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Abstract

Machine tools are restricted by many factors to fulfilling the requirements of high speed
and high accuracy. Among those factors, an elastic drive system with low eigenfrequency is
very common. To allow the elastic drive system to achieve the high speed and high accuracy
demands, efforts are invested in every phase of the drive system in this work.

Vibrations, especially resonance vibrations, inhibit the drive system from being fast and
accurate. The mostly used method to reduce the vibration in the elastic drive system is the
tuning of controller parameter. Optimal controller parameters for rigid system are studied
thoroughly. However, for the controller parameters of the elastic system, the trial and error
method must be used. In this work, two simple and practical formulas are first developed
to set the controller parameter in velocity loop. These two formulas are also tested and
verified in real machine tools. Meanwhile, input shaper, an effective feedforward method to
eliminate vibrations, is integrated in the cascade control loop to provide another choice.

Parameter identification of the drive system is very helpful to understand the mechanical
system and for further use. From measured frequencies of the drive system, the mechanical
parameters of the system of high order can be quickly and accurately identified through the
algorithms developed in this work. From the identified parameters, the drive system can be
simulated near reality.

Besides the method of reducing vibration through feedback and feedforward controllers,
another way to achieve high speed and high accuracy of machine tools is to avoid resonance
vibration. An effective way to avoid resonance vibration is to let the command signal have
no resonance frequencies content of the drive system. The command signal of each axis
should avoid at least the lowest eigenfrequency of that corresponding axis. Normally the
axes of the machine tools do not have the same eigenfrequencies. In this work, Wavelet
Synthesis and iterative trajectory process are developed for this purpose. Severe vibrations
are prevented from appearing through this method.

The algorithm and methods provided in this thesis are simulated and tested on a test rig.
The simulation and test results show that the methods are effective in allowing the whole
drive system to be quick and accurate.
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Glossary of some frequently related technical

terms

Characteristic frequency (F0):

is the frequency of an undamped system, at which the system oscillates in a free

vibration situation. It is also called undamped natural frequency. It equals eigen-

frequency and resonance frequency for the system without damping.

Natural Frequency(Fd):

is the frequency at which a damped system will oscillate in a free vibration

situation. It is less than the characteristic frequency. The relationship be-

tween the characteristic frequency and natural frequency can be expressed by

Fd = F0 ∗
√
(1 − ξ2). It is also called damped natural frequency.

Eigenfrequency:

is the frequency at which the system will oscillate in a free vibration situation.

For an undamped system, the eigenfrequency is the characteristic frequency of

the system. For a damped system, the eigenfrequency is the damped natural

frequency.

Resonance Frequency, or Resonant Frequency (Fr):

is the frequency at which a system tends to oscillate at maximum amplitude. For

an undamped system, resonance frequency is the characteristic frequency of the

system. For a damped system, resonance frequency is Fr = F0 ∗
√
(1 − 2 ∗ ξ2).

When the damping of the system is small, the difference between the resonance

frequency and natural frequency is small.
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is the frequency of the Pole in Pole-Zero Plot of the system. Pole frequency is the

characteristic frequency.

Damped Pole Frequency (Fdp):

is the frequency of the imaginary part of the Pole in Pole-Zero Plot of the system.

Damped pole frequency is also the damped natural frequency.

Zero Frequency:

is the frequency of the Zero in Pole-Zero Plot of the system.

Damped Zero Frequency (Fdz):

is the frequency of the imaginary part of the Zero in Pole-Zero Plot of the system.

System Frequency:

is the frequency of the controlled mechanical system.

xx

Pole Frequency:



CHAPTER 1

Introduction

1.1 Motivation

Good quality and low cost of a product are always required by all customers. Those two

factors of a product are mainly determined by the production machines. Good quality of

a product is assured by high precision of the machine tools. Low price of a product can

be achieved by increased productivity through high manufacturing speed together with

minimized auxiliary process times and process stability. Therefore, high precision and speed

are two demands for modern machine tools to provide products that satisfy customers [76].

Byrne presented curves in [8], as shown in Figure 1.1, tracing the development in man-

ufacturing capability in terms of achievable machining accuracy during the last 60 years.

Ultra-precision machine tools under computer control can position the tool relative to the

workpiece to a resolution and positioning accuracy in the order of 1nm. For “precision ma-

chining”, the accuracy could now achieve 10nm with the help of accurate machine elements.

In “normal machining”, e.g. CNC turning and milling machines, accuracies of 10 to 100 μm

can be achieved. Besides knowing those concrete values of accuracies that machine tools

can achieve, the tendencies to higher accuracies of machine tools also catch the eyes.

Precision manufacturing relies, to a significant extent, on the quality and accuracy of a ma-

chine tool. One important factor which affects the accuracy of a machined component is the

error caused by the vibration of the machine tool. The commonly approved solution is to

use rigid components to improve the accuracy of the machine system.

High Speed Machining (HSM) is also a mainstream trend. Origin of interest in HSM was

the work done by Salomon in 1931 [20]. His definition of HSM is based on chip removal

temperature reduction with high cutting speed (5-10 times higher than in conventional ma-

chining) in a machining process. Though later researchers have unfortunately not been able
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Figure 1.1: Development of achievable “Machining” accuracy over the last sixty years [8]

to verify this theory to its full extent, they also confirm that there is a relative decrease of

the temperature at the cutting edge that starts at certain cutting speeds for different materi-

als [20]. Table 1.1 1 gives an example of some cutting speeds [3] for general knowledge of

normal and high speed in cutting process. The cutting speed is dependent on the character

of the workpiece material. For instance, for cutting gray cast iron, figures greater than 6m/s

might be high-speed machining, whereas for softer aluminum alloys, 50 m/s is high-speed.

To perform HSM applications it is necessary to use light, but rigid machine tool to achieve

high speed and minimize problematic vibrations. Light and rigid machine tool assures high

acceleration, high eigenfrequency of the system, therefor high speed. Rigid machine tool

assures no low eigenfrequency in the axis, therefore high accuracy.

Therefore, both precision and high speed machining require rigid machine system. How-

ever primarily due to space, weight, and power constraints, this is not always possible.

Elasticity is unavoidable in some mechanical systems such as: high speed pick and place

robots, coordinate measurement machines, hard drive testing machines, gantry cranes and

so on. In machine tools, due to the power trains elements such as belts, spindles, gears and

so on, the rigidity of the machine tool is also limited. All those kinds of mechanisms suffer

from vibration related problems undergoing point-to-point, trajectory following, and other

common motion tasks. The effective use of such systems can only be achieved when such

vibrations can be properly handled.

Thus the demands of high quality and low cost of product motivate researchers to find a

1WC:Tungsten Carbide; PCD: polycrystalline diamond; CBN:cubic boron nitride; sia.: sialon; cer.: ceramic;
+:more than

2



1.2. PROBLEM DESCRIPTION AND AIMS

Solid tool - end mill, drill Indexable tool - shell and face mill
Work material WC, coated WC, PCD, ceramic WC, ceramic, sialon, CBN, PCD

Typical velocity High Speed Typical velocity High Speed
(m/s) (m/s) (m/s) (m/s)

aluminum 5+ 50+ 10+ 60+
(WC,PCD) (WC,PCD) (WC,PCD)

cast iron
soft 2.5 6 6 20(sia.,cer.)
ductile 1.75 4 4 15(cer.)

steel
free machining steel 1.75 6 6 10
alloy 1.25 4 3.5 6
stainless 1.75 2.5 2.5 4.5
hardness RC65 0.4 2 0.5(WC) 0.75(WC)

1.5(CBN,cer.) 3(CBN,cer.)

titanium 0.625 1 0.75 1.5

superalloy(Iconel) 0.75 1.25 1.3(WC) 6(sia.,cer.)
3.5(sia.)

Table 1.1: Example of some cutting speeds [3]

way to get rid of vibration for machine tools, or at least reduce them to an insignificant

degree, especially those have inherent structure flexibility, so that the aims of high accuracy

and high speed can be achieved.

1.2 Problem Description and Aims

The problem of reducing vibrations is a complex one that can be approached in many ways.

Kozak [30] presents a simple manner to categorize those approaches by looking at a flexible

dynamic system under control as shown in Figure 1.2, which can be found in every control

text book.

Command
Generator

Feedback
Controller Plant

Feedforward
Controller

Desired
motion output

Figure 1.2: Block diagram of a typical closed loop control

There are four primary blocks in the above system. Researchers have made different efforts

3

to reduce system vibration through those four blocks. They are the
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1. Plant,

2. Command Generator,

3. Feedback Controller,

4. and the Feedforward Controller.

The Plant Block

The plant is normally the first concern for a researcher to think about when vi-

bration reduction task is presented. The elastic structure of the plant is a source

of vibrations. Therefore, making the plant system more rigid and/or adding

damper to the plant are two main approaches.

The increasing of the rigidity sometimes comes with the increase of the inertia or

mass of the components of the plant. This results in a reduced payload, worse dy-

namic behavior and increased cost. There are usually many trade-offs that must

be considered in order to produce a physically and economically viable mecha-

nism. Moreover, the elasticity that comes from power trains in the mechanical

plant restricts the level of rigidity that can be reached.

Adding damper to the plant is usually done by adding damping material to a

mechanism. However, modifying a pre-existing plant can be costly and difficult,

and making modifications to reduce vibration can potentially change the perfor-

mance of other aspects of the mechanism, e.g. the stiffness.

In this work, the plant is not targeted for eliminating vibrations, because the

aimed solution is to reduce the vibration for any plant. But the knowledge of pa-

rameters of the plant is as important as getting rid of vibrations itself. Therefore,

parameter identification is the first step. Two main domains of identification ex-

ist: frequency domain and time domain identification [1, 19, 36, 42]. The time

domain identification is the classical approach to system identification. In the

frequency domain identification, the frequency response of the system is used

to estimate the plant parameters. However, the existing methods of parameters

identification are either too complicated or not suitable for high order systems.

As the characteristic parameters of the plant have to be known for the final solu-

tion, the first aim of this work is parameter identification for machine tool system

of any order.

4
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Aim 1: Identifying parameters of the plant for any order of the system.

The Command Generator Block

System vibrations come in mainly two forms. First form of vibrations are tran-

sient and die out after a period of time. The second form of vibrations are steady

state vibrations, which are constant in magnitude and frequency, and do not die

out. This second form of vibrations are generally caused by some periodic ex-

citation. In general, vibrations can come in any combination of these two types.

Vibrations can be caused by many different sources. Command generator is one

of the sources. Typical example of command that brings the transient vibration

is a step input.

A lot of efforts are dedicated to create or modify commands that cause the sys-

tem response to satisfy desired transient/steady state performance characteris-

tics [46, 47, 56, 57]. There is at least one distinct advantage of using the command

generation approach over the other approaches: systems that suffer from trouble-

some dynamic behavior, such as vibrations, can be retrofitted to take advantage

of command generation schemes at low cost and with generally no modifications

needing to be made to the mechanical system and controller.

Limiting jerk, the derivative of acceleration, is now commonly applied to com-

mand generator of motion control [32, 33, 37, 55]. It can effectively reduce tran-

sient vibrations though not completely. The resulted s-curve of velocity profile,

however, has no effect in getting rid of resonance vibration.

Some researchers turn to inverse dynamics [48]. When the system model is in-

verted, an input can be found by specifying the output. Unfortunately, the se-

lected output trajectory does not always lead to an input, and it can be difficult

to find the optimal trajectory. All kinds of time optimal trajectory, though also

jerk limited, try to get a time optimal aim, but in the end the vibrations make

the plant system a longer time to settle down, not to mention the bad accuracy.

This is because the trajectory may contain the eigenfrequency of the plant sys-

tem, thus inducing the resonance vibration. This initiates the idea of designing

the trajectory that is jerk-limited, has no eigenfrequency of the mechanism, and

is semi time optimal. This is the second aim that this work will achieve.

5
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Aim 2: Designing trajectory that will not induce resonance vibration and also

should be at least semi-time optimal.

The Feedback Controller Block

The feedback controller block contains the functional law used to control the sys-

tem. It is perhaps the most popular block investigated by engineers for vibration

reduction of flexible systems and disturbance rejection. Though more advanced

controllers such as state space controller, “intelligent” controller are developed

in academic research, the traditional cascade controller is still widely used in

manufacturing industry [78]. One drawback of using the more intelligent and

complicated controllers is that those controllers often require more or compli-

cated sensors, which can present significant cost and feasibility issues and can

potentially introduce stability problems. Therefore, the cascade controller, since

its origin, is the principal controller in manufacturing industry.

Determination of the controller parameters in a cascade control loop has been in-

vestigated thoroughly [28, 29, 53, 79]. Double ratio, a method based on a damp-

ing optimum of a closed control loop, is widely accepted for a rigid plant sys-

tem [21]. However, the double ratio method has its difficulty in calculating the

parameters of PI controller in a cascade control loop for an elastic mechanical sys-

tem. Lowering down the double ratio value is the most commonly used method

for researchers to estimate the best control parameters for an elastic system. With-

out exception, the parameters are always away from the optimal one. Tuning the

controller parameters for elastic system in practice are normally done by trial

and error method, which costs time, depends a lot on experience and most of the

time is not optimal. Elastic system is always the one that exists in the industry

and brings most of the problems. Therefore, the third aim of this work is:

Aim 3: Determining cascaded controller parameters for elastic mechanical sys-

tem.

The Feedforward Controller Block

The feedforward controller block was developed with the development of cas-

caded control. In the early days of positioning and contouring controls on ma-

6
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chine tools, the axis position loop gains, which are also known as velocity con-

stants, had to be identical. Otherwise following errors would not be the same

on the axes, and workpiece contour errors would occur. Then about some 30

years ago it was found that the use of velocity feedforward could eliminate the

need to match axis position loop gains. However this technique only was valid

for constant feedrates. If any of the machine axes should have an acceleration or

deceleration, position errors would occur. The velocity feedforward correction

is added to the input of the velocity servo loop. For the problem of position er-

rors during acceleration/deceleration, an acceleration feedforward concept can

be added to the current loop input [7, 78]. Feedforward control is now used

not only with cascaded control. It is also a more general concept. Any control

without feedback is also considered as feedforward control. Input shaper, which

is grouped to command generation by some researchers [43, 60, 68], is in fact a

feedforward controller.

Input shaper is very profitable in eliminating vibration. It is also very simple to

apply this method to control systems. As a feedforward controller, input shaper

also shares the drawbacks with other feedforward controllers. The most obvious

drawback is the fact that a feedforward controller has no resistance to distur-

bance. Moreover, input shaper generates additional problems when the trajec-

tory is not stepwise [65, 67]. Consequently, input shaper is normally used where

no disturbance exists and only the shape of the trajectory is important. But if

input shaper is put into the cascade control loop instead of after the command

generator, the trajectory following problems can be compensated, and the distur-

bance can be eliminated by the cascaded feedback controller. Hence aim 4 of this

work is:

Aim 4: Designing input shaper within cascade control loop, to achieve quick

response without vibration for elastic system.

1.3 Overview of the Thesis

This work addresses the vibration reduction problem for the machine tools. From suppress-

ing vibration in a closed control loop with PI controller or input shaper, to identifying the

7
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parameters of mechanical systems, to preventing vibration happening in command gen-

erator in a motion controller. This whole process makes sure the machine tools produce

products precisely, quickly and economically.

The thesis is arranged as following: Chapter 2 presents basic knowledge of motion con-

trollers and closed control loops for better understanding following chapters. The setup of

a test rig is shortly introduced to simulate feed drive system for high speed application. In

Chapter 3, the PI parameters of the velocity loop for elastic system is deduced to achieve

a good compromise between accuracy and response time for setpoints input and distur-

bance. After this the input shaper together with the cascaded control loop are designed to

obtain quick response and good accuracy for systems without disturbances or little distur-

bances. Chapter 4 describes the process of mechanical systems modeling and parameter

identification. The trajectory that is produced by time optimal planning will be analyzed by

time-frequency analysis method in Chapter 5. Then redesigning process of trajectory to get

rid of eigenfrequency is developed in this chapter. Experiments are made and presented in

Chapter 6, to validate the effectiveness of the process and methods developed in this work.

Finally, some conclusions and suggestions for further work are given.

8



CHAPTER 2

CNC controlled Machine Tools

Important modules of the CNC controlled machine tools are: (i) a mechanism together with

actuators, capable of performing motions; (ii) a controller together with a sensing system,

capable of controlling these motions; and (iii) computer algorithms, capable of designing

motions that the mechanism should follow. These three parts are named mechanical system,

servo controller and NC kernel as shown in Figure 2.1.

The NC kernel accepts commands and other inputs to generate a motion profile using pa-

rameters such as distance to move, maximum acceleration and maximum velocity. The mo-

tion profile is then used to get the setpoints values for each axis of the machine tool by some

transformation procedure. The above processes will be explained in greater detail in section

2.1.

NC kernel Servo controller Mechanical system

M

+-
Feedback 
controller

Trajectory 
planning 

Setpoints 
for each 

axis
otor

Load

Figure 2.1: Control structure of one axis in CNC machine tool

The servo controller receives the setpoints command from the NC kernel, compares this

with the feedback signal from the sensoring system, and decides the amount of movement

that the motor should follow, thus keeping the mechanical system tracking the setpoints

command. The typical servo control scheme is explained in section 2.2.

The mechanical part is the mechanism that carries out the command. In machine tools, the

mechanical part for each axis normally has a motor to provide torque/force, a load to follow

the movement of the motor, and power train components to transfer movement from the
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motor to the load. Depending on the accuracy requirements, the complexity of controller,

and the stability of the mechanical system, the measurement system could either be installed

on the motor side or the load side. Chapter 2.3 explains more about the mechanism of

machine axis.

2.1 Motion Planning and Control

In practical applications the setpoints for each axis need to be generated automatically. The

NC kernel has the task to generate setpoints over time for the axes. This process in the NC

kernel is also identified as motion planning and control process.

2.1.1 Basic functions of the NC kernel

The motion planning and control process can then be further divided into five parts: con-

tour generation, trajectory planning (including look-ahead function and motion control),

interpolation, kinematic transformation and fine interpolation as shown in Figure 2.2 with

references to [44, 45].

Contour generation

Motion control

Interpolation

Kinematic transformation

Fine interpolation

Look-ahead function

Axial position, velocity
and acceleration setpoints

Figure 2.2: Geometry data processing in the NC kernel [44]

Contour is defined by a user part program in the form of linear, circular, helical, polynomial

or spline blocks. It is followed by a contour rounding function for the purpose of getting rid

of discontinuous transitions between neighboring blocks by making them tangential or C2

10
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continuous (C2 continuity requires that the 2nd derivative of two curves are equal at joining

joint. Intuitively, two curves are C2continuous at the joining point if the acceleration does

not change when crossing one curve to the other). The processed contour together with the

machine data flow into the static and dynamic look-ahead function. The static look-ahead

function checks the contour for “critical points” where the programmed path feedrate may

not be maintainable and which therefore may have to be reduced to a lower value. The

task of the dynamic look-ahead function is then to define a “maximum path velocity” from

which braking down to zero velocity is guaranteed without exceeding the possible axis ac-

celeration rates at the end of the blocks in the processor queue. The geometric data then go

to the motion controller. The basic task of the motion controller is trajectory planning, which

is to transpose the state vector of the motion, which is composed of the scalar path variables

jerk, acceleration, and distance, from an existing initial state to a desired final state in the op-

timum time allowing for defined restrictions. In principle, it can be conceived that the input

to a trajectory planning algorithm is the path description and the constraints imposed by the

machine dynamics, whereas the output is the path acceleration, path velocity and distance

setpoints. The subsequent interpolation then needs to calculate the unit tangent and cur-

vature vectors, in accordance with the selected interpolation type, in order to produce the

Cartesian setpoints for the position vector, the velocity and acceleration vectors. Before the

Cartesian setpoints can go into the servo control loop, kinematic transformation is needed

to transfer the setpoints from Basic Coordinate System (BCS) to Machine Coordinate System

(MCS). Up to now, each axis of the machine tool has its reference input. However, the sam-

pling cycle of the setpoints of the axes does not map with the sampling cycle of the servo

control loop. Therefore, fine interpolation has to be performed. The calculated velocity and

acceleration (torque) are finally passed to the servo control level where velocity, torque and

field regulation, pulse width modulation and actuation of the power section are performed.

The servo control system acts to make the machine track the reference signal by activating

the appropriate actuators of the axes [45] [44].

2.1.2 Trajectory planning

Trajectory planning is the central task of the motion controller. It is the process of computing

a sequence of desired positions, velocities and accelerations over time. There are two impor-

tant requirements which must be fulfilled for the planning of executable trajectory [55].

The first requirement is that a desired trajectory must be able to be realized physically with-

out causing mechanical damage to the machine tools or the environment. In most motion

11
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control devices, this work is partly done by path planning to assure collision avoidance.

Avoiding mechanical damage is mainly assured in the trajectory planning phase by apply-

ing soft motion control instead of brisk motion control.

The second important demand is that the movement must be “optimal”. The evaluation of

trajectory planning data should satisfy certain performance criteria, the most important of

which is time. Optimization with regard to minimum time yields very important informa-

tion: a minimum time trajectory represents the utmost limit of ability which a given machine

is able to achieve on a prescribed path subject to all relevant constraints and without deviat-

ing from the path.

Brisk motion control and soft motion control

Step velocity input, the typical command for testing the system’s response, is seldom used in

machine tools due to the vibration it brings to the system. Smooth command reduces system

vibration by avoiding abrupt changes in the command input. This property, in nature, is

realized through limiting the command’s first and/or higher order derivatives. In this sense,

brisk motion control is a first order smooth velocity command generation, and soft motion

control a second order smooth velocity command generation.

In brisk motion control, the acceleration of the plant should not exceed its maximum accel-

eration limitation, but the acceleration could change suddenly as shown in Figure 2.3 (a),

which causes jerky motion. Brisk motion control can cause severe vibrations in the mecha-

nism that may lead to the failure of mechanical parts, besides the jerky motion. Moreover,

the possibly limited bandwidth of the actuators may make it impossible to realize discon-

tinuous actuator torques in practice. The jerky character of a machine movement can be

reduced by formulating additional movement constraints for jerk, which is the derivative of

acceleration.

In soft motion control, as shown in Figure 2.3 (b), the velocity, acceleration and jerk at each

time should not exceed its limitation, v̂, â and ĵ. Compared with brisk motion control, it

needs more time to finish the same task. However, if the settling time is compared, soft

motion control may not be slower than brisk motion control, not to mention a smoother

manufacturing process and better quality of the product. Therefore, soft motion control is

mostly used in applications where accuracy and the absence of vibrations are stressed.

12
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Figure 2.3: Brisk motion control and soft motion control

Path-constrained, jerk-limited, time optimal trajectory planning

Trajectory planning is an optimization problem. In optimization, aims, boundary conditions

and constraints are the three elements that need to be addressed.

As stated before, optimum time is the main aim of the trajectory planning. The boundary

conditions are simple as all the initial and final states should be zero. The constraints in the

trajectory planning are based on the ability of the machine tools besides “path constrained”

and “jerk-limited”. “Path constrained” illustrates that the trajectory to be designed is for a

given path. “Jerk-limited” reveals that the trajectory is the soft motion trajectory.

The constraints for trajectory planning can be summarized as two types [81]: the system

constraints imposed by the machine tools themselves (due to the limits on the axis motion

constraints), and the path constraints given by the task (geometric constraints). These two

kinds of constraints determine that the path motion (including path velocity ṡ, path acceler-

ation s̈, and path jerk
...s ) should be within certain limitations.

13
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The system constraints include maximum axis velocity v̂, axis acceleration â , and axis jerk

ĵ of each axis in machine tool. The axis velocity, acceleration and jerk constraints can be

expressed as the velocity, acceleration and jerk bounds on each axis as shown in equations

(2.1a),(2.1b),(2.1c).

−v̂i ≤vi ≤ v̂i, vi ∈ �v, (2.1a)

−âi ≤ai ≤ âi, ai ∈�a, (2.1b)

− ĵi ≤ji ≤ ĵi, ji ∈�j, (2.1c)

where

i = 1 · · · n, n is the number of axis,

�v : the velocity vector,

�a : the acceleration vector,
�j : the jerk vector

�v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

...

vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

...

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1

j2

...

jn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The path constraints are the geometry constraints of a given path. Given a geometric path

for the task parameterized as a function of the arc length parameter s: �p(s) where s ∈ [s0, s f ],

the path unit tangent �p′ : �p′ = d�p
ds , curvature �p′′ : �p′′ = d2�p

ds2 and the third derivative vector

�p′′′ : �p′′′ = d3�p
ds3 are among the main constrains influencing the path motion. The trajectory

planning problem is greatly simplified by parameterizing the path with the parameter s.

This reduces the 4n (4 comes from axial path, velocity, acceleration and jerk; n: the number

of axes) dimensional problem to four states s, ṡ, s̈ and
...s [58]. These four states of s are also

named s-plane.

The system and path constraints form the path motion limitation from two aspects:

(i) First, the velocity, acceleration and jerk of each axis should not exceed its ability as listed

in equations (2.1). As path motion in the s-plane is preferred instead of axis motion, the rela-

tionship between the axis motion and path motion is described by the following equations:

14
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vi =
dpi

dt
=

dpi

ds
ṡ = p′i ṡ, (2.2a)

ai =
d2pi

dt2 =
dpi

ds
s̈ +

d2pi

ds2 ṡ2 = p′i s̈ + p′′i ṡ2, (2.2b)

ji =
d3pi

dt3 =
dpi

ds
...s + 3

d2pi

ds2 ṡs̈ +
d3pi

ds3 ṡ3 = p′i
...s + 3p′′i ṡs̈ + p′′′i ṡ3, (2.2c)

where i = 1 · · · n.

Together with equations (2.1), the limitations of ṡ, s̈ and
...s are obtained though the following

equations:

−v̂i ≤ p′i ṡ ≤ v̂i, (2.3a)

−âi ≤ p′i s̈ + p′′i ṡ2 ≤ âi, (2.3b)

− ĵi ≤ p′i
...s + 3p′′i ṡs̈ + p′′′i ṡ3 ≤ ĵi, (2.3c)

where i = 1 · · · n.

(ii) Secondly, the path velocity, acceleration and jerk should not exceed the maximum ability

of the machine tools determined by axis motion. Therefore, the path motion constraints

should also be within the limitations as calculated in (2.4).

0 ≤ṡ ≤
√

n

∑
i=1

v̂2
i , (2.4a)

−
√

n

∑
i=1

â2
i ≤s̈ ≤

√
n

∑
i=1

â2
i , (2.4b)

−
√

n

∑
i=1

ĵ2i ≤...s ≤
√

n

∑
i=1

ĵ2i , (2.4c)

where i = 1 · · · n.

The final limitations of ṡ, s̈ and
...s are the smallest range determined from equation (2.3) and

equation (2.4).

The time optimal trajectory planning problem could be structured now as follows:

Given a geometric path for the task parameterized as a function of the parameter s: �p(s) where

s ∈ [0, s f ]

1. Objective function

min : T =
∫ t f

0
1dt (2.5)
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where t f is the final time of motion along the path.

2. Boundary conditions

ṡs=0 = 0 ṡs=s f = 0

s̈s=0 = 0 s̈s=s f = 0 (2.6)
...s s=0 = 0

...s s=s f = 0

3. Constraints

(i) path velocity constraint:

0 ≤ ṡ ≤ ṡmax (2.7)

(ii) path acceleration constraint:

s̈min ≤ s̈ ≤ s̈max (2.8)

(iii) path jerk constraint:
...s min ≤ ...s ≤ ...s max (2.9)

Trajectory planning is done for the path in the s-plane. That is, the trajectory obtained is

s(t), ṡ(t), s̈(t) and
...s (t). To generate the setpoints commands for each axis of the machine

tool, the s-plane trajectory has to be transfered to each axis as described in equation (2.2).

Vibration caused by the trajectory

In the trajectory planning phase, the jerk limitation is applied in order to reduce vibrations

caused by the excitation of the eigenfrequencies of machine tools. Normally, low jerk trajec-

tories can be tracked more accurately. However, the jerk should not be lowered too much,

as it increases the time of motion.

Though the vibration level is reduced for the trajectory with soft motion control compared

with brisk motion control in each axis, the vibration problem is still there due to the fact

that the eigenfrequencies exist in each axis motion(vi, ai, ji). The existing of eigenfrequencies

in each axis can not be detected unless the s-plane trajectory is transfered to axis motion.

Therefore, in the trajectory planning phase, it is impossible to avoid or predict the resonance

vibration problem.

Resonance vibration could be avoided if the eigenfrequencies of the axis are eliminated from

the trajectory. To remove the eigenfrequencies in the trajectory, the first step is to find out
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where the eigenfrequencies are in the trajectory. Even if there is an eigenfrequency in the

trajectory, this does not imply that it will create the vibration problem: a brief existence of

eigenfrequency in the trajectory does not create enough energy to cause vibrations. For ex-

ample, in industry, experienced technicians would speed up the machine tools very quickly

if resonance has to be passed during the run-up or run-down of the machines. In a second

step, the area where the eigenfrequency of the axis appears should be redesigned so that the

vibration level that it would create is within defined limits. See chapter 4 for more details.

2.2 Servo Control

The concept of servo control has not changed significantly in the last 50 years. The basic

reasons for using servo system include the need to improve transient response times, reduce

steady state errors, reduce the sensitivity to load parameters and eliminate disturbances.

PID type controller is widely used in servo control because of its simplicity and successful

industrial applications. It consists of three parts:

• a proportional (P) part generates a control action which is proportional to the error

signal;

• an integral (I) part on the integral of the error signals; and

• a derivative (D) part on the changing rate of the error signal.

The ideal algorithm of a PID controller is:

u(t) = kp[e(t) +
1
ti

∫
e(t)dt + td

d
dt

e(t)] (2.10)

u(t): control command signal; e(t): error signal;

kp: proportional gain; ti: integration time constant; td: derivative time constant.

More or less, the proportional gain kp affects the overall response of the closed-loop system

to an error e(t). Increasing kp will increase the bandwidth (faster response) of the closed-

loop system, and reduce the steady state error. However, the steady state error cannot be

reduced to zero, and with high proportional gain kp, the closed-loop system tends to become

unstable. In order to reach a zero steady state error, an integral action can be used together

with the proportional action. However, increasing the integration time ti causes the system

to become more oscillatory in transient and the bandwidth is reduced. The derivative action
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has a counter-action to the integral. It reduces the oscillation in transient, and enlarges the

bandwidth.

All the feedback control systems rely on sensor measurements, which usually contain high

frequency noise. When the derivative action is used in the controller, it tends to amplify

this high-frequency noise, and generates an unreasonable high controller command. To

avoid this problem at high frequencies, a derivate action is usually combined with filtering

techniques. However, both the integral action and the derivative action have some practical

problems, which have to be carefully dealt with in the real implementation.

Cascade control has been by far the predominant control structure in machine tools because

of its many advantages. Though the theory of advance motion control concepts has been

well known for nearly 40 years, applications in the machine tools industries are scarcely

found. State space is a strong competitor for the cascade control.

2.2.1 Cascade control

An example for a cascade controller structure for servo control is illustrated in Figure 2.4. It

consists of several distinct control loops: the innermost current control loop is enclosed by a

velocity control loop, which is further enclosed by the position control loop [21] [45].

C3 C2 C1

Controlled system 1

Controlled system 2

Controlled system 3

Position
 controller

Velocity 
 controller

Current
 controller

M�M�

KE

KT

ML

MMiAuA -
---

DC
Motor

Position 
Command

TM

-

Figure 2.4: Block diagram of cascade control for a feed drive[21]

The inner loop in Figure 2.4 is the current control loop. A transistor power converter acts

as the actuating device, which supplies the electrical drive with power. The motor given in

Figure 2.4 is a DC motor. The current iA is the result of the power converter and back EMF

(Electromagnetic Field) which is proportional to the motor’s velocity with voltage constant

KE. Torque is the result of iA multiplied with torque constant KT. Therefore the current
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control loop is sometimes also called the force/torque control loop. It is usually realized with

PI controllers (C1 in Figure 2.4). Normally the current loop is built in the motor drive system,

and is already tuned to an optimal value before it is put to use. For simplification, the

current loop can be approximated by a first-order lag with the equivalent time constant TEi.

The simplified cascade control structure with the equivalent time constant for the current

control loop is shown in Figure 2.5.

- -

ML

- M�M�MM

kV kr ,ti TEiPosition 
Command

Position loop

Velocity loop

Equivalent current loop

TM

Figure 2.5: Simplified cascade control loop

The velocity control loop is superimposed on the current loop. Mechanical disturbance, ML

in Figure 2.4, enters directly into the speed control loop. The disturbance in the velocity

loop will cause error in the output speed. To eliminate the steady state velocity error, the

controller in the velocity loop is usually designed as a PI controller (C2 in Figure 2.4). The

performance of the velocity loop is very important for the servo control system, because

almost all the disturbances of the system enter this loop. Thus the effects of non-linearity

and disturbance input in the velocity loop are dealt with in the velocity loop. In this way,

non-linearity and disturbance can be reduced, and with less influence on the outer loop.

It is usually enough to use a proportional controller (C3 in Figure 2.4) for the position control

loop, because there is an integrator in the position loop by nature: the integration of the

speed signal gives the position signal, see Figure 2.4. No further disturbances can appear at

the input of this integrator either. The integrator also reduces the steady state position error

to zero for a step change in the reference position input.

Figure 2.5 shows the simplified cascade control structure for a drive axis. TEi stands for the

equivalent time constant of the simplified current control loop. kr and ti are the proportional

gain and integral part of the velocity controller respectively. kv is the proportional gain of

the position controller, which is normally called velocity gain.

Although the number of tuning parameters may be higher than that with a single loop con-

trol structure, the cascade control structure is usually tuned step-by-step starting from the

innermost loop to the outermost loop, ensuring a safe start-up of the entire system. A cas-

cade controller structure requires that the bandwidth (speed of response) of each loop in-
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creases from the outer loop to the inner loop, so that the dynamic delay caused in the inner

loop could be ignored by the outer loop. As in the case of the cascade servo control structure

in Figure 2.5, the current control loop usually has the highest bandwidth, and the position

control loop has the lowest bandwidth. Thanks to the advance in power electronics, the

current loop is commonly realized with a bandwidth of around 2 kHz.

The advantages of using cascade control are summarized as follows:

• Faster inner controller handles disturbances and/or modeling error in the inner loop,

without influencing the outer loop;

• The non-linear property of the system is mostly handled in the inner loop, i.e. the outer

loop operates with improved non-linearity;

• The tuning procedure is easier and performance better as the controllers are tuned

step-by-step starting from the innermost loop to the outermost loop;

• The internal control variables can easily be limited via the command variables of the

corresponding control loop;

• Disturbances are canceled in the loop where they appear. For example, voltage drops

in the power supply are canceled in the current control loop. It is not necessary to wait

until position errors appear, as they would be in a simple position control loop without

cascade.

2.2.2 Feedforward control

Feedforward is often used in the cascade position/velocity loop. Since feedforward works

outside the loop, it does not cause an instability problem. Servo control systems use feed-

forward control to speed up the response to rapidly changing position commands.

The feedforward path speeds up the response by taking the command around the slower

position loop directly to the velocity loop. This is velocity feedforward. The velocity feed-

forward path connects the velocity profile to the velocity loop through the feedforward con-

troller. It can reduce the time required to make a quick move by a factor of two or more.

However, the velocity feedforward was only valid for constant feedrates. If any of the ma-

chine axes should accelerate or decelerate, position errors will occur. For the problem of

position errors during acceleration, an acceleration feedforward concept can be added to

the current loop input.
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The acceleration feed forward path connects the acceleration profile to the current loop

through the feedforward controller. Besides the position demands during the acceleration

process, acceleration feedforward also eliminates the overshoot caused by velocity feedfor-

ward without reducing loop gains.

Figure 2.6 shows the feedforward structure together with the simplified cascade control of

the drive axis. CFV is the velocity feedforward controller. CFA is the acceleration feedforward

controller.

- -
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- M�M�MM

TEi TM

AccelerationVelocityPosition

Velocity 
feedforward

Acceleration 
feedforward

Position
 controller

Velocity 
 controller

CFV CFA
ÊiT

ÊiT

kr ,tikV

Figure 2.6: Feedforward control of a feed drive

T̂Ei in position and velocity forward routines in Figure 2.6 is a balancing element. The bal-

ancing element is set to the equivalent time constant TEi of the current control loop. As

this equivalent time constant of the current loop can not be exact as in reality, the time con-

stant in the balancing element is just an estimated equivalent time constant of the current

control loop. This ensures that the transposing of the position/velocity setpoints into po-

sition/velocity actual values are the same as that of the velocity/current control loop pro-

vided the position/velocity setpoints are delayed by the equivalent time constant of the

current control loop before being passed to the position/velocity controller [44].

Higher order feedforward attracts researchers’ interest due to its ability to solve the servo

errors arising from jerk phases in a motion. Jerk derivative feedforward control together

with velocity and acceleration feedforward compensates these servo errors to a minimum

as described in [6, 33]. Unfortunately, many servo control systems do not even support

acceleration feedforward due to the difficulty in getting acceleration input. Feedforward

higher than acceleration is still not practical in the control of machine tools.
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2.2.3 State space control

Classical control is appropriate for linear time-invariant systems. It is at its best when deal-

ing with single input/single output systems. It also has some success with nonlinear sys-

tems, giving good results at an equilibrium point about which the system behavior is ap-

proximately linear. The control method is based on transfer function models of the plant

to be controlled. However, when it comes to more complex systems with multiple vari-

ables, such as those arising in aerospace applications, classical techniques based on transfer

functions tend to become tedious and soon reach their limits. State space control, which

appeared in the 1960s, turned out to be more suitable for such applications. It comprehends

the concept of the internal system state; thus, the approach deals with the internal dynamics

of a system and not only its input/output behavior [34].

State space control is quite powerful. It naturally and automatically handles the coordina-

tion of many variables. In addition, the design for high-order systems uses the same linear

algebraic formulas as those used for low-order systems. The only difference is that the for-

mulas for high-order systems require a computer to perform the calculations. However, the

power that the state space control technique exhibits is due largely to the state space model

of the plant. If the model is accurate, then the theory provides excellent results. If the model

of the plant is not an accurate reflection of the actual system, unfortunately, the results could

be quite poor [75].

Since its appearance, state space control has attracted a lot of interest in machine tools con-

trol. However, until today, state space control is seldom installed on machine tools as a

control system. One important reason is that the control quality of the state space control

depends largely on the identification accuracy of the parameters on the plant. Besides, the

state space control is also more complicated to apply to machine tools than simple cascade

control.

2.3 Mechanical Systems

Elasticity or compliance in the power train elements between motor and load causes vibra-

tion problems. Mechanical vibration can be a problem for almost any machine system, that

tries to maximize either command response or dynamic performance, from small ones to

large machines, to high precision metal cutting mills and lathes [17] [23].
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CNC machine tools requires an accurate mathematical model which adequately replicates

the dynamic behavior of the machine tool.

2.3.1 Mechanical System Modeling

A typical conventinal feed drive consists of a motor connected to a moving mass through

some power train connections. For example, in a feed drive, a gear is connected to the

motor shaft on the one side; on the gear output, it moves e.g a ball screw. The feed screw

then converts the rotational motion into a translational motion and moves the machine table

sitting on the guide way. A schematic diagram of a typical feed drive is shown in Figure 2.7.

motor coupling 

spindle ball  
bearing 

Fcut  

workpiece 

guide bed 

ball screw 

motor side 
gear wheel 

spindle side 
gear wheel 

Figure 2.7: Structure of a feed drive axis

The mechanical stiffness of the connections and components in feed drive is limited. There-

fore the power train behaves like a spring. In addition to spring forces, the couplings and

guide ways can also provide damping forces. Damping forces are usually produced in pro-

portion to the velocity difference between the two connected bodies. Usually, damping

forces are intrinsic properties of the materials used to form couplings and of the mechanical

interface (joint) of the connected parts. Mechanical damping helps to stabilize the system

considerably. Materials commonly used for transmission parts, such as steel, provide very

little mechanical damping, but the damping coefficient of joints can be very high.

For the mathematical description of the feed drive, the connections and elements of machine

tools are therefore described by masses, springs and dampers. A simplified model, whose

masses are connected by springs and dampers, as shown in Figure 2.8, is normally used to

model feed drive [45].
23
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Figure 2.8: Dynamic model of the feed drive [45]

In some cases, for an elastic drive system with low frequency, the above model of the feed

drive can be reduced to a mass-spring-mass model without losing accuracy. Normally the

inertias of the connection components are small compared to motor and load. These small

inertias are added either to the motor inertia or load inertia, according to the positions of

the connection components in relative to the dominant elastic part in the feed drive. The

stiffness of the components can be treated as a single composed equivalent spring constant

that interconnects motor and load. The well-known model for an elastically-coupled motor

and load is shown in Figure 2.9, and a block-diagram is shown in Figure 2.10. Here, the

equivalent spring constant of the transmission, K, is shown as providing torque to the load

in proportion to the difference of motor and load position. A mechanical damping term D

is used to produce torque in proportion to velocity difference between motor and load. This

is the typical second order system which is widely used to represent the feed drive system

[13] [16].

Motor LoadD

K

MM

JM JL

,M M� � ,L L� �

Figure 2.9: Motor and load with an elastic coupling

The equation of motion of the motor is described by

JM ¨θM(t) + D
(
θ̇M(t)− θ̇L(t)

)
+ K

(
θM(t)− θL(t)

)
= MM(t). (2.11)

The equation of motion of the load is described by

JLθ̈L(t) + D
(
θ̇L(t)− θ̇M(t)

)
+ K

(
θL(t)− θM(t)

)
= 0, (2.12)

with
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θM : position of the motor;

θL : position of the load;

θ̇M = ωM : velocity of the motor;

θ̇L = ωL : velocity of the load;

MM : torque to motor;

JM : inertia of motor;

JL : inertia of load;

D : damping constant of system;

K : spring constant of the system.

The corresponding block diagram of the above system is shown in Figure 2.10.
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Figure 2.10: Block diagram of elastically coupled motor and load

2.3.2 Test Rig setup

The studies in this work are tested on a demonstration machine: a motor driving a load

through an elastic coupling to represent a feed drive system as shown in Figure 2.11. The

machine is set up to validate the theoretical findings of this work.

2.3.3 Motion control architecture of the test rig

The test rig consists of two AC motors connected by a rod. The two motors selected are

SIEMENS 1FT6 motors with a rated speed of 3000 rpm. The feedback devices are sine-

encoder from HEIDENHAIN configured for a resolution of 2048 pulses/revolution. The

encoder generates two sinusoidal signals with levels of 1Vpp (peak-to-peak) and a phase
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Figure 2.11: View of test rig

difference of pi/2. A third index signal helps to give the absolute motor position. The HEI-

DENHAIN encoders for AC motors generally have a natural frequency higher than 2 kHz

in the measuring direction, which in most applications exceeds the eigen mechanical fre-

quencies of the machine and therefore have practically no limiting effect on the position and

speed control loops. The elastic coupling is a steel rod 10mm in diameter and 850mm long.

The rod is connected on both sides to the motors through a torsionally rigid and backlash-

free coupling from RADEX. The calculations of the elasticity of the rod, the system’s eigen-

frequency together with some motor data are listed in Appendix A.

The control architecture of the test rig is also presented in Figure 2.12. A Simodrive 611U by

SIEMENS is used to provide the required power for the motors and the amplifiers as well as

current loop controller for each motor. A dSPACE DS1005 DSP controller board is used to

implement the control algorithms for both motors. The encoder interface of the DS3002 A/D

board makes it possible to read in the digital encoder position signal of the two motors of the

test rig. A DS2101 D/A output interface sends the control command to the motor amplifiers.

Two splitters, which are used to split the signal into two identical parts, are installed to send

the signals to the amplifier on the Simodrive and to the DS3002 board on the dSPACE.

The current controller and the power amplifier are implemented in the Simodrive. The

position and velocity controller are implemented with the dSPACE DSP controller board.

The human-machine-interface is provided by ControlDesk, also by dSPACE, and runs on the

host computer. The reference trajectories are produced off-line with the MATLAB functions

developed from [15]. The trajectories are jerk-limited.

Experiments are carried out on the test rig to obtain the frequency response of the system.

They are done in open velocity loop by the software attached to the Simodrive 611U. The

response is shown in Figure 2.13. The resonance frequency of the mechanical system can be

identified as 50Hz, and the anti-resonance frequency is 35Hz. Damping is very small. The

frequency measurement of the mechanical system in this figure corresponds to the model

26

and mathematical calculation in Appendix A.



2.3. MECHANICAL SYSTEMS

Heindenhain
Splitter

dSPACE

RS232

Encoder 1 Encoder 2

Heidenhain
Splitter

Encoder signal of motor 1 
(sinusoidal signal 1 Vpp)

DS3002 A/D

DS1005

DS2101 D/ADS2101D/A

DS3002A/D

A/DA/D

Optical cable

Motor 1 Motor 2

Encoder signal of motor 2 
(sinusoidal signal 1 Vpp)

Motor encoder 
connection

X411 X412

Motor encoder 
connection

PC

Simodrive
611U

Figure 2.12: Block diagram of elastically coupled motor and load
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Figure 2.13: Frequency response of the test rig system
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CHAPTER 3

Cascade Control with Input Shaper

Methods that have been investigated for controlling elastic structures can be divided

roughly into feedback and feedforward approaches. Feedback control methods use mea-

surements and among others estimate the system states to reduce vibration, while feedfor-

ward techniques alter the actuator commands or setpoints so that system oscillations are

reduced. A variety of design methods for feedback control systems have been developed,

but the cascaded configuration is most commonly used for the control of machine tools due

to the reasons stated in section 2.2.1. However, the parameters of the PI controller in velocity

loop and the P controller in position loop are either determined by some estimates made by

the experienced engineer, or by the estimate from the calculation for rigid systems, or by us-

ing the trial and error method. In this chapter, effective parameters of controllers for elastic

structures are deduced and presented. By using the deduced parameters, the response of

the system achieves a good compromise between response time and accuracy.

There are a lot of feedforward control methods that have been investigated for controlling

elastic structures. The frequently used feedforward method combined with cascaded con-

trol loop for machine tools is the velocity feedforward and acceleration feedforward as in-

troduced in section 2.2.2. Since full information about the velocity and acceleration is not

always available, the application of this feedforward method is not always possible.

Input shaper is a feedforward method used to form the input without exciting vibrations.

The advantages of input shaper, such as simplicity, ease of implementation, saturation

avoidance, etc., compared with other precompensators, are so obvious that much attention

is paid to input shaper techniques. However, closed-loop control for an input shaped system

has received only scant attention [27], especially the application of input shaper techniques

together with the most commonly used cascade control loop. Input shaper together with the

cascaded control loop combines the advantages of both. On one hand, it is much better to

prevent residual vibration by using a feedforward control scheme than trying to eliminate



3.1. DESIGNING PARAMETERS OF CONTROLLERS FOR ELASTIC SYSTEM

these vibrations once they occur. On the other hand, feedforward controllers cannot reject

disturbances. This is where the cascaded control loop, as a feedback controller, can be useful.

These considerations lead to the idea of using a hybrid control approach, where the input

shaper is applied at the input of the velocity control loop. Besides, when time and accuracy

are important factors in the application, input shaper together with the cascade control loop

can provide a very good solution.

3.1 Designing Parameters of Controllers for Elastic System

In high speed machine tools, mechanical or structural vibration is one of the most criti-

cal factors involved in affecting the machine’s performance. It can be mostly reduced by

fine tuning the servo parameters in the control loop to reach the required precision. Typi-

cally the controller parameters of servo-drives are adjusted manually by qualified personnel.

In this case, optimum controll can only be achieved with considerable effort and expense.

Pritschow etc. [53] developed a self-tuning controller for digitally controlled machine tools

based on the theory of evolution strategy. The tuning procedure is still at the trial and error

process, but with the help of computer. A good guess of the initial value of the parameters

of controllers is a requirement, however.

One of the obvious advantages of the cascade control loop is that the tuning process of the

controllers is easy: step-by-step tuning from the innermost to the outermost control loop.

Each control loop can be adjusted efficiently and independently.

3.1.1 Designing parameters of controllers in the velocity loop

The published literature lists a number of suggestions on how to determine the values of the

controller parameters for velocity loop theoretically. The best known methods are Symmet-

rical Optimum (SO) [28][29] and Absolute Value Optimum (AVO) [21]. They are designed to

maintain the closed-loop magnitude response curve as flat and as close to unity for as large

bandwidth as possible. Symmetrical Optimum has the best performance compensating in-

trinsic disturbance signals. The response to a command step shows a very steep rise phase

followed by a considerable overshoot (maximum 43%). The response to a disturbance is fast

and the amplitude of the deviation is in the same range as with the AVO method. Absolute

Value Optimum provides the fastest response to a command step with very little overshoot

(maximum 4%). The response to a disturbance is of moderate speed and the amplitude of

the deviation is only half the amplitude obtained with SO.
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Double Ratio [79] is another method based on a damping optimum of the closed control

loop. The double ratio method is used to determine the free controller parameters contained

in the coefficients of the denominator of the closed loop transfer function. The principle of

the double ratio method is to set the damping of the system to be 0.707. Optimization based

on the damping optimum with double ratios leads to a good command and disturbance re-

sponse without having to perform extensive calculations. Therefore this method is preferred

in getting the controller parameter of the cascade control loop.

If the transfer function of a closed control loop can be written to:

F(s) =
b0 + b1s + · · ·+ bmsm

a0 + a1s + · · ·+ ansn m ≤ n, (3.1)

then the coefficients of a0, a1, . . . , an of the denominator determine the damping ratio and

stability of the closed control loop. An optimum response can be achieved by forming the

coefficient ratios, starting at the end of the denominator and continuing to the front,

an

an−1
,

an−1

an−2
, . . . ,

a1

a0
, (3.2)

and two adjacent ratios are in the proportion of

an
an−1
an−1
an−2

=
anan−2

(an−1)2 ≤ 1
2

. (3.3)

If the number of free parameters is less than n − 1, then only the ratios of the lower order

numbers are used. The double ratio method results in a robust response, insusceptible to

parameter fluctuations and approximations within the controlled system [21].

Applying the double ratio method to a rigid system in the velocity loop, very simple equa-

tions for PI controller can be derived. The equations are also well-known in industry. How-

ever, the equations are not suitable for elastic system. For the elastic system, the double ratio

method has difficulty in determining the parameters of the PI controller due to the compli-

cated denominator in the transfer function. The most commonly used estimation of the PI

controller for the elastic system is to use the PI calculation formula for a rigid system and

lower the double ratio of 1/2 to 1/4 or even lower. As a result, there is no good estimation of

the PI controller. In the following, a very good calculation of the PI controller for the elastic

system is deduced based on double ratio method. Simulations and experiments confirm the

calculations.
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Double ratio for determining parameters for rigid system

As discussed in section 2.2.1, the controller in the velocity loop of the feed drive system is

the PI controller. The block diagram of the velocity loop for a rigid feed drive system is

drawn in Figure 3.1.

-
( )M L� �

kr ,ti TEi

Velocity loop

Equivalent current loop

1/(JM,+JL)
ref�

Figure 3.1: Block diagram of the velocity control loop for a rigid system

The corresponding transfer function of the rigid mechanical system with PI control loop is:

ωM

ωre f
=

1
t′i(JM + JL)TEis3 + t′i(JM + JL)s2 + krt′is + 1

(3.4)

with

kr : parameter of P controller;

t′i : constant of the I controller;

ti : time constant of the PI controller, ti = t′i ∗ kr;

JM :inertia of motor;

JL : inertia of load;

TEi : equivalent time constant of current control loop;

ωM : motor velocity from measurement;

ωre f : motor velocity from setpoints.

By applying double ratio, it is easy to get the parameters of the PI controller, which is nor-

mally used today, for a rigid system. Based on equations (3.4) and (3.3), the parameters of

PI controller are deduced to be:

kr =
JM + JL

2TEi
(3.5)

t′i =
8T2

Ei
JM + JL

. (3.6)

The time constant of the PI controller ti is also the time constant of the velocity loop TEn,

which is calculated as

ti = TEn = kr ∗ t′i = 4TEi. (3.7)
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with

TEi: equivalent time constant of current loop,

TEn: equivalent time constant of velocity loop.

The above equation says that the equivalent time constant of the velocity loop has noth-

ing to do with the mechanical system’s parameters. It only depends on the current control

loop. These calculated parameters work well for rigid systems, but it is not suitable for elas-

tic systems. For elastic mechanical systems, a lower ratio is usually used to calculate the

parameters of the PI controller, for example using 0.25 instead of 0.5. Thus,

kr =
JM + JL

4TEi
, (3.8)

t′i =
64T2

Ei
JM + JL

, (3.9)

and the corresponding ti = TEn = 16TEi. Although the calculated time constant of the

velocity loop for the elastic system is already longer than for the rigid system, the above

equation still takes no account of the elastic property in the mechanical system.

Simulations in Figure 3.2 show that with kr and t′i tuned to the ratio of 0.25, the vibrations on

the velocity of the load side are still unbearable. Figure 3.2(a) is the motor and load velocity

response to disturbance, and (b) is the velocity response to step input. Clearly, the motor

responses under the situations of the step setpoints and disturbance are smaller than the

load response. However, due to the elastic property, the load vibrates violently.
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Figure 3.2: Elastic system response with PI controller designed for rigid system with double
ratio 0.25 (JM = 0.0013kgm2, JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Controller:
kr = 3.25Nms/rad,ti = 3.3ms)
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Determining controller parameters for the elastic system

As later on the frequencies and damping ratios of the second order mass-spring-damper

system will be distinguished from the poles frequency (characteristic frequency of the me-

chanical system) and zeros frequency, poles damping ratio and zeros damping ratio, and so

on, here these frequencies and damping ratios are explained by the transfer function of the

second order mass-spring-damper system. The transfer function is,

ωM

MM
=

1
s

JLs2 + Ds + K
(JM ∗ JL)s2 + (JM + JL)Ds + (JM + JL)K

(3.10)

with

ωM : velocity of the motor;

MM : torque to motor;

JM : inertia of motor;

JL : inertia of load;

D : damping constant of system;

K : spring constant of the system .

Poles Zeros

poles radial frequency ωn =
√

K(JM+JL)
JM JL

zeros radial frequency ωz =
√

K
JL

poles frequency Fn = ωn
2π zeros frequency Fz =

ωz
2π

poles time period Tn = 1/Fn = 2π
ωn

zeros time period Tz = 1/Fz =
2π
ωz

poles damping ratio ξn = D
2

√
JM+JL
KJM JL

zeros damping ratio ξz =
D
2

√
1

KJL

poles damped radial frequency ωdn = ωn
√

1 − ξ2
n zeros damped radial frequency ωdz = ωz

√
1 − ξ2

z

poles damped frequency Fdn = ωdn
2π zeros damped frequency Fdz =

ωdz
2π

poles damped period Tdn = 1
Fdn

zeros damped period Tdz =
1

Fdz

resonance frequency Fr =
ωn
√

1−2ξ2
n

2π anti-resonance frequency Far =
ωz
√

1−2ξ2
z

2π

Table 3.1: Frequencies, time periods, and damping ratios of poles and zeros

The velocity loop of a second order elastic system is shown in the following Figure 3.3.

The transfer function corresponding to the velocity loop with the PI controller for the elastic

system is:

ωM

ωre f
=

kr
TEi JM

[
s3 + b2s2 + b1s + b0

]
s5 + a4s4 + a3s3 + a2s2 ++a1s + a0

(3.11)

with

b2 = 1
krt′i

+ D
JL

,

b1 = 1
krt′i

D
JL

,
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Figure 3.3: Block diagram of velocity control loop for elastic system

b0 = K
JL

1
krt′i

,

a4 = 1
TEi

+ JD,

a3 = JK + JD
TEi

+ kr
TEi JM

,

a2 = JK
TEi

+ 1
TEi JMt′i

+ krD
TEi JM JL

,

a1 =
krK+D

t′i
TEi JM JL

,

a0 = K
TEi JM JLt′i

,

J = JM JL
JM+JL

,

D : damping constant of the mechanical system,

K : stiffness constant of the mechanical system.

Applying the double ratio method, the 5th order denominator determines 4 double ratios,

while only two variables (kr, t′i) are to be decided. As the lower order of the denominator

determines the main character of the system’s response in low frequency range, up to n = 3

of the denominator of equation (3.2) will be used to calculate kr, t′i with double ratio.

According to

r1 =
a0a2

a2
1

=
1
2

, (3.12)

the following equation is obtained,

A + Bt′i + Ck2
r t′2i = 0, (3.13)

with

A = K − D
2JL

,

B = JM+JL
JL

K2,
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C = − K2

2JL
.

According to

r2 =
a1a3

a2
1

=
1
2

, (3.14)

the following equation is obtained:

(ak2
r + bkr + c)t′2i + dt′i + e = 0, (3.15)

with

a = K
TEi J2

M JL
− 1

2TEi
( D

JM JL
)2,

b = JK2

JM JL
,

c = J2K2

2TEi
,

d = (JK + JD
TEi

) D
JM JL

− JK
TEi JM

,

e = − 1
2TEi J2

M
.

From equations (3.13) and (3.15), it is clear that the parameters of the PI controller can not

be calculated simply. Two simplifications are therefore made to make the problem easier to

solve:

• D = 0. As in an elastic system, especially a drive system with a long rod connection,

the damping constant is very small.

• TEi = 0. Thanks to the development of computers, the equivalent time constant of the

current control loop nowadays is smaller than 200μs. Compared with the time period

of the velocity loop of the mechanical system, which is normally bigger than 0.01s, the

TEi can be neglected.

Verification of the effect of the above two simplifications is done in section 3.1.1.

Under these two simplifications, the following parameters of kr in equation (3.16) and t′i in

equation (3.17) for PI controller can be deduced to be

kr =
2
3

ωn

√
2(JM + JL)JM, (3.16)

t′i =
3

JMω2
n

. (3.17)
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The above two equations confirm that the elastic property of the mechanical system deter-

mines the parameters of controller in the velocity loop.

As the frequency response of the elastic system can easily be measured, the calculation of the

parameters of PI controller in equations (3.16) and (3.17) can be changed to be parameterized

with the measured frequency of the mechanical system (ωn and ωz) and the known motor

inertia JM, as in equations (3.18) and (3.19).

kr =
2
√

2
3

ω2
n JM

ωz
(3.18)

t′i =
3

ω2
n JM

(3.19)

Thus, the time constant of the PI controller ti, which can also be looked as the equivalent

time constant of the velocity loop TEn, depends only on the frequency of the zeros of the

mechanical system, as in equation (3.20).

ti = TEn = krt′i =
2
√

2
ωz

(3.20)

If JM = JL, the relationship between the mechanical system period and time constant of the

closed velocity loop can be expressed as in the following equation:

TEn =
2
π

Tn, (3.21)

with Tn: the time period of the eigenfrequency of the system.

Simulations in Figure 3.4 verify the given calculation of the PI controller above. Both distur-

bance and step response are much better than the PI controller tuned with lowered double

ratio for rigid system in the last section in Figure 3.4. To distinguish the kr and t′i in equations

(3.5), (3.6) for rigid systems and in equations (3.18), (3.19) for elastic systems, the former set

of equations is named rigid double ratios, and the later one is called elastic double ratios in

this thesis later.

Verification

Two simplifications are made during the calculation of the PI controller for elastic system.

The first one is that the damping constant is assumed to be zero. The second one is that

the equivalent time constant of the current loop is assumed to be zero compared with the

mechanical system’s frequency. Thanks to the development of microsystems, TEi = 0.2ms is
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Figure 3.4: Elastic system response with PI controller tuned to elastic double ratio (JM =
0.0013kgm2, JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Controller: kr =
0.5445Nms/rad,ti = 12.7ms)

very common nowadays. By contrast, the time period of an elastic system is around or more

than 10ms, which is much bigger than TEi. To verify that those two assumptions do not make

a big difference to the parameters of the PI controller the following Table 3.2 is presented.

The first big column shows the parameters of the mechanical system and the equivalent

time of the current control loop. The second big column shows the parameters of the PI

calculated iterating with the non-linear equations (3.13) and (3.15) without assumptions.

The third column is the PI controller calculated through equations (3.16) and (3.17) with the

two assumptions. The fourth one shows a comparison between the parameters of the PI

controller calculated without assumptions and with assumptions.

Parameters of the mechanical system No assumptions With assumptions Comparison

ξ fn JM JL TEi kr0 tio kr t′i kr/kro t′i/tio

0.001 10 1e-3 1e-3 125e-6 0.0834 0.7659 0.0821 0.7599 0.98 0.99

0.001 80 1e-3 1e-3 125e-6 0.6443 0.0126 0.6566 0.0119 1.02 0.94

0.01 10 1e-3 1e-3 125e-6 0.0834 0.7659 0.0821 0.7599 0.98 0.99

0.01 80 1e-3 1e-3 125e-6 0.6422 0.0127 0.6566 0.0119 1.02 0.94

0.1 10 1e-3 1e-3 125e-6 0.0836 0.7611 0.0821 0.7599 0.98 1.00

0.1 80 1e-3 1e-3 125e-6 0.6448 0.0126 0.6566 0.0119 1.02 0.94

0.01 10 3e-3 1e-3 125e-6 0.2040 0.2557 0.2011 0.2533 0.99 0.99

0.01 80 3e-3 1e-3 125e-6 1.5639 0.0043 1.6084 0.0040 1.03 0.93

0.01 10 1e-3 2e-3 125e-6 0.1022 0.7648 0.1005 0.7599 0.98 0.99

0.01 80 1e-3 2e-3 125e-6 0.7948 0.0125 0.8042 0.0119 1.01 0.95

0.1 80 3e-3 1e-3 125e-6 1.5660 0.0043 1.6084 0.0040 1.03 0.93

0.001 80 3e-3 1e-3 125e-6 1.5643 0.0043 1.6084 0.0040 1.03 0.93

0.01 80 3e-3 1e-3 62.5e-6 1.6024 0.0041 1.6084 0.0040 1.00 0.96

0.1 10 1e-3 1e-3 62.5e-6 0.0838 0.7580 0.0821 0.7599 0.98 1.00

Table 3.2: Verifying the parameters of PI controller
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Different parameters of the system are tested. From the last two columns in Table 3.2, it is

proved that the two simplifications make no big difference in the calculation of the parame-

ters of the PI controller. The worst case has 7% difference by t′i between the values calculated

with realistic parameters and based on the assumptions, due to JM = 3JL, which is seldom

tha case in industry. Therefore, the equations (3.16) and (3.17), or (3.18) and (3.18), based on

the two simplifications can be used for calculating the PI parameters for the elastic system.

Although the two formulas are deduced for controller of mass-spring-mass system, the real

practical experiences show that they are also suitable for systems with more frequencies.

The lowest pole and zero frequencies should be used in the above formulas for systems

with more eigenfrequencies.

3.1.2 Designing the parameter of the controller in position loop

In further analysis, the complete transfer function of the closed velocity loop with mechani-

cal system causes difficulty in deriving the parameter for position loop. Therefore, a simpli-

fied approximation for the closed velocity loop is required. Like the equivalent time delay

for current control loop TEi, the effective equivalent time delay for the velocity control loop

also uses the PT1 element [21], which in this case is TEn as in equations (3.20). Hence, the

transfer function of the equivalent velocity control loop is,

Gv =
1

TEns + 1
. (3.22)

The closed position loop with simplified equivalent velocity loop is presented in Figure 3.5.

In the above figure, kv is the parameter of the proportional controller in the position loop.

-
( )M L� �

kv TEn

Position loop

Equivalent 
velocity loop

ref�

Figure 3.5: Closed position loop with equivalent velocity loop

The parameter kv, which is also called velocity gain, of the proportional controller P in the

position loop decisively determines the dynamic accuracy of a machine tool. The influence

of the kv factor on the tracking error of the axis is analyzed in [5][51][52]. Overshoot in

position loop for machine tools is always undesirable. No overshoot at the output of the

position loop by tuning the kv factor is a basic requirement among the requirements for the
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dynamic accuracy of the machine tool. According to the stability theory, an output will give

no-overshoot when all the poles are along the real axis. This property can be used to find

the limitation for the proportional constant kv.

In the root locus of the open position loop with only equivalent velocity loop as in equation

(3.22), one of the poles never leaves the real axis. The other two poles move toward each

other, intersect and break away from the real axis. The highest value is given at the break-

away point of the poles. The break-away point can be found by using the normal root locus

plotting technique, or by the equation dGOL
ds = 0, where GOL = 1

TEns+1
1
s is the position open-

loop transfer function or the equivalent velocity control loop with an integral element. The

breaking point is found to be

s =
−1

2TEn
. (3.23)

The corresponding kv is found to be

kv ≤ 1
4TEn

. (3.24)

Insert equation (3.20) into equation (3.24), and the kv factor can be found as to the mechanical

systems parameter as in equation (3.25),

kv ≤ ωz

8
√

2
. (3.25)

If JM = JL, then ωz = ωn
√

1/2. The above equation can be rewritten as

kv ≤ ωn

16
. (3.26)

When the maximum value of the kv in equation (3.26) is used, the equivalent delay time of

the position loop is calculated as

TEϕ =
1
kv

=
8
π

Tn, (3.27)

where Tn is the mechanical system’s period.

Figure 3.6 verifies that the response of the position loop has no over shoot with parameters

kv in equation (3.25), kr in equation (3.16) and t′i in equation (3.17).
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Figure 3.6: Position response to step input with calculated controller parameters ( JM =
0.0013kgm2, JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Controller: kr =
0.5445Nms/rad,ti = 12.7ms, kv = 19.631/s)

3.2 Input Shaper

Input shaper was first introduced to control the residual vibration by Singer and Seering in

1989 [60]. It originates from the “posicast” method that was developed by Smith in 1957 [68].

After the year 1989, a lot of papers appeared to address the different aspects of this technol-

ogy, such as sensitivity, robustness, frequency domain designing, trajectory following, and

so on. Besides the Zero Vibration(ZV) [60] method, Zero Vibration Derivative (ZVD)[59]

and Specified Insensitivity (SI) [61][67] methods were developed to increase the robustness

of the input shaper. Singh and Vadali [63] talked of placing zeros to cancel system residual

vibration in frequency domain when they analyzed the robustness of input shaper. Tut-

tle and Seering [73] began the frequency domain method of designing input shaper. Input

shaper designed in frequency domain for multi-mode systems shows more benefit in shaper

length and the number of impulses [11][43].

A lot of interest in this technique was followed by a range of further applications with in-

put shapers, from wafer handling robots to an experiment that flew on the Space Shuttle

Endeavor [74]. Singer and Singhose [66] found a great improvement in coordinate mea-

surement repeatability by the use of an input shaper. Kapila, Tzes and Yan [27] proposed a

method to calculate a full state feedback controller for a closed loop system with an input

shaper inside the loop in front of the flexible structure. The output of a hard disk drive head

testing machine was significantly improved with shaping. Lim, Stevens and How [35] used

a new convex optimization approach to design a multi-mode input shaper for a two-link

flexible manipulator which achieves faster step response and lower overshoot in combina-

tion with the former standalone PD controller. All of these examples of using input shaper

41



3.2. INPUT SHAPER

to suppress residual vibrations are well done and demonstrated for point to point motions.

Singhose [65][64][67] verified that input shaper can also be applied to spatial trajectories for

trajectory following where only the shape of the movement is important. However, there is

a smaller-than-desired radius problem for the circular trajectories as stated in [67]. A solu-

tion was also given as by "using an unshaped circle command that has a radius larger than

desired". However the reason for this smaller-than-desired radius through input shaper is

not analyzed or given, and what is more, no feasible solution to determine the "unshaped

circle command that has a radius larger than desired" is given. Rall etc. [54] analyzed the

reasons for this effect caused by input shaper in a circular trajectory, and gave an exact so-

lution to this problem. The dynamics of an elastic structure coupled with an input shaper

give rise to time delays in the control input. Kapila etc. [27] combined the input shaper and

the feed back control loop using time delay control theory without causing any instability

problems. But input shaper together with cascade control loop is still left untouched.

3.2.1 Input shaper in time domain

The working principle of input shaper can be explained both in the time domain and the

frequency domain. In the time domain, input shaper can be explained by vibration cancel-

lation caused by two impulses with suitable designed amplitudes and time locations. This

concept is shown in Figure 3.7. From Figure 3.7 it is known that the vibration due to the im-

pulses of A1 is canceled by the vibration due to impulse A2. A2 should happen at one half

of the period of the response period, and with an amplitude that is the same as the vibration

due to A1 at that moment. Those two impulses are produced by an input shaper to convolve

with setpoints to the mechanical system [62].

If the two impulses in input shaper are chosen correctly, then the system will respond with-

out vibration to those impulses. If a sequence of impulses causes no residual vibration when

applied to a mechanical system, then the command generated by convolving this sequence

with any function will have the same effect.

Consider a second order system with one flexible mode. At first a reasonable estimate of

the systems characteristic frequency ω0, and the damping ratio ξ is needed. They can be

found by measurements or, if the differential equation i.e. the eigenvalues are known, by

the equation

λ1,2 = −ξω0 ± jω0

√
1 − ξ2. (3.28)

42



3.2. INPUT SHAPER

 
Figure 3.7: Vibration cancellation using two impulses [62]

acteristic frequency. The complex part is the damped frequency ωd = ω0 ∗
√

1 − ξ2, which

the impulse response of the system will oscillate with. If this system is now excited by two

impulses with a certain time position and height, the oscillation of the response remains zero

after the second impulse, which is shown in Figure 3.7 .

In order to find the locations and magnitudes of these impulses, the residual vibration func-

tion to an impulse sequence is used. The function (depending on system parameters ξ and

ω0) in equation (3.29) calculates the percentage residual vibration relative to a single unit-

magnitude impulse response of the flexible system.

V(ω0, ξ) = e−ξω0tn

√
C(ω0, ξ)2 + S(ω0, ξ)2 (3.29)

C(ω0, ξ) =

n

∑
i=1

Aieξω0t′i cos(ωdti) (3.30)

S(ω0, ξ) =

n

∑
i=1

Aieξω0t′i sin(ωdti) (3.31)

Ai is the magnitude of the impulse at the time location Ti, and n the number of impulses.

The total response of the residual vibration function after the last impulse is zero if equations

(3.30) and (3.31) are both equal to zero (because they are squared in equation (3.29)). In this
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solution for Ai, and to get normalized results, a third equation

∑
i

Ai = 1 (3.32)

is added.

Fulfilling these equations, Ai could take very large positive and negative values. For a more

suitable solution the magnitudes can be limited to finite values or even to positive values,

the following is also required:

Ai > 0. (3.33)

For an explicit problem with a two-impulse input, there are four unknowns (A1, A2, T1, T2)

and four restrictions to satisfy. The time location of the first impulse can be set to zero,

without loss of generality. Setting equations (3.30) and (3.31) respectively to zero (with T1 =

0) resolves to:

T2 =
nπ

ωd
=

nTd
2

, n = 1, 2, . . . (3.34)

with Td as the damped period of vibration. That means there are an infinite number of

possible solutions for the second time location T2. Every multiple of the half damped period

will do. Normally the vibration should be canceled as soon as possible, hence

T2 =
Td
2

(3.35)

is the best choice. Using equations (3.32) and (3.35) in (3.30) reveals, after rearranging, the

value of A1 as

A1 =
e

ξπ√
1−ξ2

1 + e
ξπ√
1−ξ2

. (3.36)

Defining Q = e
−ξπ√
1−ξ2 , the fastest solution for the zero residual vibration response of a single

flexible mode system to an impulse sequence is summarized in:

⎡
⎢⎣ Ai

Ti

⎤
⎥⎦ =

⎡
⎢⎣ 1

1+Q
Q

1+Q

0 0.5Td

⎤
⎥⎦ . (3.37)

3.2.2 Input shaper in the frequency domain

Input shaper is the method of placing the zeros to cancel system vibration where the un-

wanted system poles are calculated in the s-plane. An open-loop control of a simple second
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order system using frequency-domain input shaper can be demonstrated as in Figure 3.8.

r(s) u(s) y(s)2
0

2 2
0 02s s

�
�� �� �

Second order system

sTB e��
Time delay filter

Figure 3.8: Input shaper as a time delay filter

In Figure 3.8, ω2
0

s2+2ξω0s+ω2
0

is the transfer function of a second order system; B + e−sT is the

input shaper, which is explained as time delay filter to remove vibration; r(s) is the input

signal; u(s) is the filtered signal; y(s) is the output signal in s-domain.

The zeros produced by the input shaper to cancel unwanted system poles are given by the

following equation:

B + e−sT = 0. (3.38)

In the equation (3.38), B is the amplitude of the proportional signal and T is the delay time

of the time-delayed signal, as is represented by the Laplace variable s:

s = σ + jω. (3.39)

Replacing equation (3.38) with equation (3.39) and equating the real and imaginary parts to

zeros, the following two equations are derived:

B + e(−σT)cos(ωT) = 0, (3.40)

and

e(−σT)sin(ωT) = 0. (3.41)

From equation (3.41), the ω is obtained:

ω = (2n + 1)
π

T
, 2n

π

T
. n = 0, 1, 2, . . . (3.42)

Insert equation (3.42) into equation (3.40), the σ is obtained,

σ =
−ln(±B)

T
, (3.43)
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Therefore, insert equation (3.42) and (3.43) to (3.39), the zeros of the filter are

s =

⎧⎪⎪⎨
⎪⎪⎩

−ln(B) + (2n + 1)π j
t

ω = (2n + 1)
π

t
n = 0, 1, 2, . . .

−ln(−B) + (2n + 1)π j
t

ω = 2n
π

t
n = 0, 1, 2, . . .

(3.44)

It is assumed here that B is positive.

To cancel the system poles, the zeros of the input shaper in equation (3.44) should be the

same as the poles in equation (3.28). Making the real and imaginary parts of the two equa-

tions equal, the parameters of the input shaper B and T can be calculated as

T =
π

ω
√

1 − ξ2
= Td/2, (3.45)

B = e
ξπ√
1−ξ2 . (3.46)

The final value of the single time-delayed controlled system to a unit step input is given by

lims→0
1
s

s(
(B + e−sT)ω2

s2 + 2ξωs + ω2 ), (3.47)

which equals to

B + 1. (3.48)

As the input shaper should not change the amplitude of the original signal after shaping,

the B+ e−sT has to be normalized to be 1 by dividing its magnitude of B+ 1. Thus, the input

shaper is
B + e−sT

B + 1
(3.49)

with B = e
ξπ√
1−ξ2 , T = π

ω
√

1−ξ2
= 1

2 Td, for a second order system.

Equation (3.49) can also be rewritten to

B + e−sT

B + 1
= A1 + A2e−sT (3.50)

with A1 = B
B+1 , A2 = 1

B+1 , and T = 1
2 Td. This is exactly the same as the input shaper derived

from the time domain in equation (3.37).

Here one example of input shaper in frequency domain is given. Assume the second order

mechanical system has a natural frequency of 40Hz with a damping ratio of 0.001. From
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3.2. INPUT SHAPER

the above equations, the following values of the input shaper parameters are derived: A1 =

0.5008, A2 = 0.4992 and T = 0.0125s. The bode diagram of the second order system (from

motor torque to motor velocity) is plotted in Figure 3.9. The pole of the second order system

lies in the 40Hz as desired. The bode diagram of input shaper is plotted in Figure 3.10. The

input shaper brings series of zeros at 40Hz, 120Hz, ...(2n + 1) ∗ 40 Hz. The resultant bode

diagram of the second order system with input shaper is shown in Figure 3.11. The pole

in Figure 3.9 at 40Hz is already canceled by input shaper. Thus resonance vibration here is

eliminated.
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Figure 3.9: Bode diagram of a second order system

3.2.3 Sensitivity of input shaper

The amplitudes and time locations of the impulses of input shaper depend on the system

parameters (ω0 and ξ). If there are estimation errors in these values (and there always are),

then the impulse sequence will not result in zero vibration as described above. In fact, for

the two-impulse sequence, there can be a lot of vibration for a small modeling error. This

lack of robustness was a major problem for the original formulation.

The sensitivity of the input shaper can be visualized by plotting a sensitivity curve that

shows the amplitude of residual vibration as a function of the system parameters. The sen-

sitivity curve is a concept/tool introduced along with input shaper by Singer and Seering

[59]. It is a plot of the percentage residual vibration of an input shaper as parameters of

the system are varied [31]. The vertical axis gives the percentage residual vibration of the
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Figure 3.10: Bode diagram of input shaper
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Figure 3.11: Bode diagram of second order system with input shaper
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3.3. DESIGNING CASCADE CONTROL LOOP WITH INPUT SHAPER

system for a variation in the system’s natural frequency. The horizontal axis is the normal-

ized frequency of the modeling frequency to the real natural frequency of the system. The

sensitivity of the input shaper is plotted in Figure 3.12. The robustness can be measured

quantitatively by measuring the width of the curve at some low level of vibration (for ex-

ample 5%). This non-dimensional robustness measure is called the shaper’s insensitivity.

The input shaper described above is also called Zero Vibration (ZV) shaper. The length

of the ZV shaper is one half of the system’s damped period. To increase the robustness

against parameter uncertainties, Zero Vibration and Derivative (ZVD) shaper adds more

constraints. The additional constrains is significantly more robust than the ZV shaper, but

at the cost of a shaper length.

Other approaches, for example, Extra Insensitive (EI) shaper, use more constraints to assure

robustness over an even bigger range. This Extra Insensitive method has the effect of broad-

ening the frequency sensitivity curve and hence increasing frequency insensitivity. The price

for this robust is normally an increased shaper length and four or five impulses instead of

three in ZVD and two in ZV.
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Figure 3.12: Sensitivity of input shapers to frequency estimation error [59]

3.3 Designing Cascade Control Loop with Input Shaper

Comparing the equivalent time of the velocity loop in equation (3.7) with equation (3.21), it

is known that the parameters of the PI controller designed with elastic double ratio achieve

better dynamic behavior by sacrificing the rise time. In an application where positioning

time is very important, the tuning of the PI controller from equation (3.18) and (3.19) may not

meet the time requirement. Input shaper, which is very effective in eliminating vibrations,

can be applied together with the closed velocity loop to achieve good dynamic behavior
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3.3. DESIGNING CASCADE CONTROL LOOP WITH INPUT SHAPER

and quick response time. As the input shaper eliminates vibration, the parameters of PI

controller in this case can be tuned as in the rigid system, if there is no big disturbance to the

mechanical system.

The block diagram of the input shaper together with the closed velocity loop is presented in

Figure 3.13. Determination of the parameters of the input shaper is now a problem, as the

system’s damping ratio and frequency would change with the tuning of the PI controller.

-

kr ,ti TEi

Velocity loop

Equivalent current loop

ref�
Mechanical

system

Input shaper

Figure 3.13: Block diagram of velocity control loop with input shaper

3.3.1 Designing Input Shaper for closed velocity loop

The vibrations in the load can come from two sources. One is from the possible vibration of

the motor side. The other is from the elastic connection between the motor and the load. The

vibration of the motor is normally small. However, the small vibration on the motor side is

enlarged by the elastic connection between the motor and the load. Therefore, the vibration

of the load is much bigger than the vibration of the motor.

Input shaper for load response

The vibration of the motor can be tuned easily to be very small, however, this small vibra-

tion of the motor could bring violent vibration on the load side due to the elastic connection

property, especially when there is only small damping. Therefore, elimination of the vibra-

tion of the motor is the first step.

In the frequency analysis of the input shaper, it is known that input shaper works by adding

zeros to the system to cancel the vibration caused by the system’s poles. In the closed veloc-

ity loop, the poles of the transfer function of the motor change their position with the tuning

of the PI controller. This can be viewed from the root locus plot of the open velocity loop as

shown in Figure 3.14.

The transfer function of the open velocity loop, which determines the poles and zeros of the

root-locus, is presented in equation (3.51).

ωM

MM
=

1
TEis + 1

1
s(JM + JL)

JLs2 + Ds + K
JM JL

JM+JL
s2 + Ds + K

(3.51)
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Zero 
Pole 

Figure 3.14: Root locus of the open velocity loop

From Figure 3.14, it is known that the two poles move to the position of the two zeros. Those

two poles, one of which comes from the PI controller and the other of which comes from the

integral of acceleration (torque) to velocity, are located at the origin of the coordinate. These

two zeros, which come from the numerator of the equation (3.51), represent the load elastic

property of the system. The two poles, which are from the denominator of the equation, are

moving toward higher frequency. When the parameters of kr and t′i in equation (3.11) are

tuned as for a rigid system as in equations (3.5) and (3.6), if there is no disturbance, and/or

positioning time is a critical criteria for an elastic system, the poles of the motor can create

problems, not seriously to itself, but to the load.

Here an example is given to show the motor response to the tuned kr and t′i in an elastic

system. The bode diagram, from motor torque to motor velocity, of the closed velocity loop

is shown in Figure 3.15. The poles, which originally represented the natural frequency of

the system, now moves to the high frequency without causing the vibration problem. The

poles which are from the origin of the mechanical system, now causes a vibration problem

in the area near the zeros. However, for the motor velocity, as the poles are moving near to

the zeros, the effect of the poles are largely canceled by the zeros. This can be seen in Figure

3.16(a). However, in (b) of the same figure, which is the load response, a lot of vibration can

be observed.

The high level of vibration in the load is physically caused by the elastic connection. In

control terms, compared to the response of the motor, the vibration of the load is due to the
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Figure 3.15: Bode diagram - motor torque to motor velocity ( JM = 0.0013kgm2, JL =
0.0013kgm2,Fn = 50Hz, ξ = 0.01)
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Figure 3.16: Motor and load response with the tuning of PI controller ( JM = 0.0013kgm2,
JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Controller: kr = 3.25Nms/rad,ti =
3.3ms)

"missing zero" [80] effect. This can be verified in the following equation (3.52) and Figure

3.17. There is only one peak in the close loop for the load velocity as shown in Figure 3.17.

ωL

MM
=

1
s(JM + JL)

Ds + K
JM JL

JM+JL
s2 + Ds + K

. (3.52)

Therefore, adding zeros in the position or near the position of the peak (poles in the transfer

function of load), will help to cancel the vibration. When the zeros are added directly in the

position of the peak, the vibration of the load will be totally eliminated. But it is difficult

to find the position due to the tuning of the PI controller. If the zeros are placed near the
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Figure 3.17: Bode diagram - motor torque to load velocity ( JM = 0.0013kgm2, JL =
0.0013kgm2,Fn = 50Hz, ξ = 0.01)

position of the peak, for example, the zeros are placed in the position of the zeros in the

motor transfer function, then the vibration is greatly reduced. Furthermore, the load will

have the same behavior as the motor. Normally adding zeros to the system has to be ac-

companied by adding poles to the system in order to make the system causal. The added

poles can either cause further vibration problems or make the system response slower. But

this is not in the application of the input shaper. The input shaper adds zeros to the system

without any additional poles. Now the parameters of the input shaper can be determined

for an elastic system with closed velocity loop. Although it is difficult to tell the exact po-

sition of the frequency after the tuning of the PI parameter, it is known that, after tuning,

the system frequency is very near to the mechanical system’s frequency at zeros. Therefore,

the input shaper can be designed according to the damping ratio and frequency from the

zeros in the motor transfer function of the mechanical system in equation(3.51), which are

also poles in the load transfer function in equation(3.52). When the ZV input shaper, in the

form of A1 + A2e−sT2 , is applied, the following parameters are derived as in equation (3.53),

according to equation (3.37).

A1 =
e

ξzπ√
1−ξ2

z

1 + e
ξzπ√
1−ξ2

z

,

A2 =
1

1 + e
ξzπ√
1−ξ2

z

,

T2 =
Tz ∗

√
1 − ξ2

z
2

,

(3.53)
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with

ξz : the damping ratio of zeros as in Table 3.1 ;

Tz : damped time period of the zeros as in Table 3.1.

Now the description of this effect in the frequency domain is shown in Figure 3.18 and

Figure 3.19. Figure 3.18 presents the frequency response of the load in the red curve, and the

input shaper in the blue curve. The zero of the input shaper is located near the pole from the

load response. Figure 3.19 shows the frequency response of the load after applying the input

shaper. Clearly, the zero of the input shaper helps to cancel the pole of the load, resulting in

a no vibration behavior for the load.
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Figure 3.18: Bode diagram - motor torque to load velocity, input shaper ( JM = 0.0013kgm2,
JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Input shaper: A1 = 0.5079,A2 = 0.4921,
T2 = 10.5ms)

Input shaper for motor response

Problems can arise when the estimation of the frequency of the mechanical system is not

exact, or the mechanical system changes its frequency in the workspace, or the tuning of

the PI controller is not so good in the sense of the motor; in these cases the input shaper

cannot compensate all the vibrations. To increase the robustness of the ZV input shaper,

the ZVD input shaper can be applied. The ZVD method simply adds two more zeros at the

same place as the ZV method. However, it cannot help if the motor is not well tuned. To

compensate the vibrations in the motor, another input shaper can be applied. This input
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Figure 3.19: Bode diagram of motor torque to load velocity together with input shaper (
JM = 0.0013kgm2, JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Input shaper:
A1 = 0.5079,A2 = 0.4921, T2 = 10.5ms)

shaper is aimed to capture the moving motor poles, which move toward higher frequency

as in Figure 3.14. When, due to the tuning of the PI controller, these two poles move quickly

to high frequency (or in some situations to the two zeros), then the motor will not have any

vibration problems. Only when the two poles do not move far away from their original

position, does the vibration of the motor appear. Based on this analysis, the input shaper,

which aims to cancel the motor vibration, can be designed to add zeros to the position of

the poles in the motor transfer function in equation (3.51). Again, when the input shaper is

written in the form of A1 + A2e−sT2 , its parameters are derived as in equation (3.54):

A1 =
e

ξnπ√
1−ξ2

n

1 + e
ξnπ√
1−ξ2

n

,

A2 =
1

1 + e
ξnπ√
1−ξ2

n

,

T2 =
Tn ∗

√
1 − ξ2

n
2

,

(3.54)

with

ξn : the damping ratio in the poles, as in Table 3.1;

Tn : damped time period of the poles, as in Table 3.1.
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Input shaper for motor and load response

The total input shaper is then the convolution of the two input shapers above. The input

shaper for load vibration due to elastic system in equation (3.53) also helps to reduce the

vibration of the motor, and the input shaper for motor vibration, due to the tuning of the PI

controller, also helps to reduce the load vibration. The convolution of them also assures the

robustness of the input shaper in a bigger frequency range.

Figure 3.20(a) is plotted to demonstrate the effectiveness of the input shaper in equation

(3.53) in time domain. It is seen that the vibration of the load is reduced dramatically. The

motor response is also better than in Figure 3.16. However, it still vibrates. This is sensed by

the slightly vibrating load. Figure 3.20(b) applies the convolved input shaper from equation

(3.53) and (3.54). Comparing chart (a) with (b), it is verified that the vibration of the motor

is reduced further.
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Figure 3.20: Effect of input shaper canceling vibration caused by motor and load ( JM =
0.0013kgm2, JL = 0.0013kgm2,Fn = 50Hz, ξ = 0.01. Controller: kr =
3.25Nms/rad,ti = 3.3ms)

3.4 Brief Summary of Chapter 3

In this chapter, two methods of eliminating the vibrations from the elastic mechanical system

are presented. One way is to tune the PI controller for the elastic mechanical system through
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the given simple equations. The other way is to use input shaper in the cascade control

loop. The parameters of the PI controller and input shaper are deduced and verified by

experiments. Table 3.3 summarizes the parameters of the controller in these two methods.

elastic Rigid double ratio

double ratio with input shaper

Parameter of velocity loop kr kr =
2
√

2
3

ω2
n JM
ωz

kr =
JM+JL
2TEi

(kr +
1

st′i
) t′i t′i =

3
ω2

n JM
t′i =

8T2
Ei

JM+JL

A1 = 1
1+Q

A2 = Q
1+Q

Parameters of input shaper — ω = ωz =
√

K
JL

(A1 + A2e−sT2 ) ξ = ξz =
D
2

√
1

KJL

Q = e
−ξπ√
1−ξ2

T2 = π
ωz

Table 3.3: Verifying the parameters of the PI controller

The parameters designed by the elastic double ratio make the system response slower than

the rigid double ratio together with an input shaper. This can be seen by comparing the load

position response as in Figure 3.21. The rise time for the elastic double ratio is read to be

0.15s from the simulation. The rise time for the rigid double ratio together with an input

shaper is read be 0.09s from the simulation.
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Figure 3.21: Load position response comparison between elastic double ratio controller and
controller with input shaper

The application area of these two methods can be summarized as following:

• If the system requires a good compromise between response time and good accuracy,

and there is a lot of disturbances to the mechanical system, then tuning the PI controller
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according to equation (3.16) and (3.17), and P controller according to equation (3.25) is

a better solution.

• When the system requires a very high dynamic, and no or small disturbances exist,

then the input shaper can be included in the cascaded control loop. The parameters

of the PI controller can be tuned as in rigid systems as in equations (3.5) and (3.6) or

equations (3.8) and (3.9). The parameters of the input shaper can be tuned according

to equation (3.53).
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CHAPTER 4

System Parameters Identification

System modeling and identification plays a central and critical role in the design of control

systems. By the physical (theoretical) modeling of dynamic systems, one usually obtains

both the structure and the parameters of the mathematical model. The model parameters

can generally be calculated, based on physical coefficients or other basic property data of

the system. However, some properties may not be completely known and consequently the

model structure and parameter uncertainties can be large. Therefore, parameter identifica-

tion should be employed in addition to physical modeling.

There are two main domains of identification; one is the time domain and the other is fre-

quency domain identification. The classical approach to parameter identification is done

in the time domain [36]. It analyzes the free decay of the vibration responses in the time

domain. Three groups of methods in the time domain can be classified. The first is the

Complex Exponential method [38]. Most time domain parameter identification methods

are derived from this method. The second group of methods is the Ibrahim Time Domain

method developed in 1977 [22]. It uses the free vibration response of a structure to identify

its vibration parameters. The third group of methods is Eigensystem Realization Algorithm

(ERA) developed by Juang and Pappa in 1985 [26]. It is one of the most commonly used

parameter identification methods. Time domain identification works well in low-order sys-

tems, however, it loses its ability when facing high-order systems. Therefore, a number of

researchers have started to explore alternative approaches, which are parameter identifica-

tion in frequency domain [49]. In frequency domain identification, the frequency response

of the system is used to estimate the parametric model. The basic idea is to extract frequency

response information in the system under consideration. The resulting frequency response

information is then used to map in a transfer function model for the system.

A lot of literatures is carrying out parameter identification for two-mass systems [1, 42]. The

spring constant, moment of inertia of the masses, and damping constant together with some



non-linear features could be identified for the second order system with more or less effort.

In industry, the second order model of the machine tool’s axis as in Figure 2.9 is not adequate

to represent the feed drive chain. The higher order of the model, as shown in Figure 2.8, is

required. However, these identification methods for the low-order system are either not

suitable, or too complicated for high order system [19, 50, 69]. Therefore, the objective of

this chapter is to derive a simple, effective and generalized method to identify the unknown

parameters of a lumped spring-mass system connected in series from frequency response.

The parameters to be identified are the torsional stiffness of the springs and moment of

inertia of the masses in the lightly damped drive chain. This parameter identification process

is in fact a mapping process, which maps the frequency response of the system to the transfer

function of the system as shown in Figure 4.1. The transfer function is derived from the

established model structure. The resonance frequencies and anti-resonance frequencies are

subtracted from the frequency response of the system. The parameters of the system are

obtained by mapping the coefficients of the transfer function and those frequencies. Thus,

the process of identification can be divided into three steps.

Transfer function

Resonance  and 
anti-resonance 

frequencies

Stiffness, 
Damping,

Inertia of mass

System
model

Frequency 
response

Mathmatical model 
of the system

mapping

Figure 4.1: Process of parameter identification

• Step 1: the general transfer function equation is derived for the n-th order system in

terms of the mechanical parameter of the system.

• Step 2: the resonance frequencies and anti-resonance frequencies are obtained from the

system frequency response.

• Step 3: the method of calculating the system parameters from mapping frequency re-

sponse to transfer function is derived.

The second step, extracting the resonance frequencies and anti-resonance frequencies from

the frequency response, can be easily conducted by frequency measurement. It is not dis-

cussed in greater detail in this chapter. The first step of deriving a general transfer function
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for n-th order system is done in section 4.1, and the third step of parameter mapping is

carried out in section 4.2.

4.1 Transfer Function

As discussed in section 2.3, the feed drive system can be modeled as a multiple mass-

spring-damper system. Without loss of generality the masses are connected by springs and

dampers in series. Assume the system is a n + 1 order system consisting of n torsional

springs and dampers connecting n + 1 masses as shown in Figure 4.2. Only the rotational

motion of the masses is considered here.

0M
1K 2K iK nK

1D 2D iD nD
0� 1� 2� 1i� � i� 1n� � n�

1nJ �1iJ �0J 1J 2J iJ nJ

Figure 4.2: Structural model of multi mass-spring-damper system

The mass on the input side has a moment of inertia of J0, a rotation angle of θ0 and is driven

by an input torque M0. It is connected to the following mass by means of a spring which has

torsional stiffness K1, and a damper with damping constant D1. The following mass has a

moment of inertia of J1 and a rotation angle of θ1. Similarly, the moment of inertia, rotating

angle, stiffness and damping constant are defined for further masses, springs and dampers.

The block diagram representing the above model is as shown in Figure 4.3.

The transfer function, with the torque M0 as input and angular velocity θ̇0 as the output, is

of the form,

H(s) =
θ̇0

M0
=

C
s

gn(s)
fn(s)

, (4.1)

where

gn(s) : the numerator of the transfer function,

fn(s) : the denominator of the transfer function,

C : gain constant.

The above transfer function can be regarded as having two terms: an integral term C
s on the

left, which changes the torque input to velocity output, and a ratio term of two polynomials

on the right, which determines the dynamic behavior of the system. The denominator of the
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Figure 4.3: Multi mass-spring system model

right term, fn(s), is normally called the characteristic polynomial. When the characteristic

polynomial is equated to zero, it gives the characteristic equation

fn(s) = 0. (4.2)

Let Mi be the interacting torque of the ith spring and damper. The equation of the motion of

the ith mass is

Ji θ̈i(t) = Mi(t)− Mi+1(t), (4.3)

where i = 0, · · · , n and M0 = Mn+1 = 0.

The interacting moment of the ith spring and damper is

Mi(t) = Ki
(
θi−1(t)− θi(t)

)
+ Di

(
θ̇i−1(t)− θ̇i(t)

)
, (4.4)
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where i = 1, · · · , n.

The transfer function is first derived for values of n = 1, · · · , 3. Then through induction, the

transfer function of the high-order system is generalized for any given values of n.

4.1.1 For second order system (n=1)

The structure of the second order system is plotted again in Figure 4.4 here for easy reference

and uniform indication.

0J

0�

1K

1J

1�

0M
1D

Figure 4.4: Two mass-spring-damper system

From the equations (4.3) and (4.4) and substituting i = 0, the equation of motion of the 1st

mass is given by

J0θ̈0(t) + D1
(
θ̇0(t)− θ̇1(t)

)
+ K1

(
θ0(t)− θ1(t)

)
= M0(t). (4.5)

From the equations (4.3) and (4.4) and substituting i = 1 and M2 = 0, the equation of the

2nd mass is given by

J1θ̈1(t) + D1
(
θ̇1(t)− θ̇0(t)

)
+ K1

(
θ1(t)− θ0(t)

)
= 0. (4.6)

The equations (4.5) and (4.6) can be combined to form the motion equation matrix

⎡
⎢⎣ J0 0

0 J1

⎤
⎥⎦
⎡
⎢⎣ θ̈0

θ̈1

⎤
⎥⎦+

⎡
⎢⎣ D1 −D1

−D1 D1

⎤
⎥⎦
⎡
⎢⎣ θ̇0

θ̇1

⎤
⎥⎦+

⎡
⎢⎣ K1 −K1

−K1 K1

⎤
⎥⎦
⎡
⎢⎣ θ0

θ1

⎤
⎥⎦ =

⎡
⎢⎣ M0

0

⎤
⎥⎦ . (4.7)

The transfer function of such a system with input M0, and output θ̇0, is given by

θ̇0

M0
=

1
s

J1s2 + D1s + K1

J0 J1s2 + D1(J0 + J1)s + K1(J0 + J1)
. (4.8)

Dividing the numerator and denominator terms by J0 J1, the above transfer function is writ-
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θ̇0

M0
=

1
J0s

s2 + D1
J1

s + K1
J1

s2 + (D1
J0
+ D1

J1
)s + (K1

J0
+ K1

J1
)

. (4.9)

Let

ci =
Ki

Ji−1
, c′i =

Ki

Ji
and ri = ci + c′i, (4.10a)

di =
Di

Ji−1
, d′i =

Di

Ji
and mi = di + d′i, (4.10b)

setting i = 1, and substituting the equations (4.10a) and (4.10b) in equation (4.9),

θ̇0

M0
=

1
J0s

s2 + d′1s + c′1
s2 + m1s + r1

. (4.11)

the characteristic polynomial and the numerator are

f1(s) = s2 + m1s + r1, (4.12a)

g1(s) = s2 + d′1s + c′1. (4.12b)

4.1.2 For third order system (n=2)

The model of the third order system is plotted in Figure 4.5.

0�

0J
1K

1�

2K

2�

1J 2J
0M

2D1D

Figure 4.5: Three mass-spring-damper system

The equation of motion of the 1st mass is the same as equation (4.5). From equations (4.3)

and (4.4) and substituting i = 1, the equation of motion of the 2nd mass is given by

J1θ̈1(t) + D1
(
θ̇1(t)− θ̇0(t)

)
+ D2

(
θ̇1(t)− θ̇2(t)

)
+

+ K1
(
θ1(t)− θ0(t)

)
+ K2

(
θ1(t)− θ2(t)

)
= 0.

(4.13)

From the equations (4.3) and (4.4) and substituting i = 2 and M3 = 0, the equation of motion
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J2θ̈2(t) + D2
(
θ̇2(t)− θ̇1(t)

)
+ K2

(
θ2(t)− θ1(t)

)
= 0. (4.14)

The equations (4.5), (4.13) and (4.14) can be combined to form the motion equation matrix of

the third order system

⎡
⎢⎢⎢⎢⎢⎣

J0 0 0

0 J1 0

0 0 J2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

θ̈0

θ̈1

θ̈2

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

D1 −D1 0

−D1 D1 + D2 −D2

0 −D2 D2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

θ̇0

θ̇1

θ̇2

⎤
⎥⎥⎥⎥⎥⎦+

+

⎡
⎢⎢⎢⎢⎢⎣

K1 −K1 0

−K1 K1 + K2 −K2

0 −K2 K2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

θ0

θ1

θ2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

M0

0

0

⎤
⎥⎥⎥⎥⎥⎦ .

(4.15)

The transfer function of such a system with input M0, and output θ̇0, is given by

θ̇0

M0
=

1
s

J1 J2s4 + (J1D2 + J2D1 + J2D2)s3+

J0 J1 J2s4 + (J0 J2D1 + J1 J2D1 + J0 J1D2 + J0 J2D2)s3+

+(D1D2 + J1K2 + J2K1 + J2K2)s2+

+(D1D2 J0 + D1D2 J1 + D1D2 J2 + J0 J2K1 + J1 J2K1 + J0 J1K2 + J0 J2K2)s2+

+(K1D2 + K2D1)s + K1K2

+(J0K1D2 + J0K2D1 + J1K2D1 + J2K1D2 + J2K2D1)s + (J0K1K2 + J1K1K2 + J2K1K2)
.

(4.16)

Dividing the numerator and denominator terms by J0 J1 J2, and substituting (3.11a) and

(3.11b) in the equation, the transfer function of equation (4.16) is rewritten to

θ̇0

M0
=

1
J0s

(s2 + d′1s + c′1)(s
2 + m2s + r2)− (d2s + c2)(d′1s + c′1)

(s2 + m1s + r1)(s2 + m2s + r2)− (d2s + c2)(d′1s + c′1)
. (4.17)

From equations (4.12a) and (4.17), the characteristic polynomial is as shown in equation

(4.18a). From equations (4.12b) and (4.17), the numerator is shown in equation (4.18b).

f2(s) = (s2 + m2s + r2) f1(s)− (d2s + c2)(d′1s + c′1), (4.18a)

g2(s) = (s2 + m2s + r2)g1(s)− (d2s + c2)(d′1s + c′1). (4.18b)
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4.1.3 For fourth order system (n=3)

The model of the third order system is shown in Figure 4.6.

0J
1K 2K

1J 2J
0M

2D1D

3K

3J

3D
0� 1� 2� 3�

Figure 4.6: Four mass-spring-damper system

The equation of motion of the 1st mass and 2nd mass are the same as equation (4.5) and (4.13)

respectively. From equations (4.3) and (4.4) and substituting i = 2 , the equation of motion

of the 3rd mass is given by

J2θ̈2(t) + D2(θ̇2(t)− θ̇1(t)) + D3(θ̇2(t)− θ̇3(t))+

+ K2(θ2(t)− θ1(t)) + K3(θ2(t)− θ3(t)) = 0.
(4.19)

From equations (4.3) and (4.4) and substituting i = 3 and D4 = 0, the equation of motion of

the 4th mass is given by

J3θ̈3(t) + D3(θ̇3(t)− θ̇2(t)) + K3(θ3(t)− θ2(t)) = 0. (4.20)

The equations (4.5), (4.13), (4.19), (4.20) can be combined to form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

J0 0 0 0

0 J1 0 0

0 0 J2 0

0 0 0 J3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̈0

θ̈1

θ̈2

θ̈3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 −D1 0 0

−D1 D1 + D2 −D2 0

0 −D2 D2 + D3 −D3

0 0 −D3 D3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇0

θ̇1

θ̇2

θ̇3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 −K1 0 0

−K1 K1 + K2 −K2 0

0 −K2 K2 + K3 −K3

0 0 −K3 K3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ0

θ1

θ2

θ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.21)

Dividing the numerator and denominator terms by J0 J1 J2 J3 of the transfer function deter-

mined by equation (4.21), and substituting (3.11a) and (3.11b), the transfer function of such
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θ̇0

M0
=

1
J0s

(s2 + m3s + r3)((s2 + d′1s + c′1)(s
2 + m2s + r2)− (d2s + c2)(d′1s + c′1))+

(s2 + m3s + r3)((s2 + m1s + r1)(s2 + m2s + r2)− (d2s + c2)(d′1s + c′1))+
−(d3s + c3)(d′2s + c′2)(s2 + d′1s + c′1)
−(d3s + c3)(d′2s + c′2)(s2 + m1s + r1)

.
(4.22)

From equations (4.12a), (4.18a), (4.22), the characteristic polynomial is calculated as in equa-

tion (4.23a). From (4.12b) and (4.18b) and (4.22), the numerator is shown in equation (4.23b).

f3(s) = (s2 + m3s + r3) f2(s)− (d3s + c3)(d′2s + c′2) f1(s), (4.23a)

g3(s) = (s2 + m3s + r3)g2(s)− (d3s + c3)(d′3s + c′2)g1(s). (4.23b)

4.1.4 For nth order system

For different values of n, the transfer function follows a systematic pattern. The characteris-

tic polynomial can thus be generalized for n > 1 as in equation (4.24a). The numerator can

be generalized for n > 1 as in equation (4.24b):

fn(s) = (s2 + mns + rn) fn−1(s)− (dns + cn)(d′n−1s + c′n−1) fn−2(s), (4.24a)

gn(s) = (s2 + mns + rn)gn−1(s)− (dns + cn)(d′n−1s + c′n−1)gn−2(s). (4.24b)

where

f0(s) = 1 ,

f1(s) = s2 + m1s + r1s,

g0(s) = 1,

g1(s) = s2 + d′1s + c′1.

From equations (4.11), (4.17), (4.22), it is also known that there is a constant

C =
1
J0

(4.25)

in the equations.
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Equations (4.24a), (4.24b), (4.25) are combined to form the general equation of the transfer

function as shown in equation (4.1). Now equation (4.1) has the form of

H(s) =
θ̇0

M0
=

C
s

gn(s)
fn(s)

=
1

J0s
(s2 + mns + rn)gn−1(s)− (dns + cn)(d′n−1s + c′n−1)gn−2(s)
(s2 + mns + rn) fn−1(s)− (dns + cn)(d′n−1s + c′n−1) fn−2(s)

,
(4.26)

where

n > 1,

f0(s) = 1,

f1(s) = s2 + m1s + r1s,

g0(s) = 1,

g1(s) = s2 + d′1s + c′1.

The above equation (4.26) is the general transfer function of any order of the system of

masses connected in series by dampers and springs.

For no damping systems, as Di = 0(i = 1, · · · , n), therefore di = 0(i = 1, · · · , n), equations

(4.24a) and (4.24b) can be simplified to:

fn(s) = (s2 + rn) fn−1(s)− cnc′n−1 fn−2(s), (4.27a)

gn(s) = (s2 + rn)gn−1(s)− cnc′n−1gn−2(s), (4.27b)

where

n > 1,

f0(s) = 1,

f1(s) = s2 + r1,

g0(s) = 1,

g1(s) = s2 + c′1.

4.2 Parameter Identification in Frequency Domain

The parameters of the system without damping of any order will be identified in this section.

The parameters to be identified are J1, J2, · · · , Jn and K1, K2, · · · , Kn (D1, D2, · · · , Dn = 0, for

no damping system). J0, the inertia of motor, is normally well known for a feed drive system.
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As when ci and c′i in equation (4.27a) and (4.27b) are known, the unknown parameters of the

system can be solved easily as shown in Figure 4.7. Therefore, the parameter identification

of the mechanical system is in fact the identification process of ci and c′i.

c1 c2 c3 cn

c’1 c’2 c’3 c’n

...

...

J0 J1 J2 J3 Jn-1

K1 K2 K3 Kn...

Jn

Figure 4.7: String knot relationship among the parameters

In Figure 4.7, K1 is first calculated from c1 and J0, through the relationship ci = Ki
Ji−1

in

equation (4.10a). Then J1 can be calculated from c′1 and the already known K1 through c′i =
Ki
Ji

as in equation (4.10a). Further, K2 is calculated from c2 and J1, J2 is calculated from c′2 and K2,

until Kn and Jn are calculated. This is a process of trying to untie a string with a lot of knots.

The knots are c1, c2, · · · , cn and c′1, c′2, · · · , c′n. When those knots are known, it is very easy to

untie the string from the start point of J0, and to unveil J1, J2, · · · , Jn and K1, K2, · · · , Kn.

Therefore, the method to calculate ci and c′i should be first derived here. This is done by

mapping the transfer function and the frequency response as stated before. From frequency

measurement all characteristic frequencies, corresponding to the poles p and zeros z in the

transfer function of the system, can be found using the Bode diagram.

As for the mechanical system without damping the resonance frequency equals to the eigen-

frequency of the system, the measured resonance frequency and anti-resonance frequency

are directly the imagery part of the system poles and zeros (for a system without damping,

the real parts of the poles and zeros of the system are zero). When damping of the mechan-

ical system is small, the resonance frequency is approximately equal to the eigenfrequency

of the system. E.g. with 0.1 damping ratio, the eigenfrequency is only 1% less than the

characteristic frequency; the resonance freqency is only 0.1% less than the eigenfrequency.

The denominator and numerator terms of the transfer function of the system are calculated

from these poles and zeros. The mapping of the transfer function derived from the n-th order

system in section 4.1 and from the poles and zeros from frequency measurement can then

69



4.2. PARAMETER IDENTIFICATION IN FREQUENCY DOMAIN

be processed. The coefficients of these denominator and numerator terms of the transfer

function determined by poles and zeros are represented by the letters ’a’ and ’b’ respectively.

In the following derivations, ’x’ terms have been introduced to identify the general pattern

of the steps being followed.

The mapping process is first done for n = 1, · · · , 3 as has been done in deriving the transfer

function from model. General mapping is then deduced based on induction theory.

4.2.1 For second order system (n=1)

For n = 1, the pole and zero are p1 and z1 respectively. The denominator and numerator of

the transfer function determined by frequency response are written to

f1(s) = s2 + p2
1 = s2 + 1a1, (4.28a)

g1(s) = s2 + z2
1 = s2 + 1b1. (4.28b)

With n = 1, from equations (4.27a) and (4.27b), it is known that the denominator and nu-

merator of the transfer function are

f1(s) = s2 + r1, (4.29a)

g1(s) = s2 + c′1. (4.29b)

Mapping equations (4.28a) and (4.29a), as well as equations (4.28b) and (4.29b), the relation-

ships between the coefficients of the transfer functions expressed by different methods are

1a1 = r1, (4.30a)
1b1 = c′1. (4.30b)

From equations (4.10a), (4.30a) and (4.30b), the c1 and c′1 are

c1 = 1a1 − 1b1, (4.31a)

c′1 = 1b1. (4.31b)
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4.2.2 For third order system (n=2)

For n = 2, the poles and zeros are (p1, p2) and (z1, z2) respectively. The denominator and

numerator of the transfer function determined by frequency response are written to

f2(s) = (s2 + p2
1)(s

2 + p2
2) = s4 + 2a1s2 + 2a2, (4.32a)

g2(s) = (s2 + z2
1)(s

2 + z2
2) = s4 + 2b1s2 + 2b2. (4.32b)

With n = 2, from equations (4.27a) and (4.27b), the denominator and numerator of the

transfer function are

f2(s) = (s2 + r2)(s2 + r1)− c′1c2 = s4 + (r1 + r2)s2 + (r1r2 − c′1c2), (4.33a)

g2(s) = (s2 + r2)(s2 + c′1)− c′1c2 = s4 + (c′1 + r2)s2 + (r1r2 − c′1c2). (4.33b)

Mapping equations (4.32a) and (4.33a), as well as equations (4.32b) and (4.33b), the relation-

ships between the coefficients of the transfer functions expressed by different methods are

2a1 = r1 + r2, (4.34a)
2b1 = c′1 + r2, (4.34b)
2a2 = r1r2 − c′1c2, (4.34c)
2b2 = c′1r2 − c′1c2. (4.34d)

From equations (4.10a), (4.34a) and (4.34b), c1 is

2a1 − 2b1 = r1 − c′1 = c1, (4.35a)

c1 = 2a1 − 2b1. (4.35b)

From equations (4.10a), (4.34c) and (4.34d), the following relationship exists:

2a2 − 2b2 = r1r2 − c′1r2 = r2c1. (4.36)

Let x11 =
2a2−2b2

c1
, and combine this with equation (4.36), x11 is rewritten to

x11 = r2. (4.37)
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From equations (4.34b) and (4.37), c′1 is calculated as

c′1 = 2b1 − x11. (4.38)

From equations (4.10a) and (4.34d), 2b2 is rewritten to

2b2 = c′1r2 − c′1c2 = c′1c′2, (4.39)

Let x′11 =
2b2
c′1

, combine this with equation (4.39), x′11 is

x′11 = c′2. (4.40)

From equations (4.10a), (4.37) and (4.40), the following equation is obtained:

c2 = x11 − x′11. (4.41)

From equations (4.35), (4.38), (4.40) and (4.41), together with the definition of x11 and x′11,

c1, c′1, c2 and c′2 are summarized as

c1 = 2a1 − 2b1, x11 =
2a2 − 2b2

c1
,

c′1 = 2b1 − x11, x′11 =
2b2

c′1
,

c′2 = x′11,

c2 = x11 − x′11.

(4.42)

4.2.3 For fourth order system (n=3)

For n = 3, the poles and zeros are (p1, p2, p3) and (z1, z2, z3) respectively. The denominator

and numerator of the transfer function determined by frequency response are written to

f3(s) =
3

∏
i=1

(s2 + p2
i ) = s6 + 3a1s4 + 3a2s2 + 3a3, (4.43a)

g3(s) =
3

∏
i=1

(s2 + z2
i ) = s6 + 3b1s4 + 3b2s2 + 3b3. (4.43b)

From equations (4.29a), (4.32a) and (4.27a), the denominator is known as in following equa-

tion (4.44a). From equations (4.29b), (4.32b) and (4.27b), the numerator of the transfer func-
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tion is determined as in following equation (4.44b):
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f3(s) = (s2 + r3)(s2 + 2a1s2 + 2a2)− c′2c3(s2 + r1),

= s6 + (2a1 + r3)s4 + (2a1r3 +
2a2 − c′2c3)s2 + (2a2r3 − r1c′2c3), (4.44a)

g3(s) = (s2 + r3)(s2 + 2b1s2 + 2b2)− c′2c3(s2 + c′1),

= s6 + (2b1 + r3)s4 + (2b1r3 +
2b2 − c′2c3)s2 + (2b2r3c′1c′2c3). (4.44b)

Mapping equations (4.43a) and (4.44a), as well as equations (4.43b) and (4.44b), the relation-

ships between the coefficients of the transfer functions expressed by different methods are

3a1 = 2a1 + r3, (4.45a)
3b1 = 2b1 + r3, (4.45b)
3a2 = 2a1r3 +

2a2 − c′2c3, (4.45c)
3b2 = 2b1r3 +

2b2 − c′2c3, (4.45d)
3a3 = 2a2r3 − r1c′2c3, (4.45e)
3b3 = 2b2r3 − c′1c′2c3. (4.45f)

From equations (4.35), (4.45a) and (4.45b), c1 is calculated as

3a1 − 3b1 = 2a1 − 2b1 = c1, (4.46a)

c1 = 3a1 − 3b1. (4.46b)

From equations (4.34b) and (4.45b), the following relationship exists:

3b1 = 2b1 + r3 = c′ + r2 + r3. (4.47)

From equations (4.35), (4.36), (4.45c) and (4.45d), the following equation can be obtained:

3a2 − 3b2 = (2a1 − 2b1)r3 + (2a2 − 2b2) = c1(r2 + r3). (4.48)

Let x11 =
3a2−3b2

c1
, and combine this with equation (4.48), x11 can also be rewritten to

x11 = r2 + r3. (4.49)
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From equations (4.47) and (4.49), c′1 can be calculated as

c′1 = 3b1 − x11. (4.50)

From equations (4.34b), (4.34d) and (4.45d), the following relationship exists:

3b2 = 2b1r3 +
2b2 − c′2c3 = (c′1 + r2)r3 + c′1r2 − c′1c2 − c′2c3

= c′1r3 + r2r3 + c′1c′2 − c′2c3.
(4.51)

From equations (4.10), (4.36), (4.45e), and (4.45f), the following equation can be obtained:

3a3 − 3b3 = (2a3 − 2b3)r3 − (r1 − c′1)c
′
2c3 = c1r2r3 − c1c′2c3

= c1(r3r2 − c′2c3).
(4.52)

Let x12 =
3a3−3b3

c1
, and combine this with equation (4.52), x12 can also be written to,

x12 = r2r3 − c′2c3. (4.53)

From equations (4.51) and (4.53), the following equation can be derived:

3b2 − x12 = c′1(c
′
2 + r3). (4.54)

Let x′11 =
3b2−x12

c′1
, and combine this with equation (4.54), x′11 can also be written to

x′11 = r3 + c′2. (4.55)

From equations (4.10a), (4.49), and (4.55), c2 can now be calculated using the following equa-

tion:

c2 = x11 − x′11. (4.56)

From equations (4.10a), (4.39), and (4.45f), the following equation can be obtained:

3b3 = 2b2r3 − c′1c′2c3 = c′1c′2r3 − c′1c′2c3 = c′1c′2c′3. (4.57)

Let x′12 =
3b3
c′1

, combine this with equation (4.57), x′12 can also be written to

x′12 = c′2c′3. (4.58)
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From (4.10a), (4.53), and (4.58), the following equation can be obtained:

x12 − x′12 = r2r3 − c′2c3 − c′2c′3 = c2r3, (4.59)

Let x21 =
x12−x′12

c2
, combine this with equation (4.59), x21 can also be written to

x21 = r3. (4.60)

From equations (4.55) and (4.60), c′2 can be calculated as

c′2 = x′11 − x21, (4.61)

Let x′21 =
x′12
c′2

, combine this with equation (4.58), x′21 can also be written to

x′21 = c′3, (4.62)

From equations (4.10a), (4.60) and (4.62), c3 is calculated as

c3 = x21 − x′21. (4.63)

From equations (4.46b), (4.50), (4.56), (4.61), (4.62) and (4.63), together with the definition of

x11, x′11, x12, x′12, x21 and x′21, c1, c′1, c2, c′2, c3 and c′3 are summarized as

c1 = 3a1 − 3b1, x11 =
3a2 − 3b2

c1
,

c′1 = 3b1 − x11, x12 =
3a3 − 3b3

c1
, x′11 =

3b2 − x12

c′1
,

c2 = x11 − x′11, x′12 =
3b3

c′1
, x21 =

x12 − x′12
c2

,

c′2 = x′11 − x21, x′21 =
x′12
c′2

,

c′3 = x′21,

c3 = x21 − x′21.

(4.64)

The deduction process of c1, c′1, c2, c′2, c3, c′3, c4 and c′4 for fifth order system (n=4) is presented

in Appendix A.2.
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4.2.4 For (n + 1)th order system

From equation (4.31) for n = 1, equation (4.42) for n = 2, and equation (4.64) for n = 3, the

c and x for n are deduced as

c1 = na1 − nb1, x11 =
na2 − nb2

c1
,

c′1 = nb2 − x11, x12 =
na2 − nb2

c1
, x′11 =

nb2 − x12

c′1

c2 = x11 − x′11, x13 =
na4 − nb4

c1
, x′12 =

nb3 − x13

c′1
, x21 =

x12 − x′12
c2

,

c′2 = x′11 − x21, x14 =
na5 − nb5

c1
, x′13 =

nb4

c′1
, x22 =

x13 − x′13
c2

, x′21 =
x′12 − x22

c′2
,

...
...

ci = x(i−1)1 − x′(i−1)1, x1(2i−1) =
na2i − nb2i

c1
, · · · xi1 =

x(i−1)2 − x′(i−1)2

ci
,

c′i = x′(i−1)1 − xi1, , x1(2i) =
na2i+1 − nb2i+1

c1
, · · · x′i1 =

x′(i−1)2 − x′i2
c′i

,

...
...

cn−1 = x(n−2)1 − x′(n−2)1, x(n−2)2 =
x′1(n−1)

c′n−2
,

x(n−2)2 − x′(n−2)2

cn−1
,

c′n−1 = x′(n−2)1 − x(n−1)1, x′(n−1)1 =
x(n−2)2

c′n−1
,

c′n = x′(n−1)1,

cn = xn−1 − x′(n−1)1
(4.65)

The left superscript index n in the a, b item in the above equation indicates that the system

is an (n + 1)th order system. The left superscript index is introduced in the process of cal-

culating the higher order transfer function from the lower order system’s transfer function.

As now all a, b items in equations (4.31),(4.42),(4.64),(A.33) and (4.65) are coefficients of the

same order of the system, the left superscript index 1, 2, · · · , n is no more needed. Therefore,

in the following equations, the left superscript index will be deleted.

The aim of this parameter identification method is first to get the c in the form of the coef-

ficients determined by the poles and zeros of the system. From equation (4.65), it is known

that the intermediate value x should be first calculated. From equation (4.65), the equations
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for calculating x and x′ are generalized as
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x :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1j =
a(j+1) − b(j+1)

a1 − b1
, j = 1, · · · , (n − 1)

x′1j =
b(j+1) − x1(j+1)

b1 − x11
, j = 1, · · · , (n − 1), x1n = 0

xij =
x(i−1)(j+1) − x′(i−1)(j+1)

x(i−1)1 − x′
(i−1)1

, i = 2, · · · , (n − 1), j = 1, · · · , (n − 1)

x′ij =
x′(i−1)(j+1) − xi(j+1)

x′
(i−1)1 − x(i−1)1

. i = 2, · · · , (n − 1), j = 1, · · · , (n − 1), xi(n+1−i) = 0

(4.66)

The ci and c′i are generalized as

c :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1 = a1 − b1

c′1 = b1 − x11

ci = x(i−1)1 − x′(i−1)1 i = 2, · · · , n

c′i = x′(i−1)1 − xi1 i = 2, · · · , n.

(4.67)

For implementation, all the terms of a, b, x and x′ are summarized into a (2n + 1)× (2n + 1)

matrix as given in table 4.1.
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The column 1 to n in the first row of the matrix consists of coefficients of the denominator of

the transfer function. The column 2 to n+1 in the second row consists of coefficients of the

numerator of the transfer function. The column (2i + 1) to (2i + n) in row (2i + 1) consists

of xij, i = 1 · · · (n − 1), j = 1 · · · (n − 1). The column (2i + 2) to (2i + n + 2) in row (2i + 2)

consists of x′ij, i = 1 · · · (n − 1), j = 1 · · · (n − 1). The elements in the matrix are summarized

as following:

element(i, j) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

element(1, j) = aj, j = 1 · · · n

element(2, j + 1) = bj, j = 1 · · · n

element(2i + 1, 2i + j) = xij, i, j = 1 · · · (n − 1)

element(2i + 1, 2i + n) = 0, i = 1 · · · n,

element(2i + 2, 2i + 1 + j) = x′ij. i, j = 1 · · · n − 1

(4.68)

From equations (4.66) and (4.68), the x and x′ can be calculated from the elements in table

4.1 as

xij =
element(2i − 1, 2i + j − 1)− element(2i, 2i + j)

element(2i − 1, 2i − 1)− element(2i, 2i)
, (4.69a)

x′ij =
element(2i, 2i + j)− element(2i + 1, 2i + j + 1)

element(2i, 2i)− element(2i + 1, 2i + 1)
, (4.69b)

where i, j = 1 · · · , n − 1.

From equations (4.67) and (4.68), the general equation for ci and c′i is

ci = element(2i − 1, 2i − 1)− element(2i, 2i), (4.70a)

c′i = element(2i, 2i)− element(2i + 1, 2i + 1), (4.70b)

where i = 1, · · · , n.

Now, the values of ci , c′i for any order of the system are known. J0 is already known. The

stiffness of each spring as well as the moment of inertia of each mass can be calculated using

the relationships shown in Figure 4.7 and the following equations:

Ki = ci Ji−1, (4.71a)

Ji =
Ki

c′i
, (4.71b)

where i = 1, · · · , n.

The seemingly complicated parameter identification process is now ended with a very sim-
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ple process and calculations as shown in Figure 4.8. Inputs to the calculation process are
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the poles and zeros (resonance frequency and anti-resonance frequency) of the system and

motor inertia. The matrix is formatted by equations (4.68) and equation (4.69). c and c′ are

calculated from elements in matrix according to equation (4.70). The required J and K are

solved through equations in (4.71).

Calculating
a1,a2...an
b1,b2...bn

Begin
p1...pn
z1...zn

Calculating
elements in matrix

Calculating
c and c’

J0

Calculating
Ji and Ki

End

Figure 4.8: Flow chart of identification process

4.2.5 Results and simulations

The processes and equations for identifying the system parameters are described in the

above section. These equations are well suited for computational purposes for any order of

the system. These derivations are deduced from the general pattern followed by the lower

order undamped systems. This identification process is also suitable for slightly damped

system (e.g, damping ratio < 0.1). The reason is that, for slightly damped system the charac-

teristic and natural frequency are very near. This will be verified by the following simulation

result.

The simulation is done with a 10th order slightly damped system (n = 9). The moment of

inertia of the motor is 0.01kgm2. Damping is set to 0.01Nm · s/rad for all springs. Other

parameters are defined in the table 4.2 where the unit of Ki is Nm/rad and the unit of Ji is
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kgm2. The sampling process is done at the sampling rate of 8 kHz.
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Fig 4.9 shows the bode plot of the system. The poles and zeros of the system extracted from

the frequency response are as follows:
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Figure 4.9: Frequency response of the simulated system

p1 = 11.8Hz, z1 = 7.2Hz,

p2 = 21.3Hz, z2 = 17.9Hz,

p3 = 31.8Hz, z3 = 29.4Hz,

p4 = 43.8Hz, z4 = 42.1Hz,

p5 = 58.1Hz, z5 = 56.8Hz,

p6 = 75.9Hz, z6 = 74.8Hz,

p7 = 100.2Hz, z7 = 99.1Hz,

p8 = 138.7Hz, z8 = 137.5Hz,

p9 = 225.5Hz, z9 = 223.6Hz.

Then through equation (4.68) to (4.71), the systems parameters can be identified as in table

4.2.

Comparing the identified values to the initial values, it can be seen that the identification

process works almost perfectly. To see the difference more easily, the absolute values of

errors computed by equation (4.72) are placed in table 4.2 as well. The biggest error of the

spring constant occurs at the first spring with 0.05% error. The biggest error of the inertia
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value occurs at the last mass with 0.033%.



4.2. PARAMETER IDENTIFICATION IN FREQUENCY DOMAIN

Parameters Original values Identified values Errors

Inertia Stiffness Inertia Stiffness Inertia Stiffness Inertia Stiffness
(kgm2) (Nm/rad) (kgm2) (Nm/rad) (kgm2) (Nm/rad) (%) (%)

J1 K1 0.001 900 0.001 900.4547 0 0.05

J2 K2 0.002 800 0.002 800.0269 0 0.003

J3 K3 0.003 700 0.003 700.0029 0 0.0004

J4 K4 0.004 600 0.004 599.9953 0 0.0008

J5 K5 0.005 500 0.005 499.9836 0 0.003

J6 K6 0.006 400 0.006001 399.9711 0.017 0.007

J7 K7 0.007 300 0.007001 299.9603 0.014 0.013

J8 K8 0.008 200 0.008002 199.9534 0.025 0.023

J9 K9 0.009 100 0.008997 99.9521 0.033 0.04

Table 4.2: Original and identified parameters of the simulated system

Error =
∣∣∣∣ Identi f ied values − Original values

Original values

∣∣∣∣ ∗ 100% (4.72)

The above identification algorithm is originally deduced for no damping system. It is also

suitable for system with low damping. For a system with big damping this identification

algorithm is not applicable. New method should be found for system with big damping.
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CHAPTER 5

Trajectory Analysis and Trajectory

Redesign through Wavelet Synthesis

The trajectory from its time optimal plan is designed to drive the mechanical system at its

full capacity at each point of time of at least one axis. However, the designed trajectory

may bring violent vibrations due to the mechanical properties of the axes mechanism. There

are not always vibrations along the whole trajectory, mostly only in the area where reso-

nance frequency in one of the corresponding axis exists. Therefore, determining where the

vibrations will happen and how intense the vibrations will be along the trajectory is very

important for taking further steps to intentionally reduce the vibration in the trajectory de-

sign phase. To reduce the vibration level that is invoked by the resonance frequency, the

trajectory has to be redesigned or modified so that there is no frequency excitation near the

resonance frequency of that axis in axial setpoints.

To find out where a specified frequency in a motion profile occurs, time-frequency localiza-

tion analysis is needed. The time-frequency tool has to be carefully chosen to get a quick

and precise result. The objective of this analysis is to determine, for a given signal, how

much energy has been located at a particular time and a given frequency. Important for the

trajectory analysis of an axis is to determine how many amplitude errors this trajectory will

bring to the axis due to the excitation of the axis. This amplitude error can then be checked

to see if it is within the error tolerance set by the user. When the error is outside the toler-

ance, redesigning has to be commenced. Otherwise, it means that the designed trajectory

is not the source of the possible vibration problem of that axis. Therefore the aim of this

chapter is to make sure that the setpoints of all axes will not invoke resonance vibrations to

the corresponding axis mechanism. To achieve this aim, three steps are necessary:

Step 1: find out a suitable method/tool for the time-frequency analysis. This will

be done in section 5.1. Section 5.1 introduces the existing possible methods of
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time-frequency analysis first. Then Wavelet Transform (WT) method, to be exact,

the continuous complex Morlet wavelet, is chosen as a suitable tool for the task

of this work.

Step 2: find out the vibration level due to the setpoints and the resonance fre-

quency of the mechanical system of the corresponding axis. This is to be con-

ducted in section 5.2. The trajectory is studied with the help of Wavelet Synthesis

to find out the vibration level due to the resonance frequency.

Step 3: redesign the trajectory to reduce the level of vibrations caused by the

setpoints of each axis. Section 5.3 describes this process.

5.1 Time Frequency Analysis

One of the basic tools in signal frequency analysis is the Fourier Transform (FT) or its mod-

ified version Fast Fourier Transform (FFT) [14]. The frequency spectrum of the signal can

be obtained from the output of FT, but with no time information. A typical output of a FT

analysis of a signal is shown in Figure 5.1(b). The original time domain signal is in Figure

5.1(a). From Figure 5.1(b), it is very clear that in the signal, the following frequencies appear:

20Hz, 50Hz, and 80Hz. Although it can be known from the FT analysis that the signal has

a certain frequency content with certain energy, but it is not possible to know at which time

interval(s) this frequency content occurs in the signal. To obtain both frequency and time

information from the signal, time-frequency analysis method is required. The most com-

mon time-frequency analysis methods are Short Time Fourier Transform (STFT) [2][9] and

Wavelet Transform (WT) [12].
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Figure 5.1: Frequency Information from Fourier Transform
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5.1.1 Short Time Fourier Transform

As stated before, FT is not suitable for time-frequency analysis. But if the whole signal is

separated into small enough segments, and these segments of the signal can be assumed to

be stationary, then the FT method can be applied to analyze the signal within the segment.

For the stationary purpose of the segment signal, a window function should be chosen.

Thus as the window moves along the signal, the FT is carried out in the windowed signal

to obtain the frequency information. Concurrently, the time information can be obtained

from the window position. By doing so, the time axis is added to the coordinate besides

the frequency axis in analyzing the signal. The process of the short time windowed Fourier

Transform is known as Short Time Fourier Transform (STFT) [41]. As a result, in STFT,

the frequency information is obtained from the Fourier transform of the windowed signal,

and the time information is obtained from the position of the sliding window. Figure 5.2

shows the moving window along the signal process as explained above. The time-frequency

information of the signal is plotted in Figure 5.3(b) for the same signal as in Figure 5.1(b).

From Figure 5.3(b), it is known that there are 3 main frequencies existing in the signal. The

frequency 20Hz appears between 0s and 0.5s. The frequency 50Hz appears between 0.5s

and 2s, and the frequency 80Hz appears between time 2s and 3s.

window length T overlap time

V

)( tw ��
)(�x

Figure 5.2: Principle of Short Time Fourier Transform

Mathematically, the STFT can be expressed by the following equation[10]:

STFT(t, f ) =
∫ ∞

−∞
x(τ) · w∗(τ − t) · e−j2π f τdτ, (5.1)

where

x(τ) : the signal itself,

w(τ − t): the window function,

∗ : conjugate complex.
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Figure 5.3: Time and frequency information from Short Time Fourier Transform

Clearly equation (5.1) depicts that the STFT of the signal is nothing but the Fouier Transform

of the signal multiplied by a window function.

To perform STFT, three elements must be first determined: the type of window, the window

length, and the overlap of the windows [24].

The window type w(t) directly affects the trade-off between frequency resolution and side-

lobe attenuation. There are some common window functions, like rectangular window,

Hanning window, hamming window, blackman window and others. Different windows

have different properties. The window that can best fit the needs of application has to

be chosen. The rectangular window function has high side lobes, therefore it is normally

not recommended. The Hanning window and Hamming window function have better fre-

quency resolution and moderate side lobes rejection. These two windows would be suitable

for frequency analysis in trajectory signal. The Blackman window function has a good side

lobe attenuation and a moderately frequency resolution. It is a good general purpose win-

dow.

Besides the type of window, the window length is also an important variable for determining

the time and frequency resolution performance. The smaller the window width, the more

sharp the time determination is or, in other words, the better the time resolution. Wider

window means more “vague” time information or, in other words, worse time resolution.

The frequency resolution is also determined according to the window width. This shows

how sharply the frequency can be determined. The wider the window is, the higher the

frequency resolution, and vice versa. As a general property of all time-frequency analysis

techniques, it is not possible to get both best time resolution and best frequency resolution.

So there is always a trade-off between them, and the window width should be adjusted to
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fit the requirements of the application. This trade-off is expressed mathematically by the

uncertainty principle, and this principle applies for all time-frequency analysis techniques.

In addition, to increase time resolution, and to avoid missing the frequency component on

the boundary of the window, the overlap of the windows should be used as shown in Figure

5.2. An overlap is defined as the percentage of the common length of two neighboring

windows to the window’s length. Without overlap, the time resolution is totally defined by

the length of the window. By using the overlap of the window, the time resolution could be

improved to some extent. Especially for low frequencies in the signal, using a big overlap

can help to improve the time resolution.

The application of the STFT mentioned above has the same window length and window

overlap for all the frequencies. The STFT is thus classified as a fixed or single resolution

method for time-frequency analysis. In real application, the frequency resolution is not so

important for high frequency contents as for low frequency contents in the signal. On the

contrary, the good time resolution for high frequency is more important than it is for low fre-

quency. Optimizing the STFT can require some effort. In many instances, a multi-resolution

analysis is simpler and more practical to use and more robust.

5.1.2 Multi-resolution Short Time Fourier Transform

Multi-resolution STFT provides a better resolution solution than the STFT [77]. It changes

the window length according to different frequencies. For high frequency, the window

length is set to a small value, for a low frequency, the window length is set to a high value

to get the full information of this frequency. This leads to good time resolution and poor

frequency resolution at high frequency and good frequency resolution and poor time reso-

lution at low frequency.

Multi-resolution STFT is still STFT, and the three elements: window type, window length,

and overlap need to be determined. The window type remains the same, but the window

length and overlap can be changed to reach the multi-resolution requirements. The width of

the window should be short in order to get good time resolution, but should not be so short

as could not detect the specified frequency. According to the Nyquist-Shannon sampling

theorem , the window length of the frequency F can be specified to

N = (2 ∼ 3) ∗ t
ts

= (2 ∼ 3) ∗ Fs

F
, (5.2)

where
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N : the window length,

t : the period of the specified frequency F,

ts : the sampling time of the signal,

Fs : the sampling frequency of the signal.

The time resolution is totally dependent on the window length if the window slides along

the signal without any overlap. The overlap here is defined as the percentage of the window

length in multi-resolution STFT. Therefore it is a relative overlap. In STFT the length of

overlap is fixed.

Multi-resolution short time Fourier transform is still a pseudo time-frequency analysis. It

has three shortcomings. The first shortcoming is that it is not possible to achieve a very fine

time localization, as after a certain narrowing of the window, the information for the spec-

trum becomes meaningless and shows no relation to the spectrum of the original signal. Sec-

ondly, in STFT and multi-resolution STFT, the properties of the signal are scrambled with the

properties of the window function, which is the means of chopping up the signal. Thirdly,

when doing windowed FT, the specified frequency, resonance frequency in this work, may

not appear in the frequency component of FT analysis. In order to get the information of the

specified frequency, interpolation is needed after getting the Fourier transformation of the

windowed signal. This could again cause the problem of leakage.

Although the time and frequency resolution problems are results of a universally valid phys-

ical phenomenon (Heisenberg’s uncertainty principle) and exist regardless of the transform

used, it is possible to analyze any signal by using a better approach called Wavelet Trans-

form (WT).

5.1.3 Wavelet Transform

Wavelet Transform (WT) can be considered as another important tool to perform the time-

frequency localization to overcome the resolution problem in STFT and multi-resolution

STFT. Wavelet Transform is done in a similar way to the STFT analysis, in the sense that the

signal is multiplied with a function, similar to the window function in the STFT, and the

transform is computed separately for different segments of the time-domain signal. Wavelet

Transform can be continuous or discrete. Continuous Wavelet Transform (CWT) is adopted

for harmonic analysis because of its ability to preserve phase information [25, 72].
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Mathematically, the Continuous Wavelet Transform(CWT) can be expressed by [40]:

CWT(a, b) =
∫ ∞

−∞
x(t)ψ∗

a,b(t)dt, (5.3a)

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
, (5.3b)

where

* : conjugate complex ,

a : scale factor,

b : translation factor,

x(t) : signal to be analyzed,

ψa,b : mother wavelet.

The variables a and b, scale (related to frequency) and translation (related to time), are the

new dimensions after the wavelet transform. The set of wavelets are generated from a single

basic wavelet, the so-called mother wavelet, by scaling and translation as shown in equation

(5.3). The factor 1√
a in equation (5.3) is for energy normalization across different scales.

Equation (5.3) shows how a function x(t) is decomposed into a set of basis functions ψa,b(t),

named wavelets. A wavelet is a waveform of effectively limited duration that has an average

value of zero, while the sine waves, which are the basis of Fourier analysis, do not have

limited duration – they extend from minus to plus infinity. And where sinusoids are smooth

and predictable, wavelets tend to be irregular and asymmetric. In the time domain the

wavelet has two main features [70]:

• it has a small concentrated burst of finite energy; and

• it exhibits some oscillation in time.

The first feature makes the wavelet “little” in the sense that it is well localized in time,

whereas the second feature makes it “wavy” and hence a wavelet. As the wavelet has some

oscillating nature, then the result of convolving it with a signal will be high if both have the

same frequency and are in phase, and low value if:

• both have the same frequency and are out of phase, or

• they have different frequencies and are in/out of phase.
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To compensate the low value when the both signals have the same frequency and are out of

phase, a complex wavelet can be applied. When the absolute value of the calculation of the

Wavelet Transform is used as the result for the WT, then the problem of the low values in

the situation of same frequency but out of phase is overcome.

As the wavelet and the signal become similar in terms of frequency, the amplitude value of

the WT becomes higher. Therefore the WT can capture an image of the frequency content

that is near to the center frequency of the wavelet. The wavelet is translated along the time

axis to scan the whole signal, and the value of the WT is plotted instantly at each time. The

WT checks the existence of frequency content that is close to what is known as “wavelet

center frequency”. To check other ranges of frequencies, the center frequency of the wavelet

should be changed. This is done by stretching (or shrinking) the wavelet by a scaling factor

called “scale”. By such scaling, another wavelet is obtained, similar to the mother wavelet

but with another center frequency, which is called, in this case, scaled frequency correspond-

ing to the scale used. The more stretched the wavelet is, the smaller its scaled frequency.

The relation between the scale and the scaled frequency is given as:

Fa =
Fc

a · ts
, (5.4)

where

Fa : scaled frequency (in Hz, the frequency to be tested) ,

Fc : wavelet center frequency (for the mother wavelet, dimensionless),

ts : sampling period (in seconds).

Note that the scale factor a is nondimensional and is the ratio of the size of the scaled wavelet

to the size of the mother wavelet.

In other words, the Wavelet Transform is using the scaled wavelet moving along the signal

to see the similarity between the wavelet and the signal. The similarity is in the sense of

similar frequency content. The calculated WT coefficients refer to the closeness of the signal

to the wavelet at the current scale. The scale of the wavelet changes continuously, and the

scaled wavelet moves along the signal continuously too. Thus better resolution results can

be obtained from the WT than from multi-resolution STFT. Of course, the time-frequency

resolution of the WT has to obey the uncertainty theorem too.

It worth noting that as the scaled frequency increases, the wavelet becomes more shrunken

and this means better time resolution. This is a main difference between STFT and WT.

In STFT, the time resolution is constant and depends on the width of the window. In WT,
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however, the time resolution adapts to frequencies. This property is very important as will

be shown later in the section about generalization principles.

Time-Frequency window

As mentioned above, the relation between the time resolution and the frequency resolution

is governed by the uncertainty principle. The combination between the time window and

the frequency window is known as the time-frequency window. By plotting the time win-

dow width and the frequency window width at its corresponding scaled frequency on the

time-frequency plane, a rectangle is obtained. The area of this rectangle is always the same,

governed by Heisenberg box. The Heisenberg box for any frequency at any time is limited

by

δωδt ≥ 1
2

, (5.5)

where

δω : the frequency resolution,

δt : the time resolution.

The mathematical expression of the time-frequency window is as follows [40]

[
b + a · t∗ − a · Δt

2
, b + a · t∗ + a · Δt

2

]
×

[
ω∗

a
− Δω

2a
,

ω∗

a
− Δω

2a

]
, (5.6)

where

t∗ and ω∗ : the center time and center frequency for the mother wavelet,

Δt and Δω : the time and frequency resolution for the mother wavelet.

It is worth noting, that the area of the rectangular time-frequency windows is always given

by ΔtΔω for any frequency contents and any time location; and thus it is independent of the

parameters a and b, and it is determined only by the wavelet used. The frequency resolu-

tion of a scaled frequency content in a signal is given by the expression δω = Δω
a ; the time

resolution is given by the expression δt = Δta.

The relation between time and frequency windows can be shown in Figure 5.4. This is the

graphical representation of the trade-off between time resolution and frequency resolution.

It also shows how the widths of the frequency and the time windows change with the scaled

frequency. The figure shows the rectangular time-frequency window at different scales (or
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pseudo-frequencies). It can be seen from the figure that at the higher scaled frequency (cor-

responding to a2 in the figure) the width of the frequency window is big. This means bad

frequency resolution. On the other hand the width of the time window is small, which

means good time resolution. The opposite is true for low frequencies. It can also be seen

from the figure that the time shift, b, has no effect on the dimensions of the time-frequency

window. It can also be seen that the area of the rectangle is always the same.
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Figure 5.4: Time-frequency windows in wavelet transform [40]

The Complex Morlet Wavelet

What remains an opened issue is the choice of the mother wavelet function. Many wavelet

families exist in the area of wavelet analysis, such as Haar wavelet, Mexican-Hat wavelet,

Morlet wavelet and others. In choosing the wavelet function, there are several factors which

should be considered [71].

1. Orthogonal or nonorthogonal. Orthogonal wavelet analysis is useful for signal pro-

cessing as it gives the most compact representation of the signal. Unfortunately it is

not suitable for time series analysis, as an aperiodic shift in the time series produces a

different wavelet spectrum. Conversely, a nonorthogonal analysis is useful for time se-

ries analysis, where smooth, continuous variations in wavelet amplitude are expected.

2. Complex or real. A complex wavelet function will return information about both am-

plitude and phase and is better adapted for capturing oscillatory behavior. Especially
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when the wavelet with the signal both have a similar frequency but are out of phase,

the complex wavelet function is useful. A real wavelet function returns only a single

component and can be used to isolate peaks or discontinuities.

3. Shape. The wavelet function should reflect the type of features present in the time

series. For time series with sharp jumps or steps, one would choose a boxcar-like

function such as Haar, while for smoothly varying time series one would choose a

smooth function such as Morlet.

Before the wavelet function is chosen, the aim of the time-frequency analysis will be stressed

here. The aim of the time-frequency analysis in this work is to find out specified frequencies

along the time of the trajectory.

• The trajectory data to be analysed are time series signals. Therefore the chosen wavelet

should have the nonorthognal property.

• The oscillatory behavor in the trajectory is to be detected. The chosen wavelet should

then be complex.

• The trajecotry is jerk-limited, the time series of the velocity trajectory is therefore

smoothly varying with time series. The chosen wavelet should have smooth shape.

Complex Morlet wavelet is nonorthognal, complex and have a damped cosine shape. There-

fore the complex Morlet wavelet is choosen for the analysis of the trajectory data in this work

as it fulfills the above three factors. More over, the Morlet wavelet is characterized by the

smallest achievable time-frequency window [18]. A complex Morlet wavelet can easily be

visualized as a wave because of it’s oscillatory nature and has a neat closed form expression.

The mathematical function for a complex Morlet mother wavelet in the time domain is as

follows [70]

w(t) =
1√

π · Fb
· ej2πFct−( t2

Fb
), (5.7)

where

Fb : the dimensionless bandwidth indication,

Fc : the wavelet dimensionless center frequency ,

t : the nondimensional time parameter.

The bandwidth indication Fb can be referred to as the spectral equivalent of damping.
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Accordingly, the mathematical expression of a Morlet mother wavelet in frequency domain

is,

w( f ) = e−π2Fb( f−Fc)2
, (5.8)

with the same meaning of Fb and Fc as in equation (5.7). f is the nondimensional frequency

parameter.

In fact, there are other ways to express the Morlet wavelet. These are basically all the same,

but they differ in the names of the parameters. The above mentioned form, which is adopted

as the meaning of the parameters, is easy to understand and to control. For example, by

increasing the bandwidth indication Fb, the frequency resolution is increased and the time

resolution is decreased.

Figure 5.5(a) shows the plot of a complex Morlet mother wavelet with a nondimensional

center frequency of 1 and a nondimensional bandwidth indication of 1. The Morlet wavelet

looks like a sine wave but has a concentrated burst around t = 0. The wavelet fades away

quickly as time increases. For higher bandwidths the wavelet fades away more slowly than

the wavelet in the figure. This implies better frequency resolution, and worse time resolu-

tion. The opposite is true for lower bandwidths. The complex Morlet wavelet, as its name

implies, consists of a real part and an imaginary part. In the figure the real part is in blue

and the imaginary part is in red. The imaginary part is phase-shifted from the real part by

π/2. The corresponding base wave in frequency domain is presented in Figure 5.5(b).
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Figure 5.5: Complex Morlet wavelet

The frequency resolution and time resolution mentioned for the complex Morlet mother

wavelet are:

Δω =
1√
Fb

, (5.9)
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Δt =

√
Fb

2
. (5.10)

For a dilated complex Morlet wavelet, the corresponding frequency and time resolution are,

δω =
1

a
√

Fb
, (5.11)

δt =
a
√

Fb
2

. (5.12)

5.1.4 Comparison

As discussed before, the STFT represents a less inaccurate and less efficient method of time-

frequency localization, as it imposes a window on to the analysis. In addition, several win-

dow lengths must usually be analyzed to determine the most appropriate choice. Multi-

resolution STFT solves the resolution problem of STFT by changing the window length

automatically according to the different frequencies. Wavelet transform is such a solution

that would solve the time-frequency problem better than STFT in most cases. Like multi-

resolution STFT, WT is designed to give good time resolution at high frequencies and good

frequency resolution at low frequencies. However, WT is different from multi-resolution

STFT in three aspects:

• time in WT is the real time localization, while in STFT, it is localization of the position

of window. Therefore, the time information from WT is more accurate than from STFT;

• no interpolation for a specified frequency is needed in WT, as each frequency compo-

nent can be found by a corresponding scale. In this sense, the frequency information

from the WT is more accurate than from the STFT which may have to use interpolation

for the specified frequency;

• no determination of the optimal window length and overlap of windows is needed.

Wavelet Transform is therefore determined for a time-frequency analysis of a real velocity

signal due to its good performance of time and frequency resolution. Further, Complex

Morlet Wavelet is the most suitable wavelet for this work, due to its phase information and

the wavy shape of the wavelet. Thus, it is possible to find out the time location where the

resonance frequency of the system exists. This time period is dangerous because resonance

vibration would happen.
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5.2 Predicting Vibraton Level Along Time

Two definitions need to be clarified first:

• amplitude error. Amplitude error in this work is defined as the amplitude increase

or reduction of the response amplitude compared with command amplitude at the

specified frequency along time. No phase information is included in the amplitude

error.

• following error. Following error is defined as the difference between the response

signal and command signal. Following error includes the amplitude error and phase

information. However, it is difficult to separate the amplitude error and phase infor-

mation from the following error.

When the command signal contains frequencies that are equal or close to the resonance

frequency of the machine axis, the resonance vibration problem may occur in that machine

axis. By applying Wavelet Transform to analyze the trajectory command, it is possible to find

out when this resonance vibration could happen and how big it is. However, whether the

resonance vibration will happen, or how large the vibration will be, remains unknown. If the

command signal is a pure sinusoidal signal, the output amplitude can easily be calculated

and predicted by using Fourier Transform. For an arbitrary trajectory which is not sinusoidal

and not periodic, the task of output response estimation cannot be performed by Fourier

Transform. Markert [39] introduced an analytical approach to solve the problem of a system

output estimation for a second order mechanical system during the ramp up or ramp down.

The ramping process is a very special case, and although it seems to be an easy case, the

analytical approach of the system output is highly sophisticated.

Convolving the trajectory signal with the impulse response of the mechanical system is an-

other approach. The response of the mechanical system to the trajectory signal can be calcu-

lated, and the following error can be obtained by getting the difference between the response

signal and the input signal. In fact, however, the following error is not of interest, the am-

plitude error is more important, as the resonance vibration level can be read directly from

the amplitude error. This cannot be done by impulse convolution. Moreover, the impulse

response of a poorly damped mechanical system takes very long time to settle down. Thus,

it leads to a calculation time and poor time resolution in the response output for poorly

damped system. Hence, detecting and estimating the possible vibration level caused by the

resonance frequency in an arbitrary command signal poses a problem. Wavelet synthesis, as
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will be presented in this section, provides a quick and accurate way to calculate amplitude

error, which is required in the next step of trajectory redesign.

In the following explanation, it is important to know that impulse convolution calculates

following error, and the wavelet methods calculates amplitude error.

5.2.1 Second order system response

This work deals with systems whose response can be approximated by the response of a

second order system at least for some bandwidth. In machine tools it is nearly impossible to

find a pure second order system, but many mass-spring-damper systems can be reasonably

approximated by a second order system.

The transfer function that represents a second order system can take many forms depending

on the setup of the physical components of the system, and on the input and output consid-

ered. The transfer function of the second order system considered here is expressed by the

following equation:

G(s) =
ω2

0

s2 + 2ξω0s + ω2
0

, (5.13)

where

ω0 : characteristic frequency of the system,

ξ: damping ratio.

The amplitude of the frequency response of such system is given as the modulus of G(jω),

which is throughout this work is simply named as G. This represents the steady state re-

sponse for sinusoidal input of frequency ω. Substituting for ω
ω0

by frequency ratio r, the

value of G in this case is calculated from the following relation:

G =
1√

(1 − r2)2 + (2ξr)2
. (5.14)

Although only this frequency response function is considered, the principles adopted in this

work are also applicable to other types of second order systems.

It should be noted here that the only variables that determine the amplitude of response

are the damping ratio ξ, and the frequency ratio r. This property is very important, be-

cause it means that any two systems having the same damping ratio will have the same G if

the frequency ratio r is considered without decoupling ω and ω0, even if the characteristic

frequencies ω0 of the two systems are different. By plotting G versus ω for two different
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systems with same damping ratio and different natural frequencies such that ω02 > ω01,

the frequency response curve of the second system will be exactly similar to that of the first

system, but stretched along the ω axis by the ratio ω02
ω01

.

The G curve (which is also known as the Bode magnitude plot) for a system with different

damping ratio is given in the following Figure 5.6. Usually in a Bode plot the amplitude is

plotted in decibels and the frequency is plotted on logarithmic scale. Here both are plotted

in absolute scale, because this will help in illustrating the next steps.
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Figure 5.6: Frequency response of second order system with different damping ratio

From Figure 5.6, it is known that if the damping ratio and characteristic frequency of the

system are known, the response amplitude of the system to a specified frequency can also

be obtained. Resonance frequency is the frequency at which a system tends to oscillate at

maximum amplitude. For an undamped system, resonance frequency is equal to the charac-

teristic frequency and natural frequency of the system. For a damped system, the resonance

frequency is not equal to the characteristic frequency and natural frequency system, espe-

cially when the damping ratio is big. Figure 5.6 also tells the fact that with a bigger damping

ratio, the difference between the resonance frequency and the characteristic frequency of the

system is greater.

The maximum G at resonance frequency and the corresponding frequency ratio r for a cer-
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dG
dr

=
2r(1 − 2ξ2 − r2)

((1 − r2)2 + (2rξ)2)
3
2
= 0. (5.15)

So when r = 0 or r =
√

1 − 2ξ2, G can have the maximum value. As r > 0, therefore, when

r =
√

1 − 2ξ2, (5.16)

G has the maximum value of

Gmax =
1

2ξ
√

1 − ξ2
. (5.17)

The equation G expresses amplitude amplification. The increment of the amplitude can be

expressed by the following equation (5.18), assuming an input or command signal with an

amplitude of 1:

E = G − 1. (5.18)

5.2.2 Amplitude error calculation of the response of a second-order sys-

tem by Wavelet Synthesis

As described in section 5.1, Wavelet Transform, to be exact, the complex Morlet wavelet, can

be used to detect the resonance frequency in the command signal. However, the coefficients

that are calculated from Wavelet Transform only tells the similarity between the resonance

frequency and the central frequency of the wavelet. To evaluate the vibration level this res-

onance frequency creates, the coefficients from the Wavelet Transform have to be related to

the amplitude response of the mechanical system, as will be shown in the following. Besides,

one wavelet curve cannot totally reconstruct the system response in frequency domain, more

wavelet curves are needed. In general, there are three steps for doing so [18],

Step 1: Determination of the time-frequency components of the given input

signal (analysis).

Step 2: Modification of the coefficients (extraction),

Step 3: Construction of the output signal (synthesis).

The first step is the general time-frequency analysis. As in this work, the natural frequency

of the mechanical system is already known and is to be located in the signal, therefore,

the time-frequency analysis for a wide range of frequencies is not needed. The frequency
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location is mainly focused on the natural frequency and frequencies lower than it. This

process is combined in this work in step 3. However, when only the time and frequency

information in the signal are required, step 1 is needed, and the further two steps can be

neglected.

The second step is to extract or modify the wavelet coefficient to make the amplitude of

wavelet analysis represent the system response. This is an important step in getting mean-

ingful results.

The third step is a process of synthesis, which is to construct the output of the system re-

sponse using two or more wavelet curves.

Step two and step three, which include step one for a signal frequency time location, are

described in the following section 5.2.2 and section 5.2.2 separately.

Fitting system response curve and complex Morlet wavelet in frequency domain curve

The frequency domain complex Morlet Wavelet in equation (5.8) is written here again for

convenience:

w( f ) = e−π2Fb( f−Fc)2
. (5.19)

The Morlet Wavelet in frequency domain in equation (5.19) can be explained as following:

when frequency f approaches the central frequency Fc, the wave reaches its highest point

of value 1. This corresponds to the maximal frequency response of the system when the

frequency ratio is approaching
√

1 − 2ξ2. The width of the wave in frequency domain de-

pends on the parameter Fb. The bigger the Fb is, the narrower the wave is. This corresponds

to the damping ratio ξ in the system frequency response. The smaller the damping ratio

is, the sharper the response of the system is. Therefore, the Wavelet in frequency domain

resembles the frequency response of the mechanical system in the following way:

• central frequency Fc ↔ normalized resonance frequency
√

1 − 2ξ2 ;

• frequency variable f ↔ frequency ratio r;

• band width Fb ↔ damping ratio ξ;

• amplitude of wavelet in frequency domain ↔ amplitude of frequency response.

Accordingly, to fit these two curves in the wavelet curve, the following parameters have to

be determined:
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• the center frequency Fc in the mother wavelet, corresponding to the generalized reso-

nance frequency of the mechanical system;

• scaling factor a, corresponding to the natural frequency of the mechanical system;

• the bandwidth indication Fb in the mother wavelet, corresponding to the bandwidth

or shape of the second order system.

• the maximum amplitude of the wavelet curve, corresponding to the maximum re-

sponse of the mechanical system;

Determination of Fc

In the frequency domain of the wavelet, as in equation (5.19), Fc is where the maximum

amplitude occurs. In the response of the second order system, the maximum amplitude

happens when r =
√

1 − 2ξ2, as in equation (5.16). Therefore,

Fc =
√

1 − 2ξ2. (5.20)

Determination of scaling factor a

The scaling factor corresponding to the frequency to be tested (the system’s characteristic

frequency) can be deduced from equation (5.4):

a =
FcFs

Fa
, (5.21)

with

Fc: central frequency of mother wavelet,

Fs: sampling frequency of signal,

Fa = F0, and F0 is the characteristic frequency of the mechanical system.

Determination of Fb

The bandwidth of the scaled wavelet must be similar to the bandwidth of the second or-

der system. Here the bandwidth is defined as the frequency interval around the central

frequency in wavelet or resonance frequency in second order system where the energy has

faded to one half of the maximal value; this corresponds to a variation in the relative ampli-

tude of a value of 1√
2

and of the level by −3dB, always with respect to the maximal value at

the point of central frequency or resonance frequency.
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The bandwidth of the wavelet curve can be adjusted by adjusting Fb. Let the mother wavelet

curve and the generalized second order system have the same bandwidth at the relative

amplitude of a value of 1√
2

respectively

w( f ) =
√

2
2

. (5.22)

Combining equation (5.19) and equation (5.22) gives

f = Fc ± 1
π
√

Fb

√
| ln(

√
2

2
) |. (5.23)

Based on equation (5.23), the bandwidth of the scaled wavelet is,

WTBandwidth =
2

π
√

Fb

√
| ln(

√
2

2
) |. (5.24)

The bandwidth of the generalized second order system can be determined from the follow-

ing equation:
1

(1 − r2)2 + (2ξr)2 =
1

2ξ
√

1 − ξ2

√
2

2
. (5.25)

Solving the above equation, the bandwidth of the second order system can be approximated

to be

SOSBandwidth ≈
√

ξ
√

1 − ξ2

2
√

2
. (5.26)

Making the bandwidth in wavelet and the bandwidth in second order system to be equal

gives

Fb =
16 | ln(

√
2) |

ξπ2
√

1 − ξ2
. (5.27)

From the above Fb, it is found out that

Fb ≈ 1
2ξ

(5.28)

can approximate the Fb in equation (5.27).

The error from the approximation in equation (5.26) and (5.28) can be plotted out in the

following Figure 5.7.

The Figure 5.7 explains the width difference between the wavelet in frequency domain and

the system response at the -3dB, when Fb = 1
2ξ is used. For example, when the damping
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Figure 5.7: Bandwidth difference between system and Wavelet

ratio is 0.2, the width of the wavelet is about 0.0269 narrower than the system frequency

response.

Fitting the maximum amplitude

There are two steps in fitting the maximum amplitude of the scaled wavelet and the second

order system. First of all, the maximum amplitude of the wavelet base curve and the fre-

quency response curve of the second order system need to fit. This can be assured simply by

multiplying the maximum amplitude of the system frequency response with the equation

of the wavelet in frequency domain, as the maximum amplitude of wavelet in frequency

domain is 1. The maximum amplitude of the system frequency response can be calculated

by equation (5.18) and equation (5.17) as in the following equation:

Emax = Gmax − 1 =
1

2ξ
√

1 − ξ2
− 1. (5.29)

The mother wavelet in frequency domain as in equation (5.19) should therefore be modified

to:

w( f ) = Emax ∗ w( f ) = (
1

2ξ
√

1 − ξ2
− 1) ∗ e−π2Fb( f−Fc)2

. (5.30)

Secondly, the energy normalization factor 1√
a added to the scaled wavelet as in equation (5.3)

for widely accepted wavelet function, has to be compensated. Here the factor
√

a is applied

to cancel this normalization effect. Therefore, the following factor has to be multiplied to the
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√
a =

√
Fs
√

1 − 2ξ2

F0
. (5.31)

Thus, the scale factor to be multiplied by the detecting frequency is

c = (
1

2ξ
√

1 − ξ2
− 1)(

√
Fs
√

1 − 2ξ2

F0
). (5.32)

Finally, the wavelet in frequency domain is

w( f ) = c ∗ e−Fbπ2( f−Fc)2
, (5.33)

with c = ( 1
2ξ
√

1−ξ2
− 1)(

√
Fs
√

1−2ξ2

F0
), Fb =

1
2ξ and Fc =

√
1 − 2ξ2.

Synthesis

The wavelet in equation (5.33) can only stand for the area that is near the resonance fre-

quency. To make the wavelet better interpret the frequency response of the system, more

wavelets can be applied by also computing Fc, Fb and the Emax factor, as in the following

equation(5.34):

E(t) =
N

∑
i

CWT(signal(t), Fni, waveleti) ∗ ci (5.34)

N is the number of wavelets needed to fit the curve. Normally, N ≤ 4.

This synthesis process can be visualized from Figure 5.8. In Figure 5.8(a), the wavelet curve

(red) is compared with the curve of the system response (blue). It is seen that the wavelet

curve and the system response curve are similar in the area of the resonance frequency.

But they have differences when the frequency ratio is small. Therefore, a second wavelet

curve is added in the low frequency ratio range. The second wavelet curve is shown in (b)

in green. The synthesis curve of the first wavelet and second wavelet is plotted in (c) in

red. There are still some differences between the synthesis curve and the system response

curve. Therefore, a third wavelet curve, as shown in (d) in green, is calculated. Now, the

finally synthesis wavelet curve to represent the system response is presented in (e) in red.

Of course there are still small differences between the synthesis wavelet curve and system

response curve, but they are not important. The reasons are: first, they are located in a

very low frequency ratio range; and second, they contribute a very small value in amplitude
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Figure 5.8: Influence of more wavelets on the frequency response

Equation (5.34) yields the estimated error as a function of time. The results of the estimated

errors can be further used to identify the time intervals in which the error exceeds a specified

acceptable limit so that some corrective action can be taken.

Two examples of detecting response by impulse convolution and synthesis wavelets

The second order system with a damping ratio ξ of 0.1 and a natural frequency of ω0 =

50rad/s is taken as the closed velocity loop in this section. Two test signals are given to

prove the amplitude error calculation methods. The two test signals are:
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• chirp signal,

• a real velocity profile from time-optimal trajectory planning.

The wavelet synthesis method is more practical than the impulse convolution method in

detecting the response in the following aspects:

• The impulse convolution method provides following errors of the response, while the

wavelet synthesis method generates an approximation of the amplitude error in en-

velope. Wavelet synthesis is more suitable in application, as it is more easy to tell

from the wavelet synthesis methods how much amplitude error from vibration will be

caused by the resonance frequency.

• Impulse convolution takes a much longer time to get the response, especially when the

mechanical system is poorly damped or the input signal is long. The time for impulse

convolution increases exponentially to the length of the input signal. The time for

wavelet synthesis increases only linearly.

The comparison of the two methods is confirmed by the two signals in the following simu-

lation.

Chirp signal

The chirp signal has an amplitude of 1, with an initial frequency of 0.016rad/s and final

frequency of 54rad/s in 20 seconds. The sampling frequency of the chirp signal is set to Fs =

2000Hz. The frequency 50rad/s is the characteristic frequency of the mechanical system.

Figure 5.9 presents the initial chirp velocity in the blue curve and the response velocity of the

second order system in the red curve. The response velocity is obtained by convolving the

input signal with the impulse response of the mechanical system. It is seen that the response

velocity has a peak when the chirp frequency passes through the resonance frequency of the

second order system. It is worth noting that the maximum amplitude of the response in this

figure can be read out to be 5. Then the maximum amplitude error, without considering the

phase difference, should be 4. But the following error, due to the phase difference between

the response signal and command signal, is bigger than 4, as will be shown next.

The following error in the velocity signal can be calculated by the difference between the

response signal and input signal. They are plotted in Figure 5.10 in red curves for the im-

pulse convolution method. Note that the maximum following error here is 5.17. This effect

is caused by the phase difference between the response and the input signal.
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Figure 5.9: System velocity response to chirp signal

Amplitude error is then calculated by the synthesis wavelets. The result is plotted in the

black curve in Figure 5.10. Normally the calculated amplitude error is bigger than 0, but for

the convenience of comparing, it is plotted as envelope. Note that the maximum amplitude

error is 4. The maximum amplitude error appears a littler earlier than the maximum follow-

ing error, as the amplitude error through wavelet synthesis tells exact the time position of

the resonance frequency, the following error reveals the response which includes the phase

information.
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Figure 5.10: Following error by impulse convolution and amplitude error by wavelet syn-
thesis

From the above simulation and calculation, it is known that the synthesis wavelets provide

good time location of the resonance frequency of the system, and give a good estimation of

the amplitude error of response. This is actually what is needed for the next step.

It is also worth noting that in this case the calculation time of the impulse convolution is

twice as long as the calculation time of the synthesis wavelets. If the test signal is longer,
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the calculation time of the impulse convolution method increases exponentially, while the

calculation time of the wavelet synthesis increases linearly.

A real velocity profile from time-optimal trajectory planning

The velocity signal in this example is obtained from a time-optimal trajectory plan, and is

plotted in the blue curve in Figure 5.11. The calculated response by the impulse convolution

is shown in Figure 5.11 with a red curve.
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Figure 5.11: System velocity response to real velocity signal

The corresponding following error of the response of the real velocity signal is calculated by

the difference between the response signal and input signal and plotted in Figure 5.12 with

a red curve.

Synthesis wavelets are now applied to generate the amplitude error envelope. The result is

plotted with the black curve in the same figure.

In Figure 5.12 the same two effects as in Figure 5.11 can be observed. First, the following

error amplitude calculated by impulse convolution is bigger than the amplitude error en-

velope by wavelet synthesis. Second, the maximum amplitude error by wavelet synthesis

appears earlier than the maximum following error by impulse convolution. The reason for

this two effects is the same as in chirp signal: in impulse convolution, there is a phase differ-

ence between the response and original signal. Hence, the following error amplitude by the

impulse convolution method illustrates not exactly the amplitude enlargement of the system

and also not exactly the moment when the resonance frequency appears in the signal.
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Figure 5.12: Following error by impulse convolution and amplitude error envelope by
wavelet synthesis

5.2.3 Summary of amplitude error calculation by Wavelet Synthesis

The above algorithm is to find a way to calculate the error between input amplitude and

output amplitude in the mechanical transfer element between drive and tool in machine

tools. Wavelet analysis is used as a time-frequency analysis tool to calculate the frequency

response of second order systems. The input signal is analyzed by the synthesis wavelets

in the way introduced in section 5.2.2, such that the amplitude of the error between input

and output signals is estimated. Simulation results show that the proposed algorithm yields

good results in estimating the amplitude error levels, and in the time location of the reso-

nance frequency of the mechanical system, of the response of machine tools with flexible

structures. It is difficult to use wavelet analysis (or any other time-frequency analysis) in

the normal way (i.e. analyzing the whole spectrum of the signal in time and frequency)

because of the uncertainty principle which puts limitations on both the time and frequency

resolutions. Analyzing the full spectrum, besides being time consuming, cannot give a cor-

rect calculation of the system response because of the associated uncertainties. Therefore the

proposed synthesis algorithm can give better means of analysis because it does not aim to

carry out a full spectrum analysis, but rather focus on the frequency that causes problem to

the mechanical system.

In order to improve the proposed algorithm and to use it correctly, its application limitations

are discussed below.

• Response cancellation effect: the system response usually has an oscillatory nature. In

case of an input signal of compound frequency content, at one point in time, the system

response due to a certain frequency content in the input can be positive, while the
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system response due to another frequency content (or due to a certain lag) is negative,

so both responses cancel each other out (for example, the application of input shaping).

This cannot be sensed by the algorithm because it calculates only the absolute value of

the amplitude of the error of response.

• Limited frequency range: the algorithm can estimate the response error for a frequency

range only a little above the characteristic frequency of the system. At higher frequen-

cies the error is large. In some applications this can be acceptable, while in others

maybe not. It is worth noting that at high frequencies the value of G becomes less than

1 which means that (G-1) is less than zero. This cannot be estimated by the algorithm,

because the value of the Wavelet Transform cannot go below zero.

• Time-frequency analysis: when the frequency and time information are needed in a

signal, full spectrum analysis by wavelet transform can be conducted. When the re-

sponse of the system (with a natural frequency) to the input signal is needed, synthesis

wavelets are required. And normally, one wavelet is enough to detect the resonance

response.

5.3 Resonance Frequency Reduced Trajectory

The resonance frequency of the mechanical system in the axial trajectory comes from the

trajectory design process. In the trajectory design process, time optimization under the re-

striction of the machine tool capacity is the main aim. No attention is paid to the possibility

of resonance vibration that the trajectory could bring, which makes the time optimal trajec-

tory no longer time optimal in the respect of response.

Now that the area on the trajectory where the resonance vibration could happen can be

found, the next step is to find a solution to reduce the vibration. To reduce resonance vi-

bration, the most effective way, when no mechanical change is possible, is to get rid of the

resonance frequency that exists in the axial trajectory. This can be done by reducing or in-

creasing the limitation of the jerk in the trajectory design phase, which is to be described

next.

5.3.1 Reduction of vibration in axis motion

When the limitations (velocity, acceleration, jerk) of a path for a trajectory plan are changed,

the resultant trajectory includes different frequency contents as before. Changing the limi-
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tation of the jerk is the most efficient way to change the frequency contents in the trajectory,

as at the most moments, the axis jerk reaches its maximum in time optimal trajectory plan.

To change the frequency contents in the trajectory, the jerk limitation can either be increased

or lowered. However, increasing the jerk limitation can cause the machine tool to overrun

its capability. Hence, lowering the path jerk limitation in the problematic areas of the path

is the solution. Besides the vibration caused by the resonance phenomenon, there are also

vibrations due to the rapid change of the acceleration in soft control as described in section

2.1.2.

The movement law in 2.3 with controlled jerk in soft control is defined as,

s̈(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĵt, 0 ≤ t < t1

â, t1 ≤ t < t2

â − Ĵt, t2 ≤ t < t3

0, t3 ≤ t < t4

− Ĵt, t4 ≤ t < t5

− â, t5 ≤ t < t6

− â + Ĵt, t6 ≤ t < t7

0. t3 ≤ t

(5.35)

with

Ĵ: maximum jerk,

â: maximum acceleration

When it is applied to the second-order mechanical system, maximum dynamic vibration

error is mainly related to each uniformly accelerated phase due to the jerk value and con-

stant jerk time, which is the phase before the constant acceleration phase. From the first

constant acceleration phase of the movement law in the above equation, the expression of

the dynamic vibration error can be resolved as in the following equation (5.36) [5][4]:

Evib(t) =
Ĵ

ω3
0

[
−sin(

âω0

Ĵ
)cos(ω0 t̄)− (cos(

âω0

Ĵ
)− 1)sin(ω0 t̄)

]
, (5.36)

with

t̄ = t − â
Ĵ
,

ω0 : characteristic frequency,
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Equation (5.36) demonstrates the nonlinear influence of the jerk value on the oscillatory am-

plitude. Lowering the jerk would minimize the vibration amplitudes of the system with the

minimum sacrifice of speed. When the maximum jerk value Ĵ is correctly tuned, the fre-

quency in the axial trajectory that is near or equals to the axial resonance frequency can be

changed, therefore, motion errors in the axial movements are considerably reduced. How-

ever only reducing the jerk on the individual axis is not helpful, as the path parameters are

considered in the trajectory planning phase. When the path jerk limitation is reduced, in

the new calculated trajectory, the axis velocity, acceleration and jerk are also changed. Of

course there are also cases where path jerk and/or path acceleration are zero, for example in

a circle with constant path velocity, both path jerk and acceleration are zero. In such cases,

path acceleration or path velocity has to be reduced.

5.3.2 Process of Redesign

The trajectory designed through the time optimal trajectory planning algorithm is

parametrized with the curve parameter ’s’, which is named as the s-domain trajectory or

path trajectory. The path trajectory has to be transfered to axial trajectories for each axis

according to equation (2.2) in the time domain for further use. The resulting trajectory for

each axis is named the time domain trajectory or axial trajectory. The process of trajectory

designing from the capacity of the machine tools for a given path is described in section

2.1.2. It can be summarized as in the following Figure 5.13.
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Figure 5.13: Process of trajectory design

Resonance vibration can happen on each axis of the machine tool. The axial trajectories of

the machine tool are not the same. Normally, the resonance frequency of the machine tool

axes are not the same either. Therefore, vibration analysis has to be done for each axis for

its own resonance frequency. Thus, for the axial trajectory of each axis, the area where the

resonance frequency exists can be found out through the Wavelet Transform as explained
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in section 5.2. When the problematic areas in each axial trajectory are found, it is now pos-

sible to get rid of the excitation of the axis. However, in order to keep the path which is

determined by the axial trajectories the same as before, it is necessary to change all the axial

trajectories accordingly. Hence, modifications have to be carried out in the path trajectory,

so that the axis trajectory of each axis can still keep the path. Thus, finding out the prob-

lematic area in the path trajectory from all the axial trajectories is unavoidable. This process

can be explained more clearly by Figure 5.14. Then lowering the path jerk limitation in that

problematic area and redesigning the path trajectory is the only way to lower the vibration

in this situation. As already explained, redesigning the trajectory separately for only one

axis in time domain is not possible, when a contour must be followed.
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Figure 5.14: Find problematic area path trajectory

The redesigning process, shown in Figure 5.15, involves the same time optimization process

as shown in Figure 5.13. Besides the time optimization process, the wavelet synthesis analy-

sis of the resonance frequency in each axis is added to make sure that the designed trajectory

will not create violent vibrations for that axis. For example, if there are violent vibrations

in a machine tool axis, areas of the existence of resonance frequency are to be found. The

corresponding path jerk is lowered, and the redesigning process of the time optimal plan is

repeated.

Lowering the jerk limitation in the problematic areas is simple. However, how much the jerk

should be lowered is unknown. The influence of lowering the path jerk on the frequency

contents in the axial trajectory cannot be quantified. Therefore, it is not feasible to fix the

reduction amount of the path jerk. An iterative process is required to decide whether the jerk

should be further lowered or not, based on the wavelet synthesis of the vibration caused by

resonance frequency contents in the axial trajectory. For each iterative process, the amount

of reduction of jerk can be set to within 10% of the last jerk value, depending on the user.

One criterion for stopping the iterative process is the wavelet synthesis of the vibration

within given limitation. The limitation can be set by the user according to the separate
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application. Lowering down the jerk also means that the trajectory will have a longer time.

It is not recommended to lower the jerk to a very low value, for example to the 50% of the

orignal jerk limitation. Therefore, another criterion for stopping the iterative process is to

set the maximum number of the iterative process. If the program is stopped by the second

criterion, the vibration in axial trajectory may still appear, because of the frequency near the

resonance frequency of that axis. In this case, further reduction of the acceleration or velocity

limitation can be conducted. This is the same process as in lowering the jerk limitation, and

will not be described here.

The above described iterative redesign process of the trajectory is shown in Figure 5.15.
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Figure 5.15: Redesign process of the trajectory to get rid of resonance frequency
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5.4 Simulation Results

In this section, some simulation results are provided to verify the method presented above.

The simulations are trajectories for a three-axis machine tool along a described path. The

velocity trajectories of the x, y and z axes are shown in Figure 5.16. The final time of those

velocity trajectories is t0 = 0.6382s. The eigenfrequency of the x and y axes is 32Hz each, of

z axis 50Hz. The damping ratio of each axis is 0.1.
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Figure 5.16: Axial velocity trajectories of a path

Figure 5.16(a) are velocity trajectories designed by brisk control prociple. The velocity trajec-

tories in Figure 5.16(b) are designed according to the soft control principle, which is the jerk

limited time optimal trajectory plan theory described in section 2.1.2. The soft control trajec-

tories take longer time ( 0.11s in this case ). Compared with the trajectories designed under

the brisk control principle, the vibrations of the machine tool axes are already reduced with

the soft control principle. However, in some areas of the trajectories some violent vibrations
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can still happen, due to the reasons of resonance phenomenon or excessive jerk. In the blue

curve of Figure 5.17(a), vibrations (amplitude error between original input and response) are

estimated, according to the wavelet synthesis method developed in section 5.2, of the axis x

and y with the designed trajectory along the mechanical axes. Similarly, the blue curve in (b)

represents the vibrations from the z velocity trajectory along the z axis. In the application, if

only Δv = 0.04m/s for the vibration amplitude errors of each axis is allowed, the trajectories

must be redesigned. The redesign process is done as given in section 5.3. The red curves in

the (a) and (b) of Figure 5.17 are the vibration amplitude errors of the new velocity trajec-

tories. Both of them are below the requirement of 0.04m/s. The new trajectories now take

t1 = 0.6720s, that means plus 5.3%.
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Figure 5.17: Estimated vibration amplitude error

Figure 5.18 shows the responses of the x and y axes to the original velocity and to the re-

designed velocity (x and y axes have same trajectory and same eigenfrequency). In Figure

5.18(a), the blue curve is the original x axis velocity, the red curve is the corresponding re-

sponse velocity to the original velocity. In Figure 5.18(b), the blue curve is the redesigned x

axis velocity, and the corresponding response is the red curve. Clearly, the response to the

redesigned velocity is better than to the original velocity, as the vibration amplitude error

is lowered down to be within 0.04m/s. In Figure 5.19, the responses to the original and re-

designed velocity of z axis are plotted. Again, the blue curve in Figure 5.19(a) is the original

velocity for the z axis. The red curve in Figure 5.19(a) is the response to it. In Figure 5.19(b),

the blue curve is the redesigned velocity of z axis, and the red one is the response to the

redesigned velocity.

The time increment from the original trajectory(t0 = 0.6382) to the redesigned trajectory

(t1 = 0.6720s) is 5.3%, but the reduction of the vibration is obvious. If the same time length

of the redesigned trajectory is equally distributed to the original velocity, the reduction of

the vibration is not visible.
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Figure 5.18: Response of x axis
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Figure 5.19: Response of z axis

Now, if the application requires that only Δv = 0.02m/s should be allowed, a new veloc-

ity trajectory plan has to be redesigned. Figure 5.20 shows the vibration amplitude error

through the wavelet synthesis method again. The blue curves in both (a) and (b) are the

same as in Figure 5.17. The red curves are the redesigned trajectory response error accord-

ing to the limitation of 0.02m/s. The time for the new trajectory is now t2 = 0.779s instead

of the original t0 = 0.6382s, plus 22%.
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Figure 5.20: Estimated vibration amplitude error
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In Figure 5.21(b), the blue curve is the redesigned trajectory and the red one is the response.

Compared with Figure 5.21(a), which is the same as Figure 5.18(a), the vibration of the re-

designed trajectory is greatly reduced. The same conclusion can also be drawn for the tra-

jectory of the z axis in Figure 5.22.
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Figure 5.21: Response of x axis
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Figure 5.22: Response of z axis
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The response of the newly redesigned trajectory of x axis velocity is shown in Figure 5.21(b).



CHAPTER 6

Examples and Experiments

In this chapter, the work in chapter 3 and chapter 5 will be tested by the test rig that is

described in section 2.3.1. As the test rig can be modeled as a second order system, the

theory in chapter 4 is not needed here.

From Figure 2.13, it is known that the pole of the mechanical system is Fn = 50Hz, and

the zero of the mechanical system is Fz = 35Hz. The inertia of the load is the same as the

motor, JM = JL = 0.0013kgm2, from the motor data sheet. Thus, the spring constant can be

calculated to be K = 66Nm/rad (see also Appendix A.1).

The experiments are made for the trajectories which are already mentioned in chapter 5.

The unit of velocity trajectory in chapter 5 is m/s. In the experiment, the unit of velocity is

min−1. The value in the experiment is 1000∗ the value in Figure 5.18(a).

• trajectory 1: from time optimal trajectory plan as in Figure 5.18(a);

• trajectory 2: redesigned trajectory after wavelet analysis as in Figure 5.18(b). The load

response of the redesigned trajectory should not exceed 0.04 ∗ 1000 = 40min−1;

• trajectory 3: redesigned trajectory after wavelet analysis as in Figure 5.21(b). The load

response of the redesigned trajectory should not exceed 0.02 ∗ 1000 = 20min−1.

These three trajectories are the velocity setpoints to four control strategies:

• strategy 1: PI controller is tuned as if the system is a rigid system. The equation (3.5)

and (3.6) are applied. Resultant parameter: kr = 3.25Nm · s/rad and ti = 3.3ms.

• strategy 2: PI controller is automatically tuned by Siemens firmware. The parameters

of the controller are: kr = 1.149Nm · s/rad and ti = 16.3ms.
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• strategy 3: PI controller is tuned according to the elastic double ratio method; the

equation (3.16) and (3.17) are applied. Resultant parameter: kr = 0.553Nm · s/rad and

ti = 12.7ms;

• strategy 4: PI controller is tuned as if the system is a rigid system, and an input shaper

is added. The parameters of PI controller are the same as in strategy 1, the parameters

of input shaper are: A1 = 0.5056, A2 = 0.4944, T1 = 0, T2 = 14.1ms.

The motor velocity and load velocity will be obtained from the sensor attached to them.

In the following plots, the motor velocities are curves in blue, and the load velocities are

curves in red. The following errors between the load velocity and motor velocity are plotted

in Appendix A.3.

Trajectory 1: time optimal trajectory

The velocity setpoints for the test rig is the original output from time optimal trajectory

plan. The response of the motor and load to this command under different control strategy

is plotted out in Figure 6.1. In Figure 6.1(a), the PI controller parameters are tuned as if the

mechanical system is a rigid one. It is seen that there are a lot of vibrations on the load

response. In Figure 6.1(b), the PI controller parameters are tuned by the Siemens Firmware

automatically. The vibrations of the load are reduced a lot. In Figure 6.1(c), the PI controller

parameters are tuned through the elastic double ratio. The vibrations are reduced further

compared with (b). Then in Figure 6.1(d), the input shaper is added, and the PI controller is

tuned the same as in (a). Although there are still vibrations, it can be seen that the further

improvement is obvious.

Trajectory 2: redesigned trajectory with following error restriction of 40min−1

The setpoints in this test is the redesigned trajectory after the wavelet analysis in chapter 5.

The requirement of the redesigned trajectory through the wavelet analysis is that the follow-

ing error should not be over 40min−1. The response of the load and motor to this trajectory

are presented in Figure 6.2. In Figure 6.2(a), the PI controller parameters are tuned the same

as in Figure 6.1(a), as if the mechanical system is a rigid one. Comparing Figure 6.2(a) with

Figure 6.1(a), the maximum vibration level is already reduced. In Figure 6.2(b), the PI con-

troller parameters are tuned by the Siemens firmware automatically. The vibrations of the

load are reduced. In Figure 6.2(c), the PI controller parameters are tuned through the elastic

double ratio. The vibrations are reduced further compared with (b). Then in Figure 6.2(d),

the input shaper is added, and the PI controller is tuned the same as in (a). Only small

vibrations can still be identified.
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Figure 6.1: Time optimal trajectory
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Figure 6.2: Redesigned trajectory with maximum 40min−1 following error restriction

Trajectory 3: redesigned trajectory with following error restriction of 20min−1

The setpoints in this experiment is the second redesigned trajectory after the wavelet anal-
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ysis in chapter 4. The restriction of the redesigned trajectory through the wavelet analysis
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is that the following error should not exceed 20min−1. The response of the load and motor

to this trajectory is presented in Figure 6.3. In Figure 6.3(a), the PI controller parameters are

tuned the same as in Figure 6.3(a), as if the mechanical system is a rigid one. Comparing

Figure 6.3(a) with Figure 6.1(a) and Figure 6.2(a), the maximum vibration level is reduced

further. In Figure 6.3(b), the PI controller parameters are tuned by the Siemens Firmware

automatically. The vibrations of the load are reduced compared with (a). In Figure 6.3(c),

the PI controller parameters are tuned through the elastic double ratio. The vibrations are

reduced further compared with (b). Then in Figure 6.3(d), the input shaper is added, and

the PI controller is tuned the same as in (a). Almost no vibrations can be identified.
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Figure 6.3: Redesigned trajectory with maximum 20min−1 following error restriction

The load velocity following errors of the three trajectories in Figure 6.1(a),Figure 6.2(a) and

Figure 6.3(a) are plotted together in Figure 6.4.

All the figures in this chapter are the results from the real experiments.

122



CHAPTER 6. EXAMPLES AND EXPERIMENTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

0

100

time[s]
a. Original trajectory as reference input

ve
lo

ci
ty

[m
in

−1
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

0

100

time[s]
c. Modified trajectory with 20min−1 following error as reference input

ve
lo

ci
ty

[m
in

−1
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

0

100

time[s]
b. Modified trajectory with 40min−1 following error as reference input

ve
lo

ci
ty

[m
in

−1
]

Figure 6.4: Following error of load for the three trajectories in the case of rigid double ratio
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CHAPTER 7

Conclusions

Motivated by improving the accuracy and shortening response time of the drive systems

with elastic mechanical components, the following areas of research are investigated in this

thesis: reducing the vibrations, identifying mechanical parameters of the drive chain, and

preventing the vibrations from occuring.

Reducing vibrations is effectively conducted by controllers. Cascaded control loop is widely

accepted in the machine tool industries. Normally the parameters of the PI controller in the

velocity loop are tuned according to some optimization theory for rigid systems. It is well-

known that the parameter of the P controller depends on the total inertia of the drive system.

The parameter of I controller depends on the equivalent time of the current control loop. In

this thesis, the elasticity property of the driven chain is taken into account in determining

the parameters of the PI controller. Simple formulas are developed for the parameters of

the PI controller to reduce vibrations. The formulas in equations (3.16) and (3.17) show

that the tuning of the PI controller in modern servo drives for elastic systems depends not

only on the inertia of the mechanical system but also on the mechanical system’s frequency.

This also corresponds to engineers’ experience in the tuning of controllers of elastic systems.

The developed formulas of the PI controller deliver a compromise between response time

and accuracy both for the command signal and the disturbance signal. Simulations clearly

show that the formulas are very effective in eliminating vibrations for a step input and a

step disturbance. The experiments also prove that the PI controller tuned according to the

formulas causes less following error than the PI controller that is automatically tuned by the

Siemens controller optimization algorithm in Firmware.

Since time is a strict criterion in production engineering, the equations of the PI controller for

an elastic system are not the best solution. Input shaper, as a feedforward method, is applied

in the cascaded control loop to achieve the time and accuracy requirements. When the input
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shaper is applied, the PI controller can be tuned as if the mechanical system is a rigid system.

Thus the response of the velocity loop is very fast. The vibrations in the velocity loop can

then be eliminated through the input shaper. But it is important to know that this method

can only be applied when the system has only a small disturbance. The parameters of the

input shaper are set by the equations (3.53) after the analysis of the movement of the poles

of the controlled mechanical system. To improve robustness to the frequency change and

tuning parameters of the PI controller, another input shaper with equation (3.54) can be

added to convolve with the shaper above. Calculations and experiments confirm that the

input shaper together with the PI controller gives the most quick and accurate result if the

system has no disturbance.

Given the inertia of the motor and the frequency response of the mechanical system, the

parameters Ki (spring constant) and Ji (inertia) of the serially connected components of the

drive system can be easily identified from equations (4.68), (4.69), (4.70), and (4.71). This

identification is suitable for systems with no damping or with little damping, for example

damping ratio ξ < 0.1, which applies in most cases in the drive systems of machine tools.

For damped systems, this identification method can be modified, and provides accurate re-

sults for up to 4th order systems. For higher order damped systems, however, efforts are still

needed to develop a general equation to identify the parameters of the system. Simulation

of the identification of the undamped system proves that the identification method presents

quick and accurate results. This method is practice-oriented, as normally in drive systems,

the inertia of the motor is known from the motor data sheet, and the frequency response can

easily be measured from the firmware supplied with the servo drives. When all the parame-

ters of the mechanical system are known, an exact model of the mechanics can be set up for

further use.

Resonance vibrations happen when frequency of the setpoints signal is near or equals the

natural frequency of the mechanical system. To prevent such vibrations from occurring,

besides the soft control method, the method of eliminating the resonance frequency in the

command signal is presented in this thesis. The time-frequency analysis of the command

signal is first done by means of Wavelet Transform. Where and how much amplitude error,

that is caused by the resonance frequency in the command signal for a second order system,

is localized and quantified by wavelet coefficient extraction and synthesis. Compared with

the impulse convolution method, wavelet synthesis is much quicker and more precise in the

estimation of the following error. When the vibration level calculated from the amplitude
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signal (here the trajectory) has to be redesigned.

The redesigning process is an iterative process. By lowering the path limitation of the jerk,

acceleration or velocity in the path ranges where the resonance frequency of the mechanical

system exists, the vibration due to that frequency can be effectively reduced. Both simula-

tions and experiments verify that the wavelet synthesis method predicts the following error

correctly in time and amplitude. They also prove that the redesigned trajectories, based

on the information of the wavelet synthesis results, are effective in reducing the vibration

level to the user defined level. However, due to the time consideration of the trajectory,

and the computation time for the iterative process, it is not practical to reduce the vibration

level through the trajectory redesign phase as much as possible. The rest is reduced through

controllers.

From reducing vibrations through controllers, to parameter identification of the elastic me-

chanical drive system, to preventing vibrations through designation of the trajectory, the

work in this thesis achieves and assures the aim of getting rid of vibrations in the shortest

time for the elastic mechanical system in the whole drive system process.
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Appendix

A.1 Calculation of the Test Rig’s Parameters

The test rig is composed of two motors, and one rod. The two motors are connected to the

rod through couplings. The material and parameters of the rod are:

• Material: Steel with density ρ = 7.85 ∗ 103Kg/m3 and shear modulus μ = 82.05GPa

• Length: L = 500mm

• Diameter: R = 4mm

The schematic diagram of the test rig is shown in the following Figure A.1.

Motor
J0

Load
J5

Rod
K3

Left of Coupling I 
J1

Shaft
K1

Right of Coupling I 
J2

Left of Coupling II 
J3

Right of Coupling II 
J4

Coupling I
K2

Coupling II
K4

Shaft
K5

Figure A.1: Schematic of the test rig

Some of the parameters of the mechanical system are given by the data sheet of the motor

and coupling:

• Motor data: JM = 1.3 ∗ 10−3Kgm2;
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• Coupling data: JC = 2.6 ∗ 10−6Kgm2; KC = 1.4 ∗ 104Nm/rad

The calculated parameters of the rod are:

• The moment of inertia of the rod is JR = π∗L∗ρ∗R4

2g = 1.6 ∗ 10−7Kgm2.

• The torsional stiffness of the rod is calculated as KC = π∗R4∗μ
2L = 66Nm/rad.

• The torsional stiffness of the outside rod of the motor is KR = 1.08 ∗ 105Nm/rad.

This mechanical system can be modeled as the six mass-spring system as in Figure A.2.

0J
1K 2K

1J 2J 4J
K4

5JJ3
1D 2D

K3 K5

D3 D4 D5

Figure A.2: Exact model of the test rig

Now the moment of inertia parameters of the mechanical system can be summarized ac-

cording to Figure A.2 as:

• J0 = JM = 0.0013Kgm2

• J1 = JC/2 = 1.31 ∗ 10−6Kgm2

• J2 = JR/2 + JC/2 = 1.38 ∗ 10−6Kgm2

• J3 = JR/2 + JC/2 = 1.38 ∗ 10−6Kgm2

• J4 = JC/2 = 1.31 ∗ 10−6Kgm2

• J5 = JM = 0.0013kgm2

The stiffnesses in the system are:

• spring constant of the outside rod of the motor: K1 = 1.08 ∗ 105Nm/rad

• spring constant of the coupling I: K2 = 1.4 ∗ 104Nm/rad

• spring constant of the connecting rod: K3 = 66Nm/rad

• spring constant of the coupling II: K4 = 1.4 ∗ 104Nm/rad
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Figure A.3: Bode diagram

• spring constant of the outside rod of the load: K5 = 1.08 ∗ 105Nm/rad

Plot the bode diagram with torque to motor as input and velocity of motor as output in

Figure A.3 in the blue curve.

The frequency of the mechanical system can be identified to be : 50Hz, 15215Hz, 15296Hz,

48958Hz and 48958Hz. Except the 50Hz, the other 4 frequencies are very high. They can

be ignored. Therefore, a second order system to modify this mechanical system is enough.

The simplified schematic diagram and model of the in second order mechanics is shown in

Figure A.4.

0J
1K

1J

1D

Motor
J0

Load
J1

Rod
K1

Figure A.4: Mass-spring-damper model of the test rig

In the above model, the following parameters of the mechanical parameters are applied:

J0 = 1.3 ∗ 10−3Kgm2, J1 = 1.3 ∗ 10−3Kgm2, K1 = 66Nm/rad. The corresponding bode

diagram of the second order model is plotted in Figure A.4 in green curve. It can be seen

that in the low frequency range, the second-order and the sixth-order systems are identical.
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A.2 For fifth order system (n=4)

For n = 4, the poles and zeros are (p1, p2, p3, p4) and (z1, z2, z3, z4) respectively. The denom-

inator and numerator of the transfer function determined by frequency response are written

to

f4(s) =
4

∏
i=1

(s2 + p2
i ) = s8 + 4a1s6 + 4a2s4 + 4a3s2 + 4a4, (A.1a)

g4(s) =
4

∏
i=1

(s2 + z2
i ) = s8 + 4b1s6 + 4b2s4 + 4b3s2 + 4b4. (A.1b)

From equations (4.27a), (4.32a) and (4.43a), the denominator is known as in the following

equations. From equations (4.27b), (4.32b) and (4.43b), the numerator of the transfer function

is also determined as in the following equations:

f4(s) = (s2 + r4)(s6 + 3a1s4 + 3a2s2 + 3a3)− c′3c4(s4 + 2a1s2 + 2a2)

= s8 + s6(3a1 + r4) + s4(3a1r4 +
3a2 − c′3c4) +

+ s2(3a2r4 +
3a3 − 2a1c′3c4) + (3a3r4 − 2a2c′3c4). (A.2a)

g4(s) = (s2 + r4)(s6 + 3b1s4 + 3b2s2 + 3b3)− c′3c4(s4 + 2b1s2 + 2b2),

= s8 + s6(3b1 + r4) + s4(3b1r4 +
3b2 − c′3c4) +

+ s2(3b2r4 +
3b3 − 2b1c′3c4) + (3b3r4 − 2b2c′3c4). (A.2b)

Mapping equations (A.1a) and (A.2a), as well as equation (A.1b) and (A.2b), the relation-

ships between the coefficients of the transfer functions expressed by different methods are

4a1 = 3a1 + r4, (A.3a)
4b1 = 3b1 + r4, (A.3b)
4a2 = 3a1r4 +

3a2 − c′3c4, (A.3c)
4b2 = 3b1r4 +

3b2 − c′3c4, (A.3d)
4a3 = 3a2r4 +

3a3 − 2a1c′3c4, (A.3e)
4b3 = 3b2r4 +

3b3 − 2b1c′3c4, (A.3f)
4a4 = 3a3r4 − 2a2c′3c4, (A.3g)
4b4 = 3b3r4 − 2b2c′3c4. (A.3h)
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From equations (4.46b), (A.3a) and (A.3b), c1 is calculated as

4a1 − 4b1 = 3a1 − 3b1 = c1,

c1 = 4a1 − 4b1.

From equations (4.45b) and (A.3b), the following equation exists:

4b1 = 3b1 + r4 = c′1 + r2 + r3 + r4. (A.4)

From equations (4.46b), (4.48) and (A.3d), the following equation can be obtained:

4a2 − 4b2 = (4a2 − 4b2)r4 + (3a2 − 3b2)

= c1r4 + c1(r2 + r3) = c1(r2 + r3 + r4).
(A.5)

Let we let x11 =
4a2−4b2

c1
, combine this with equation (A.5), x11 is also

x11 = r2 + r3 + r4. (A.6)

From equations (A.4) and (A.6), c′1 is

c′1 = 4b1 − x11. (A.7)

From equations (4.47), (4.51) and (A.3d), the following equation can be obtained:

4b2 = 3b1r4 +
3b2 − c′3c4

= (c′1 + r2 + r3)r4 + (c′1 + r2)r3 + c′1r2 − c′1c2 − c′2c3 − c′3c4.
(A.8)

From equations (4.35), (4.48), (4.52), (A.3e) and (A.3f), the following equation is derived:

4a3 − 4b3 = (3a2 − 3b2)r4 + (3a3 − 3b3)− (2a1 − 2b1)c′3c4r

= c1(r2 + r3)r4 + c1(r2r3 − c′2c3)− c1c′3c4.
(A.9)

Let x12 =
4a3−4b3

c1
, combine this with equation (A.9), x12 can be written to

x12 = (r2 + r3)r4 + r2r3 − c′2c3 − c′3c4, (A.10)
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From equations (A.8) and (A.10), the following equation is derived:

4b2 − x12 = c′1r4 + r2r4 + r3r4 + c′1r3 + r2r3 + c′1r2 − c′1c2 − c′2c3 − c′3c4

− r2r4 − r3r4 − r2r3 + c′2c3 + c′3c4

= c′1(c
′
2 + r3 + r4).

(A.11)

Let x′11 =
4b2−x12

c′1
, combine this with equation (A.11), x′11 is

x′11 = c′2 + r3 + r4. (A.12)

From equations (A.6) and (A.12), c2 is calculated as

c2 = x11 − x′11. (A.13)

From equations (4.10), (4.34b), (4.45f), (4.51) and (A.3f), the following equation exists:

4b3 = 3b2r4 +
3b3 − 2b1c′3c4,

= (c′1r3 + r2r3 + c′1c′2 − c′2c3)r4 + c′1c′2c′3 − (c′1 + r2)c′3c4.

From equations (4.10), (4.36), (4.52), (A.3g) and (A.3h), the following equation is derived:

4a4 − 4b4 =(3a3 − 3b3)r4 − (2a2 − 2b2)c3c4,

= c1(r2r3r4 − c′2c3c4 − r2c′3c4),

Let x13 =
4a4−4b4

c1
, combine this with equation (A.14), x13 is

x13 = r2r3r4 − c′2c3r4 − r2c′3c4. (A.14)

From equations (A.14) and (A.14), the following equation can be obtained:

4b3 − x13 = c′1r3r4 + r2r3r4 + c′1c′2r4 − c′2c′3r4 + c′1c′2c′3 − c′1c′3c4 − r2c′3c4

− r2r3r4 + c′2c3r4 + r2c′3c4

= c′1(c
′
2r4 + r3r4 + c′2c′3 − c′3c4).

(A.15)

Let x′12 =
4b3−x13

c′1
, combine this with equation (A.15), x′12 is

x′12 = c′2r4 + r3r4 + c′2c′3 − c′3c4. (A.16)
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From equations (A.10) and (A.16), the following equation is obtained:

x12 − x′12 = c2(r3 + r4), (A.17)

Let x21 =
x12−x′12

c2
, combine this with equation (A.16), x21 is

x21 = r3 + r4. (A.18)

From equations (A.12) and (A.18), c′2 is calculated as

c′2 = x′11 − x21. (A.19)

From equations (4.10), (4.39), (4.57) and (A.3h), the following equation exists:

4b4 = 3b3r4 − 2b2c′3c4 = c′1c′2c′3r4 − c′1c′2c′3c4

= c′1c′2c′3c′4.
(A.20)

Let x′13 =
4b4
c′1

, combine this with equation (A.20), x′13 is rewritten to

x′13 = c′2c′3c′4. (A.21)

From equations (A.14) and (A.21), it is known

x13 − x′13 = c2(r3r4 − c′3c4). (A.22)

Let x22 =
x13−x′13

c2
, combine this with equation (A.22), x22 is rewritten to

x22 = r3r4 − c′3c4. (A.23)

From equations (A.16) and (A.23), the following equation can be obtained:

x′12 − x22 = c′2(c′3 + r4). (A.24)

Let x′21 =
x′12−x22

c′2
, and combine this with equation (A.23), x′21 is rewritten to

x′21 = c′3 + r4. (A.25)
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From equations (A.18) and (A.25), c3 is now calculated as

c3 = x21 − x′21. (A.26)

Let x′22 =
x′13
c′2

, and combine this with equation (A.21), x′22 is rewritten to

x′22 = c′3c′4. (A.27)

From equations (A.23) and (A.27), it is known that

x22 − x′22 = c3r4. (A.28)

Let x31 =
x22−x′22

c3
, and combine this with equation (A.28), x31 is rewritten to

x31 = r4. (A.29)

From equations (A.25) and (A.29), c′3 is calculated as

c′3 = x′21 − x31, (A.30)

Let x′31 =
x′22
c′3

, and combine this with equation (A.27), x′31 is rewritten to

x′31 = c′4. (A.31)

From equations (4.10), (A.29) and (A.31), c4 is finally calculated as

c4 = x31 − x′31. (A.32)

From equations (A.4), (A.7), (A.13), (A.19), (A.26), (A.30),(A.31) and (A.32) together with the

definitions of x11, x′11, x12, x′12, x21, x′21, x13, x′13, x22, x′22, x31 and x′31, c1, c′1, c2, c′2, c3, c′3, c4 and c′4
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are summarized as,

c1 = 4a1 − 4b1, x11 =
4a2 − 4b2

c1
,

c′1 = 4b1 − x11, x12 =
4a3 − 4b3

c1
, x′11 =

4b2 − x12

c′1
,

c2 = x11 − x′11, x13 =
4a4 − 4b4

c1
, x′12 =

4b3 − x13

c′1
, x21 =

x12 − x′12
c2

,

c′2 = x′11 − x21, x′13 =
4b4

c′1
, x22 =

x13 − x′13
c2

, x′21 =
x′12 − x22

c′2
,

c3 = x21 − x′21, x′22 =
x′13
c′2

, x31 =
x22 − x′22

c3
,

c′3 = x′21 − x31, x′31 =
x′22
c′3

,

c′4 = x′31,

c4 = x31 − x′31.

(A.33)

A.3 Following Errors in the Experiments

The following errors of the load response in Figure 6.1 are plotted in Figure A.5.
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Figure A.5: Load following errors with four controller strategies in the case of time optimal
trajectory
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The following errors of the load response in Figure 6.2 are plotted in Figure A.6.
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Figure A.6: Load following errors with four controller strategies in the case of redesigned
trajectory with maximum 40min−1 following error restriction
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The following errors of the load response in Figure 6.3 are plotted in Figure A.7.
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Figure A.7: Load following errors with four controller strategies in the case of redesigned
trajectory with maximum 20min−1 following error restriction
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