigkeit anwendbar.

Viele der in der Literatur beschriebenen Losungsmoglichkeiten (siehe z.B. [76-78|) zie-
len auf die Abbildung der Summation, also des im Ortsbereich langen ,Signals®, in den

entsprechenden spektralen Raum, den k-Raum, ab. Dort kann die Summation aufgrund
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4 Modell einer periodischen Schicht

|E| (normiert)

100

Ib/)\

Bild 4.3: Konvergenzverhalten des elektrischen Feldes am globalen Ursprung in Abhén-

gigkeit von der wachsenden Anzahl der beriicksichtigten Nachbarzellen.

des schmalen Spektrums wesentlich effizienter durchgefiihrt werden. Solch ein Ansatz soll
auch in dieser Arbeit verfolgt werden. Fiir die Losung des durch Gleichung (4.7) definierten
Problems, folglich die Ermittlung der Summe

Z Z Spqge Erraa(—1, ) Z Z Spg™ T raa(r, ) , (4.9)

p=—00 qg=—00 P=—00 g=—00

HC/s

ist die Betrachtung der ortsabhingigen Terme im Translationstheorem (siehe Anhang C)
hilfreich. Prinzipiell reduziert sich die nur langsam konvergierende Bestimmung der Ele-

mente von § auf Summen skalarer spharischer Wellenfunktionen:

Z Z ) qej Tah, 2)(|k|7“pq) 1 (cos B, ,)e Mo (4.10)

p=—00 g=—00
In obiger Formel stehen r, , 0, , und ¢, , fiir die Kugelkoordinaten des Vektors r, . Die
in dieser Arbeit gewihlte Methode zur Auswertung der Terme aus Gleichung (4.10) ist
hinlénglich in [79] ausgefiihrt. Die Methode nutzt, wie oben bereits angedeutet, die Fou-
riertransformation jeder sphérischen [80] Funktion, um schlieklich schnell konvergierende
Integrale zu erhalten. Wie spéiter noch erlautert wird, ist die damit erzielbare Genauigkeit
mehr als ausreichend fiir die hier betrachteten Fille.

In der Formulierung der Interaktionen der periodischen Schicht ist bislang ein entscheiden-

der Aspekt der Giiltigkeit der Translationstheoreme vernachlissigt worden. Dieser wird im
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4.2 Metallischer Schirm

Bild 4.4: Schraffiert: Gesicherter Giiltigkeits-
* * bereich der Translationstheoreme nach Glei-
chung (4.7).

Folgenden aufgezeigt. Bild 4.4 illustriert die simulierte Einheitszelle am Ursprung und die
acht nichsten Nachbarzellen. Fiir den Fall, dass mindestens ein Partikel an einer Ecke der
Einheitszelle platziert ist, sind die Grenzen der Giiltigkeit der Translationen mit 3(—r;)
durch Kreise angedeutet. Die Schnittmenge aller giiltigen Gebiete ergibt schlieflich den
schraffiert dargestellten Bereich der Einheitszelle, der nicht die gesamte Einheitszelle ab-
deckt. Somit ist die Wahl der Partikelpositionen eingeschrinkt. Geméf der Diskussion in
Kapitel 2.3 bedarf es zur korrekten Darstellung der gestreuten Felder der Partikel aus
Nachbarzellen nah den Réndern des schraffierten Gebietes Kugelwellen sehr hoher Ord-
nung n. Auswirkungen und Fehleranalysen fiir derartige Translationen finden sich z.B.
in [53, 81, 82|. Fiir eine korrekte und numerisch unproblematische Behandlung der ge-
genseitigen Interaktionen wird daher eine ,Pufferzone eingefiihrt (siehe auch [83]). Die
Interaktionen der Partikel aus den acht direkt an die simulierte Zelle angrenzenden Zellen
werden wie in Gleichung (4.5) berechnet, weiter entfernt liegende iiber den Umweg der je-
weiligen Zellmittelpunkte. Um weiterhin das oben beschriebene Verfahren zur Auswertung

der Summe S nutzen zu kénnen, lisst sich Gleichung (4.7) folgendermafen modifizieren:

(4.11)

4.2 Metallischer Schirm

In der Hochfrequenztechnik werden funktionelle Schichten, wie beispielsweise im Fall ei-
nes Absorbers, hiufig vor einem metallischen Schirm angeordnet. Diese Moglichkeit ist

mit der bisher dargestellten Theorie unter Annahme eines in jeder Dimension unendlich
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4 Modell einer periodischen Schicht

Bild 4.5: Metallischer Schirm in der Ebene

z = 0 und Darstellung der sphérischen Ein-

heitsvektoren der Felder des Original- und
‘.""“-..,,Q(B) des Bild-Partikels.

ausgedehnten homogenen Matrixmaterials nicht darstellbar. Zur Vereinfachung wird nach-
folgend ein ideal elektrisch leitender Schirm (engl.: Perfect Electric Conductor (PEC))
angenommen, der zwar eine Ndherung darstellt aber das Verhalten eines technisch ge-
nutzten guten Leiters addquat nachbildet. Im Rahmen der Bildtheorie [41] kann dieser
Schirm entfernt werden. Zur Erfiillung der Randbedingungen sind dafiir gespiegelte ima-
gindre Bilder jedes Partikels einzufiihren. Prinzipiell verdoppelt sich folglich die Anzahl
der Unbekannten, so dass der Speicherbedarf und die beno6tigte Rechenzeit ansteigen. Die
hervorgerufenen Strome auf jedem Partikel und dessen Bild ergeben sich gegenseitig aus
der korrekten Spiegelung der zum Schirm senkrechten und parallelen Stromkomponen-
ten. Aufgrund dieser Korrelation enthalten die Streukoeffizienten der Bildpartikel keine
zusitzliche Information. Nachfolgend wird beschrieben, wie die gegenseitigen Kopplungen

beriicksichtigt werden kénnen ohne die Anzahl der Unbekannten zu verdoppeln.

Der ideale metallische Schirm befindet sich wie in Bild 4.5 in der Ebene z = 0. Im Koordina-
tensystem des originalen (realen) Partikels ist I ein beliebiger Punkt auf der Oberfléche
des Leiters. Der gleiche Punkt wird im Koordinatensystem des Bildpunktes durch r g be-
schrieben. Fiir jede vom realen Partikel gestreute Kugelwelle muss die Randbedingung auf
der Oberflache des idealen Leiters (verschwindendes tangentiales elektrisches Feld) erfiillt
sein. Die 0- und ¢-Abhéngigkeit der Felder Egm(g(o)) und MnH,m(E(O)) bedingt, dass da-
fiir die Addition jeweils einer vom Bild-Partikel abgestrahlten Kugelwelle Hﬁm(g(B)) bzw.
M (r(p)) geniigt. Aus Bild 4.5 lésst sich ablesen, dass zur Ausléschung des elektrischen

*=n,m

Feldes folgende Bedingungen fiir die einzelnen Komponenten erfiillt sein miissen:

EnH,m,r(E(O)) + Un,mﬂf,m,r(ﬁ(m) =0,
N/ o(xo)) — tnmNL L o(xm) =0, (4.12)
Hff,m@@(m) + Un,mHnH,m,¢(£(B)) =0.

Fiir die Felder Mfl{m gilt eine entsprechende Beziehung, jedoch wird dafiir der unbekann-
te Koeffizient v, ,,, angesetzt. Unabhingig davon, ob der reale Streukorper in der rechten
(z > 0) oder linken (z < 0) Halbebene platziert ist, ergibt sich nachfolgender Zusammen-
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4.2 Metallischer Schirm

hang fiir die Koordinaten:

r(B) =T(0);
9(3) =T — 9(0) y (413)
By = 90) -

Ein Vergleich mit Gleichungen (2.10) und (2.11) offenbart, dass zur Losung von (4.12)
lediglich die zugeordneten Legendre-Polynome P!™(cosf) und deren Ableitung betrachtet

werden miissen. Mit

cos(m — 0) = —cos(0) ,

(4.14)
sin(m — ) = sin(0)
und den Zusammenhingen
—P™(cosf) fii d
P~ cos ) = " (cos B) ?r n + m gerade (4.15)
P™(cosf) fiir n + m ungerade
beziehungsweise
d m .
iRzn(_ cos ) = —?jP%(cos 0) f?r n + m ungerade (4.16)
do 5P (cos ) fiir n +m gerade
bestimmen sich die unbekannten Koeffizienten zu:
n 4+ m gerade: u,, , = —1 und v,,,, =1, (4.17)
n 4+ m ungerade: u,,, = 1 und v, ,, = —1. (4.18)

Ordnet man nun wy, , und v, ., in der Diagonalmatrix V an, ergibt sich fiir die insgesamt

N, in der simulierten Einheitszelle platzierten Partikel vor einem metallischen Schirm:

Nec Ne
b=T.- (Qi + X, + Z a(r;—r;)-b; + Z%(L‘ -r;)-V. hj) (4.19)

j=1,j#i j=1
und
1 1 N
X; = B(r,) <§— Y5, eﬂé!p,qg(gpg)) > (g(—_])+ B(-r;) y) b,
p=—lg=-1 j=1
1 1 N. !
+ Z Z Op.q (e—ikrp,q Z (afr; —1,, — r,)+a;,—r,, —r;) X) bj> (4.20)
p=—1g=-1 j=1

In Gleichung (4.19) und (4.20) bezeichnet r; die Position des Bildes von Streukdrper j.
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Ay A,
\ /
) < —> 11,
RiorRir | < Kr Tio» Tir
ho Tk k, hor Tk Bild 4.6: Position der unend-

m ;A @ lichen Schicht im Raum und
V - Streuparameter zur Charakte-

k x risierung der reflektierten und

transmittierten Welle.

4.3 Auswertung von Reflektion und Transmission

Um die aus der Hochfrequenztechnik bekannten und auf Wellengréfen basierenden Streu-
parameter zur Charakterisierung der Schichten heranziehen zu konnen, bedarf es einiger
Voriiberlegungen. Eine homogene ebene Welle féllt, wie in Bild 4.6 mit dem Wellenvektor k
angedeutet, im Winkel a auf die Schicht ein. Die Uberlagerung der hervorgerufenen Streu-
felder aller Partikel ergibt im Allgemeinen eine Kombination ausbreitungsfihiger homoge-
ner ebener Wellen und schnell abklingender evaneszenter Felder |2|. Erfiillt die transversale
Dimension der Einheitszelle die Bedingung 84|
1

b< ———X,
1+ |sina|

(4.21)

mit der Freiraumwellenldnge )\g, ergeben sich insgesamt zwei mogliche Ausbreitungsrich-
tungen — ebenfalls im Winkel o zur Schicht. Sie sind in Bild 4.6 mit den Wellenvektoren k,
und k, angedeutet. Wahrend die ko- und kreuzpolaren Reflektionsparameter Ry, bzw. Ry,
sowie der kreuzpolare Transmissionsparameter Ty, direkt aus der entsprechenden Welle

folgen, addiert sich fiir den kopolaren Transmissionsparameter 7}, das einfallende Feld.

Ist die Bedingung (4.21) nicht erfiillt, ergeben sich weitere homogene ebene Wanderwellen
mit frequenzabhéngigen Ausbreitungsrichtungen (engl.: Grating Waves). Eine Beschrei-
bung iiber Streuparameter ist in diesem Fall weiterhin mdglich. Da oben genannter Effekt
in technischen Realisierungen meist unerwiinscht ist, wird fiir den folgenden Teil verein-
bart, dass die Ungleichung (4.21) erfiillt ist. Tatséchlich stellt diese Bedingung aufgrund
der geometrisch kleinen Ausdehnung der Streukérper nur eine geringe Beschriankung dar.

An dieser Stelle stellt sich die Frage, wie man die komplexen Amplituden der gestreu-
ten homogenen ebenen Wellen aus den Anregungskoeffizienten der Kugelwellen berechnet.
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4.3 Auswertung von Reflektion und Transmission

Prinzipiell geniigt dafiir die Auswertung des gestreuten Feldes an zwei Punkten, einer
jeweils vor und hinter der Schicht. Die Punkte miissen geniigend weit von der Schicht ent-
fernt sein, damit evaneszente Wellen das Ergebnis nicht beeinflussen. Ein relativ einfacher
Weg, der ohne eine dafiir notwendige Konvergenzbetrachtung und Formulierung iiber die
Translationstheoreme auskommt, ergibt sich durch das Reziprozitdtstheorem von Lorentz.
Die gestreuten Felder und ihre Quellen sind mit einer beliebigen Feldverteilung (Index T'),

die die Maxwellschen Gleichungen erfiillt, iiber
B x By~ By x Hy)da = [[[ By 3y (22)
V/

verkniipft. Dabei erstreckt sich die Integration auf der linken Seite der Gleichung iiber
eine Oberfliche, die alle Quellen der gestreuten Wellen umschliefst. Dies ist die unendlich
ausgedehnte Schicht mit Stromverteilungen J,(r') jedes Partikels i. Die Integration kann
vereinfacht werden: Zunéchst wird die unendlich grofe Fliche A in zur Schicht parallele
Teilflichen A; und A, zerlegt. Dies stellt zwar keine geschlossene Fliche dar, im Unendli-
chen verschwinden jedoch die Beitrége der nicht beriicksichtigten Teilflichen zum Integral.

Die von der Schicht gestreuten Felder werden demnach wie folgt angesetzt:

E. o kT B ket fiir Ay,
EStreu(_) = { ko Eko € + kr gy € ur 2 (423)

FEi ko €p € 5T + Fy g €, e 75T fiir Ay .

Dabei bezeichnen e,, und e, die Einheitsvektoren der entsprechenden Polarisation. Hier
und im Folgenden sind die entsprechenden magnetischen Felder nicht explizit angegeben,
sie folgen aus den Maxwell-Gleichungen. Wenn nun als ,, Testfelder” ebenfalls ebene Wellen

genutzt werden,

Jr,kO . ]k r

E" =, %% e, ,
+kr jk,r

ET —E+,kr S <)
77k0 — ]k r

ET _E—,kO e’=t gko 9

—kr jk,-r
E;" =F &g,

(4.24)

muss die Integration nur fiir das Volumen und die entsprechenden Fléchen einer Einheits-
zelle durchgefiihrt werden, da aufgrund der Periodizitit bei der Integration jede Zelle den
gleichen Beitrag leistet. Unabhéingig von der Polarisation und dem Abstand der Flichen
Aj und As von der Schicht fithrt die Auswertung der Fliachenintegrale zu nachfolgenden
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4 Modell einer periodischen Schicht

Ausdriicken fiir die Streuparameter:

po_ B JJEFY-3AVE
Yo B n2b2E+7ko Ejprcosa’

P T B S KA
M B n2b2E+ ir Eanr cosa’

(4.25)

ko
Tk o Et,ko + EAnr e—jkd/ cosa fff E J CZV +1 e—jkd/ cos «
© Moy E_ ko Fany cos ’

4 E-JdV, .
T r = FE - FE nr —jkd/cosa _ _ fff —jkd/ cos o
k v der | Eanr € bQE, o Facosa e

Y

wobei jeweils eine , Testwelle“ aus Gleichung (4.24) gleicher Polarisation aber gegenldufi-
ger Ausbreitungsrichtung fiir die Identifikation der komplexen Amplituden der gestreuten
homogenen ebenen Wellen geniigt. In obigen Formeln bezeichnet V. das Volumen der Ein-
heitszelle und 7 die Impedanz des freien Raumes. Die komplexe Amplitude des einfallen

Feldes bei z = 0 ist durch E4,, gegeben.

Die Ermittlung der Streuparameter erfordert noch die Losung der oft Reaktionen genann-
ten Volumenintegrale. Eine Aufspaltung nach den Stromen jedes Streukdrpers und an-

schliefende Taylorentwicklung analog zu den Gleichungen (2.14)-(2.17) fiihrt zu:

///ET-JdVC’:chwET(r,-)~E§"—ijT(r) p" +? VET( Did e (4.26)

% i=1

=1

wobei der Operator ., : ¢ das doppelte innere Produkt (siehe z.B. [85]) kennzeichnet. Das
elektrische Quadrupolmoment g welches bei der Multipolentwicklung des Vektorpoten-
tials aus dem gleichen Term wie der magnetische Dipol erhalten wird, darf laut [86] bei
der Ermittlung der makroskopischen Eigenschaften! bianisotroper Materialien — also je-
nen mit chiralen Einschliissen und Vorzugsrichtung  fiir konsistente Ergebnisse nicht
vernachléssigt werden. Erst bei volliger Regellosigkeit der Orientierungen mitteln sich die
Wirkungen der elektrischen Quadrupolmomente heraus. Im Gegensatz zu den in |86] ver-
wendeten Einschliissen sind, gemél den Ergebnissen aus Kapitel 3.4.1, die Dipolfelder
der Helices im mafgeblichen Fernfeld dominant, so dass sich die Auswertung prinzipiell
auf Terme mit Dipolmomenten reduzieren ldsst. Der Vollstindigkeit halber werden die
elektrischen Quadrupolmomente dennoch zu Kontrollzwecken beriicksichtigt. Sofern die
Streukoeffizienten bekannt sind, konnen die Dipolmomente durch geeignete Inversion der
Zusammenhénge aus Gleichung (2.24) bzw. (2.25) bestimmt werden. Ein entsprechendes

Vorgehen fiir das elektrische Quadrupolmoment ist auf den ersten Blick nicht mdglich,

IDies sind Reflektion und Transmission oder auch dquivalente Materialparameter.
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da das entsprechende Gleichungssystem (2.28) unterbestimmt ist. Tatséchlich lassen sich
zumindest die Nebendiagonalelemente zweifelsfrei aus den Gleichungen bestimmen. Ferner
kann sehr leicht gezeigt werden, dass die genaue Kenntnis der Diagonalelemente (g5, Ty
und ¢¢,) fiir die Auswertung des letzten Terms in Gleichung (4.26) nicht notig ist. Hier
geniigen Differenzen der Elemente, die in Gleichung (2.28) enthalten sind.

Die Herleitung der Streuparameter fiir den Fall eines metallischen Schirms (PEC) ist &hn-
lich, jedoch miissen die imagindren Bildpartikel in den Volumenintegralen Beriicksichtigung
finden. Befindet sich der metallische Spiegel bei z = d, ergibt sich nach Uberlagerung des
Bildes der einfallenden Welle:

Er,ko - EAnrefijd/ cos fff E;,ko . J d‘/c/ B 6—2jkzd/ s

R o pr— _ —
g EAm“ "

4.27
202E. ko Egpy cosa ( )

Abgesehen von der Einbeziehung der Bildpartikel findet sich der gleiche Ausdruck fiir den
kreuzpolaren Reflektionsparameter wie in Gleichung (4.25).

4.4 Beispiel einer periodischen Schicht und Analyse der

Genauigkeit

Zur Abschitzung der Giiltigkeit des beschriebenen Verfahrens wird im Folgenden ein Ver-
gleich mit einem unterschiedlichen numerischen Ansatz herangezogen. Dabei handelt es
sich um die Methode der finiten Elemente (engl.: Finite Element Method (FEM)) |87].
Zu diesem Zweck wird das kommerzielle Simulationsprogramm High Frequency Structure
Simulator (HFSS) |88| genutzt. Die FEM erfordert, dass neben dem Draht auch der um-
gebende Raum diskretisiert wird. Diese Tatsache fiihrt im Zusammenspiel der zu beriick-
sichtigenden Geometrie der Helix prinzipiell zu einer hohen Zahl an Unbekannten. Art
und Aufbau der nachfolgend beschriebenen Anordnung wurden daher so gewéhlt, dass

Rechenzeiten und bendétigter Speicherbedarf im handhabbaren Rahmen bleiben.

Eine ideal leitende Helix, zunéchst nicht zentriert in einer isotropen Kugel, befindet sich,
wie in Bild 4.7 dargestellt, in einem Zweitor aufgebaut aus paarweise ideal elektrisch und
magnetisch leitenden Winden?. Die entsprechenden Randbedingungen fiir das tangen-
tiale elektrische und magnetische Feld sind eingezeichnet. Die elementare Feldverteilung
ist transversal elektromagnetisch (TEM) mit konstanter Amplitude und Phase iiber dem
Querschnitt. Der elektrische Feldvektor ist dabei parallel zur magnetischen Wand. Aus der

Bildtheorie ergibt sich, dass mit dieser Konfiguration einer einzelnen Helix der senkrechte

’Diese Form der Anordnung wird in der englischsprachigen Literatur oft als waveguide simulator bezeich-
net. Eine deutsche Ubersetzung ist nicht verbreitet und wird daher hier nicht eingefiihrt.
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Bild 4.7: Position der Helix und verwendete  Bild 4.8: Aquivalente Anordnung einer

Randbedingungen. Einheitszelle im Streuansatz.

Einfall einer homogenen ebenen Welle auf eine unendlich ausgedehnte Schicht von Helices
berechnet werden kann. Dabei muss jedoch Beriicksichtigung finden, dass sich die Helix
und deren Bilder durch die ideal leitenden Winde spiegeln: Das Bild einer rechtsgedreh-
ten Helix ist eine linksgedrehte und umgekehrt. Abhéingig von der Spiegelebene ergeben
sich zusédtzlich zum originalen Partikel abweichende Orientierungen. Die Gesamtheit der
originalen Helix und aller Spiegelbilder lasst sich durch die zweidimensionale periodische
Fortsetzung der in Bild 4.8 skizzierten Anordnung wiedergeben. Sie bildet die im Streuan-
satz genutzte Einheitszelle und besteht aus insgesamt vier Helices unterschiedlicher Orien-
tierungen und Windungsrichtungen. Dabei entspricht die Helix unten links der originalen
Helix aus Bild 4.7.

Zur Erklarung und Interpretation der spiter vorgestellten Simulationsergebnisse werden

im Folgenden zunéchst einige Punkte diskutiert:

Durch die ideal leitfahigen Wénde kann keine Energie transportiert werden. Solange der
Raum dazwischen wie in diesem Fall keine verlustbehafteten Materialien aufweist, wird
die einfallende Leistung vollstindig in reflektierte und transmittierte Welle aufgeteilt, es

gilt die Leistungsbilanz:
|Rk0|2 + |er|2 + |T7ko|2 + |Tkr|2 =1. (428)

Gleichung 4.28 gilt nicht nur fiir diese spezielle Anordnung, sondern allgemein fiir jede
durch eine Einheitszelle aufgespannte zweidimensionale periodische Anordnung verlustlo-
ser Materialien. So muss die Leistungsdichte genau wie die Felder periodisch sein, so dass
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Bild 4.9: Aquivalentes Leitungsersatz-
@ " Zp " @ schaltbild der periodisch aufgebauten
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in die Einheitszelle eingebrachte Leistung an anderer Stelle wieder austritt. Die Uber-
priifung der Leistungsbilanz aus Gleichung (4.28) ist somit ein geeignetes Werkzeug zur

Feststellung der Konsistenz der Ergebnisse.

Die Fernfelder jedes Streukdrpers, die sich zu den reflektierten und transmittierten ebenen
Wellen iiberlagern, sind hauptsédchlich auf die nachfolgend betrachteten, angeregten Di-
polmomente zuriickzufiithren. Durch die Spiegelungen zur Erfiillung der Randbedingungen
heben sich die Effekte der elektrischen Dipolmomente in positiver und negativer z- und
xz-Richtung gegenseitig auf. Damit sind nur die elektrischen Dipolmomente in y-Richtung
mitverantwortlich fiir die gestreuten Wellen. Ahnliches gilt auch fiir den magnetischen Di-
pol. Aufgrund der Dualitit vertauschen z- und y- Komponenten aber ihre Rollen. Somit
existieren keine kreuzpolarisierten Wellen  ein Fall, der auch bei razemischen Mischun-
gen, d.h. bei gleicher Anzahl zuféllig verteilter links- und rechtsgedrehter Helices in einem

Material, vorkommt [89].

Wirksam ist folglich eine spezielle Kombination resonanter Dipole. Fasst man die Ausbrei-
tung der ebenen Wellen im freien Raum als gefiihrte Wellen auf einer Leitung mit dem
Wellenwiderstand 7 auf, lisst sich die Helixschicht wie in Bild 4.9 als Storstelle in der Form
einer parallelen Impedanz Z, interpretieren [90, Kap. 4]. Sie repriisentiert einen Resona-
tor gebildet aus der Gesamtheit der Helices. Im Resonator wird abhingig vom Aufbau,
d.h. abhiangig vom Parameter D, unterschiedlich viel elektrische bzw. magnetische Ener-
gie gespeichert. Es treten keine inneren Verluste auf, jedoch wird Leistung an die dufere
Beschaltung (Wellenausbreitung in Luft) abgegeben. Der Resonator ist demzufolge mit
einem unendlich grofen Koppelfaktor {iberkritisch angekoppelt. In Resonanz wird daher
die einfallende Leistung vollstandig reflektiert [91, Kap. 4|. Auf ein Substrat aufgebrach-
te planare Strukturen vergleichbaren Verhaltens sind unter dem Namen frequenzselektive
Oberflichen (engl. Frequency Selective Surfaces (FSS)) bekannt [2,92].

Bild 4.10 zeigt den Betrag des erhaltenen Reflektionskoeffizienten fiir verschiedene Kan-
tenldngen D. Die Berechnung erfolgt zunéichst fiir ngy.., = 1. Wie erwartet tritt innerhalb
der Resonanz der Schicht vollstindige Reflektion auf. Fiir groRere Zellen ist die Uberein-

stimmung der beiden Verfahren besser als fiir kleinere, was nach den Untersuchungen aus
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IR, (dB)
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Bild 4.10: Berechnete Reflektion der Anordnung nach Bild 4.7 bzw. Bild 4.8. Durchge-
zogene Linien: Streuansatz, Punkte: HFSS. Dabei gilt: a) D = 5rp,, b) D = 47, ©)
D = 3ry, und d) D = 27, + 3a.

Abschnitt 3.4.2 nicht iiberrascht. Im Fall D = 2r,,;, + 3a ergibt sich ein Frequenzversatz
des Maximums zu der aus HFSS ermittelten Referenz von knapp unter 200 MHz. Dies

entspricht einer relativen Abweichung von ca. 4,3 %.

Fiir letzteren Fall wird nun die Ordnung der Multipole, also der Parameter ng;,e,, erhoht.
In Bild 4.11 ist zu erkennen, dass der Vergleich zum aus HFSS erhaltenen Ergebnis schon
fiir ngyrew = 3 wesentlich besser ausfillt. Fiir ng.., = 5 ergibt sich allerdings eine grofere
Abweichung, was in einem unregelméfigen Konvergenzverhalten begriindet liegt. Zur Illus-
tration finden sich in Tabelle 4.1 einige fiir f = 4,5 GHz, also an der ansteigenden Flanke,
berechnete Werte der Reflektion. Fiir ng,.., > 3 variieren die Werte um maximal 0,47 dB.
Nichtsdestotrotz verdeutlichen diese kleinen Anderungen, dass die Losung weitestgehend
stabil ist. Die in Kapitel 3.4.2 getroffenen Aussagen zum Streuverhalten zweier Helices
bestétigen sich auch in diesem Fall: Sowohl ungerade Multipolordnungen als auch magne-

tische Momente (ausgenommen das magnetische Dipolmoment) tragen nur unwesentlich

nswew | 1|02 003 | 4 | 5 | 6 | 7 | 8
|Rio| (dB) | 0,01 [ -0,02 | -2,49 | 2,63 | -2,17 | -2,16 | -2,29 | -2,29

’

Tabelle 4.1: Berechnete Reflektion fiir 4,5 GHz.
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IR, (dB)

4,0 4,2 4,4 4,6 4,8 5,0 52 54
Frequenz (GHz)

Bild 4.11: Berechnete Reflektion der Anordnung nach Bild 4.7 bzw. Bild 4.8 fiir D =
27 in + 30.

zur Verbesserung der Multipolapproximation bei. Aus diesem Grund sind nicht alle er-
haltenen Kurven in Bild 4.11 aufgefiihrt. Die Grofse der verbleibenden Abweichung kann
vorwiegend mit der genutzten Naherung fiir diinne Dréhte erklért werden. Es ist aber auch
anzufiithren, dass das in HFSS implementierte Verfahren der finiten Elemente ebenso nur
endlich genau sein kann. Insgesamt ergibt sich ein Frequenzversatz der Maxima von circa
30 MHz. Der relative Fehler von unter einem Prozent ist ein akzeptables Ergebnis, zumal
die Rechenzeit fiir 150 Frequenzpunkte von 530 s gegeniiber 13600 s (HFSS) den Einsatz
der Naherung fiir diinne Drihte in Verbindung mit der Multipoldarstellung rechtfertigt. In
den 530s sind zudem die Zeiten fiir die Ermittlung der T-Matrizen (231s) und der Summe
S aus Gleichung (4.9) (246 s) enthalten. Letztere Berechnungen sind prinzipiell losgeldst
von der Anzahl der beriicksichtigten Helices pro Einheitszelle. Das Verfahren verspricht
somit fiir eine grofere Anzahl Helices geeignet zu sein — nicht zuletzt weil simtliche Un-
tersuchungen dieser Arbeit mit einem handelsiiblichen PC (Pentium 4, 3 GHz Taktrate),

auf den sich alle aufgefithrten Rechenzeiten beziehen, durchgefiihrt wurden.

Als nichstes wird die Implementierung der umhiillenden Kugel® getestet. Zum Vergleich
wird wiederholt die Anordnung aus Bild 4.7 genutzt. Wie sich in der letzten Untersuchung
gezeigt hat, ist der Fall stiarkster gegenseitiger Kopplungen (D = 2r,,;,, + 3a) hilfreich

3Realisiert man die resonanten Streukorper (Helix in Kugel) auf diese Art, lassen sich rein zufillig positio-
nierte und orientierte Anordnungen in einfacher Weise physikalisch verwirklichen (siche Kapitel 7.3)
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IRl (dB)

3,0 3,2 3.4 3,6 3.8 4,0
Frequenz (GHz)

Bild 4.12: Berechnete Reflektion einer Anordnung dhnlich zu Bild 4.7. Hier ist die Helix
zentriert in einer isotropen Kugel der relativen Permittivitit e, = 2. Es gilt D = 27,,;,+3a
und 7, = D/2.

zur Abschitzung der Genauigkeit der Losung, so dass dieser Fall auch hier herangezogen
wird. Jede Helix ist in einer dielektrischen Kugel mit relativer Permittivitit ¢, = 2 zen-
triert. In Experimenten wird iiblicherweise aufgeschdumter Kunststoff (e, ~ 1..1,1) als
dielektrisches Material verwendet. Zudem werden Proben auch durch in Harz (e, =~ 3..4)
eingegossene Helices |14, 15| realisiert. In diesem Sinn ist der hier gewihlte Wert e, = 2
ein Kompromiss. Fiir den Kugelradius gilt r, = D/2. Hierdurch ist er geringfiigig grofer
als notig, um die Giiltigkeit der Multipoldarstellung der Helix auf der Kugeloberfliche zu
gewahrleisten. Die Anordnung stellt damit ein weiteres worst-case-Szenario dar, weil zur
Ermittlung der T-Matrix des gesamten Streukorpers (Kapitel 3.3) Randbedingungen auf
der Oberflache der Kugel erfiillt sein miissen. Geméf den Untersuchungen zur Multipoldar-
stellung einer einzelnen Helix weist die benotigte Ordnung der Multipole sehr nah an der
Helix einen stark ansteigenden Verlauf auf. Daher stellt sich die Frage, inwiefern Unzuléng-
lichkeiten der Felddarstellung auf der Kugeloberfliche auf die errechneten Eigenschaften
des Gesamtstreukorpers wirken. Bild 4.12 zeigt die erhaltenen Simulationsergebnisse. Die
dielektrische Kugel bewirkt zunéchst eine Belastung des Resonators. Damit verschiebt sich
die Resonanz zu kleineren Frequenzen. Im Vergleich zur Helix ohne Kugel ergibt sich eine
Resonanzverschiebung von knapp 1 GHz. Auch sonst dhnelt das Streuverhalten dem des
Falls ohne dielektrische Kugel. Wahrend die Position des Maximums fiir ngs.e, = 1 eine

relative Abweichung von 4,7 % aufweist, betrégt letztere fiir ngs.e, = 5 nur noch 0,9 %.
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IRl (dB)

4,0 4,2 4,4 4,6 4,8 5,0 52 54
Frequenz (GHz)

Bild 4.13: Berechnete Reflektion der Anordnung nach Bild 4.8 fiir D = 2r,,;, + 3a und
verschiedene Einfallsrichtungen.

Insgesamt ist den Ergebnissen folglich zu entnehmen, dass fiir den Fall des etwas kom-
plexeren Streukorpers mit Kugel selbst im ungiinstigen Fall mit wenigen Multipolen bis
72U Ngyrew = D eine brauchbare Genauigkeit zu erzielen ist. Dabei dndern sich die schon

getroffenen Aussagen zum Multipol-Streuverhalten qualitativ nicht.

Bisher wurde der Einfall der homogenen ebenen Welle senkrecht zur Schicht untersucht.
Fiir ein vollstdandigeres Verstdndnis der periodischen Schicht, gebildet durch die Einheits-
zelle aus Bild 4.8 ohne dielektrische Kugeln, wird im Folgenden der Fall schriger Anregung
betrachtet. Hierbei gilt zu beachten, dass die Anordnung aus Bild 4.7 mit den elektrisch und
magnetisch leitenden Wianden durch die dann gestorte Symmetrie nicht mehr zum Streu-
ansatz dquivalent ist. Aus allen mdoglichen Einfallsrichtungen und Polarisationen werden
hier lediglich zwei herausgegriffen: Transversal elektrische (TE) Anregung mit dem elektri-
schen Feld parallel zur y-Achse und transversal magnetische (TM) Anregung, bei der der
magnetische Feldvektor parallel zur z-Achse orientiert ist. Die erhaltenen Ergebnisse sind
in Bild 4.13 skizziert, ebenso jenes fiir den senkrechten Einfall, also transversal elektro-
magnetische (TEM) Anregung. Alle Kurven wurden mit ng;.., = 5 berechnet. Es werden
zwei Tendenzen deutlich: Im TE-Fall wird die Resonanz mit steigendem Einfallswinkel
breiter. Damit wirkt die Schicht aufgrund der sinkenden effektiven Fldche einer Einheits-
zelle bzw. einer hoheren effektiven Dichte der Helices mehr und mehr wie ein Kurzschluss

denn wie ein Resonator. Umgekehrtes Verhalten ist im TM-Fall ersichtlich. Die Helix wird
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4 Modell einer periodischen Schicht

am Stédrksten durch ein elektrisches Feld parallel zur Helixachse angeregt. Mit grofer wer-
denden Einfallswinkeln wird die y-Komponente des Feldvektors kleiner, so dass fiir grofe
Winkel erst in der Nidhe der Resonanz ein grofer Strom auf jeder Helix hervorgerufen
wird. Die Lage der Resonanz ist unabhingig vom Einfallswinkel — ein Zeichen dafiir, dass
sich Stérke und Art der gegenseitigen Kopplungen nicht &ndern. Eine Darstellung fiir ver-
schiedene ngye, und einen Einfallswinkel von 80° (TM-Fall) findet sich in Bild E.2 im
Anhang. Tatséichlich spiegeln sich darin die Positionen der Resonanzen wie in Bild 4.11
wider. Selbst wenn also weniger Multipole als nétig bei der Beschreibung Beriicksichtigung
finden, erhélt man konsistente Ergebnisse, sowohl die Lage der Resonanzen als auch das
Leistungskriterium in Gleichung (4.28) betreffend. In allen in diesem Kapitel vorgestellten
Berechnungen wird Gleichung (4.28) mit einer Genauigkeit von mindestens 2%o0 (Reso-
nanzfall, 80° Einfallswinkel und D = 2, _;, + 3a) erfiillt. Bei den meisten Konfigurationen

ist dieser Wert sogar ein bis drei Grofenordnungen kleiner.
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5 Ubergang von einer regelmiRigen zu einer zufilligen
Schicht

Im vorigen Kapitel wurden unendlich ausgedehnte periodische Schichten betrachtet, je-
weils angeregt durch eine — ebenfalls unendlich ausgedehnte — homogene ebene Welle. Fiir
die Praxis kann dieser Fall zweifellos nur eine Nidherung sein, da physikalisch realisierte
Schichten immer eine endliche Ausdehnung besitzen. Eine ausfiihrliche Diskussion mdg-
licher Konsequenzen der Anwendung der periodischen Néherung auf finite passive (und
aktive) Felder findet sich in [93] und soll daher nicht Gegenstand dieser Untersuchun-
gen sein  zumal der Schwerpunkt auf dem Ubergang von der periodischen zur zufilligen
Schicht liegt.

Im Fall einer nicht regelméfig aufgebauten Struktur stellt sich jedoch die Frage, inwiefern
eine Probe reprisentativ ist. Ist sie so grof, dass die zugrunde liegende Statistik aufgrund
einer hohen Anzahl von Partikeln ausreichend erfasst wird, so verhélt sich jede Probe bei
elektromagnetischer Anregung bis auf vernachlissighare Schwankungen auf niedrigem Ni-
veau gleich. Die Forderung nach einer grofsen Probe stellt dabei sowohl in messtechnischer
als auch in numerischer Hinsicht eine Herausforderung dar. Benutzt man z.B. zur Charak-
terisierung einen Hohlleiter, der mit vertretbarem Aufwand hochempfindliche Messungen
erlaubt, ist die transversale Ausdehnung begrenzt. In der Tat sind bei der Betrachtung
von regellos verteilten Helices im Rundhohlleiter ausgepriagte Unterschiede zwischen den
verschiedenen Proben erkennbar, die schliefslich dazu fiihren, dass eine verlissliche Aussage

nur nach Mittelung der erhaltenen Streuparameter vieler Proben gewonnen wird [94].

Auf der anderen Seite sind der Modellierung einer grofen (zufilligen) Struktur Grenzen
gesetzt. Bei der direkten Auswertung des fiir den zufilligen Fall in Frage kommenden Glei-
chungssystems (2.37) ergibt sich ein quadratischer und kubischer Zusammenhang zwischen
der Anzahl der beriicksichtigten Partikel N und dem benétigten Speicher bzw. der Rechen-
zeit. Im Fall der resonanten Helices sind, wie spéiter aufgezeigt wird, sehr viele Partikel zur
Beschreibung notig. Folglich stellt sich hier die Frage, ob der Aufwand zur Implementie-
rung der Algorithmen auf einem schnellen Rechensystem nebst eventueller Parallelisierung
zum Ziel fiihrt bzw. durch den moglichen Erkenntnisgewinn gerechtfertigt wird.

Eine alternative Methode fiir die Auswertung der Gleichungen zur Berechnung der Streu-
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koeffizienten ist in [83] beschrieben. Durch eine kleinere Speicherkomplexitit kann das
resultierende Gleichungssystem, bei geeigneter Vorkonditionierung, mit einem iterativen
Verfahren gelost werden. In [83] werden Beispiele mit bis zu 21160 dielektrischen Ku-
geln angefiihrt. Fiir den Fall der resonanten Helices zeichnen sich aber klare Grenzen
ab [95], deren Ursachen vorwiegend numerischer Natur sind. So spiegelt sich das ausge-
priagte Streuverhalten der Helices in einer schlechten Kondition der Systemmatrix wieder.
Kleine Fehler, die zweifelsohne bei der Berechnung der Eintridge der Matrix und des Anre-
gungsvektors durch endlich genaue Zahlendarstellungen in einem Rechner und durch das
Abbrechen von Reihendarstellungen entstehen, konnen damit die Losung des Gleichungs-
systems stark beeinflussen. In diesem Zusammenhang ist ebenso zu nennen, dass einige
Momente, wie bereits aufgezeigt, nur sehr wenig zur Losung beitragen. Die entsprechenden
Gleichungen erhéhen die Ordnung der Matrix, sind aber nur méfkig relevant. Im Vergleich
zum aufgefiihrten Beispiel der dielektrischen Kugeln steigen die Anforderungen an den

Losungsalgorithmus damit sehr stark an.

5.1 Mittelungsstrategie

In dieser Arbeit wird das Verhalten einer grofsen Schicht daher unter Zuhilfenahme eines
anderen Ansatzes abgeschitzt. Grundlage ist das im vorigen Kapitel dargestellte Verfahren
fiir periodische Anordnungen. Innerhalb einer grof genug gewéhlten Einheitszelle werden
mehrere Partikel zufiillig angeordnet. Bild 5.1 zeigt exemplarisch einen Ausschnitt einer
Schicht, die durch eine Einheitszelle bestehend aus insgesamt 25 Helices gebildet wird.
Zur Veranschaulichung sind die Abmessungen einer denkbaren Einheitszelle angedeutet.
Die Schicht kann aber auch durch andere Zellen aufgebaut sein, die z.B. dadurch defi-

niert sein konnen, dass jeweils eine Helix im Zentrum positioniert ist. Von dieser Helix
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aus betrachtet gehorchen die weiteren Partikel innerhalb der Einheitszelle einer definier-
ten Zufilligkeitsverteilung. Das Zufallsmuster wiederholt sich erst bei Partikeln, die einen
Abstand von mindestens einer halben Kantenldnge einer Zelle aufweisen. Die Kopplung
zu solchen Helices ist wegen der groferen Distanz weitaus geringer und kann in guter
Nédherung mit Dipolinteraktionen beschrieben werden. Zudem spielen die genauen Posi-
tionen und Orientierungen weit entfernter Helices eine untergeordnete Rolle. In [90] wird
z.B. die Gesamtheit aller weiter entfernt liegenden Partikel wie eine Scheibe homogener

Polarisation modelliert.

Mit dem beschriebenen Ansatz werden folglich die wichtigen Interaktionen mit direkten
Nachbarpartikeln vollstindig erfasst, der Einfluss der Schicht wird in den periodischen
Randbedingungen beriicksichtigt. Es wird daher angenommen, dass die hervorgerufenen
Strome auf den Helices innerhalb der Einheitszelle typisch fiir eine Schicht mit einer ge-
wissen Zufilligkeit sind. Die Wiedergabe der Gesamtstatistik eben dieser Schicht bedarf
jedoch der Berechnung einer statistisch relevanten Anzahl solcher Konfigurationen. Die
erhaltenen Ergebnisse werden schliefslich iiber die Anzahl der Konfigurationen gemittelt.
Die Vorteile dieser Herangehensweise liegen besonders in der kleinen Zahl von Helices
innerhalb der Einheitszelle. Damit wird die Berechnung eines grofsen Problems herunter-
gebrochen auf die mehrfache Losung eines kleineren. In dieser Arbeit wird die Auswertung
der Gleichungssysteme (4.4) bzw. (4.19) ausschlieflich mit der schon vorher erwéihnten

und fiir diese Zwecke stabilen LU-Zerlegung durchgefiihrt.

5.2 Ein einfacher Testfall - Numerische Aspekte

Im Folgenden wird die Mittelungsstrategie am Beispiel einer einfachen Schicht untersucht.
Neben den Konsequenzen fiir das Verhalten der Struktur beim Ubergang zur Zufilligkeit

stehen ebenso einige numerische Aspekte (Konvergenz, Rechenzeit) im Blickpunkt.

Ausgangspunkt der Analysen ist eine regelméfige Schicht bestehend aus rechtsgedrehten
Helices vom Typ i aus Tabelle 3.1. Dabei sind die Partikel auf einem quadratischen Raster
im Abstand von D = 3mm = 2,46 1,,,;, angeordnet. Aufgrund der gegenseitigen Absténde
ergibt sich, dass zur korrekten Beschreibung der Kopplungen Multipolfelder bis maximal
dritter Ordnung ausreichend sind. Sofern nicht anders erwéhnt, wird folglich immer mit
Nsireuw = o gerechnet. Um realistische Proben nachzubilden, werden von nun an Helices
betrachtet, die eine endliche elektrische Leitfahigkeit besitzen. Letztere wird &hnlich wie
bei Kupfer-Beryllium (CuBe2) zu o = 11 MS/m gewihlt. Die Leitfdhigkeit ist immer noch
sehr gut und beeinflusst die erhaltenen Streuparameter nur wenig.
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Bild 5.2: Darstellung der mogli-
chen Achsrotation der Helix.

Ein ,,Aufweichen“ der Periodizitat ldsst sich durch Variation verschiedener geometrischer
Parameter (Position, Orientierung, Helixeigenschaften) erreichen. Die zunéchst untersuch-
te Zufallsgrofe stellt die Verdnderung der Helixorientierung dar. Die entsprechende Geo-
metrie findet sich in Bild 5.2. Die Achse jeder Helix kann dabei in mathematisch positiver
und negativer Richtung bis zum Winkel ¢ um die z-Achse gedreht sein. Innerhalb dieses
Intervalls sind die Rotationen gleichverteilt. Der nachfolgend diskutierte Fall mit ¢ = 45°
ist im bereits diskutierten Bild 5.1 veranschaulicht.

5.2.1 Anzahl der Konfigurationen

Als Grundvoraussetzung fiir die angestrebten Untersuchungen ist es zunéchst vorteilhaft,
ein Konvergenzkriterium einzufiihren, welches sicherstellt, dass zum einen hinreichend vie-
le und zum anderen nicht mehr Konfigurationen als nétig berechnet werden. Bild 5.3 zeigt
dafiir den Betrag der vier in diesem Fall zur Beschreibung der Schicht notigen Streupa-
rameter in Abhéngigkeit von der Anzahl der beriicksichtigten Konstellationen. Fiir die
Untersuchung bei einer Frequenz von f = 4,6 GHz wurde eine (5 x 5)-Einheitszelle heran-
gezogen. In ihrer Tendenz dhneln sich alle Kurvenverldufe: Wie erwartet dndern sich die
Streuparameter kaum, wenn man sehr viele (> 2500) Konfigurationen beriicksichtigt. Auf
der anderen Seite sind hingegen schon wenige (=~ 100) Berechnungen ausreichend, wenn
man eine relative Abweichung in der Grofenordnung von ein bis zwei Prozent zulisst.
Die Tatsache, dass das Konvergenzverhalten sehr unregelméfig ist, erschwert eine Extra-
polation und somit schon wéihrend der laufenden Berechnungen eine Aussage iiber die
Genauigkeit. Selbst im Bereich vieler Konfigurationen (> 2500) finden sich Schwankungen
um den Mittelwert (hier um —70 dB), welche durch die statistischen Prozesse bedingt
sind. Diese Schwankungen werden umso kleiner, je mehr Konfigurationen berechnet wer-
den. Genau hier findet sich daher ein Ansatzpunkt eines konsistenten Kriteriums: Sofern
die Schwankungen um den Mittelwert eines statistisch relevanten Bereiches unterhalb ei-
ner gewissen Schwelle liegen, wird Konvergenz angenommen. Das Intervall und die Grofe

der tolerierbaren Abweichungen sind grundséitzlich beliebig wihlbar. In dieser Arbeit hat
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Bild 5.3: Betrag der Streuparameter in Abhéngigkeit von der Anzahl der berechneten
Konfigurationen (f = 4,6 GHz).

sich jedoch die Wahl von absoluten Abweichungen von 1072 iiber die letzten 100 Konfigu-
rationen bewihrt. Die Wahl absoluter Fehler bietet ferner den Vorteil, dass nach Relevanz,
d.h. nach dem Grundniveau der jeweiligen Streuparameter, unterschieden wird. Dies be-
deutet fiir das Beispiel aus Bild 5.3, dass Konvergenz nach 538 Konfigurationen erzielt
wird. Bezogen auf die Werte nach 3000 Konfigurationen ergibt sich damit eine relative

Genauigkeit von grofer als 0,5 %.

Durch das stark frequenzabhéngige Streuverhalten der Helices ist eine ebenfalls frequenz-
abhéngige Anzahl der benotigten Konfigurationen zu erwarten. Der Verlauf iiber der Fre-
quenz ist in Bild 5.4 dargestellt wieder fiir eine Einheitszelle bestehend aus insgesamt
25 Helices. Fiir die niedrigen und hohen Frequenzen des abgebildeten Bereiches zeigt sich
ein nahezu konstanter Verlauf. Dazwischen existiert ein etwa 1,3 GHz breites Band, in
dem sich die Konfigurationsanzahl stark erhéht. Uberdies sind in diesem Band auch star-
ke Schwankungen zu erkennen. Dieses Verhalten kann mit der schon in Abschnitt 3.4.2
behandelten Resonanzaufspaltung erklirt werden. Im Gegensatz zum streng periodischen
Fall ist jede Helix der Einheitszelle auf andere Weise mit der Umgebung verkoppelt. Damit
weist jede einzelne Konfiguration eine Vielzahl auftretender Resonanzen bzw. deren Uber-
lagerungen auf. Als Konsequenz ergibt sich ein fluktuierender Verlauf der Streuparameter
iiber der Frequenz. Zur weiteren Veranschaulichung findet sich in Bild E.3 des Anhangs

beispielhaft eine Gegeniiberstellung der kopolaren Reflektion und Transmission der ersten
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Bild 5.4: Anzahl der benétigten Konfigurationen in Abhéngigkeit von der Frequenz ((5x5)-
Einheitszelle).

20 Konfigurationen und der Streuparameter nach Erfiillung des Konvergenzkriteriums. Ei-
ne allgemein giiltige Aussage iiber das Konvergenzverhalten einer beliebigen Schicht in der
Nihe der Resonanz lésst sich aus Bild 5.4 nur bedingt ableiten. Der Aufbau der Schicht
und nicht zuletzt auch das verwendete Konvergenzkriterium selbst spielen dafiir eine zu
grofe Rolle (vergleiche hierzu [45]). Tm Wesentlichen wird die Zahl der Konfigurationen
aber durch Haufigkeit, Niveau und Ausprigung der Resonanzen bei bzw. in der Nihe der

betrachteten Frequenz bestimmt.

5.2.2 Grolle der Einheitszelle

Die bisherigen Ausfiithrungen beziehen sich auf die Konvergenz der Losung fiir die beispiel-
haft gewéhlte (5x5)-Einheitszelle. Hier stellt sich die Frage, ob die Grofe der Einheitszelle
ausreichend ist, um — nach Mittelung — das Verhalten einer unendlich grofsen Schicht mit
zufilliger Geometrie zu beschreiben, welche keine Periodizitit aber die gleiche Statistik
aufweist. Die Qualitit der Lésung wird im Folgenden untersucht. Bild 5.5 zeigt die Streu-
parameter fiir verschieden grof gewihlte Einheitszellen ((2x2), (3x3), (4x4), (5x5),
(6 x 6) und (7 x 7)). Aus Griinden der Ubersichtlichkeit sind die zu den verschiedenen
Einheitszellen gehdrenden Kurven hierbei nicht ndher bezeichnet. Man erkennt ein ausge-
priagtes Verhalten bei der Frequenz von ca. f = 4,6 GHz: Die kopolare Transmission ist
minimal, alle anderen Streuparameter sind maximal. Die Schicht befindet sich daher bei
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Bild 5.5: Streuparameter fiir verschieden grofte Einheitszellen.

f = 4,6 GHz in Resonanz. Analog zu der periodischen Schicht aus Abschnitt 4.4 ist auch
hier die Belastung jedes einzelnen Helixresonators durch die die iibrigen Partikel verant-
wortlich dafiir, dass die Resonanz der Schicht im Vergleich zu der eines einzelnen Partikels
(fres &= 4,96 GHz) nach unten verschoben ist. Fernab der Resonanz ergibt sich eine gute
Ubereinstimmung der Kurven. Demgegeniiber sind gréfere Abweichungen im schon vorher
diskutierten und ca. 1,3GHz breiten Band erkennbar. Dies wird insbesondere fiir die kreuz-
polaren Streuparameter Ry, und T}, ersichtlich — wenngleich die grofiten Unterschiede auf

einem niedrigen Niveau (um —20 dB bzw. —15 dB) auftreten.

Was das Niveau der auftretenden Streuparameter und das frequenzabhéngige Verhalten
betrifft, stellt die Schichtresonanz bei f = 4,6 GHz den interessantesten Fall dar. Des-
halb soll im Folgenden das Konvergenzverhalten beziiglich der Gréfse der Einheitszelle bei
dieser Frequenz nédher beleuchtet werden. Zu diesem Zweck sind die berechneten Streu-
parameter fiir verschieden grof gewéhlte Einheitszellen in Bild 5.6 aufgefiihrt. Ab einer
(7 x 7)-Einheitszelle zeigt sich, dass der Einfluss der Grofe abnimmt und eine Konver-
genz einsetzt. Zieht man die Werte fiir den (11 x 11)-Fall als Referenz heran, so ldsst sich
feststellen, dass Abweichungen von +1 dB je nach gewihlter Grofe auftreten. Aufgrund
des ausgeprigten Verhaltens der Schicht stellt der gezeigte Verlauf ein worst-case-Szenario
dar, d.h. bei anderen Frequenzen auferhalb der Resonanz zeigt sich ein regelméfigeres und

schnelleres Konvergenzverhalten. Zum Vergleich sind die Ergebnisse bei einer Frequenz von
f =5,3GHz in Bild E.4 des Anhangs aufgefiihrt.
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Bild 5.7: Benotigte Anzahl der Konfigurationen und Rechenzeit.

Fiir eine weitere Beurteilung der Losung bietet sich die Betrachtung der Anzahl der be-
notigten Konfigurationen an. Der Verlauf fiir verschiedene Gréfsen der Einheitszelle ist
in Bild 5.7 dargestellt. Es zeichnet sich ein rasches Abfallen der Anzahl der berechneten
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Konfigurationen von knapp 1000 auf ein Niveau von um die 400 ab. Der Verlauf ist jedoch
nicht regelméfig, eine weitere Folge der Betrachtung in der Nidhe der Resonanz. Um eine
bessere Aussage treffen zu konnen, ist ebenfalls die mittlere Anzahl der Konfigurationen
fiir den Frequenzbereich von 4,0 GHz bis 5,8 GHz dargestellt. Hierfiir werden insgesamt
91 Frequenzpunkte im Abstand von 20 MHz herangezogen. Es zeigt sich deutlich, dass die
mittlere Anzahl ab einer Grofe von ca. (6 x 6) stagniert bzw. sich nur noch sehr wenig
andert. Abgesehen von einigen wenigen Abweichungen um die Resonanz sorgt eine wei-
tere Vergroferung der Einheitszelle demnach nicht dafiir, dass die Statistik vollstindiger
wiedergegeben wird. Gleichzeitig ist in Bild 5.7 die benétigte Rechenzeit fiir den einzelnen
Frequenzpunkt bei f = 4,6 GHz aufgetragen. Angesichts der schnell wachsenden Rechen-
zeit von z.B. 13 Stunden im (11 x 11)-Fall wird deutlich, dass ein Kompromiss zwischen
Genauigkeit und Rechenzeitbedarf erforderlich ist. Da die folgenden Untersuchungen eher
prinzipiellen Charakter haben, wird, wenn nicht anders erwihnt, die Grofke der Einheits-
zelle fiir die weiteren numerischen Experimente dieses Kapitels zu (7 x 7) angesetzt. Wie
der nédchste Abschnitt zeigt, ist das auch fiir andere Grade der Zufélligkeit (eingestellt

iiber den Parameter 1) ein verniinftig gewéhlter Wert.

Fiir anders aufgebaute Schichten ldsst sich eine generelle Antwort auf die Frage nach der
Mindestgrofe der Einheitszelle aufgrund der Vielzahl an Parametern, die das Verhalten in
verschiedenster Weise beeinflussen, nicht ableiten. Hier stellt die gewihlte Grofsenordnung
der Anzahl der Partikel pro Einheitszelle folglich nur einen ungefihren Richtwert dar. Um
die Darstellung und den Umfang iiberschaubar zu halten, wird fiir die Analysen in den
Kapiteln 6 und 7 immer angenommen, dass die Einheitszelle fiir den gewiinschten Grad

an Genauigkeit grofs genug gewahlt ist.

5.2.3 Eigenschaften der Schicht bei zunehmender Unordnung

Im Folgenden wird die Ordnung der Schicht ausgehend von einer periodischen Schicht
zunehmend ,aufgeweicht”. Zu diesem Zweck wird der Parameter ¢ verdndert — also der
Winkel der groften Abweichung von der Ausgangslage (siehe Bild 5.2). Dabei erstreckt
sich der Wertebereich iiber 0° < 1 < 90° in Schritten von 15°.

Ein wichtiger Mechanismus wird anhand der Betrachtung der Leistungsbilanz
|Rk0|2 + |er|2 + |Tkr|2 + |Tko‘2 S 1 (51)

deutlich, wobei die Gleichheit von linker und rechter Seite bei einer periodischen Schicht
verlustloser Materialien gilt (siehe Diskussion in Kapitel 4.4). In Bild 5.8 ist die linke
Seite von Gleichung (5.1) fiir verschieden gewéhlte Parameter ¢ dargestellt. Als kleiner
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Bild 5.8: Linke Seite von Gleichung (5.1) als Funktion des Parameters 1) und der Grofe
der Einheitszelle.

Riickgriff auf den vorigen Abschnitt erfolgt auch hier eine Auftragung iiber die Gréfe der
Einheitszelle der Werte fiir die feste Frequenz von f = 4,6 GHz. Da die hier betrachteten
Helices eine endliche elektrische Leitfahigkeit besitzen, wird ein kleiner Teil der einfallenden
Leistung in Warme umgesetzt. Aus diesem Grund ergibt sich fiir die periodische Schicht
(1 = 0°), dass nur ungefdhr 94% der einfallenden Leistung reflektiert bzw. transmittiert
wird. Es sticht hervor, dass dieser Wert mit stetig wachsendem Parameter ¢ immer kleiner
wird und schlieklich auf etwa 51% fiir ¢» = 90° fillt. Dieses Verhalten kann nicht mit
erhohten Warmeverlusten erklart werden, wie durchgefiihrte Vergleiche mit ideal leitenden
Helices zeigen. Der Grund ist eher in der Streuung von Leistung in Richtungen parallel
zur Schicht zu finden (die entsprechenden Feldkomponenten werden bei der Integration
iiber Gleichung (4.22) nicht erfasst). Im streng periodischen Fall kommt es nicht zu dieser
Art von Streuung; die Wirkungen der hervorgerufenen Kombination von Dipolmomenten
heben sich in dieser Hinsicht gegenseitig auf. Dieser Mechanismus ist aber umso mehr

gestort, je mehr Variationen in der Schicht vorhanden sind.

Der Einfluss der Variationen auf die vier zur Beschreibung der Schicht nétigen Streupara-
meter ist in Bild 5.9 dargestellt. Aus den Kurvenverldufen fiir ¢ = 15° ldsst sich entnehmen,
dass sich das Verhalten der Schicht beziiglich kleiner Schwankungen der Orientierungen
nur wenig dndert, auch im Fall der Resonanz. An dieser Stelle kann vorweggenommen wer-

den, dass sich diese Eigenschaft auch bei den weiteren im Verlauf der Arbeit untersuchten
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Linien: ¥ =¢-15° mit e =1...5.

alternativen Mdoglichkeiten der Variation wiederfindet. Die Ursache ist zum einen dadurch
gegeben, dass die gegenseitigen Kopplungen durch einige wenige Multipolfelder niedriger
Ordnung und moderater Winkelabhéngigkeit (ngy.e, = 3) sehr gut beschrieben werden
konnen. Zum anderen ergibt sich, dass die Stéirke der Anregung, die sich, wie im Kapi-
tel 2.3 und 4.1 beschrieben, im inhomogenen Teil des Gleichungssystems widerspiegelt,
in diesem Fall nahezu kosinusférmig vom Winkel zwischen Helixachse und elektrischem
Feldvektor der einfallenden Welle abhéingt [96]. Erhcht man den Parameter 1 in weiteren
Schritten von 15°, féllt eine wesentlich hohere Empfindlichkeit von dem untersuchten Pa-
rameter auf. Beziiglich der Kurvenverldufe lasst sich zudem festhalten, dass aufgrund der
kleineren Wirkung der Anregung auf jeden Streukorper sich die kopolare Reflektion fiir
grofer werdende v reduziert. Gleichzeitig steigt die kopolare Transmission innerhalb der
Resonanz an. Es ergeben sich bei ¢ = 90° sehr kleine Werte von um die —40 dB fiir die
kreuzpolare Reflektion — ein Verhalten, welches dem Verschwinden dieser Komponente im
Falle eines biisotropen (chiralen) Mediums [97, Kap. 6.1] nahe kommt.
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Fiir das Verstindnis der Verldufe der kreuzpolaren Streuparameter hilft folgende Vor-
betrachtung. Die Ursache der kreuzpolaren Polarisation ist hauptsdchlich — also unter
Vernachlissigung héherer Momente im Fernfeld — eine Kombination aus angeregten Di-
polmomenten: Ein elektrisches Dipolmoment senkrecht zum elektrischen Feldvektor der
einfallenden Welle (pje,) und ein magnetisches Dipolmoment (p;'e,) parallel dazu. Die
von diesen Momenten erzeugten, ebenen Wellen iiberlagern sich konstruktiv in einer der
durch die Schicht getrennten Halbebenen und destruktiv in der jeweils anderen. Damit
sind die Streuparameter Ry, und T}, im allgemeinen Fall unterschiedlich. Durch die in
Bild 5.9 verwendete Skalierung bleibt verborgen, dass dies im Fall der streng periodischen
Schicht (¢» = 0°) nicht gegeben ist. Zum besseren Vergleich sind die Streuparameter fiir
diesen Fall in Bild E.5 des Anhangs wiederholt aufgefiihrt. Es zeigt sich, dass die ange-
sprochenen Streuparameter sich kaum unterscheiden. Dies kann aber nur der Fall sein,
wenn die Wirkung eines Momentes (elektrisch bzw. magnetisch) gegeniiber der jeweils an-
deren dominiert. Tatséchlich ist die Amplitude der gestreuten kreuzpolaren Welle durch
das magnetische Moment p;'e, um ca. drei Grokenordnungen groker als jene, die auf das
elektrische Dipolmoment zuriickgefiihrt werden kann. Fiihrt man die gleiche Untersuchung
mit einer um 90° um die Ausbreitungsrichtung der Wellen gedrehten Schicht durch, zeigte
sich der duale Fall: Das Moment pie, dominiert gegeniiber p;'e,. Im Fall der untersuchten
Schicht mit Variationen kommt es offenbar fiir ¢» = 90° dazu, dass die Wirkungen beider
erwihnter Momente im Mittel gleich sind. Der hervorgerufene Strom auf der Drahtober-
fliche — iiber den die Momente schlieflich verkniipft sind — sorgt dafiir, dass kreuzpolare

Wellen nur in Transmissionsrichtung auftreten.

Bei der obigen Betrachtung ist zu beachten, dass fiir ¢ = 90° lediglich die Achse der Helix
regellos in der xy-Ebene angeordnet ist. Beziiglich dieser Achse ist die Helix nicht sym-
metrisch. Daher wire eine Regellosigkeit erst bei ) = 180° erreicht. Alternativ ist dieses
Ziel auch im Fall 1) = 90° bei gleichzeitigen zufillig ausgewédhlten Drehungen um 180° um
die Helixachse zu erreichen. Die Tatsache, dass die kreuzpolare Reflektion trotzdem auf
ein sehr niedriges Niveau abfillt, ldsst in Analogie zum biisotropen Fall (Verschwindendes
Ry, keine Vorzugsrichtung) den Schluss aufkommen, dass Drehungen um die Helixachse
nur einen sehr geringen Einfluss auf die Losung haben. Diese Vermutung wird im folgenden
Kapitel unter anderem iiberpriift.

Zunéchst soll an dieser Stelle aber noch ein bisher unerwihnter Aspekt beleuchtet werden.
Die obigen Ergebnisse basieren auf der Beriicksichtigung von Multipolmomenten bis zur
dritten Ordnung. Wie Bild E.5 ebenfalls aussagt, ergibt sich bei der streng periodischen

Schicht mit ¢ = 0° ein Frequenzversatz von ca. 150 MHz zur Losung, die unter Betrach-
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Bild 5.10: Rotationen der Helixachse in der zy-Ebene: Kopolare Reflektion fiir den Uber-
gang von der periodischen zur zufilligen Schicht.

tung von Dipolmomenten erhalten wird. Eine weitere Erhohung des Parameters ngye,
beeinflusst die Ergebnisse nur unwesentlich. In Bild 5.10 sind beide Losungen, also jene
fiir ngirew, = 1 und ngyre, = 3, in Abhéngigkeit von der Zufélligkeit illustriert. Hier féllt vor
allem auf, dass sich die Kurven mit zunehmender Unordnung angleichen. Der angesproche-
ne Frequenzversatz von 150 MHz fiir die periodische Schicht reduziert sich bis auf knapp
20 MHz. Offenbar scheint es bei der Interaktion vieler Helices mit zufélligen Orientierung
auch dazu zu kommen, dass sich Fehler wie im Fall der Kopplung zweier Helices aus Ka-
pitel 3.4.2 weiter gegenseitig aufheben hier desto stdrker je mehr die Vorzugsrichtung
verblasst. Diese Aussage ist vorerst allerdings auf diesen Fall beschriankt, herrscht hier
doch eine spezielle Form der Zufilligkeit vor. Aus der Frage, ob sich dieser Schluss auch

auf andere Fille iibertragen lésst, speist sich die Motivation fiir den folgenden Abschnitt.

5.3 Studie weiterer Variationsmoglichkeiten

In diesem Kapitel sollen in etwas verkiirzter Form weitere Moglichkeiten der Variation
besprochen und deren Konsequenzen fiir die Schicht aufgezeigt werden. Prinzipiell ergibt
sich eine Vielzahl an moglichen Parametern zur ,Aufweichung” der Ordnung einer Schicht.
Toleranzen der Geometrie jeder einzelnen Helix werden im experimentellen Teil dieser
Arbeit (Kapitel 7) behandelt. Aus diesem Grund beschrinkt sich die Diskussion auf noch
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Bild 5.11: Links: Streuparameter fiir Rotationen um die Helixachse. Rechts: Draufsicht der
Helix und Einfallsrichtung der ebenen Welle.

nicht beriicksichtigte Rotationen sowie Abweichungen der Helixpositionen.

5.3.1 Rotationen

Wie im vorigen Abschnitt schon angedeutet, werden zunichst Rotationen um die Helix-
achse betrachtet. Analog zu Bild 5.2 sind dies Drehungen um die y-Achse. Die maxima-
le Abweichung von der Ursprungsposition wird hierbei in Schritten von 30° erhéht, bis
schliefslich fiir 180° Abweichung die vollstindige Zufélligkeit dieser Orientierung erreicht
ist. Neben der Geometrie der Anordnung ist die sich ergebende Kurvenschar der Streupa-
rameter in Bild 5.11 fiir ngsre, = 1 und ngyre, = 3 dargestellt. Zur besseren Ubersicht sind
die zu Ry, sehr dhnlichen Kurvenverldufe des Parameters T}, nicht eingezeichnet. Wie sich
an den nahezu deckungsgleichen Kurven zeigt, hat die Orientierung der Helix beziiglich
ihrer Achse, wie bereits im vorigen Abschnitt vermutet, nur einen geringfiigigen Einfluss
auf die Losung. Dies ist sowohl der Fall, wenn ausschlieflich Dipolmomente Beriicksich-
tigung finden, als auch wenn héhere Momente (hier bis zur dritten Ordnung) einbezogen
werden. Es kommt daher in diesem Beispiel mit nachlassender Ordnung nicht zu einer

allmahlichen Anndherung der Losung fiir verschieden gewéhlte Parameter ngye,.

Im Folgenden werden Variationen der Helixorientierung durch Drehung um die z-Achse
untersucht (siehe Bild 5.12). Auch hier wird ¢ wieder iiber den Bereich von 1) = 0° bis
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1 = 90° in Schritten von 15° verdndert. An dieser Stelle ist es, wie bereits bei den Ro-
tationen um die z-Achse (Bild 5.2), nicht sinnvoll, den Parameter 1) iiber 90° ansteigen
zu lassen. Betrachtet man nur die moglichen Orientierungen der Helixachse innerhalb der
yz-Ebene, wird klar, dass es andernfalls mit einer Gleichverteilung iiber alle Winkel da-
zu kdime, dass Orientierungen innerhalb eines gewissen Winkelbereichs doppelt so haufig
auftriten wie andere. Damit wire ein komplexes Szenario mit verschieden gewichteten
Vorzugsrichtungen geschaffen, dass sich einer systematischen Deutung entzieht. Erst bei
1 = 180° lage wieder ein einfacher Fall (jener regelloser Orientierung in der yz-Ebene) vor.
Die Ergebnisse der hier vorgestellten Untersuchung finden sich in Bild 5.13. Auffallend ist
vor allem, dass mit steigendem Parameter ¢ die kopolare Reflektion sinkt, wihrend die
kopolare Transmission steigt. Dass sich zudem die Resonanz der Schicht (abgelesen am
Minimum von Ty,) zu héheren Frequenzen verschiebt, ist zuforderst eine Folge der ge-
ringeren Anregung jeder Helix durch die einfallende Welle. Gleichzeitig verringern sich
kreuzpolare Reflektion und Transmission so, dass die Kurven nahezu deckungsgleich sind.
Das fiir kreuzpolare Wellen verantwortliche magnetische Dipolmoment pj'e, iiberwiegt
folglich bei dieser Art der Variation das entsprechende elektrische (siehe Diskussion zu
Bild 5.9). Effekte, die im Fall eines bi-isotropen chiralen Materials die Ausloschung der
kreuzpolaren Reflektion bei gleichzeitigem Auftreten der kreuzpolaren Transmission zur
Folge haben, kénnen demnach iiberwiegend auf Rotationen um die z-Achse bzw. durch
Rotationen in der Ebene senkrecht zur Ausbreitungsrichtung der einfallenden Welle zu-
riickgefiihrt werden. Nichtsdestotrotz zeigt sich auch hier, wie in Bild 5.14 am Beispiel
der kopolaren Reflektion illustriert, dass sich Fehler, die bei der ausschliefslichen Beschrei-
bung durch Dipolmomente entstehen, bei einer zufilligen Anordnung wieder herausheben

konnen. Der Frequenzversatz sinkt von 150 MHz auf etwa 20 MHz.

Die bisher in dieser Arbeit besprochenen Drehungen werden fiir die Betrachtungen des
nichsten Kapitels kombiniert, um den Raum der frei wiahlbaren Parameter der Einfachheit
halber zu verkleinern. Dieses Ziel lasst sich dadurch erreichen, dass lediglich der maxima-
le Winkel (¢), den die Helixachse mit der originalen Achse (y-Achse) bildet, festgelegt
wird. Die Ebene der Rotation ist frei. Folglich handelt es sich damit um die Hinterein-
anderausfithrung einer Drehung um die x- und um die z-Achse. Gleichzeitig wird eine
Drehung um die Helixachse durchgefiihrt. Der entsprechende maximale Drehwinkel steigt
linear mit dem Parameter ¢ an, bis schliefslich fiir 1) = 90° eine vollstéindige Regellosigkeit
der Helixorientierungen erreicht ist. Die Ergebnisse finden sich im Anhang in Bild E.6
bzw. Bild E.7. Prinzipiell reprisentieren diese eine Uberlagerung aller zuvor besprochenen
Effekte, so dass auf eine detaillierte Verdeutlichung der Ergebnisse verzichtet wird. Ein

wichtiger Punkt soll aber nicht unerwiihnt bleiben: Im regellosen Fall (1) = 90°) ergeben
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5 Ubergang von einer regelmégfigen zu einer zufilligen Schicht

Bild 5.12: Darstellung der mogli-
chen Achsrotation der Helix.
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Bild 5.13: Rotationen der Helixachse in der yz-Ebene: Einfluss des Parameters ¢ auf die
Streuparameter der Schicht. Durchgezogene Linien: 1) = 0° und ¥ = 90° , strichpunktierte
Linien: ¥ =¢-15° mit e =1...5.

sich im Vergleich zu den vorigen Betrachtungen noch kleinere Unterschiede zwischen der
Losung, die auf Basis der Dipolmomente erhalten wird, und derjenigen, die aus der Beriick-
sichtigung noch héherer Momente hervorgeht (siehe dazu Bild E.7). Damit scheinen sich
die Annahmen von Dipol-Interaktionen zur Berechnung chiraler (bi-isotroper) Materialien
aus [18,37,45,95,97| zu bestétigen.
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Bild 5.14: Rotationen der Helixachse in der yz-Ebene: Kopolare Reflektion fiir den Uber-

gang von der periodischen zur zufilligen Schicht.

5.3.2 Positionen

Bisher wurde lediglich die Orientierung der Helix variiert, nicht deren Position. Hier bietet
sich wiederum eine getrennte Betrachtung fiir die drei Achsen des Koordinatensystems an.
Die sich ergebenden Effekte lassen sich aber auch anhand einer kombinierten Versuchsan-
ordnung mit Translationen in allen drei Raumrichtungen erliutern. Zunéchst ist es dafiir
notwendig die Dicke der Schicht (d) bzw. einer Einheitszelle zu definieren. Hier wird sie mit
d = D = 3mm festgelegt. Analog zu den Drehwinkeln wird ein maximaler Positionsversatz
1, eingefiihrt, der zudem aus Griinden der Vergleichbarkeit auf den mittleren Abstand d,,
der Partikel gemafs

dp, = (db*/N,)'/? (5.2)

normiert ist. In obiger Gleichung bezeichnet b die Kantenldnge der Einheitszelle (siehe
Bild 4.1) und N, die Anzahl der Partikel innerhalb einer Einheitszelle.

Die numerische Implementierung einer auf den periodischen Fall aufbauenden, zufallsba-
sierten Anordnung ist schwierig. Durch die sequentielle Abarbeitung der Partikel kann
es dazu kommen, dass bereits angeordnete Partikel in Frage kommende Positionen blo-
ckieren — mit der Folge von Endlosschleifen. In dieser Arbeit hat sich fiir dieses Problem
folgende Herangehensweise bewéhrt: Der erste Schritt zur Formierung einer Konfiguration
besteht in der Festlegung des Abstandes jeder Helix zum originalen Gitterpunkt durch
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Bild 5.15: Variationen der Helixpositionen: Einfluss des Parameters 1, auf die Streupara-

meter der Schicht. Durchgezogene Linien: ¢, = 0 und ¢, = d,,,/2 , strichpunktierte Linien:
Y, =1-dp/l0miti=1...4.

Bildung eines gleichverteilten Zufallswertes aus dem Intervall [0...¢,]. Mit Hilfe eines nu-
merischen ,Schiittelexperimentes* [98] werden die Helices schlieflich in vielen aufeinander
folgenden kleinen Schritten von ihrer originalen (periodischen) Position versetzt, bis sie
schlieflich den vorher definierten Abstand aufweisen. Die Berechnung einer angemessenen
Schrittweite erfolgt hierbei adaptiv, bis eine gewisse Kollisionswahrscheinlichkeit (40-70%)
vorherrscht.

Die Ergebnisse finden sich in Bild 5.15, wobei der Parameter ¢, im Bereich von [0...d,,/2]
verdndert worden ist. Grofere geometrische Abweichungen sind aufgrund der im periodi-
schen Fall schon sehr eng beieinander positionierten Helices nicht mdéglich. Hier zeigt sich
ebenfalls, dass die kreuzpolare Reflektion und Transmission stets gleich sind und sich die
Verhéltnisse der dafiir verantwortlichen Dipolmomente folglich kaum dndern. Gleichzeitig

verschiebt sich die Resonanz der Schicht mit wachsender Unordnung zu tieferen Frequen-
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Bild 5.16: Variationen der Helixpositionen: Streuparameter fiir ¢, = d,,/2.

zen. Dies ist ein Zeichen dafiir, dass die Helices im Mittel stirker belastet werden, obschon
der mittlere Abstand der Helices nach Gleichung (5.2) konstant bleibt. Diese Tatsache
verwundert nicht, da die gegenseitige Kopplung der Helices keine lineare Funktion des

Abstandes zueinander ist.

Es bleibt anzumerken, dass in diesem Beispiel die Positionen einer einem Gitterpunkt
zugeordneten Helix in einem gewissen Raum zwar gleichverteilt sind, aber durch die Un-
moglichkeit des gegenseitigen Durchdringens miteinander korreliert sein kénnen. Fiir ana-
lytische Methoden lassen sich solche Verteilungen beispielsweise durch statistische Mittel

zweiter Ordnung 99| charakterisieren.

In Bild 5.16 sind alle hier betrachteten Streuparameter fiir ¢, = d,,/2 illustriert. Es
ergibt sich ein Frequenzversatz von etwa 60 MHz zwischen der Losung fiir ngye, = 1
und ngye, = 3. Beriicksichtigt man den urspriinglichen Wert von 150 MHz, demonstriert
dies, dass sich Fehler nicht nur durch rotierte, sondern auch durch in der Position versetzte
Helices effektiv herausmitteln konnen. In Hinblick darauf hat das folgende Kapitel nicht nur
den Ubergang auf mehrschichtige Anordnungen zum Thema, sondern auch die gleichzeitige
Beriicksichtigung von Rotationen und Translationen.
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6 Mehrlagige Schichten

In diesem Kapitel erfolgt der Ubergang zu mehrlagigen Strukturen. Ohne Beschrinkung
der Allgemeinheit, aber im Sinne einer Vereinfachung der Auswertungen, werden Schichten
betrachtet, die sich zu gleichen Teilen aus links- und rechtsgedrehten Helices zusammen-
setzen. Diese sind immer so positioniert, dass keine kreuzpolaren Wellen angeregt werden.
Das Kapitel startet mit einem einfachen Beispiel. Zur Vermeidung von Wiederholungen

werden die Streumechanismen aber nicht so tiefgehend behandelt wie im vorigen Kapitel.

Es liegt nahe, mehrlagige Strukturen mit vielen kleinen Einschliissen und einer gewissen
Dicke als homogenes Medium zu verstehen. Dieses liefse sich beispielsweise durch Inversi-
on der erhaltenen Streuparameter auf Basis dquivalenter Materialparameter beschreiben
(z.B. [100,101]). Im Gegensatz dazu lassen sich effektive Materialparameter, wie in der
Einleitung bereits erwdhnt, aus der Anwendung von Mischformeln gewinnen. Der Frage,
inwiefern sich Mischformeln zur Beschreibung der untersuchten kompositen Schichten eig-
nen, wird im weiteren Verlauf des Kapitels am Beispiel der Clausius-Mossotti-Theorie und
einer dreischichtigen Anordnung nachgegangen. Anstatt die dquivalenten den effektiven
Materialparametern gegeniiberzustellen, erfolgt der Vergleich der berechneten Streupara-
meter. Die Unterschiede der Theorien und die Konsequenzen lassen sich daran wesentlich

anschaulicher darlegen.

6.1 Ein Beispiel

Der Ausgangspunkt der Untersuchung ist die Erweiterung der periodische Anordnung aus
Kapitel 4.4 (siehe dazu Bilder 4.7 und 4.8 auf Seite 50) auf den Fall zweier hintereinander
positionierter Schichten. Der Abstand der Lagen betrigt, analog zur zweidimensionalen

Rasterung mit D = 3 mm, ebenfalls D.

Die zunichst untersuchte Zufallsgréfe stellt die Variation der Positionen dar. Bild 6.1 zeigt
die Reflektion und Transmission fiir verschiedene Werte von 1, welche auf den mittleren
Abstand d,,, (Gleichung 5.2) normiert sind. Hierbei ist die Schichtdicke zu d = 6 mm ge-
wahlt, d.h. alle Partikel befinden sich vollstéindig innerhalb der durch die Dicke definierten
unendlichen Scheibe. Insgesamt 72 Helices pro Einheitszelle werden mit jeweils ngype, = 3
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Bild 6.1: Variationen der Helixpositionen: Einfluss des Parameters 1, auf die Streupara-

meter der Schicht. Durchgezogene Linien: ¢, = 0 und v, = d,, , strichpunktierte Linien:
Yy, =1-dp/5miti=1...4.

beschrieben. Man erkennt deutlich, dass im periodischen Fall eine zusitzliche Resonanz
bei f =~ 4,65 GHz auftritt. Dies ist durch die Wechselwirkungen der beiden Schichten
zu erkldren. Erhéht man den Parameter v, ergibt sich ein allméhliches Aufweichen die-
ser Resonanz bedingt durch unterschiedliche gegenseitige Verkopplungen. Ahnlich wie im
einlagigen Fall fiihrt die Verringerung der Ordnung zu kleineren Distanzen zwischen den
Partikeln, so dass sich die ausgeprigtere Resonanz der Schicht (Maximum der Reflektion,
Minimum der Transmission) zu tieferen Frequenzen verschiebt. Ferner erweckt die Tatsa-
che, dass sich die Kurven fiir ¢, = 0,8 - d,,, und ¢, = d,,, nur leicht unterscheiden, den
Eindruck, dass mit 1, = d,, der vollends zufillige Zustand beziiglich der Positionierung
praktisch erreicht ist. Aufgrund der schon im vorigen Abschnitt erfahrenen Beschrankung

der Methode zur Platzierung der Partikel wird dieser Punkt nicht eingehender untersucht.

Einen Vergleich mit den aus der Dipolndherung erhaltenen Ergebnissen gestattet Bild 6.2.
Dabei werden die Kurven fiir die periodische Schicht, fiir den Fall zufélliger Positionen
(¢, = d,,) und fiir jenen mit zusitzlich regellosen Orientierungen in allen drei méglichen
Drehrichtungen (¢, = d,,, ¥ = 90°) dargestellt. Wie erwartet ergibt sich im periodischen
Fall eine grofsere Abweichung zwischen den Losungen fiir ngy.e, = 1 und ngyee, = 3. Hier
lésst sich ein Frequenzversatz von ca. 120 MHz ausmachen. Dass sich die auftretenden Feh-
ler in der Feldbeschreibung bei der ausschlieflichen Beriicksichtigung von Dipolmomenten
und regellos orientierten Helices (wie hier zu sehen) effektiv herausmitteln, kann aus den
Untersuchungen des vorigen Kapitels geschlossen werden. Dass dieses Verhalten bereits
bei zufilligen Positionen auftritt, ist bemerkenswert, ldsst sich aber dadurch erkliren,
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Bild 6.2: Variationen der Helixpositionen: Streuparameter fiir ¢, = d,, /2.

dass hier zwar nicht die Orientierungen der Partikel beziiglich des globalen Koordinaten-
systems variieren, aber die auf die Helixachsen bezogenen, relativen Winkel zwischen den
Helices. Die unterschiedliche Stirke der externen Anregung, welche durch den Winkel der
Helixachse zur Polarisationsrichtung der einfallenden Welle bestimmt wird, spielt fiir den
Mittelungseffekt offenbar keine Rolle.

Zum Zweck der Verifikation finden sich in Bild 6.2 dariiber hinaus die mit Hilfe des Pro-
gramms HFSS [88] simulierten Daten der periodischen Schicht. Hier ergibt sich ein Fre-
quenzversatz von ca. 25 MHz zur Losung des Streuansatzes mit ngy.e, = 3, was mit dem

in Kapitel 4.4 beleuchteten Verhalten vergleichbar ist.

6.2 Vergleich mit dem Clausius-Mossotti-Materialmodell

Der aus der Theorie der effektiven Medien bekannte Ansatz von Clausius und Mossotti wird
an dieser Stelle nicht vollstdndig skizziert, da er in der einschligigen Literatur (z.B. [23])
hinreichend erldutert ist. Eine umfassende Beschreibung findet sich zudem in der Einlei-
tung dieser Arbeit. Es geniigt zu wissen, dass sich die effektiven Materialparameter eines
allgemeinen bianisotropen Mediums der Theorie zufolge iiber einen einfachen analytischen
Zusammenhang berechnen lassen (sieche dazu Anhang D). Neben den Eigenschaften des
Wirtsmaterials (hier Luft) und der Dichte n der Einschliisse werden die mittleren Dipolpo-
larisierbarkeiten der Einschliisse benotigt. Bei bekannten Dipolpolarisierbarkeiten ist die
Mittelung iiber eventuell verschiedene Einschliisse und ihre jeweiligen Dichten (die soge-
nannte ,Multiphasenmischung®) und die Verteilung der Orientierungen durchzufiihren. Der
Einfachheit halber wird dieser Vorgang in dieser Arbeit nicht getrennt vom Streuansatz
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B Bild 6.3: Quaderférmiger Ausschnitt ei-

E_E = _ﬁ nes Beispiels der in diesem Kapitel be-

= %f trachteten Schichten. Die rechts- und

% =~ Eﬁ' linksgedrehten Helices sind in drei La-

. - &a = Eg gen und in einem festen Raster (hier im

Bild: D = 6 mm) angeordnet.

durchgefiihrt. Tatséchlich wird im Streuansatz bereits eine statistisch relevante Anzahl
von T-Matrizen berechnet. Mittelt man diese iiber alle Partikel und Anordnungen, erhélt
man entsprechend die mittlere T-Matrix < T > der Einschliisse. Die mittleren Dipolpo-
larisierbarkeiten bestimmen sich damit laut Gleichung (3.1) direkt aus einer 36 Elemente
umfassenden Submatrix von < T >. Ein wichtiger Aspekt erschlieft sich an dieser Stelle
sofort: Sowohl die T-Matrix als auch die Dipolpolarisierbarkeiten sind auf den Streukor-
permittelpunkt bezogen definiert und nicht auf die Position des Partikels. Wie im vorigen
Abschnitt dargelegt, konnen sich die Streuparameter aber fiir verschiedene Positionsver-
teilungen unterscheiden, auch wenn die Dichte konstant bleibt. Was diesen Punkt betrifft
findet in der Clausius-Mossotti-Theorie lediglich die Dichte Beriicksichtigung. Allein da-
durch ergibt sich eine gewisse Unsicherheit, ob die Clausius-Mossotti-Theorie als Mittel

zur Vorhersage der Eigenschaften sinnvoll angewendet werden kann.

Bild 6.3 zeigt einen Ausschnitt der Schicht, die im Folgenden als Ausgangspunkt der Un-
tersuchungen dienen soll. Neben den drei Lagen rechts- und linksgedrehter Helices fallt
vor allem ein groferer Abstand zwischen den Partikeln auf, die in einem Raster von
D = 6 mm angeordnet sind. Der grofere Abstand soll der Erwartung Rechnung tragen,
dass die Clausius-Mossotti Mischformel eine gute Vorhersage am ehesten fiir Medien mit

einer geringen Dichte der Einschliisse liefert.

Durch den vorgegebenen Aufbau werden keine kreuzpolaren Wellen angeregt. Zur phéno-
menologischen Beschreibung im Kontext eines effektiven Mediums geniigen damit immer
Permittivitdt und Permeabilitit, die durch den geordneten Aufbau allerdings keine ska-

lare, sondern tensorielle Grofen sind. Wahlt man die Orientierungen der Helices so, dass
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die Vorzugsrichtung bzw. die Bezugsrichtung wie zuvor bei zufilligen Schichten immer in
Richtung einer der Achsen des Koordinatensystems liegt, folgt fiir die relativen Material-

parameter in guter Niaherung:

e = 0 ey O und p = 0 fiyy O . (6.1)
0 0 Eszs 0 0 Hzz

Die Diagonalelemente sind dabei im allgemeinen Fall unterschiedlich, was gleichbedeu-
tend mit dem Vorhandensein richtungs- und polarisationsabhiingiger Eigenschaften des

anisotropen Mediums ist. Erst bei volliger Regellosigkeit der Orientierungen findet sich

Exz = Eyy = €z, UNA flyy = flyy = sz (6.2)

und das folgende isotrope Medium ist durch skalare Grofsen beschreibbar.

Sind die effektiven Materialparameter bekannt, konnen Reflektions- und Transmissionsko-
effizienten nach Festlegung der Schichtdicke aus den Stetigkeitsbeziehungen an den beiden
Grenzflichen zum umgebenden Medium berechnet werden. Eine Herleitung der dafiir ge-
nutzten mathematischen Beziehungen ist z.B. in [102] zu finden. Es bleibt die Frage, wie
die Schichtdicke festgelegt wird. Bei Scheiben eines Mediums mit sehr vielen Lagen, so
dass der Durchmesser der Grundbausteine um viele Gréfenordnungen kleiner ist als die
Dicke, ist diese Diskussion wenig relevant. Im Gegensatz dazu stellen die in dieser Arbeit
beschriebenen Anordnungen eher sehr diinne Schichten dar. Ein Versuch zur Losung des
genanten Problems fiir rein zuféllige Anordnungen (Positionen und Orientierungen) wurde
bereits in [95] unternommen. Starke unterschiedliche Verkopplungen (Resonanzaufspaltun-
gen) erschweren in [95] jedoch eine erschopfende Kldrung. Deshalb wird dieser Punkt hier

als Ergédnzung fiir periodische Anordnungen beleuchtet.

Bild 6.4 zeigt die berechneten Streuparameter fiir die periodische Anordnung aus Bild 6.3.
Hierbei fillt die homogene ebene Welle senkrecht zur Schicht ein, der Vektor der elektri-
schen Feldstédrke ist parallel zur Achse der Helices gerichtet. Fiir das Clausius-Mossotti-
Modell werden verschiedene Schichtdicken d im Raster von einem Millimeter angesetzt;
die jeweilige Dichte n berechnet sich entsprechend durch die Anzahl der Partikel im dann
definierten Volumen einer Einheitszelle. Besonders im Transmissionsverhalten sind in der
Néhe der Resonanz starke Unterschiede vorhanden, die zum Teil mehr als 10 dB betragen.
Allerdings treten diese Abweichungen auf einem niedrigen Grundniveau auf. Fiir welchen
Parameter d die beste Ubereinstimmung erzielt wird, ldsst sich anhand von Bild 6.4 nur
schwer einschétzen. Im Prinzip ist immer eine Priorisierung notig, etwa hinsichtlich des

Frequenzbereiches oder des Niveaus der Streuparameter. Um solch eine Beurteilung zu

80



6.2 Vergleich mit dem Clausius-Mossotti-Materialmodell

IR

koI

—=— Streuansatz
—-—- Clausius-Mossotti

-10 1 |
-20-
{ -25]
-30-
‘ BT

I -40
T T T T T T T T T T T T T T T T T
42 44 46 48 50 52 54 4,7 4,8 4,9 5,0 5,1

Frequenz (GHz) —=

Betrag (dB) ——==

-20

Bild 6.4: Streuparameter bei senkrechtem Einfall fiir verschieden gewihlte Dicken der
Schicht (d = 15,16,17,18,19,20mm) im Clausius-Mossotti Modell und Vergleich mit dem
Streuansatz (¢ = 0).

ermdglichen, wird folgende mathematische Definition der Abweichung ¢ zwischen Streu-
ansatz und Clausius-Mossotti-Modell (Index ,CM*) verwendet:

Np
1
0= N—F Z ((|Rko,5treu| - |Rko,C’M|)2 + (‘TkO,StTeu‘ - |Tk0,CM|)2) ) (63)
=1

Dabei ist Np die Anzahl der beriicksichtigten Frequenzpunkte, die hier gleichférmig in
Schritten von 10 MHz iiber den in Bild 6.4 dargestellten Frequenzbereich verteilt sind.
Gemifs der Definition aus Gleichung (6.3) zeigt sich die kleinste Abweichung bei einer
angenommenen Schichtdicke von d = 18 mm, worin sich sogar das vorgegebene Raster von
D = 6mm als Abstand zwischen den insgesamt drei Lagen widerspiegelt. Das Minimum ist
nur sehr grob und exemplarisch bestimmt worden. Dennoch verdeutlicht dieser Wert, der in
einer ersten Schitzung bereits hétte antizipiert werden kénnen und zudem zu einer guten
Ubereinstimmung des Reflektionsparameters fiihrt, dass die Clausius-Mossotti-Theorie fiir
den hier untersuchten Fall der rein periodischen Anordnung mit senkrechtem Welleneinfall

als einfache Ndherung sinnvolle Anwendung findet.

Fiir verschiedene Einfallswinkel ist die Abweichung ¢, berechnet nach Gleichung (6.3), in
Bild 6.5 dargestellt. Hierbei sind zu Vergleichszwecken die Ergebnisse fiir weitere Schichtdi-
cken aufgenommen. Abgesehen von sehr stumpfen Einfallswinkeln ab ca. 80°, lisst sich im
TE-Fall eine stark zunehmende Abweichung bei Vergroferung des Einfallswinkels feststel-
len, die im TM-Fall langst nicht so ausgeprigt ist. Tatsédchlich ist, wie bereits beim schrigen
Einfall an einer periodischen Lage erlautert, fiir die Stirke der Anregung jeder Helix maf-
geblich, welchen Winkel die Helixachse und der elektrische Feldvektor bilden. Das Steigen
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Bild 6.5: Reflektion fiir verschieden gewihlte Dicken der Schicht im Clausius-Mossotti
Modell und Vergleich mit dem Streuansatz (¢ = 0).

dieses Winkels bei wachsenden Einfallswinkeln im TM-Fall begiinstigt offenbar, dass iiber
einen grofen Winkelbereich eine gute Ubereinstimmung der beiden Theorien erzielt wird.
Auffillig ist ferner, dass die Abweichung 6 im TM-Fall und bei Einfallswinkeln von um
die 60° sogar kleiner wird, wenn eine grofere Schichtdicke im Clausius-Mossotti-Modell
angenommen wird. Dies ist ein weiterer Hinweis darauf, wie schwierig die Definition einer

geeigneten Schichtdicke ist.

Im Folgenden wird die Dichte der Partikel durch Variation der Rasterung der Schicht, aus-
gedriickt durch den Abstand D, variiert. Die Schichtdicke fiir den Ansatz nach Clausius-
Mossotti wird dabei wie zuvor angenommen, d.h. jeweils als das Dreifache des Parameters
D. Eine Darstellung der Ergebnisse fiir den Reflektionsparameter findet sich in Bild 6.6.
Der Ubersichtlichkeit halber wird an dieser Stelle auf eine Abbildung zum Transmissions-
verhalten verzichtet, die entsprechenden Ergebnisse sind jedoch in Bild E.8 im Anhang
wiedergegeben. Auffillig in Bild 6.6 ist, dass sich fiir sehr nahe Partikel (D = 3 mm) und
die daraus resultierende starke gegenseitige Kopplung ein grofer werdender Frequenzunter-
schied im Resonanzverhalten ergibt. Sobald also Momente hoherer Ordnung (ngye, > 1)
in Erscheinung treten, zeigt die auf einem einfachen Dipolmodell beruhende Clausius-
Mossotti-Theorie einige Schwiichen. Diese Tatsache wird durch die recht gute Uberein-
stimmung untermauert, wenn ebenfalls im Streuansatz lediglich Dipolmomente Beriick-

sichtigung finden (ngye, = 1). Im Kontext der Ergebnisse aus Bild 6.2 wird auferdem
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Bild 6.6: Reflektion der dreilagigen periodischen Schicht bei verschiedener Rasterung D

und senkrechtem Welleneinfall. Vergleich von Clausius Mossotti-Modell und Streuansatz.

klar, dass im Fall zufélliger Positionen weitere Abweichungen zu erwarten sind, die sich
z.B. durch unterschiedliche Werte der maximalen Reflektion ausdriicken: Die Dichte und
die mittleren Dipolpolarisierbarkeiten als Eingabeparameter dndern sich nicht, was nach
Clausius-Mossotti zur gleichen Losung fiithrt. Tatséchlich verringert sich das Maximum
der Reflektion durch die dann auftretenden unterschiedlichen Kopplungen innerhalb des

Mediums.

Das hier am Beispiel des Reflektionsparameters diskutierte Verhalten gilt prinzipiell auch
fiir die Transmission. Allerdings unterscheiden sich die Kurvenverldufe, wie in Bild E.8

aufgezeigt, zum Teil erheblich, insbesondere was das Minimum der Transmission betrifft.

Nachfolgend wird die Anwendbarkeit der Clausius-Mossotti-Theorie fiir Schichten mit ge-
ringerer Ordnung erortert. Als Basis dient die periodische Anordnung mit D = 4 mm,
fiir die, zumindest was die Reflektion betrifft, eine zufriedenstellende Ubereinstimmung
zwischen den beiden hier diskutierten Modellen besteht. Neben den Streuparametern fiir
den periodischen Fall sind in Bild 6.7 vergleichend jene fiir eine weniger geordnete und
fiir eine rein zuféllige Schicht dargestellt (¢ = 54°, ¢, = 0,6 d,,, bzw. ¥ = 90°, ¢, = d,y,).
Hier fillt vor allem auf, dass der Reflektionsparameter nach Clausius-Mossotti bei erhohter
Zufalligkeit einen durch mehrere Resonanzen geprigten Verlauf in der Nihe des Reflek-
tionsmaximums aufweist. Auferdem nehmen die Unterschiede der beiden Modelle in der

Transmission fiir steigende Zufélligkeit zu. Die durch den Streuansatz ermittelte Resonanz
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Bild 6.7: Streuparameter fiir D = 4 mm und verschiedene Grade der Zufilligkeit. Durch-

gezogene Linien: Streuansatz, strichpunktierte Linien: Clausius-Mossotti-Theorie.

ist wesentlich breiter und nicht so stark ausgebildet. Der Unterschied des Transmissions-
minimums betréigt fiir die rein zuféllige Schicht mehr als 45 dB. Hier zeigen sich deutlich
die Grenzen der Clausius-Mossotti-Theorie, die auf der Annahme basiert, dass alle Parti-
kel in gleicher Weise mit der Umgebung wechselwirken. Konkret bedingen unterschiedliche
gegenseitige Kopplungen eine Vielzahl von Resonanzen bei unterschiedlichen Frequenzen.
Das Verhalten der Schicht griindet sich auf die Uberlagerung aller Resonanzen, was zu
einer Reduzierung der Giite der als Resonator aufgefassten Schicht fiihrt. Zudem reprodu-
ziert sich die schlechte Ubereinstimmung im Fall der Transmission deutlich wenn zufillige
Schichten vor einem metallischen Schirm betrachtet werden |18,95]. Dies lidsst den Schluss
zu, dass die Clausius-Mossotti-Theorie fiir eine Vielzahl von Strukturen, bestehend aus
den hier betrachteten Helices, nur unzureichend bzw. nur zum Zweck der ersten Schét-

zung anwendbar ist.

Nichtsdestotrotz ldsst sich nach den vorangegangenen Uberlegungen festhalten, dass die

Clausius-Mossotti-Theorie Starken aufweist, wenn

e cine moglichst gleichférmige Verteilung der Partikel vorliegt,

e zwischen den Partikeln keine starke Kopplung auftritt, z.B. durch eine geringe Dichte.

Um den letzten Punkt weiter zu erhérten, wird im Folgenden die rein zuféllige Schicht
betrachtet, die aus der periodischen Anordnung mit D = 4 mm hervorgeht. Hier erfolgt
jedoch das Einbeziehen unterschiedlicher Ddmpfung durch Kugeln (Durchmesser 3 mm)
eines verlustbehafteten Dielektrikums, in welche die Helices zentriert positioniert sind.
Bild 6.8 stellt die Ergebnisse dar. Wie erwartet zeichnet sich mit Erh6hung der Dédmpfung
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Bild 6.8: Streuparameter fiir ¢ = 90°, ¢, = d,, und unterschiedlich gewéhlte Dielek-
trika der umbhiillenden Kugel (repésentiert durch den relativen Permittivitdtsparameter).

Durchgezogene Linien: Streuansatz, strichpunktierte Linien: Clausius-Mossotti-Theorie.

eine steigende Ubereinstimmung zwischen den Theorien ab. Verringert man folglich die
gegenseitige Kopplung, wie etwa im Fall eines Mikrowellenabsorbers, durch ein dampfen-
des Hintergrundmedium [18], ergibt sich unter Umstinden die Moglichkeit, auch bei zu-
falligen Schichten eine Dimensionierung mit Hilfe der Clausius-Mossotti-Theorie sinnvoll
vornehmen zu konnen [17]. In Kapitel 7 wird dieser Gedanke bei Versuchen mit zufilligen

Schichten wiederholt aufgegriffen.
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Die im Verlauf der Arbeit entwickelte Theorie und die gewonnenen Erkenntnisse sollen
in diesem Kapitel durch Messungen fundiert werden. Dafiir wird zunéchst der zu diesem
Zweck herangezogene Messplatz beschrieben. Eine umfassende experimentelle Studie ist
langwierig und mit hohem Aufwand verbunden. Daher werden anschliefend beispielhaft

einige Fille herangezogen, die eine punktweise Uberpriifung der Ergebnisse ermdglichen.

7.1 Messplatz

Die in dieser Arbeit genutzte Vorrichtung zur Vermessung der Reflektions- und Transmissi-
onseigenschaften der hergestellten Schichten ist in Bild 7.1 dargestellt. Die wichtigsten Be-

Bild 7.1: Freiraummessplatz in Transmissionsstellung. Bezeichnungen: 1) Breitband-
Hornantenne, 2) dielektrische Linse, 3) Probenhalter, 4) feinmechanisches Verschiebe-

system.

standteile dieses Aufbaus sind die beiden Antennenelemente. Dabei handelt es sich jeweils
um eine Kombination aus Breitbandhorn und dielektrischer Linse (Material: PTFE'). Letz-
tere wird eingesetzt, um die abgestrahlte Leistung auf die Messebene zu fokussieren [103].

Im Prinzip stellt diese Anordnung einen Linsenleiter dar [104]. In der Messebene zwischen

IPTFE ist auch unter dem Handelsnamen Teflon® der Firma DuPont bekannt.
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7.1 Messplatz

finGHz| 25 | 30 | 35 | 40 | 45 | 5.0 |
winm | 0,262 [ 0,239 | 0,222 | 0,207 | 0,196 | 0,185 |

Tabelle 7.1: Strahltaille w fiir ausgewihlte Frequenzen

den beiden Antennen ergibt sich folglich eine lokal begrenzte Welle, die idealerweise ei-
ne transversal elektromagnetische Feldverteilung mit Gauss-férmigem Profil aufweist. Die
Breite des Gauss’schen Strahls ist ein wichtiger Parameter: Die Forderung nach geringen
Randeffekten konkurriert mit jener, die Statistik eines kompositen Materials durch eine
entsprechend grofte Ausleuchtung der Probe genau genug zu erfassen. Die Kenndaten der
Antennenelemente sind dabei so gewihlt, dass sich ein Kompromiss zwischen Messdy-
namik, Grofke des Messobjektes und Handhabbarkeit des Aufbaus ergibt [105]. Fiir die

frequenzabhiingige Strahltaille? w des Messplatzes ldsst sich folgende Relation anfiihren:

1,72 - 108 m?
w%\/j 1;3”1/5. (7.1)

Zur Verdeutlichung sind einige Strahlbreiten fiir den in dieser Arbeit fiir Messungen ge-

nutzten Frequenzbereich in Tabelle 7.1 aufgelistet.

Als Signalquelle und Messempfinger zugleich kommt ein vektorieller Netzwerkanalysator®
zum Einsatz, der iiber koaxiale Kabel an die Eingangsbuchsen der Hornantennen ange-
schlossen wird. Zuvor muss jedoch durch eine Kalibrierung sicher gestellt sein, dass syste-
matische Messfehler durch nichtideale Bauteile im Gerat (Koppler, Kabel, Ubergiinge etc.)
und schlieklich auch durch den Aufbau selbst (Eingangsimpedanz der Antennen, Reflek-
tion an den Linsen) weitgehend unterdriickt werden. Die notwendigen Kalibrierstandards

werden dafiir in der Messebene am Probenhalter angebracht.

Fiir den Fall, dass der senkrechte Einfall untersucht wird, bieten sich zwei Mdoglichkeiten
der vektoriellen Kalibrierung [106] an: Zum einen die TRL-Kalibrierung (engl.: Through-
Reflect-Line) und zum anderen, wenn nur die Kenntnis der Reflektionscharakteristik von
Interesse ist, die OSL-Kalibrierung (engl.: Open-Short-Load) bei der Verwendung von nur
einer Antenne. Der Reflect- bzw. Short-Standard wird dabei durch eine sehr gut leitende
metallische Platte realisiert, wihrend der Probenhalter im Fall des Through- und Load-
Normals offen gelassen wird. Mit Hilfe des feinmechanischen Verschiebesystems [107] kann

eine Antenne in ihrer Position prizise von der Messebene weg verschoben werden. Der

2Mit der Strahltaille ist der gedachte Durchmesser eines Kreises gemeint, auf welchem die abgestrahl-
te Leistungsdichte der Antennen auf den halben Wert (= —3 dB) beziiglich der Leistungsdichte im

Kreiszentrum gefallen ist.
3Hierbei handelt es sich um das Gerit HP 8510C der Firma Hewlett-Packard.
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resultierende lingere Weg der Welle im freien Raum bei Transmission stellt damit die Im-
plementierung des Line-Standards dar. Auf dhnliche Weise ergibt sich der Open-Standard,
der als verschobene Metallplatte (engl.: Offset Short) ausgefiihrt wird. Bei den hier ge-
zeigten Messungen hat sich herausgestellt, dass die OSL-Kalibrierung etwas zuverléssiger
und robuster ist als die TRL-Kalibrierung. Da die Messungen in dieser Arbeit fiir Zwe-
cke der Verifikation durchgefiihrt werden, stellt die Reduzierung der Diskussion auf den
Reflektionsparameter keine wesentliche Einschriankung dar. Aus diesem Grund wird fiir

senkrechten Einfall lediglich die OSL-Kalibrierung genutzt.

Bei schrigem Einfall ist die Nutzung beider Antennenelemente nétig. Durch die resul-
tierende Antennenanordnung ergeben sich fiir die Mechanik des Messplatzes wesentlich
héhere Anforderungen fiir eine sinnvolle vektorielle Kalibrierung. Aus diesem Grund wird
in dieser Arbeit auf ein vereinfachtes skalares Verfahren zuriickgegriffen (siehe hierzu [105]),
welches den Reflektionsparameter der Probe zu zwei gemessenen Referenzen (Metallplatte

und offen gelassenener Probenhalter) in Beziechung setzt.

7.2 Einlagige Schichten

In diesem Kapitel werden durchgefiihrte Messungen an zwei verschiedenen einlagigen
Schichten vorgestellt, die aus paarweise links- und rechtsgedrehten Helices bestehen. Die
Ergebnisse werden zudem mit jenen verglichen, die sich aus der Analyse mit Hilfe des
Streuansatzes ergeben. Beziiglich der Herstellung dieser Schichten sind zuvor einige Be-
trachtungen notwendig, die insbesondere die sich ergebenden Toleranzen zum Thema ha-

ben.

7.2.1 Vorbetrachtungen

Aus diinnem Kupferdraht hergestellte Federn besitzen nur eine geringe Elastizitéit. Neben
dem nicht idealen Herstellungsprozess des Zulieferers triagt eine weitere Verarbeitung von
Hand unweigerlich zu erh6hten geometrischen Abweichungen bei. In diesem Sinn ist die He-
lixsteigung p, die zudem einen starken Einfluss auf die Resonanzfrequenz hat, am Stérksten
betroffen. Fiir die Herstellung einer Schicht mit einer definierten Ordnung bzw. gewissen
Zufilligkeit ist folglich eine Methode wiinschenswert, die ein genaues Platzieren ermdéglicht
und zugleich fiir eine Kontrolle der Resonanzfrequenzen sorgt. Aus diesem Grund wird die
Moglichkeit der Anordnung der Helices in einem Tragermaterial geméfs Bild 7.2 betrachtet.
Die Helix (hier im Bild: linksgedreht) befindet sich dabei in einer Aussparung einer 6 mm

dicken Platte eines aufgeschdumten und geschlossenporigen Kunststoffes. Hierbei handelt
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Steigung p 1,265 mm

Helixradius ro | 2,07 mm

Drahtradius ¢ | 0,1 mm

Windungen 3

Bild 7.2: Helix im Trégermaterial und Nominalabmessungen.

es sich um Rohacell® 31HF, dessen relative Permittivitiit bei 5 GHz nach Herstelleranga-
ben einen geringen Wert von ¢, = 1,05 aufweist und der Einfachheit halber im weiteren
Verlaufe der Arbeit in den Simulationen wie Vakuum behandelt wird. Die spezielle Form
der Aussparung wird mit einem computergestiitzten Laserschneidesystem in das Material
eingebracht. Sieben kleine Einbuchtungen sorgen dafiir, dass die Windungen und Drah-
tenden gestiitzt werden. Auf diese Weise ist die statistische Verteilung der Helixsteigung
stark mit den Positionen der Einbuchtungen verkniipft — mit dem Vorteil, dass letzte-
re eine wesentlich hohere Reproduzierbarkeit aufweisen. Zudem lésst sich die Geometrie
der gesamten Aussparung so ausfithren, dass eine zuverlissige kraftschliissige Verbindung
zwischen der Helix und dem umgebenden Material ermdéglicht wird. Die angesprochene
Methode der Positionierung ist prinzipiell skalierbar. Es ergeben sich aber bei kleineren
Partikeln (ergo hoheren Resonanzfrequenzen) Grenzen, die zum einen aus der endlichen
Laserstrahlbreite resultieren und sich zum anderen in einer schlechten Handhabbarkeit er-
klaren. Die Wahl der Geometrie der Helix erfolgte so, dass sowohl der technische als auch

der manuelle Aufwand tragbar sind.

Um die Fertigungstoleranzen der Helices und die Wirkung der Platzierungsmethode bes-
ser einschiitzen zu kénnen, bietet sich die Messung der Resonanzfrequenzen einer Auswahl
der Helices an. Hierfiir wird eine koaxiale Leitung (Innen- und Aufendurchmesser 10 mm
bzw. 40mm) verwendet, die am Anfang mit dem bereits erwiihnten, vektoriellen Netzwerk-
analysator verbunden ist. Sie besitzt einen am Ende der Leitung um 80 mm fortgefiihrten
Innenleiter, der eine ausreichende Anpassung ermoglicht. Zur Messung der Resonanzfre-
quenzen werden die Helices nah am Ende der koaxialen Leitung zwischen Innen- und
Aufenleiter positioniert (siche auch Bild E.9 im Anhang). Bildet man die Differenz aus

der beobachteten Reflektion bei eingebrachtem Partikel mit derjenigen fiir den ,ungestor-
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Bild 7.3: Statistische Verteilung der Resonanzfrequenzen von je 200 zuféllig ausgewihlten

rechts- und linksgedrehten Helices.

ten“ Fall, ergibt sich schliefslich eine ausgepriagte und leicht auf der Anzeige des Gerites
ablesbare Resonanz. Die Ergebnisse fiir 200 mafkgefertigte Helices jeder Sorte finden sich
in Bild 7.3. Hier sind sowohl Helices im Trigermaterial als auch solche, die nicht gestiitzt
werden, erfasst. Die Streubreite der Resonanzfrequenzen reduziert sich durch den Ein-
satz der Form erheblich, d.h. um fast das Vierfache. Zeitgleich erhoht sich die mittlere
Resonanzfrequenz, was den Schluss nahe legt, dass die originalen Helices im Mittel eine
kleinere Steigung aufweisen als es durch die Aussparungen vorgegeben wird. In der Tat
zeigen geometrische Analysen unter dem Mikroskop, dass vor allem die rechtsgedrehten
Helices aufserhalb der Spezifikationen gefertigt sind. Dennoch unterstreicht die Auswertung
der Resonanzfrequenzen, dass Herstellungstoleranzen durch das Stiitzen des Drahtes mit
Aussparungen weitgehend kompensiert werden konnen — trotz der manuellen Weiterver-
arbeitung. Die verbleibenden Abweichungen kénnen im Wesentlichen auf unterschiedliche
Drahtléngen zuriickgefiihrt werden. So ist z.B. in Bild 7.2 deutlich zu erkennen, dass die
Helix nicht, wie urspriinglich spezifiziert, exakt drei Windungen aufweist, sondern eher

etwas mehr.

Die Abweichungen der Helixgeometrien lassen sich in der Simulation ebenso beriicksichti-
gen wie die in den vorangegangenen Kapiteln betrachteten Variationen. Die Einheitszelle
einer Konfiguration besteht somit aus Helices unterschiedlicher Resonanzfrequenz. Verein-
fachend wird hierfiir angenommen, dass die Menge der einzeln vermessenen Helices sta-

tistisch so relevant ist, dass sie als Grundgesamtheit fiir Stichproben dienen kann. Ferner
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Bild 7.4: Abhéngigkeit der Resonanzfrequenz von der Windungszahl. Die Daten einer
mittleren linksgedrehten Helix im Trigermaterial aus Bild 7.3 (unten rechts) sind explizit

gekennzeichnet.

muss fiir die Berechnung der T-Matrix einer Helix nach Mafgabe ihrer Resonanzfrequenz
eine Zuordnung zu der entsprechenden Geometrie bekannt sein. Wie oben erldutert, wird
dieser Zusammenhang hier zweckméifigerweise iiber die Windungszahl hergestellt. Bild
7.4 zeigt die Resonanzfrequenz einer einzelnen Helix als Funktion der Windungszahl. Al-
le iibrigen Geometrieparameter werden weiterhin wie in Bild 7.2 aufgefiihrt angenommen.
Beriicksichtigt wird ferner eine endliche Leitfdhigkeit von o = 58 MS/m. Wie erwartet sinkt
die Resonanzfrequenz mit steigender Windungszahl und damit steigender Drahtlinge. Die
Daten einer linksgedrehten Helix mittlerer Resonanzfrequenz (geméf Messung mit Tréger-
material) bestéitigen den aus Bild 7.2 gewonnenen Eindruck, dass eine durchschnittliche

Helix tatsédchlich etwas mehr als 3 Windungen aufweist.

7.2.2 Aufbau und Vermessung der hergestellten Schichten

Fiir die stichprobenhafte Untermauerung der Theorie wurden zwei einlagige Proben gefer-
tigt. Fotografierte Ausschnitte finden sich in Bild 7.5. Jede Schicht besteht aus insgesamt
3600 (60 x 60) Aussparungen, die im Abstand von je 7mm auf einem quadratischen Raster
angeordnet sind. Die Seitenléinge der quadratischen Probe betrédgt demnach 42cm. Wie auf
einem Schachbrett sind die Formen hierbei wechselweise mit links- und rechtsgedrehten

Helices versehen.
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Bild 7.5: Ausschnitte der hergestellten Schichten mit Helices im Trigermaterial. Links: Pe-
riodische Positionen (Schicht A). Rechts: Statistisch ausgewéhlte Orientierungen (Schicht
B).

Betrachtet man die linke Anordnung, d.h. den Fall periodischer Aussparungen, fillt auf,
dass der Aufbau dhnlich zu dem in Kapitel 4.4 untersuchten ist. Abgesehen von der ver-
anderten Geometrie der Helix weicht die hergestellte Schicht im Wesentlichen durch Rota-
tionen um die Helixachse von erwdhnter Untersuchung ab. Wie bereits festgestellt wurde,
haben diese Orientierungen nur einen marginalen Einfluss auf das Verhalten der Schicht,
so dass auch hier im Idealfall (alle Helices gleich, unendliche Leitfdhigkeit) mit einer voll-
stindigen Reflektion der einfallenden Welle zu rechnen ist. Zur besseren Unterscheidung
wird die linke Anordnung fortan mit ,,Schicht A“ bezeichnet, die rechte mit ,Schicht B*.

Fiir Schicht A zeigt Bild 7.6 den Vergleich der Messwerte, die mit Hilfe der fokussie-
renden Antennen erzeugt wurden, mit den Ergebnissen der Simulation. Als Erginzung
zum senkrechten wurde hier zudem der schrige Einfall (TE) mit 60° aufgenommen. Ins-
gesamt ergibt sich fiir beide Fille eine sehr gute Ubereinstimmung zwischen Simulation
und Messung. Bei den unteren Frequenzen sind einige Schwankungen in den gemessenen
Kurvenverlaufen zu sehen, die im Wesentlichen auf die Unvollkommenheit des Messplatzes
bzw. auf das begrenzte Fehlermodell der Kalibrierung zuriickgefithrt werden kénnen. Im
Vergleich zum vektoriellen OSL-Verfahren (senkrechter Einfall) offenbaren die Messwerte
aus der skalaren Kalibrierung (schriiger Einfall) keine schlechtere Ubereinstimmung mit
den simulierten Werten. Fiir die Simulation wurde eine (6 x 6)-Einheitszelle herangezogen,
die folglich aus 18 links- und 18 rechtsgedrehten Helices besteht. Auch hier zeigt sich, dass
maximal ngy.., = 3 zur Beschreibung beider Schichten notig ist. Bei der alleinigen Beriick-
sichtigung von Dipolmenten ergibt sich hingegen ein Frequenzversatz von ca. 55 MHz zu
tieferen Frequenzen (vergleiche dazu [108]).
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Bild 7.6: Schicht A: Betrag des Reflektionskoeffizienten fiir senkrechten (0°) und schrigen
(60°) Einfall. Simulation mit (6 x 6)-Einheitszelle und ngy.e,, = 3.

Hinsichtlich der Leistungsmerkmale der funktionellen Schicht fiir den senkrechten Einfall

lassen sich abschliefend zwei wesentliche Punkte anfiihren:

e Das Maximum der Reflektion liegt gemessen bei ca. —0,46 dB (simuliert: —0,54 dB)
und ist damit nur etwa 0,26dB (0,34dB) kleiner als der Wert, der sich fiir den streng
periodischen Fall gleicher Helices der Resonanzfrequenz f,.s = 3,384 GHz (mittlere
Helix aus Bild 7.4) ergébe.

e Wiirde man Helices nutzen, deren Streubreite nicht durch die Aussparungen redu-
ziert ist, ergibt sich bei gleicher Annahme des funktionalen Zusammenhangs zwischen
Resonanzfrequenz und Anzahl der Windungen ein Maximum bei etwa —4 dB [108|.
Da bei nicht unterstiitzten Helices einige andere Geometrieparameter, inshesondere
die Steigung, zusitzlich die Resonanzfrequenz beeinflussen, ist dies nur ein hypo-
thetisches Modell. Dennoch verdeutlicht es den Vorteil, der sich im Kontext einer
moglichst hohen Reflektion aus der vorgeschlagenen Methode zur Positionierung der
Partikel ergibt.

Bei der zweiten Rohacell®-Platte (Schicht B aus Bild 7.5) sind die Orientierungen der
Aussparungen innerhalb der Ebene der Schicht zufillig gewihlt (vergleiche dazu Kapitel
5.2.3). Der maximale Winkel zur urspriinglichen Orientierung ist zu 60° gewéhlt. Zwischen
diesen Extremen sind die Winkel gleichverteilt. Durch die erh6hte Unordnung im Vergleich
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Bild 7.7: Schicht B: Betrag des Reflektionskoeffizienten fiir senkrechten Einfall. Vergleich
der Messung mit der Simulation und der angepassten Simulation mit nur 31 Konfigura-

tionen.

zu Schicht A wird keine vollstindige, sondern eine um einen gewissen Betrag reduzierte
Reflektion bei der Resonanz erwartet. Die Ergebnisse werden in Bild 7.7 zusammenge-
fasst. Wie erwartet sinkt das Maximum des Reflektionsfaktors ab — hier auf etwa —2,5dB
bis —3 dB. Abgesehen von den durch den Messaufbau bedingten Schwankungen bei tiefen
Frequenzen, die auch in den Messungen der Schicht A sichtbar sind, fallen auf der abfallen-
den Flanke nach der Resonanz einige Unregelmifigkeiten auf. Diese sind in der Simulation
(gleiche Parameter wie zuvor) so nicht erkennbar. Der Grund liegt in der begrenzten Grofe
der Schicht, was wie folgt erklért werden kann [109]: Gewichtet man jeden Partikel mit der
Leistung des anregenden Gauss’schen Strahls, ergibt sich, dass im Mittel nur 1133 statt
der 3600 realen Partikel mit voller Leistung beleuchtet werden. Bei Schicht A féllt dieser
Umstand aufgrund der Regelméfigkeit nicht ins Gewicht. Im Gegensatz dazu mitteln sich
die unterschiedlichen gegenseitigen Kopplungen aufgrund der variierenden Orientierungen
in Schicht B erst fiir grofere Schichten bzw. eine hohere Anzahl beteiligter Partikel heraus.

Um diese Theorie auch rechnerisch zu iiberpriifen, ist die Simulation dahingehend ver-
andert worden, dass lediglich 31 Konfigurationen einer Einheitszelle, die aus 36 Helices
besteht, berechnet werden. Im strengen Sinn spiegelt dieses Szenario nicht das Verhalten
einer finiten Schicht mit insgesamt 31 x 36 = 1116 ~ 1133 Partikeln wider. Die Ergebnis-
se dieser angepassten Simulation sind daher eher als Hinweis auf mogliche Konsequenzen
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Steigung p | 0,35 mm

Helixradius rg | 0,85 mm
Drahtradius a | 0,05 mm
Windungen 5,2

Bild 7.8: Verwendete Helix und Nominalabmessungen.

einer zu kleinen Schicht zu werten, also nur qualitativ zu verstehen. Fiir deckungsgleich
zur Messung gewéhlte Frequenzinkremente ist die erhaltene Kurve ebenfalls in Bild 7.7
eingezeichnet. Die sich ergebenden Unregelméfigkeiten auf der abfallenden Flanke sind im
Vergleich zur Messung leicht unterschiedlich ausgeprigt, bestéitigen aber die Vermutung,
dass hier Effekte durch die Grofse der Schicht auftreten.

Insgesamt kann auch bei Schicht B eine gute Ubereinstimmung zwischen Simulation und

Messung ausgemacht werden.

7.3 Bi-isotropes Material

In diesem Abschnitt werden Schichten betrachtet, die aus moglichst zuféllig angeordneten
Helices, sowohl beziiglich der Position als auch der Orientierung, bestehen. Eine Redukti-
on der Komplexitit des Aufbaus ergibt sich aus der Tatsache, dass lediglich rechtsgedreh-
te Helices verwendet werden. Die Menge aller Einschliisse bildet damit ein bi-isotropes
Material. Der mehrschichtige Aufbau geméfs Kapitel 6 sowie kleinere Abmessungen der
Helices sorgen dafiir, dass Probleme hinsichtlich der Gréke der Probe (wie im vorigen Ka-
pitel deutlich geworden ist) nicht auftreten. Bild 7.8 zeigt die hier genutzte Helix und die
nach Auswertung mit Hilfe eines Mikroskops erhaltenen mittleren Geometrieparameter.
Um eine gewisse Stabilitit zu gewdhrleisten, besteht der Draht aus einer Kupferlegierung
(Kupfer-Beryllium, CuBe2) mit einer elektrischen Leitfihigkeit von ca. o &~ 11 MS/m.

Wie bereits in der Einleitung erwéihnt, kénnen bi-isotrope Schichten gebildet mit Heli-
ces vor allem in Mikrowellenabsorbern ihren Einsatz finden. Letztere sind meist gestaffelt
aufgebaut. Die Struktur ist dabei so gewahlt, dass die einfallende Welle eine allméihliche
Anderung des Wellenwiderstandes erfihrt und daher nur wenig reflektiert wird. Gleich-

zeitig sind die Materialien verlustbehaftet, damit die Leistung der einfallenden Welle in
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Wiérme umgesetzt wird. Bei tiefen Frequenzen, also groken Wellenlingen, wechselwirkt
die einfallende Welle kaum mit dem begrenzt ausgedehnten Absorber, so dass dem elek-
tromagnetischen Feld nur ein geringer Teil der Leistung entzogen wird. Versetzt man den
Absorber allerdings mit Helices, ergibt sich zusétzlich ein in dieser Arbeit schon haufiger
diskutierter Mechanismus. Die Streuung quer zur Ausbreitungsrichtung der anregenden
ebenen Welle fiihrt dazu, dass die Felder viel besser in den Absorber eindringen und mehr
von seiner Absorptionsfahigkeit erfahren. In und um die Resonanz steigt seine Leistungs-
fahigkeit [16-18]. Der Entwurf solcher Absorber ist nicht Gegenstand dieser Arbeit. Zur
Veranschaulichung der Grofenordnungen der auftretenden Effekte werden aber, in Anleh-
nung an diesen konkreten Anwendungsfall, Schichten betrachtet, die mit einer Metallplatte
abgeschlossen sind. Zudem besitzt dieses Vorgehen den Vorteil, dass bei einer bi-isotropen
Schicht vor einer leitenden Ebene lediglich kopolare Reflektion auftritt. Die Auswertung

ist somit vereinfacht.

7.3.1 Vorbetrachtung
Herstellung der Einschliisse und Toleranzen

Um in der Materialprobe jedwede Vorzugsrichtung der Helixorientierungen auszuschliefen
und gleichzeitig eine gewisse Zufélligkeit in der Platzierung zu ermdoglichen, wird auf nach-
folgend erlduterte Vorgehensweise zuriickgegriffen [69,110]. Die Grundidee hierbei ist, dass
jede Helix in einer Kugel isotroper Materialeigenschaften positioniert ist. Dieses Verfahren
hat neben der Erfiillung der Anforderung einer zufélligen Orientierung und Platzierung den
Vorteil, dass damit auch ein elektrischer Kontakt zwischen den Drihten verhindert wird.
Zur Realisierung wird jede Helix zunéchst in einen sphérischen Hohlraum einer Gussform
gesetzt. Anschlieflend wird ein selbst hirtender Polyurethan-Schaum (PU-Schaum oder
auch Montageschaum) eingespritzt. Messungen in einem zylindrischen Hohlleiter ergeben,
dass der expandierte Schaum im hier relevanten Frequenzbereich eine relative Permittivitét
von €, = 1,046 — 70,003 besitzt. Tatséchlich fiihrt das druckvolle Einbringen in die Form
aber dazu, dass der Schaum nicht expandieren kann. Daher ist eine Vergleichsmessung
mit auf diese Weise hergestellten Kugeln (3 mm Durchmesser) ohne Helix durchgefiihrt
worden. Die anschliefende Interpolation der fiir den vorherrschenden Fiillgrad erhaltenen
Ergebnisse mit Hilfe der Clausius-Mossotti-Mischformel fiihrt schliefslich zur tatséchlichen
Permittivitat der Kugel, die eher im Bereich von ¢, ~ 1,25 — 50,008 anzusiedeln ist. Zur
Veranschaulichung zeigt Bild E.10 im Anhang die beiden vermessenen Proben im genutz-

ten zylindrischen Hohlleiter-Aufbau.

Wie zuvor ist es auch hier notwendig, die Eigenschaften einer relevanten Anzahl herge-
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Bild 7.9: Statistische Verteilung der Resonanzfrequenzen von 500 zufillig ausgewéhlten
Einschliissen. Zusétzlich ist eine an die Messwerte angendherte Normalverteilung einge-

zeichnet.

stellter Einschliisse zu kennen. Eine Auswertung der Resonanzfrequenzen fiihrt zu der
in Bild 7.9 illustrierten Verteilung [95]. Als statistische Grundlage dienen insgesamt 500
Einschliisse. Es zeigt sich eine Streubreite von fast einem GHz, was in diesem Fall einer re-
lativen Abweichung von ca. £10% um die mittlere Resonanzfrequenz von f,., = 4,24 GHz
entspricht. Dieser Umstand ist im Wesentlichen durch die manuelle Verarbeitung, das un-
kontrollierte Einspritzen und die daraus resultierenden mechanischen Verformungen der
Helices bedingt. Die Tatsache, dass die Resonanzen nahezu normalverteilt sind, erhirtet
die Annahme, dass mehrere unabhéngige Zufallsprozesse bei der Herstellung eine Rolle
spielen. Die Streubreite der Resonanzfrequenzen ist hier im Vergleich zum vorigen Fall we-
sentlich héher. Zudem fillt eine Abbildung der gemessenen Resonanzfrequenzen auf eine
entsprechende Geometrie schwerer, da immer eine Kombination aus verdnderter Helixstei-
gung nebst Windungszahl wirksam ist. Vereinfachend wird im Folgenden angenommen,
dass lediglich die Helixsteigung von Toleranzen betroffen ist (vergleiche [95]). Das Einbe-

ziehen der Verteilung in die Simulation erfolgt analog zur bisherigen Verfahrensweise.

Lokale Verteilung der Partikel

Auf der linken Seite von Bild 7.10 ist das angefertigte Material abgebildet. Dabei dienen
kleine Polystyrolkugeln zur Einstellung der Dichte der hergestellten Einschliisse. In dem
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Bild 7.10: Links: Ausschnitt einer hergestellten Schicht. Hierbei nehmen die mit Helices
gefiillten dielektrischen Kugeln (dunkel) ein Raumvolumen von ca. 20% ein. Rechts: Dazu

passende simulierte Verteilung innerhalb einer Einheitszelle geméfs [111].

dargestellten Fall nehmen die resonanten Einschliisse (dunkel) einen Raumanteil von etwa
20% ein. Die Partikel wurden manuell und mit grofer Sorgfalt eingestreut, so dass sie mog-
lichst gleichverteilt im Raum angeordnet sind. Dennoch ist sichtbar, dass der Fall direkt
aneinander grenzender Partikel wesentlich 6fter auftritt als bei zufélliger Positionierung
im freien Raum erwartet. Wegen der starken Abhéingigkeit der Kopplung von der Distanz
der Partikel ist insbesondere um die Resonanz ein starker Einfluss dieser Positionierung
zu erwarten. Um letztere auch in der Simulation beriicksichtigen zu konnen, werden die
Positionen der Partikel wie in [111] vorgeschlagen in einem numerischen Fallexperiment
ermittelt. Dazu wird fiir eine imagindre Kugel mit dem Durchmesser von 3 mm zunéchst
eine Anfangsposition oberhalb der Schicht berechnet. Jede Kugel fillt entweder direkt zum
Boden der Schicht oder rollt an einer oder zwei schon positionierten Kugeln entlang, bis
eine stabile Position erreicht ist. Sobald die Schicht vollsténdig mit imagindren Kugeln ge-
fiillt ist, wird die gewiinschte Dichte eingestellt, indem zuféllig ausgewihlte Kugeln durch
einen resonanten Einschluss ersetzt werden. Ein Beispiel einer so erhaltenen Verteilung ist
auf der rechten Seite von Bild 7.10 gezeigt. Die Dicke der Schicht ist zu 10 mm angenom-
men und wird schlieflich durch eine Einheitszelle aus insgesamt 98 Kugeln (40 resonante
Einschliisse, 58 Kugeln aus Luft) aufgespannt. Mit den Abmessungen einer Einheitszelle
von 10 mm x 16,8 mm x 16,8 mm ergibt sich korrespondierend zur linken Seite von Bild
7.10 eine Dichte von 20%.

Der Einfluss dieser ,,physikalischen Methode der Anordnung der Partikel wird in Bild 7.11
durch den Vergleich mit dem Ergebnis, welches sich aus zufilligen Positionen ergibt, ver-

anschaulicht. Diese Untersuchung ist zudem mit unterschiedlichen Dichten der Partikel
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Bild 7.11: Vergleich der Reflektion berechnet mit rein zufillig im Raum positionierten
Einschliissen (punktierte Linien) und der ,physikalischen® Verteilung nach [111] (durchge-

zogene Linien) fiir verschiedene Dichten der Einschliisse.

durchgefiihrt worden. Die Dicke der Schicht betrdgt 10 mm. Ferner werden geméf Kapi-
tel 6 nur Dipolinteraktionen bei der Berechnung beriicksichtigt. Wie anfangs vermutet,
ergibt sich fiir hohe Partikeldichten (20% und 30%) ein nennenswerter Unterschied in den
berechneten Reflektionen, der auf die im Mittel stirkeren Interaktionen dicht beieinander
liegender resonanter Einschliisse zuriickgefithrt werden kann. Im Gegensatz dazu fallen
Unterschiede fiir kleinere Partikeldichten (5% und 10%) nicht ins Gewicht. Fiir den im fol-
genden Abschnitt durchgefiihrten Vergleich des Streuansatzes mit Messungen wird stets

die hier eingefiihrte Methode nach [111] herangezogen.

7.3.2 Messungen

Die Herstellung einer dhnlich grofen Schicht wie im Fall der einlagigen Strukturen gestal-
tet sich aufgrund der Vielzahl der dafiir notwendigen Einschliisse sehr aufwindig. Fiir ein
gutes Verhéltnis zwischen Aufwand und Nutzen (im Labormafstab) wird daher ein ver-
kleinerter, achteckiger Probenhalter genutzt, der zudem durch eine Rohacell®-Frontplatte
dafiir sorgt, dass die lose zusammen gestellte Schicht aufrecht im Freiraumaufbau vermes-
sen werden kann. Die Grundfliiche des Probenhalters ist ca. 533cm?. Aus Dicke und Dichte
der hergestellten Schichten ergibt sich, dass immer mindestens 1900 resonante Einschliisse

(Maximum: 11300) von der einfallenden Welle beleuchtet werden.
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Bild 7.12: Erhaltene Reflektion einer 10 mm dicken Schicht vor einem metallischen Ab-

schluss. Punktierte Linien: Simulation {iber Streuansatz. Durchgezogene Linien: Messung.

Zunichst wird die Dicke der Schicht (10 mm) beibehalten. Fiir verschiedene Dichten fin-
det sich in Bild 7.12 eine Gegeniiberstellung der schon in Bild 7.11 gezeigten simulierten
Kurven mit den aus Messungen erhaltenen Werten. Insgesamt ist eine sehr gute Uber-
einstimmung feststellbar. Tendenziell offenbaren die gemessenen Verldaufe aber eine leicht
verbreiterte Resonanz. Das Minimum der Reflektion ist bis auf den Fall hoher Dichte (30%)

von der Simulation etwas hoher eingestuft als es gemessen wird.

Die zu obiger Untersuchung passenden und aus dem Clausius-Mossotti-Ansatz (hier aus
dem Multiphasen-Ansatz [95,112]) erhaltenen Ergebnisse werden in Bild 7.13 den Mes-
sergebnissen gegeniibergestellt. Geméaf Kapitel 6 ist fiir diesen Fall (wenig interne Wir-
meverluste) keine gute Ubereinstimmung zu erwarten. Dennoch erhiilt man zumindest fiir
niedrige Dichten eine zufriedenstellende Approximation. Dieses Verhalten lisst sich ana-
log zu den in diesem Zusammenhang getroffenen Aussagen iiber bedampfendes Material
in dem Komposit damit erklaren, dass Helices unterschiedlicher Resonanzfrequenzen eine
geringere gegenseitige Kopplung aufweisen. Die nicht im Clausius-Mossotti-Modell erfass-
ten Einfliisse werden damit geringer. Bei Anwesenheit von beddmpfenden Materialien in
Kombination mit einer gewissen Streubreite der Helices ist demzufolge eine noch bessere
Eignung der Mischformel zu erwarten, auch bei hoheren Dichten der beteiligten Einschliis-

se. Damit lisst sich schlieRlich auch die gute Ubereinstimmung zwischen dem zum Zwecke
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Bild 7.13: Erhaltene Reflektion einer 10 mm dicken Schicht vor einem metallischen Ab-
schluss. Punktierte Linien: Multiphasen-Mischformel nach Clausius-Mossotti. Durchgezo-

gene Linien: Messung.

des Entwurfs eines chiralen Schichtabsorbers genutzten einfachen Materialmodell und den
entsprechenden Messergebnissen in [17] deuten. Fiir die hier untersuchte Schicht wird es

allerdings sinnvoll, bei hoherer Dichte mit dem Streuansatz zu rechnen.

Als letztes Beispiel wird die Dicke der Schicht variiert, die Dichte bleibt konstant bei 20%.
Bild 7.14 fasst die Ergebnisse zusammen. Die Genauigkeit bzw. die Giite der Losung ist
im Wesentlichen mit der aus der Untersuchung fiir verschiedene Dichten vergleichbar. Der
grokte Unterschied fillt bei der 15 mm dicken Schicht auf.

Im Vergleich zu den Messungen an den einlagigen Schichten fillt die Genauigkeit des
Streuansatzes in diesem Abschnitt etwas ab. Hier ist jedoch zu beachten, dass sich eine
Vielzahl von Einfliissen der Kontrolle entziehen bzw. nur sehr aufwendig in der Simulation

mit einbezogen werden konnen:

e Bei der Verteilung von Hand treten unweigerlich lokale Dichteschwankungen auf.
Obwohl die ,physikalische” Verteilung der Partikel Beriicksichtigung findet, ist die

tatsdchliche Statistik damit noch nicht exakt im Streuansatz wiedergegeben.

e Nach dem Einspritzen des Polyurethanschaumes lassen sich nur noch indirekt iiber

die Resonanzfrequenz einige Aussagen beziiglich der Geometrie der Helices treffen.
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Bild 7.14: Erhaltene Reflektion verschieden dicker Schichten vor einem metallischen
Schirm. Die Dichte der Partikel betragt jeweils 20%. Punktierte Linien: Simulation iiber

Streuansatz. Durchgezogene Linien: Messung.

Ungleichméfkigkeiten der Helixsteigung oder weitere mdogliche Kombinationen der

Geometrieparameter sind in der Simulation nicht erfasst.

e Da Energie quer zur Schicht abgestrahlt wird, konnen Reflektionen am verwendeten
Probenhalter aus Kunststoff dazu fiihren, dass das mittlere Feld am Ort einer Helix

sich von dem berechneten unterscheidet.

e Das Verhiltnis der Geometrie des Probenhalters zur Breite des GGauss’schen Strahls
ist hier noch kleiner als bei den einlagigen Schichten. Obwohl Absorbermateriali-
en um den Probenhalter positioniert wurden, konnen zusétzliche Randeffekte nicht

ausgeschlossen werden.

e Eine stichprobenhafte Uberpriifung der hergestellten Einschliisse zeigt, dass die Heli-
ces oft nicht in der Mitte der dielektrischen Kugel, sondern eher am Rand angesiedelt
sind. Diese Situation kénnte im Streuansatz durch eine verdnderte Parametrisierung
der Helix (vergleiche Formel 3.3) beriicksichtigt werden. Da die Auswirkungen auf
das rechnerische Ergebnis im Vergleich zu den erstgenannten Punkten noch am ge-

ringsten eingeschitzt werden, wurde dieser Schritt nicht mehr vollzogen.

Zusammenfassend ldsst sich fiir die hier untersuchten Schichten sagen, dass die Grofe der

Messungenauigkeiten durchaus im Rahmen des Erwartbaren liegt und damit als gut zu
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bewerten sind. Um hier eine bessere Ubereinstimmung zu erzielen, sind, wie erliutert,
entweder wesentliche Verbesserungen der Abbildung der Realitdt in der Simulation zu
betreiben oder zumindest erhebliche konstruktive Anderungen vorzunehmen, was sowohl
jeden Einschluss selbst als auch die Schicht betrifft.
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Die Forschung auf dem Gebiet komplexer, kompositer Materialien verfolgt das Ziel elek-
tromagnetisch wirksame Schichten zu charakterisieren. Dabei ist die Erfassung der Wech-
selwirkungen zwischen den einzelnen Grundbausteinen ein wesentliches Element, um ein
Verstandnis des Streuverhaltens solcher Strukturen zu entwickeln. Nur mit wissensbasier-
tem Vorgehen und einem genauen Modell ist es m&glich, funktionelle Schichten hinsichtlich
ihrer elektromagnetischen Eigenschaften zu optimieren. In der vorliegenden Arbeit werden
Anordnungen aus kleinen metallischen Helices betrachtet, die aus dem Anfang der 1990er
Jahre aufkeimenden Gebiet der chiralen Materialien fiir den Mikrowellenbereich bekannt
sind. Die geometrischen Abmessungen der Partikel sind klein gegeniiber der Wellenlénge, so
dass solche Strukturen im Allgemeinen homogen erscheinen. Hinsichtlich der Modellierung
begriinden sich die Herausforderungen vor allem aus dem ausgeprigten Streuverhalten bei
der ersten Resonanz der Partikel. Eine wesentliche Aufgabenstellung liegt ferner in der

Erfassung des Streuverhaltens beim Ubergang von periodischen zu zufilligen Schichten.

Die Beschreibung der gegenseitigen Interaktionen erfolgt in dieser Arbeit auf Basis von
Multipolmomenten, welche sich iiber eine Taylorreihenentwicklung der Stromverteilung
definieren. Obschon die Streufelder dieser Multipolmomente Kugelwellen entsprechender
Ordnung sind, ist bei gegebenem Multipolmoment eine direkte Zuordnung zu den Vorfak-
toren der Kugelwellen durch eine analytische Abbildung schwierig. Mit Hilfe der Ndherung
fiir diinne Drihte, d.h. der Annahme eines infitesimal diinnen Stromfadens, gelingt schliefs-
lich die automatisierte, spaltenweise Berechnung der sogenannten T-Matrix. Anwendung
findet ferner die Zerlegung des Stromes in einzelne Dipole und das Translationstheorem
fiir sphérische Wellen. Die T-Matrix verkniipft in einer linearen Abbildung die komple-
xen Amplituden der einfallenden und gestreuten Kugelwellen. Demnach ergibt sich die
Ordnung und Art der hervorgerufenen Multipolmomente im Umkehrschluss. Das Modell
wird ferner auf den insbesondere bei Experimenten auftretenden Fall einer kugelférmigen

Umbhiillung einer Helix erweitert.

Aus dem Streuverhalten einer einzelnen Helix lassen sich bereits einige Erkenntnisse ablei-
ten. So nimmt fiir die Einhaltung gewisser Fehlergrenzen der Felddarstellung die Anzahl
der zu beriicksichtigenden Multipole zu, wenn der Abstand der Beobachtungspunkte zur

Helix reduziert wird. In grofter Entfernung lésst sich das Streufeld dagegen bereits mit dem
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Beitrag der Dipolmomente gut beschreiben. Ein weiteres Resultat ist, dass die Qualitéit
der Felddarstellung bei gegebenem maximalen Multipolmoment und Abstand im Wesent-
lichen durch das Verhiltnis von Helixdurchmesser und -héhe bestimmt wird. Fiir einen
moglichst kompakten Streukorper sollten diese beiden Parameter immer &hnlich gewihlt
werden, so dass fiir die nachfolgenden numerischen Untersuchungen die Auswahl einer He-
lixgeometrie — und einer damit verbundenen Resonanzfrequenz — keine Einschrinkung der
Allgemeinheit darstellt.

Weitere Aspekte bestédtigen sich bei der Interaktion zweier Helices: Abgesehen von den
notwendigen magnetischen und elektrischen Dipolmomenten ist der Einfluss elektrischer
Momente bedeutend grofer als jener der magnetischen. Zudem zeichnet sich ab, dass vor-
wiegend ungerade Ordnungen der Multipolmomente zum Streufeld beitragen. Durch Mit-
telungseffekte heben sich Fehler in der Beschreibung der Wechselwirkung zweier Helices
auf, so dass selbst bei sehr nahen Helices eine genaue Modellierung mit Multipolmomen-
ten bis zu fiinfter Ordnung méoglich ist. Die Aufspaltung der Resonanz ldsst erwarten, dass
die Betrachtung der Streueffekte innerhalb groferer Strukturen bzw. Schichten aus vielen

Helices ein komplexes Modell erfordert.

Ein Grundbaustein dieses Modells ist die Implementierung periodischer Randbedingungen
in dem Streuansatz. Die dafiir notwendigen mathematischen Formulierungen werden in
Kapitel 4.1 dargelegt. Im Prinzip geniigt die Berechnung einer unendlichen Doppelsum-
me, um alle Interaktionen vollsténdig zu erfassen. Zur Konvergenzverbesserung wird ein
Verfahren eingesetzt, welches die Auswertung der Reihe mit Hilfe einer Fouriertransfoma-
tion in den Bildraum verschiebt. Die Ergebnisse einer speziellen periodischen Anordnung
(schachbrettformige Verteilung links- und rechtsgedrehter Helices) werden mit denen ei-
nes kommerziellen Simulationswerkzeuges verglichen. Fiir die im Sinne einer Bandsper-
re frequenzselektiv wirkende Schicht zeigt sich eine gute Ubereinstimmung zwischen den
Ansitzen. Ein kleiner, verbleibender Frequenzversatz lisst sich mit der verwendeten Néa-
herung fiir diinne Dréhte erkléren sowie damit, dass das Vergleichsverfahren, ebenso wie
der Streuansatz, nur endlich genau sein kann. Bei dieser Anordnung reproduzieren sich
die Erkenntnisse aus der Untersuchung mit zwei Helices: Nur bei sehr nah beieinander
positionierten Helices ist ein Einfluss von Momenten bis zu fiinfter oder siebter Ordnung
ersichtlich. Meist geniigt jedoch die Beriicksichtigung von Multipolen dritter oder sogar
erster Ordnung (Dipole).

Der Ansatz zur Beschreibung von Schichten mit zufélligem Aufbau nutzt periodische Rand-
bedingungen. Innerhalb einer Einheitszelle werden die Streukérper geméf einer vorgegeben
Verteilung positioniert und orientiert. Die Streuparameter einer Schicht ohne Periodizitét

ergeben sich aus der mehrfachen Berechnung vieler solcher Konfigurationen und anschlie-
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8 Zusammenfassung

fender Mittelung. Nach ersten Betrachtungen zum Konvergenzverhalten (benttigte Anzahl
der Konfigurationen, Grofe der Einheitszelle) erfolgt die umfangreiche Studie einer einla-
gigen Schicht. Als wesentliche Erkenntnis lésst sich hier ableiten, dass die Relevanz h6herer
Momente (hier bis zu dritter Ordnung), welche sich iiberwiegend in einem Frequenzversatz
zur Dipollésung dufert, mit wachsender Unregelméfigkeit der Schicht sinkt. Insbesondere
im Fall, dass die Helices keine Vorzugsrichtung aufweisen, ergeben sich die tatsichlichen
Streuparameter der Schicht bereits aus der Beriicksichtigung der Dipolmomente. Ahnlich
wie bei der Verkopplung zweier Helices lésst sich dieser Umstand mit Mittelungseffekten

erklaren.

Die beschriebenen Streueffekte offenbaren sich in sehr dhnlicher Weise bei mehrlagigen
Schichten, so dass zunéchst kein weiterer Erkenntnisgewinn vorliegt. Ein Vergleich mit der
populédren Clausius-Mossotti-Theorie im Kontext der effektiven Medien bietet dennoch in-
teressante Einblicke. Aufgrund vereinfachender Annahmen bei der Herleitung, die in vorlie-
gendem Anwendungsfall nicht giiltig sind, ist die Mischformel prinzipiell nicht anwendbar.
Gleichwohl ergibt sich fiir den Fall einer streng periodischen, dreilagigen Anordnung gerin-
ger Streukorperdichte eine erstaunliche Ubereinstimmung, womit sich die Tauglichkeit des
Clausius-Mossotti-Modells als erste Ndherung fiir das Streuverhalten solch einer Schicht
begriindet. Fiir hhere Partikeldichten und insbesondere fiir geringere Ordnung zeigen sich
die Grenzen des Materialmodells recht deutlich. Die einzelnen Resonatoren sind in diesem
Fall unterschiedlich miteinander verkoppelt und bedingen somit eine Vielzahl auftretender
Resonanzen, die iiberlagernd die Streuparameter bestimmen. Groéfere Unterschiede sind
speziell im Transmissionsparameter ersichtlich. Verringert man die gegenseitige Kopplung,
ergibt sich wieder eine bessere Ubereinstimmung, wie anhand eingebrachter verlustbehaf-

teter dielektrischer Kugeln gezeigt wird.

Kapitel 7 ist der experimentellen Uberpriifung der Streutheorie gewidmet. Die Charakteri-
sierung der angefertigten Proben erfolgt mit einem Freiraummessplatz. Fiir die Herstellung
einer periodischen Anordnung sowie einer Schicht mit einer vorgegeben Zufallsverteilung
wird eine Methode zur korrekten Platzierung der Helices vorgeschlagen. In einen geschlos-
senporigen Schaumstoff werden mit Hilfe eines computergestiitzen Laserschneidesystems
kleine Aussparungen eingebracht, die neben der korrekten Position auch reproduzierbare
Steigungen der Helices ermdglichen. Die herstellungsseitigen Toleranzen der einzelnen Par-
tikel konnen damit gezielt verringert werden. Die sehr gute Ubereinstimmung zwischen den
Simulations- und den Messergebnissen untermauert die Giiltigkeit des Modells. Es werden
Messungen an Schichten eines vollends zufélligen Materials vor einem metallischen Schirm
vorgestellt. Hierbei sind die Helices in dielektrische Kugeln eingebettet. Die Ergebnisse zei-
gen auf, dass der in dieser Arbeit verwendete Streuansatz zu sinnvollen und im Vergleich
zur Clausius-Mossotti-Theorie verbesserten Ergebnissen fiihrt.
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8 Zusammenfassung

Abschliefsend lasst sich sagen, dass die in dieser Arbeit entwickelten Modelle und Metho-
den fiir eine Vielzahl anders aufgebauter Schichten adaptierbar sind. Das erlangte Wissen,
dass fiir die vollstdndige Beschreibung eines Materials mit regelloser Orientierung (und
Positionierung) lediglich Dipolmomente notwendig sind, erleichtert zukiinftige Analysen.
Denkbar sind auch verbesserte (semi-)analytische Modelle, die etwa die Winkel- und Positi-
onsverteilung zusammen mit vereinfachenden Ansétzen zur Beschreibung der Kopplungen

beriicksichtigen.
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A Koordinatentransformation nach Euler

Bild A.1: Definition der Euler-Winkel.

Die in dieser Arbeit genutzte zy'z”-Konvention der Euler-Winkel ist in Bild A.1 illus-
triert. Dabei ist die Reihenfolge der Rotationen, die immer im mathematisch positiven
Sinn durchgefiihrt werden, nicht beliebig. Der erste Schritt besteht in der Rotation mit
dem Winkel o um die z-Achse. Damit ergibt sich aus dem originalen und ungestrichenen
Koordinatensystem (zyz) das neue gestrichene System (z'y’z’). Anschlieend erfolgt die
Rotation mit dem Winkel § um die y’-Achse, danach die Drehung mit v um die Achse 2”.

Der Hauptgrund des Gebrauchs oben beschriebener Rotationen ist das Rotationstheorem
sphérischer Wellenfunktionen [44|, das auf Basis eben dieser Winkel beschrieben ist. Ein
7.B. bei der zufilligen Orientierung von Helices erscheinendes Problem ist die Identifi-
kation der drei Euler-Winkel, wenn das globale (originale) und ein dazu gedrehtes Ko-
ordinatensystem gegeben sind. In kartesischen Koordinaten lisst sich die Abbildung der

entsprechenden Einheitsvektoren wie folgt schreiben:

u

e, L1 T2 T3 Ex
e | =1wvn v uwul|e
e 21 %2 Z3 €,
cosy siny 0 cosf 0 —sinf cosae  sina 0 e,
= | —siny cosy 0 |- 0 1 0 | —sina cosa 0 |-] g,
0 0 1 sin@ 0 cospf 0 0 1 e,
(A.1)
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A Koordinatentransformation nach Euler

ergibt sich fiir |z3] = 1:

nommenen eingeschriankten Wertebereich der Winkel geméf

arccos Iy
o+ =

fir i) Z 0,

—arccosxy + 2m  fiir x5 < 0,

ﬁ:{ 0 fiir 23 =1,

m fir z3 = —1.

Fiir alle anderen Félle findet sich:

arccos 221 >
A /z1 —l—z2
o= z1
— arccos + 27
2423

(8 = arccos z3,

fiir 2o > 0,

fiir 29 < O,

— arctan % + 7 fiir 3 > 0,
Y= 3 e
—arctan £ fiir 23 < 0.

x3
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Nutzt man den auch fiir das Rotationstheorem sphérischer Wellenfunktionen [44] ange-

(A.2)

(A.4)



B Anregende Welle

Bild B.1: Ausbreitungsrichtung
und Polarisation der einfallenden

homogenen ebenen Welle.

Betrachtet wird eine anregende homogene ebene Welle geméf Bild B.1. Der Wellenvektor
k befindet sich im Winkel o zur z-Achse in der zz-Ebene. Der elektrische Feldvektor steht
im Winkel v zur Projektion der z-Achse auf die Phasenfront A. Die Welle beschreibt sich
folglich durch

— COS (¥ COS Y sin v
E,..(rt)=E sin ~y eI mit k = [K| 0 : (B.1)
sin a cos 7y COS (v

Gemif 49| liefert die Entwicklung der ebenen Welle nach Kugelwellen beziiglich des Ur-
sprungs mit z,(kr) = j,(kr) folgende Entwicklungskoeffizienten:

, 2n+1 (n—m)! da . m
om = (=) — — P™ B.2
2n+1 (

dn,m - (_j)nJrlEO

_ |

nn 1) (Z n Z;' l OS/ySiZ’lla —jsinvdie} P(cosar). (B.3)
Fiir einen nicht am Ursprung platzierten Streukdrper ¢ stellt sich die Frage, wie sich die
Koeffizienten ¢; , ,, und ¢; ., in Gleichung (2.32) aus obigen berechnen lassen. Prinzipiell
kann man dafiir das in Bild 2.2¢) illustrierte Translationstheorem heranziehen. Wesentlich
schneller und zugleich einfacher ist hier allerdings, die Eigenschaften der ausbreitenden

Welle zu nutzen. Es folgt:

Cinym = Cn,meijk.zi bzw. di,n,m = dn,meiﬂ_(.zi . (B4)
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C Translatorisches Additionstheorem

Gesucht ist die Entwicklung der Vektor-Wellenfunktionen Nnm (r(J)) und Mnm (r(])) be-
ziiglich Koordinatensystem j nach Vektor-Wellenfunktionen N2 (¢ r ) und M?Z: (r(Z ) be-
ziiglich des um r, = r;, —r; verschobenen Ursprungs. Nach [52] 1dsst sich diese Koordlnaten—

Translation wie folgt formulieren:

B,H n,mnNB,H n,m\ 5B, H
No(eg) = > > (AN (xg) + BrrMI (k) (C.1)
v=1 p=—v
B,H n,m BH n,mN7tB,H
M, (xg) = Z Z (AVMy (x) + BUNL () - (C.2)
v=1 p=—v

Fiir die Koeffizienten A7 und By gilt:

AZL,}T = (—1)ﬂ Z a(m, n| — W, V|p)a(n, v, p)zp(krt)P;”’_“(COS 9t>€_j(m—ﬂ)¢t7 (C.3)
p
Byt = (= Za(m, n| =, vlp, p = 1)b(n, v, p) 2y (kre) Py~ (cos 6y )e =%,
p

Der Parameter p der in obigen Gleichungen durchgefiihrten Summationen umfasst den
Bereich |n — v|,|n —v| + 1,...,(n + v). Fir |r;| < r, werden auf der rechten Seite der
Gleichung (C.2) Felder Hﬁm(g(i)) und vam(g(i)) herangezogen. Die in den Koeffizienten
Ayt und B vorkommenden sphérischen Funktionen 2, sind dann vom gleichen Typ
wie die in den Feldern Hﬁ’ﬁ(;(j)) und Mﬁ’ﬁ(;(j)). Fiir |r;| > r, dagegen besitzen die
Kugelwellen auf beiden Seiten der Gleichung (C.2) die gleiche radiale Abhéngigkeit. Es
gilt dann z, = j, in den Koeffizienten A;:7" und B

Die verbliebenen Koeffizienten bestimmen sich zu

amv,p) = (=3P "Ru(y+ 1)@+ 1)+ (@ + (- v +p+ Dn+v—p)
— viv—=n+p+1)n+v+p+2)]|/2v(r+1)],
b(n,v,p) = (=) PV (n+v+p+)v—n+p)n—v+p)(ntv—p+1)
2v+1)/2v(r+1))
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C Translatorisches Additionstheorem

und

a(m, n|p,vlp,q) = (=1)""™(2p + 1)\/ n '
n v op n v q
'<000><mu—(m+ﬂ))7 o

et (n+m)l(v+ p)lp —m — p)!
a(m,n|p, v|p) = (=1) (2p+1)\/ “ ) (v— @) (p+ m+ p)!

n v p n v
(000)(m,u m+m)' (€:5)
( ' ) (C.6)

das Wigner 3j-Symbol, definiert durch:

-j ] ] —1)Jr—J2z—ms ‘ ‘ o
( ml m2 mB ) = %(]1m1]2m2|]1]2j3, —mg), (C.7)
1 2 3

Dabei ist

Ausfiihrliche Darstellungen fiir den Clebsch-Gordan-Koeffizienten (j3myjamaljijejs, m3)
finden sich in |113].
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D Clausius-Mossotti-Mischformel

Ziel ist die Beschreibung der effektiven Materialparameter eines kompositen Mediums, das
aus zwei Phasen aufgebaut ist. Eine Phase ist durch das Wirtsmaterial (auch Hintergrund-
oder Matrixmaterial genannt) gegeben, die andere durch die Einschliisse innerhalb dieses
Wirtsmaterials. Im folgenden werden die gesuchten effektiven Materialparameter des kom-

positen Mediums in der 6x6-Matrix

B €0E,  —J\/Eotok (D.1)
Jv/Eotok HoHt '

zusammengefasst. Dabei bezeichnet ¢ den Tensor der relativen Permeabilitit, “ den

[l@

Tensor der relativen Permeabilitat und K den Tensor der Chiralitit. Hier ist folghch ein
allgemeiner Fall, der eines (reziproken) bi- amsotropen Mediums, erfasst. Basierend auf den

mittleren Dipolpolarisierbarkeiten der verwendeten Einschliisse gemaf

<a > <a >
<o >= —ee —ee (D.2)
= <a > <a >
_—me —mm

bestimmt sich C iiber die Dichte n der Einschliisse aus dem Zusammenhang (frei nach [23])

@}

1
=¥+n<£—n3 <%>-¥)-<g>. (D.3)
In obiger Gleichung finden sich die Eigenschaften des Hintergundmaterials in der Matrix M

wieder. Die Elemente dieser Matrix bestimmen sich analog zu C. Weiters enthilt Gleichung
(D.3) die Einheitsmatrix I.
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E Erganzende Daten

1000 — S O O RZewnnn e v eeoen ] B -
800 i
N J------ O
D 1 X X
£ 600 X R i
e :
‘45 ] :
Hol .,'
T 400 i
N - a)
200 - ' oA
i X RS O------ 0 ~X--¢)
o
0+ -
T I T I T I T I T I
0 1 2 3 4 5
nStreu

Bild E.1: Helixtyp ii: Haufigkeit der Abweichungen von maximal einem
fiir a) D = 27, + 3a, b) D = 31, und ¢) D = 47,
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E Erganzende Daten

4,0 4,2 4,4 4,6
Frequenz (GHz)

Bild E.2: Berechnete Reflektion der Anordnung nach Bild 4.8 fiir D = 2r,,;, + 3a. TM-

Anregung, 80° Einfallswinkel.

Betrag (dB)

-20 -

20 Konfigurationen | 1
nach Konvergenz

T T T T T T T

T
40 42 44 46 48

Frequenz (GHz)

Bild E.3: Ausgewihlte Streuparameter der ersten 20 zufilligen Konfigurationen. Zum
Vergleich sind die Streuparameter, die aus dem Konvergenzkriterium erhalten werden,

ebenfalls dargestellt.
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E Erganzende Daten
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i —0— er i

-8 + —o— T 1

o 1 o~ Tkr 1

A=)

%—12 - 5 —
— —

s ] o O ~—0— o o—0—0——]

m _1¢6 /. -

b~y s— " —8—pa g —u—1n

-20 O— . -

- /D/ \D\D 0 o1

24 /D i

- O ]
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2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 11x11

Grosse der Einheitszelle

Bild E.4: Betrag der Streuparameter in Abhéngigkeit von der Grofe der Einheitszelle fiir
f=5,3GHz.
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Bild E.5: Betrag der Streuparameter fiir eine rein periodische Anordnung (¢ = 0°).
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E Erganzende Daten

Betrag (dB) —=

-10

— T T T T
40 42 44 406

- koI

-20

T T T T T T T T 7 L D
48 50 52 54 56 58 40 42 44

Frequenz (GHz) —=

4:6 I 4:8 I 5:0 I 5I,2 I 5I,4 I 5I,6 I 5,8

Bild E.6: Kombination aller Arten der Drehung der Helices: Einfluss des Parameters

¥ auf die Streuparameter der Schicht. Durchgezogene Linien: v» = 0° und ¢ = 90° ,

strichpunktierte Linien: ¢ =17 -15° mit ¢ =1...5.

IR, | (dB)

— T T T T T T
40 42 44 46 48 50 52 54 56
Frequenz (GHz)
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Bild E.7: Kombination al-
ler Arten der Drehung der
Helices: Kopolare Reflek-
tion fiir den Ubergang von
der periodischen zur zufil-
ligen Schicht.



E Erganzende Daten

ITyol (dB) —=

Nstreu = 3

i i i NStreu = 1
-55 T T T T T T T T T -55 T T — T T T T T T
4,4 4,6 4,8 50 52 54 44 4,6 4,8 50 52 5,4

Frequenz (GHz) —»

|

I

|

P i
P —-—- Clausius-Mossotti

| ]
|

|

Bild E.8: Transmission bei senkrechtem Einfall fiir die dreilagige periodische Schicht bei
verschiedener Rasterung D. Vergleich von Clausius Mossotti-Modell und Streuansatz.
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E Erganzende Daten

Bild E.9: Anordnung zur Vermessung
der Resonanzen einzelner Partikel. Zum
Schutz des angeschlossenen vektoriellen
Netzwerkanalysators vor elektrostatischer
Entladung ist der Innenleiter der offenen

koaxialen Leitung elektrisch isoliert.

Bild E.10: Polyurethan-Proben im Hohlleiter-Aufbau. Links: Aufgeschdumtes Material.
Rechts: Kugeln nach Anwendung des Spritzgussverfahrens.
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