

Performance Evaluation of
Time-Critical Data Transmission in

Automotive Communication
Systems

Leistungsbewertung zeitkritischer
Datenübertragung in automobilen

Kommunikationssystemen

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Thomas Herpel

Erlangen - 2009

Als Dissertation genehmigt von
der Technischen Fakultät der

Universität Erlangen-Nürnberg

Tag der Einreichung: 24.08.2009
Tag der Promotion: 26.11.2009
Dekan: Prof. Dr.-Ing. Reinhard German
Berichterstatter: Prof. Dr.-Ing. Reinhard German

Prof. Dr.-Ing. Jürgen Teich

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d b.de abrufbar.
1. Aufl. - Göttingen : Cuvillier, 2010

Zugl.: Erlangen-Nürnberg, Univ. Diss., 2009

978-3-86955-348-1

© CUVILLIER VERLAG, Göttingen 2010

Nonnenstieg 8, 37075 Göttingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist
es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg
(Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage, 20
Gedruckt auf säurefreiem Papier

978-3-86955-348-1

-n

10

Audi Dissertationsreihe, Band 32

Contents

Acknowledgements xi

Abstract xiii

Zusammenfassung xv

1 Introduction 1
1.1 Motivation . 1
1.2 Airbag Control Systems . 2

1.2.1 Airbag Control Unit 2
1.2.2 Crash Sensors . 4
1.2.3 Airbags and Belt Tensioners 6
1.2.4 Functional Safety of the Airbag Control System 6

1.3 Future Vehicle Safety Approaches 7
1.3.1 The Intelligent Car . 8
1.3.2 Precrash Systems . 9
1.3.3 Time-Critical Precrash Data Transfer 13

2 Related Work 15
2.1 Measurements . 15
2.2 Simulation . 15
2.3 Analytical Modeling . 16

3 In-Car Communication System 19
3.1 CAN - Controller Area Network 19
3.2 FlexRay . 22
3.3 Automotive Gateway Architectures 23
3.4 Other Communication Technologies 25

i

Contents

4 Prototype Measurements of In-Car Data Transmission 27
4.1 Motivation . 27
4.2 Measurement Hardware Setup 28
4.3 Software Tooling for Data Evaluation 29

4.3.1 Communication Access Programing Language and VEC-
TOR CANoe . 29

4.3.2 ExpertFit® . 31
4.4 Measurement Studies of In-Car Communication 31

4.4.1 Frequency Drift of Controller Quartzes 31
4.4.2 Durations and Distributions of CAN ECU Startup Times 39
4.4.3 Cycle Time Jitter of CAN Messages 43
4.4.4 Routing Delay in Central Gateway 46

4.5 Discussion of Prototype Measurements and Data Evaluation Results 54

5 Discrete Event Simulation of In-Car Data Transmission 57
5.1 Motivation . 57
5.2 Discrete Event Simulation . 58
5.3 AnyLogic™ . 59
5.4 Modeling Elements for Simulation of In-Car Data Transmission 60

5.4.1 Message Objects . 60
5.4.2 CAN . 62
5.4.3 FlexRay . 69
5.4.4 Gateway . 75
5.4.5 Overall In-Car Communication Network 78

5.5 Discussion of Discrete Event Simulation Approach 79

6 Worst-Case Analysis of In-Car Data Transmission 81
6.1 Motivation . 81
6.2 Network Calculus . 82

6.2.1 Theoretical Foundations 84
6.3 Application of Network Calculus to CAN Communication . . . 90

6.3.1 Input Data . 90
6.3.2 Generation of Arrival Curves 91
6.3.3 Determination of the Service Curve 93
6.3.4 Calculation of Delay Bounds 94
6.3.5 Exemplary Message Schedule 99

ii

Contents

6.4 Application of Network Calculus to Overall In-Car Communica-
tion Topology . 101
6.4.1 Methodical Approach 101

6.5 Discussion of Worst-Case Analysis Approach 112

7 Application Examples 113
7.1 Local CAN Bus Communication 113

7.1.1 Simulation Experiments 113
7.1.2 Network Calculus . 115
7.1.3 Performance Evaluation Results 115
7.1.4 Comparison and Discussion 117

7.2 Network-Wide Data Transmission 119
7.2.1 Simulation . 120
7.2.2 Network Calculus . 121
7.2.3 Performance Evaluation Results 122
7.2.4 Comparison and Discussion 131

8 Conclusions and Future Work 135
8.1 Conclusions . 135
8.2 Future Work . 136

iii

List of Figures

1.1 Time Plot of Airbag Activation in a Crash [3] 2
1.2 ACU (left) and Crash Sensors (right: g-Sat, p-Sat) [3] 3
1.3 Placement and Interconnection of Passive Safety Electronics . . 5
1.4 Side-Airbags, Front-Airbags and Belt Tensioner [50] 6
1.5 Functional Safety Concepts for Airbag Deployment 8
1.6 Future Vehicle Safety and Road Traffic Scenario [55] 9
1.7 Examples of Future Vehicle Precrash Functions and Employed

Safety Devices [50] . 12

3.1 Network Topologies: Central Gateway (left) and Cascaded (right) 20
3.2 CAN Serial Line Architecture 21
3.3 CAN Frame Structure . 22
3.4 FlexRay Communication Cycle 22
3.5 FlexRay Frame Structure . 23
3.6 Typical Automotive Gateway Layout 24
3.7 Cyclic Polling Routing Functionality 25
3.8 Interrupt-based Routing Functionality 25

4.1 CONDALO CCO DLIII Data Logging Device [8] 29
4.2 Prototype Measurement Infrastructure 29
4.3 Processing of Measured Communication Data Samples in CAPL 30
4.4 Effect of Frequency Drift of CAN ECUs [30] 32
4.5 Effect of Frequency Drift of FlexRay ECU [30] 33
4.6 Measurement Setup for Evaluation of Data Logger Drift [30] . . 34
4.7 Timing Error of Data Logger 35
4.8 Statechart for Determination of ECU Frequency Drift 36
4.9 CAPL Output File for ECU Frequency Drift Evaluation 37
4.10 Change to Sleep Mode of Clamp-30 ECU 40
4.11 Statechart for Determination of ECU Startup Durations 41

v

List of Figures

4.12 Measurement Data Analysis (Airbag) 44
4.13 Measurement Data Analysis (LCA) 44
4.14 Measurement Data Analysis (RBT) 45
4.15 Distribution of Cycle Times for High Priority CAN Message . . 47
4.16 Distribution of Cycle Times for Low Priority CAN Message . . 47
4.17 Safety-Relevant Data Exchange between ECUs in the Network . 48
4.18 Statechart for Routing Delay Evaluation 51

5.1 Event-based Progress in Simulation 59
5.2 Screenshot of AnyLogic™ Modeling Environment 60
5.3 Conceptual Top-Level View on CAN Communication 63
5.4 Structure of the CAN ECU Object 63
5.5 CAN ECU Operating System Statechart 64
5.6 Cyclic Communication of CAN ECUs after Startup 64
5.7 CAN Controller Statechart . 65
5.8 CAN Bus Statechart . 67
5.9 CSMA/BA Mechanism in the Simulation Model 68
5.10 Conceptual Top-Level View on FlexRay Communication 69
5.11 Organization of FlexRay Communication with Linked Lists . . . 70
5.12 Structure of the FlexRay ECU Object 70
5.13 FlexRay Controller Statechart 72
5.14 FlexRay Bus Statechart . 75
5.15 Conceptual Top-Level View on Central Gateway 75
5.16 Switching Unit Statechart for Cyclic Polling 76
5.17 Switching Unit Statechart for Priority-based Routing 78
5.18 Conceptual Top-Level View on In-Car Communication System . 79

6.1 System-theoretical View on Network Calculus 83
6.2 Token Bucket Arrival Curve 85
6.3 Rate-Latency Service Curve 87
6.4 Delay Bound and Backlog Bound 89
6.5 Nonmonotonic Service Curve 96
6.6 Graphical Visualization of Analysis Results for the Example . . 100
6.7 End-to-End Communication Scenario via Gateway 101
6.8 Arrival Curves in End-to-End Communication Scenario 102
6.9 Traffic Flows for Worst-Case Analysis of Data Transfer 104
6.10 FlexRay Service Curve . 107

vi

List of Figures

6.11 Routing by Cyclic Polling of In-Ports 108
6.12 Gateway Service Curve for Cyclic Polling 108
6.13 Interrupt-based Routing with Priority Queuing 109

7.1 Cycle Times for 56 CAN Priority Classes 114
7.2 Performance Evaluation Results (Local CAN Bus, linear scale) . 117
7.3 Performance Evaluation Results (Local CAN Bus, logarithmic

scale) . 118
7.4 Network Topology for End-to-End Communication Scenario . . 119
7.5 Cycle Times for all 170 Priority Classes in the Network 122
7.6 Performance Evaluation Results (CAN 1 → CAN 2) 124
7.7 Performance Evaluation Results (CAN 4 → CAN 2) 125
7.8 Performance Evaluation Results (CAN 1 → FlexRay) 127
7.9 Performance Evaluation Results (CAN 2 → FlexRay) 128
7.10 Performance Evaluation Results (FlexRay → CAN 2) 129
7.11 Performance Evaluation Results (FlexRay → CAN 3) 130

vii

List of Tables

1.1 Typical Configuration of Airbag Control Unit 4

4.1 Frequency Drift Evaluation for Exemplary ECUs 38
4.2 Communication Startup Durations for ECUs 42
4.3 ExpertFit® Evaluation of ECU Startup Durations 43
4.4 Communication Parameters of Safety-Relevant Messages 49
4.5 Delays for Routing of Safety-Relevant Messages 53

5.1 Variables of a CAN Frame Message Object 62
5.2 Variables of a FlexRay PDU Message Object 62

6.1 Example for Simultaneous CAN Media Access 92
6.2 Application of Network Calculus to Exemplary Message Schedule 99
6.3 Building Arrival Curves from Sub-Flows of Data Traffic 104

7.1 Numeric Results for Performance Evaluation of Local CAN Com-
munication . 116

7.2 Settings for Bus Segments in the Network 120
7.3 Numeric Results (CAN 1 → CAN 2, (ms)) 124
7.4 Numeric Results (CAN 4 → CAN 2, (ms)) 125
7.5 Numeric Results (CAN 1 → FlexRay, (ms)) 127
7.6 Numeric Results (CAN 2 → FlexRay, (ms)) 128
7.7 Numeric Results (FlexRay → CAN 2, (ms)) 129
7.8 Numeric Results (FlexRay → CAN 3, (ms)) 130

ix

Acknowledgements

From the Chair of Computer Science 7 at the University of Erlangen-Nürnberg,
I would first of all like to thank my doctoral advisor Prof. Dr. Reinhard German
for giving me this great chance to do a doctorate in a fascinating and challenging
industry project and for the support and appreciation throughout the last 3 years.
Another big thank-you goes to my colleagues Dr. Kai-Steffen Hielscher and Dr.
Ulrich Klehmet for the productive work on Network Calculus, the cooperativeness
and support and the pleasant atmosphere in our working group!

At the Audi AG, I was perfectly integrated into the Department of Safety Electron-
ics, for what I owe a debt of gratitude to my advisors Steffen Fey and Johannes
Salzberger, the supervisors Quirin Sterner and Alexander Pesch and the divisional
head Torsten Gollewski. Thank you also for the fruitful discussions, the support
and the great interest whenever I came up with new ideas or results! In addi-
tion, I would like to thank Dr. Uwe Koser for keeping the Audi research projects
running.

Furthermore, I would like to thank my colleague Christoph Sommer for the good
and productive collaboration in our office at the University. I am also indebted
to Christoph Lauer and Bernhard Kloiber, whose diploma theses remarkably
contributed to my research efforts.

Last but not least, I wish to express my deepest gratefulness to my girlfriend
Stephanie, my parents Klaus and Christine and to my grandma Olga for their
support, motivation and patience all through these exciting and often stressful
times of my dissertation!

xi

Abstract

For almost 30 years, the airbag has been part of a car’s passive safety components
to protect occupants in a crash. In 1980, in the former S-Class from Mercedes-
Benz, the system triggered only one driver airbag, though it was composed of
170 parts. Today, highly integrated electronic control units for deployment of
front, side or window airbags are standard equipment even in compact cars. At
all times, the airbag control was built as an autarkic system for self-contained
detection of crash severity and deployment of protection means. With continuing
improvements in sensors, electronics and algorithmic concepts for sensor data
processing in the airbag control, the time spans between impact and airbag deploy-
ment could be reduced to about 30 milliseconds. Every millisecond in reaction
time which can be saved, directly contributes to a reduction of injury severity for
the occupants. Thus, even shorter time spans for deployment would be desirable.
However, the performance of passive safety systems, which react on a collision,
and of constructive means, in terms of increased stiffness of the vehicle body,
is widely exhausted. The networking and interplay of passive and active safety
components, like the electronic stability program or the radar-based headway
control, appears to be a promising instrument to compensate for this. Active safety
components engage actively into the vehicle dynamics in case of a dangerous
driving situation in order to avoid a crash, e.g. if the car turns into a side-slip
or the distance to a vehicle in front falls below a certain threshold. If sensor
data, which are computed by active safety components in a dangerous driving
situation, are communicated to the airbag control, it will be able to react faster
and more effective in case a crash cannot be avoided in the following. For exam-
ple, previous knowledge of a risky situation might be used to lower algorithmic
thresholds for airbag deployment in order to achieve a shorter reaction time in
case of emergency compared to a purely passive reaction on the impact. Such
a networking of active and passive safety has to be performed using the in-car
communication infrastructure, consisting of bus systems like CAN or FlexRay
and gateways to interconnect single bus segments. Real-time capabilities and

xiii

Abstract

timeliness of data transfer – which means data arrives at the receiver within a
predefined time interval – are of essential importance for the effectiveness of
networked applications for occupant protection. Otherwise, the crash might occur
before the passive components were able to receive and process sensor data from
active safety systems. For development of networked, highly time-critical vehicle
safety systems, sophisticated evaluation of data transmission is indispensable at
an early stage of system design.
In this dissertation, concepts and methods are presented to conduct comprehensive
performance evaluation studies of in-car communication and to support efficient
safety systems in future vehicles. A hardware- and software-based measurement
infrastructure was built, which allows to figure out effects of data transmission in
normal operation mode, the so-called use-case, by evaluation of recorded com-
munication data and to derive important system parameters from the samples.
These parameters serve as realistic input for a system model, which resembles the
functional and timing behavior of relevant system components using UML-based
statecharts and discrete event simulation. The simulation allows for capturing
various communication scenarios and for obtaining meaningful performance mea-
sures, like end-to-end transmission delays. For the field of time-critical safety
applications, measures for the worst-case of system operation are also vitally
important. Therefore, the analytical method of Network Calculus was extended
to meet the requirements of automotive communication systems and applied to
this area for the first time ever. The analytic results resemble guaranteed upper
bounds for delays in data transmission and allow, together with the outcomes from
real-life measurements and from use-case simulation, for a distinct evaluation of
the networked system in early design phases. Performance measures could be
obtained for both the use-case and the worst-case of system operation, supporting
a comprehensive evaluation, which can be adapted to the actual criticality of the
application and leads to a significant increase in performance of future networked
vehicle safety systems.

xiv

Zusammenfassung

Seit fast 30 Jahren bietet der Airbag als Komponente der passiven Fahrzeugsicher-
heit den Insassen Schutz bei einem Unfall. 1980, in der damaligen Mercedes-Benz
S-Klasse, aktivierte das System lediglich einen Fahrerairbag und bestand aus
170 Bauteilen. Heute sind hochintegrierte, elektronische Steuerungen für Front-,
Seiten- oder Kopf-Airbags bereits in Kleinwagen Serienausstattung. Die Air-
bagsteuerung war seit jeher als autarkes System ausgelegt, das eigenständig die
Schwere der Kollision detektiert und die Schutzmittel aktiviert. Durch stetige
Verbesserungen im Bereich der Sensorik, der Elektronik im Steuergerät und der
algorithmischen Konzepte der Sensordatenverarbeitung konnten die Reaktionszei-
ten bis zur Auslösung der Airbags auf ca. 30 Millisekunden reduziert werden. Da
jede Millisekunde, die die Systeme der passiven Sicherheit nach Kollisionsbeginn
früher aktiviert werden können, dazu beiträgt, die Verletzungsschwere der Insas-
sen zu reduzieren, wären jedoch noch kürzere Auslösezeiten wünschenswert.
Passive Konzepte allein, also die Reaktion auf eine Kollision, scheinen weitestge-
hend ausgereizt, ebenso wie konstruktive Maßnahmen zur Erhöhung der Karos-
seriesteifigkeit. Ein vielversprechender Ansatz ist die Vernetzung von Systemen
der passiven Fahrzeugsicherheit mit aktiven Sicherheitskompontenten, wie dem
Elektronischen Stabilitätsprogramm oder der Radar-basierten Abstandsregelung.
Diese Systeme greifen durch gezielte Aktionen in einer Gefahrensituation in das
Fahrgeschehen ein um einen Unfall zu verhindern, z.B. wenn das Fahrzeug ins
Schleudern gerät oder der Abstand zum vorausfahrenden Fahrzeug einen kriti-
schen Wert unterschreitet. Werden die Sensordaten, die die aktiven Systeme in
einer frühen Gefährdungsphase errechnen, an die Airbagsteuerung kommuniziert
und es kommt zur Kollision, kann auf diese schneller und effektiver reagiert
werden, z.B. indem Auslöseschwellen in den Airbagalgorithmen bei akuter Ge-
fährdung herabgesetzt werden und bei konkretem Eintritt der Kollision die Airbags
mit diesem Vorwissen früher gezündet werden können als bei einer rein passiven
Systemauslegung. Eine solche Vernetzung von aktiven und passiven Komponenten
muss über die Fahrzeug-interne Kommunikationsinfrastruktur aus Bussystemen

xv

Zusammenfassung

wie CAN oder FlexRay und Gateways zur Verbindung einzelner Bussegmente
geschehen. Hierbei ist die Echtzeitfähigkeit, also die Übertragung der Daten in
einem prädizierbaren Zeitintervall, von essentieller Bedeutung für die Effektivität
der vernetzten Fahrzeugsicherheitsfunktionen. Zu lange Übertragungszeiten kön-
nen dazu führen, dass die Kollision bereits eingetreten ist, bevor die Sensordaten
in den passiven Systemen überhaupt empfangen und verarbeitet werden konnten.
Für die Entwicklung vernetzter, hochgradig zeitkritischer Systeme der Fahrzeugsi-
cherheit ist somit eine Evaluation der Datenübertragung bereits in frühen Phasen
des Entwurfsprozesses unerlässlich.
Die vorliegende Dissertation stellt Konzepte und Methoden vor, die für eine umfas-
sende Leistungsbewertung Fahrzeug-interner Kommunikation erarbeitet wurden
und die Auslegung effizienter, zukünftiger Sicherheitssysteme entscheidend un-
terstützen. Es wurde eine Hardware- und Software-basierte Messinfrastruktur
geschaffen, die es erlaubt, anhand aufgezeichneter Kommunikationsdaten Effekte
bei der Datenübertragung im realen Fahrzeugbetrieb, dem sogenannten use-case,
aufzuzeigen und wichtige Systemparameter zu identifizieren. Diese Parameter
dienen als realistische Eingabedaten für ein Systemmodell, das Funktionalität
und zeitliches Verhalten der relevanten Komponenten mittels UML-basierter Zu-
standsdiagramme und diskreter Ereignissimulation nachbildet. In der Simulation
können verschiedenste Kommunikationsszenarien untersucht und aussagekräftige
Leistungskenngrößen, wie Ende-zu-Ende Übertragungslatenzen, ermittelt werden.
Gerade im Bereich zeit- und sicherheitskritischer Anwendungen des Insassen-
schutzes sind jedoch auch Aussagen über das Systemverhalten im schlimmstmög-
lichen Fall, dem worst-case, von großer Relevanz. Um auch für dieses Szenario
gültige Ergebnisse zu erlangen, wurde die analytische Methode des Network
Calculus für Fragestellungen der Fahrzeug-internen Kommunikation erweitert
und erstmals angewandt. Die analytischen Resultate stellen garantierte obere
Schranken für die Verzögerungen bei der Datenübertragung dar und erlauben,
zusammen mit den Erkenntnissen aus den Messungen an realen Fahrzeugen und
den Ergebnissen der Simulation, eine frühzeitige Bewertung des vernetzten Si-
cherheitssystems. Leistungskenngrößen können sowohl für den Normalbetrieb
wie auch für schlimmstmögliche Systemszenarien ermittelt werden, wodurch eine
umfassende, an die Kritikalität der jeweiligen Anwendung angepasste Bewertung
in einer frühen Designphase und eine signifikante Effizienzsteigerung zukünftiger,
vernetzter Fahrzeugsicherheitsfunktionen möglich ist.

xvi

1 Introduction

This chapter introduces to the field of automotive vehicle safety, safety electronics
and concepts for occupant protection. In addition, the motivation for networking
of active and passive safety electronics in future vehicle safety scenarios is given.
More details on the topics mentioned in the following can be found in [65], [48]
and [33].

1.1 Motivation

The most undesirable situation in road traffic is a collision with either other road
users or obstacles on or off the road. Thus, development of adequate protection
means for occupants in such a severe situation has been started over 50 years
ago. In 1952, the first patent for an airbag-like protection system was assigned to
American engineers. However, early approaches for inflatable cushions suffered
from extensive inflation times, heavy weight, large installation spaces and poor
functional safety of the components. As shown in figure 1.1, the whole plot of a
collision lasts for only about 150 milliseconds, which is not much more than the
time for a blink of an eye, from the first contact until the damaged car comes to
standstill again. These timing demands could never be met by inflation strategies
based on high-pressure gas, which is why developers switched to composite gas
generators as known from military and space rockets in the early 1970’s.
It took until 1980 – almost 30 years of research! – to put airbags into serial opera-
tion, when Mercedes-Benz offered for the S-Class (W126) a system composed
of a driver-airbag and belt tensioners, available as extra equipment for 1526 DM.
Nowadays, even compact cars may be equipped with front-, side-, window- and
knee-airbags and hence offer a high level of passive occupant protection. Con-
sequently, the number of road traffic fatalities decreased significantly in the last
decades since the development of effective occupant protection systems has been

1

1 Introduction

started. This is mainly the merit of distinctively adjusted passive safety systems,
consisting of a stiff vehicle body to absorb as much energy in a crash as possible
and quickly deployed airbags and pyrotechnical belt tensioners. Of course, legal
enforcements during this time, like speed limits or penalties for driving without
fastened seat belts, contributed to the reduction of deaths in traffic, too.

ms

Figure 1.1: Time Plot of Airbag Activation in a Crash [3]

1.2 Airbag Control Systems

1.2.1 Airbag Control Unit

The core component of up-to-date airbag control systems is the airbag control unit
(ACU) as shown in figure 1.2. Its main functions are detection of a crash (or a
roll-over), activation of adequate protection means, disconnection of the battery
from the on-board voltage supply infrastructure and, eventually, transmission of
an emergency call in the so-called post-crash phase shortly after the collision.

The major electronic components inside the ACU are a microcontroller (main-
μC) with operating system, deployment algorithms, diagnosis routines etc., and
a redundant, second microcontroller (safety-μC) for sensor signal processing

2

1.2 Airbag Control Systems

Figure 1.2: ACU (left) and Crash Sensors (right: g-Sat, p-Sat) [3]

and deployment decision. Internal acceleration sensors yield measurements on
vehicle dynamics, which are used to validate external crash sensor information.
To assure autarkic operation of the ACU, e.g. if the battery is damaged early
during a severe front-crash, capacitors offer the necessary voltage supply, typically
charged to enable 100 to 200 milliseconds of self-sustained operation. Activation
of pyrotechnical devices is triggered by a current, that is generated by redundant
firing stages inside the ACU. The connection to the in-car communication system
is realized by a bus controller. Table 1.1 presents some typical settings for
electronics of an airbag control unit. The values are real-life parameters for the
ACU of an Audi A6 Limousine, as produced from 2004 to 2007 [4], [3].
Figure 1.3 gives an impression of the typical installation place of the ACU, which
is on the gear-tunnel, near to the center of mass in the middle of the car. This
placement is chosen for two main reasons. First of all, in case of a crash, the ACU
must not be destroyed or disconnected from the contact before belt tensioners and
airbags have been deployed. A centered installation of the ACU offers the best
protection in terms of distance to possible sites of impact. Second, for reasons of
functional safety, the severity of the impact and the acceleration of the vehicle is
measured both by external satellite sensors and by internal sensors in the ACU.
Installation near to the center of mass, thus near to the central rotation axes, yields
the most accurate and trustworthy measurements.

3

1 Introduction

Table 1.1: Typical Configuration of Airbag Control Unit
Parameter Setting Comment
ACU Vendor SiemensVDO now ContiVDO
Main-μC STMicroelectronics ST10 16-bit controller
Safety-μC STMicroelectronics ST7 8-bit controller
Clocking Main-μC 32 MHz –
Clocking Safety-μC 16 MHz –
EEPROM 2 kByte –
RAM 8 kByte –
ROM 128 kByte blockwise flashable
Energy Autarky min. 150 ms via capacitor charge
Internal Sensors gx, gy ± 50 g, Piezo-electric
Main Contact 75 Pins Sumitomo dual-lock

1.2.2 Crash Sensors

Crash sensors are the central measurement components for detection of an impact.
In general, crash sensors of an airbag control system can be categorized in:

• External crash sensors in the front part of the vehicle (cf. figures 1.2 and
1.3). These so-called up-front sensors are micromechanic devices which
measure an acceleration based on Piezo-electric effects. In a front crash
scenario, the up-front sensors are closest to the place of impact, thus they
detect the collision first and send the digitalized measurement values to the
ACU. Typical detection ranges are ±200 g.

• External crash sensors on the sides of the vehicle. With the development of
side- and window-airbags, additional measurement devices for detection
of a side impact became necessary. As shown in figure 1.3, sensors are
installed in the front doors and on the vehicle body close behind the rear
doors. The devices in the doors are typically pressure sensors, which are
equipped with a membrane to measure the increase in pressure inside the
door in case of an impact, for example in ranges from 50 to 116 kPa. The
side sensors on the vehicle body are using the same measurement principle
as the up-front sensors, namely Piezo-electric elements for detection of
accelerations of ±200 g.

4

1.2 Airbag Control Systems

Figure 1.3: Placement and Interconnection of Passive Safety Electronics

• Internal crash sensors on the board of the ACU. For validation of signals
from external up-front and side sensors, acceleration-based sensors are
used. As the impulse of the impact is much lower in the middle of the car
than at the damaged outer parts of the vehicle body, a significantly lower
detection area of ±50 g is sufficient for internal devices. For detection of
dangerous side-slip or roll-over situations, yaw-rate sensors are employed,
i.e. combined acceleration sensors for x-, y- and z-direction or liquid-filled
sensors with a movable gas-bubble.

Each external sensor is connected to the ACU by a dedicated wire. The analogue
measurement samples are digitalized by an application-specific integrated circuit
(ASIC) in the sensor and, together with sensor status information, periodically
transfered to the ACU. Widespread up-to-date protocols for sensor data trans-
mission are the Peripheral Acceleration Sensor 4 (PAS-4) protocol from Bosch
for acceleration sensors or, for pressure sensors, the PEGASUS protocol from
SiemensVDO/ContiVDO. Here, Manchester-coded data words of 10 - 12 bits
length are transfered over a twisted-pair current interface, typically every 250 μs,
i.e. with 4 kHz clocking. The Peripheral Sensor Interface 5 (PSI 5) is supposed to
be the upcoming standard for communication between crash sensors and ACU
[46], the launch is planned for 2010.

5

1 Introduction

1.2.3 Airbags and Belt Tensioners

The actual protection for occupants is achieved by appropriate activation of pro-
tection means in a crash, namely the airbags and the pyrotechnical belt tensioners
as depicted in figure 1.4. An airbag is a textile cushion with a volume from
about 15 liters (side-airbag) to more than 100 liters (front-airbag passenger side).
To match the timing constraints of only a few ten milliseconds for opening the
airbag completely, pyrotechnical processes are employed to generate the adequate
amount of gas and to inflate the cushion. The same holds for the pyrotechnical
belt tensioners, which have to reach force-levels of about 4 kN for tightening the
passenger in the seat and thus to suppress a forward movement against the steering
wheel or the dashboard. Upon detection of a collision with a certain severity,
the ACU sends a firing current to the relevant protection devices. For example,
in a front-crash with a speed of at least 26 km/h, the front-airbags and the belt
tensioners for driver and front passenger are activated. The firing current triggers
Natriumazid pallets in the airbag module to oxidate and to generate Nitrogen,
which inflates the cushion. In the belt tensioner, Nitrocellulose is fired and the
resulting portion of gas rewinds the belt mechanics via iron bowls.

Figure 1.4: Side-Airbags, Front-Airbags and Belt Tensioner [50]

1.2.4 Functional Safety of the Airbag Control System

Even though airbags and belt tensioners yield reasonable protection for occu-
pants in a crash, an unmotivated deployment of these pyrotechnical devices in
a non-crash driving situation remarks a serious threat for the passengers. Thus,
considerable effort is spent to avoid misuse scenarios. First and foremost, the
ACU relies on both external and internal sensor measurements for crash detection.
In figure 1.5, this concept of plausibility is indicated by the green-colored external

6

1.3 Future Vehicle Safety Approaches

and internal sensors serving as combined input to the ACU, where each sensor
type can be used to validate the measurements of its counterpart. For instance, if
a defective upfront sensor generates corrupted data reporting a front-crash, the
ACU will detect its malfunction by validation of external sensor data with internal
measurements.
The second important concept for functional safety of the airbag control system is
the redundancy in the dual controller layout of the ACU (colored in blue in figure
1.5). Main- and safety-μC monitor the correct operation of each other by hardware
and/or software watchdog mechanisms and evaluate sensor data redundantly. Only
a timely- and event-correlated firing decision of both microcontrollers – indicated
by the logical "AND" in figure 1.5 – will activate any firing stages. This concept
prevents the system from erroneous processing of correct (external and/or internal)
sensor data if one of the controllers comes into a malfunctional operation mode.
The third strategy which contributes to safe and reliable system operation is the
safing concept. The main-μC evaluates sensor data from external and internal
sensors permanently. Thus, the measured values show a certain plot over the time
axis, resembling the currently measured acceleration or pressure. In case of a
collision, sensor data values are expected to deviate from normal measurements
significantly in terms of an instantaneous, steep increase of measurements due to
the impact. Within the safing concepts, thresholds are implemented, which the sen-
sor data must exceed with a specified increase or for a certain time interval before
any pyrotechnical means are activated. This prevents from undesired deployments,
caused by steep but rather short peeks in acceleration of the whole vehicle body,
e.g. on rough roads, or by longer but rather low impulses, for example from
low-speed contact with the bumper of another vehicle while parking.

1.3 Future Vehicle Safety Approaches

The passive safety systems for occupant protection are nowadays on a high level
of effectiveness and functional safety. Thus, vehicle safety strategies based solely
on passive airbag control systems and stiff vehicle bodies will hardly lead to
significant improvements in this field. As a consequence, lots of effort is spent on
novel developments for a further reduction of road traffic fatalities.

7

1 Introduction

������
�	

&
���
�	

external
Sensor

���������	

����

internal
Sensor �������	�

�����������	

�������

Figure 1.5: Functional Safety Concepts for Airbag Deployment

1.3.1 The Intelligent Car

A promising approach for increased safety for both occupants and other road
users – especially vulnerable traffic participants like pedestrians or cyclists – is
an enhanced capability of the individual cars in environment perception and
communication with the surrounding traffic area. Several joint research projects
from government, universities and industry, like PreVent [55] or SAVE-U [15],
cope with such an "intelligent car". A possible road traffic scenario together
with some intended applications and the corresponding time line of activation is
depicted in figure 1.6. Individual cars perceive information about the road traffic
situation and/or possible threats, obstacles or other road users via:

• Car-to-X communication. This approach is based on wireless data trans-
mission, where the "X" is a placeholder for either communication with
other road traffic participants – Car-to-Car – or with fix installed devices,
called Car-to-Infrastructure data exchange, e.g. with communication units
from municipal traffic management systems. The wireless data transmission
might be realized either using ad-hoc wireless local area networks (W-LAN)
as proposed in the SimTD project [56], or based on mobile communication
standards, e.g. Universal Mobile Telecommunications System (UMTS), as
employed in the CoCar research project [7].

8

1.3 Future Vehicle Safety Approaches

• Environment Sensor Systems. Well-known from military and avionics,
technologies like radar, laser, vision and ultrasonic enable the car to perceive
information on the environment [41], [40], [34]. For purposes of active
safety and drivers comfort, some of these devices are already available,
e.g. the radar-based Adaptive Cruise Control (ACC) and Lane Change
Assist (LCA) or the ultrasonic-based Park Distance Control (PDC). In future
vehicle safety approaches, information from environment sensor systems
is used to provide passive safety systems with a-priori knowledge about
a risky situation, which is seen as a promising instrument to increase the
efficiency of passive protection means.

Figure 1.6: Future Vehicle Safety and Road Traffic Scenario [55]

1.3.2 Precrash Systems

If environment information is evaluated and the on-board electronics react on a
dangerous driving situation in order to avoid fatal consequences like a collision,

9

1 Introduction

a so-called precrash system is implemented. Several strategies for engagement
are applicable, for example, if roadside units communicate an icy or slippery
surface to the Car-to-X receiver, the driver can be warned optical or acoustical. A
more autonomous system reaction would be an engagement in the braking system,
for instance, if the radar sensor of the ACC detects an obstacle, e.g. a vehicle
remarking the end of a traffic jam on a highway1. If the driver does not activate
the brakes and remains heading for collision, the ACC will autonomously trigger
a full brake application to avoid a crash.
Basically, the visible or sensible actions of a precrash system are coordinated
by components of active vehicle safety and are intended to avoid the collision
by any means necessary. However, driving situations may occur in which, in
spite of all warnings or engagements from active safety devices, the collision is
unavoidable. This is the point where passive safety components come into the plot
of precrash systems. Active safety components, like the ACC or the Electronic
Stability Program (ESP), can communicate information on the hazardous driving
situation to passive safety components, especially to the airbag control unit. This
information is valuable knowledge for the ACU. Without sensor data from active
devices, the airbag control is able to react on a collision only when external sensors
detected the acceleration of an impact, sensor signals are validated, algorithmic
thresholds are exceeded by the measured values and both microcontrollers decided
in favor of activation of protection means. Encompassing precrash information
allows for various strategies to increase the efficiency of passive safety concepts:

• Lowering of algorithmic thresholds for deployment. If a crash is to be
expected within a certain time interval, the robustness of the deployment
algorithm in the ACU might be traded off for a faster deployment decision.
If the crash happens, lowered thresholds will be exceeded sooner by crash
sensor acceleration signals, saving a few milliseconds in signal integration
and firing stage activation.

• Activation of irreversible protection means. Based on trustworthy infor-
mation on an upcoming, unavoidable collision, pyrotechnical components
might be activated shortly before the impact. This allows to trigger con-
ventional systems more effectively, e.g. by installing airbags with larger
volume, which can be inflated completely in the precrash phase, or to em-

1This is one of the scenarios on which considerable effort for effective precrash systems is spent.
Just think of the horrible crashes when trucks collide with high speed into a highway traffic jam.

10

1.3 Future Vehicle Safety Approaches

ploy new pyrotechnical devices like airbags on the outside of the vehicle
body, providing additional deformation space if inflated before a collision.
Of course, such concepts require a high degree of reliability in environment
information to avoid misuse.

• Activation of reversible components. For example, motor-driven belt ten-
sioners allow to tighten the front passengers in the best, upright seating
position, reducing the forward movement from the very beginning of a
collision [33]. As the actuators are designed for several activations during
the lifetime of a car and the effects are less immanent than in case of py-
rotechnical components, the misuse criticality is not that high. Of course,
permanently unmotivated activation of these components annoys customers
and thus should be avoided by respective functional design of the precrash
system.

Research on and development of such concepts is a big issue in vehicle safety
for both car manufacturers and suppliers. Figure 1.7 depicts some exemplary
applications and the involved, networked active and passive safety components.
The examples are selected from the current portfolio of so-called combined active
and passive safety (CAPS) systems from the German technology venture Robert
Bosch GmbH. More information on the concepts can be found under the cited
weblink.

11

1 Introduction

Se
co

nd
ar

y
Co

lli
si

on
 M

iti
ga

tio
n1

,2
Ea

rly
 P

ol
e

Cr
as

h
D

et
ec

tio
n1

,2

Ad
va

nc
ed

 R
ol

lo
ve

r
Se

ns
in

g1
,2

Pr
ed

ic
tiv

e
Br

ak
e

As
si

st
/P

re
Se

t/
Pr

eF
ire

1,
2,

3,
4

Ai
rb

ag
 (

1)

ES
P

(2
)

AC
C

(3
)

Vi
de

o
(4

)

Fi
gu

re
1.

7:
E

xa
m

pl
es

of
Fu

tu
re

V
eh

ic
le

Pr
ec

ra
sh

Fu
nc

tio
ns

an
d

E
m

pl
oy

ed
Sa

fe
ty

D
ev

ic
es

[5
0]

12

1.3 Future Vehicle Safety Approaches

1.3.3 Time-Critical Precrash Data Transfer

The timeline in figure 1.6 depicts a possible plot of activation of various intelligent
applications. Obviously, functions focusing on collision mitigation and precrash
concepts are triggered very late in a dangerous driving situation, i.e. typically in
a range from 1 second down to 10 milliseconds prior to a critical event. For an
interplay of active and passive safety devices, this implies a forced flow of data,
coping with such strong timing demands. Imagine a radar sensor detecting a threat
in the drive lane, for which the vehicle is on target for with a constant speed. If
the information from the radar can be transfered to any passive safety device just
in time, precrash applications and appropriate protection means can be employed
efficiently before a collision.
If it takes too long to pass the environment information from the sensor to the
actuators, the crash might occur even before any passive device could be informed
about the threatening situation and any protective actions could be taken. At
that point, the data transfer between active and passive safety systems comes
particularly into play. The effectiveness of networked precrash applications is
strongly related to the speed and the performance of information exchange inside
the car. The short precrash timeframes before a collision require a predictable
real-time behavior of data transmission, incorporating all relevant networking
constellations and operation scenarios.
Measures like end-to-end transmission delay or jitter allow for a determination,
whether a given communication topology is qualified for transfer of safety-relevant
data in highly time-critical operation scenarios.

13

2 Related Work

2.1 Measurements

For real-time data transmission in a small-sized CAN network, Navet and Song
employed both a model-based (analytics and simulation) and a prototype-based
evaluation in [43]. Analytics are applied to derive worst-case response times,
simulation models are built based on both queuing networks and finite state ma-
chines. The results from analytics and simulation are compared with outcomes
from monitoring of a distinct prototype measurement setup.
The measurement study from Ferreira et al. focused on determination of rea-
sonable bit error rates for CAN [16]. By bit stream comparisons in a dedicated
topology with a 30 m CAN cable, the error rates for benign, normal and aggressive
environments could be determined.
Pallierer et al. presented in [45] a generic toolbox for measurements in FlexRay
and CAN communication systems. The focus is on systematic testing, data record-
ing and evaluation, e.g. regarding system startup, operation and fault tolerance.
The approach of Albert and Gerth [1] concentrates on a comparison of real-time
capabilities of CAN and the time-triggered derivative TT-CAN. The presented test
setup works off-board and considers only two communicating Electronic Control
Units (ECUs). For this configuration, the response time in an asynchronous on-
event communication scenario is measured and conclusions about the compliance
with real-time demands are drawn.

2.2 Simulation

An approach based on the Unified Modeling Language (UML) for modeling of au-
tomotive applications is presented by Schröder and colleagues in [54]. The focus
of this proposal is on requirement engineering methods and statechart annotations

15

2 Related Work

for software tasks in ECU networks, no simulation model is built from the UML
constructs.
FlexRay star topologies are in the spotlight of the simulative investigations of Or-
tega et al. in [44]. The electro-magnetic compatibility is investigated for FlexRay
with 10 Mbps data rate. Analytical outcomes from Impulse-Reflectometry and
results from a circuit simulation are validated vice versa. However, the emphasis
of the article is on interference on the physical layer, not on higher layers of
end-to-end data transmission. A similar approach is presented from Kraft in [31]
for physical layer simulations in a CAN network with several ECUs.
Castelpietra et al. developed a modular modeling and simulation technique [6].
Both hardware and software architecture are modeled in a proprietary modeling
environment, called Carosse-Perf. This naturally decreases the level of exchange-
ability, maintainability and compatibility compared to a modeling approach based
on a commonly used, intuitive technique like UML, as proposed in this thesis.
In a case study, the simulation results for end-to-end response times in a given
ECU network are compared to outcomes from analytical worst-case performance
evaluation.
Modeling and simulation of a distributed embedded real-time system using the
language SystemC is performed by Samii, Rafiliu, Eles and Peng in [52]. The
worst-case response time, as obtained from simulation of a system composed of
CAN and FlexRay buses, is compared to results from worst-case analytics in order
to derive the "degree of pessimism" of analytical upper bounds, i.e. how much
the computed thresholds exceed the simulated maxima. The number of scenarios,
which have to be simulated in order to achieve a satisfying coverage, is minimized
by application of various algorithms for exploration of a given design space.

2.3 Analytical Modeling

In [57] and [63], Thiele et al. applied analytical modeling approaches to systems
with hard real-time demands. The scope of these works is on interface-based
system design and preemptive scheduling of ECU and processor tasks with fixed
priorities, according to commonly employed task scheduling strategies. The
proposed Real-Time Calculus incorporates modeling elements from Network Cal-
culus, e.g. the service curve of the system is built priority-dependent as done for
CAN in this thesis.

16

2.3 Analytical Modeling

The modeling technique of Response Time Analysis (RTA) is used by Tindell and
Burns in [58] for analytical investigations on a CAN bus. It is determined, whether
for a given schedule of tasks on ECUs in the system, deadlines and real-time
demands can be fulfilled. The scope of this proposal is extended towards an
improved priority scheduling policy and an automated assignment of task and
message periods by Burns in [12] and by Davare et al. in [11].
Krakora et al. developed a system representation of CAN as Timed Automata,
which can be found in [32]. CSMA/BA media access, the CAN bus and an ECU
with CAN transceiver and application processes are resembled in notions of au-
tomata. Compliance to pre-defined real-time demands is derived by computing
worst-case response times according to [58] and by checking the model properties
using the model checker UPPAAL [59].
Ernst et al. present in [19] a software-based exploration and optimization ap-
proach, which can be employed in the design phase of a CAN bus. By design space
exploration and optimization, the tool SymTA/S [24] offers formal methods for
studies on the feasibility of given task schedules and capabilities of resources in a
CAN bus. A case study for automotive real-time applications is presented in [13].
In [47], the formal methodology is enhanced in terms of analysis of the design
sensitivity of an embedded real-time system towards variation in parameters. Sev-
eral input is considered and alternated, like task periods, jitter and communication
load. The sensitivity of the system is computed as the so-called feasibility slack,
obtained from the variation of optimization properties like minimum execution
time or maximum communication volume.
In order to improve the real-time behavior of CAN data transmission, Richardson
et al. introduce a methodology to detect transient surges due to retransmissions
or sporadic, a-periodic transfer [49]. However, to implement a dynamic priority
scheduling of ECU tasks according to the Earliest Deadline First algorithm, the
CAN frame identifier would have to be partitioned into a 4-bit dynamic priority
part and a 7-bit static priority part, reducing the number of a-priori assignable IDs
from 2048 to 128.

The drawback of the analytical proposals mentioned so far is, that a static a-priori
schedule for all tasks and messages in the system is required for evaluation of
real-time properties. For two reasons, such a holistic schedule is hardly achievable:
First and foremost, most of the tasks of an operating system in an ECU are not
accessible from outside – including the schedule, the activation period or the
processing strategy. This area of the controller is typically intellectual property of

17

2 Related Work

the third-party supplier manufacturing the ECU. Most of the internal software is
rather in a black-box, except for the data which is explicitly communicated to a
bus, a testing device, etc.
For the second, even if the internal task scheduling in every ECU is known, the
controllers along a CAN bus wake up asynchronous to each other, requiring
individual, varying timespans. This assumption will be emphasized by the results
from the measurements in this thesis, presented in chapter 4. Hence, a valid
overall schedule of all tasks on all ECUs can never be anticipated and at least the
input parameters regarding local and global task activation times and scheduling
yield a certain fuzziness in the results.
To overcome this, the Network Calculus evaluation procedure proposed in this
thesis requires only the statically assigned CAN identifiers and the specific cycle
times at which each message is sent as input data. The global, bus-wide schedule
of traffic does not have to be known to obtain reasonable upper delay bounds for
each priority class in the system.

A completely different approach is to model the system as a queuing network, as
recommended by Roberts and colleagues in [51]. For ATM traffic flows from sev-
eral sources – but without priority scheduling – a ∑Di/D/1 queue is proposed for
adequate modeling. However, the solutions, which are determined using stochas-
tic methods, are valid for the totality of all jobs, not for individual classes from
individual sources. Furthermore, upper bounds are provided for the probability
that the backlog in the system exceeds a certain threshold.
The application of Network Calculus in this thesis does not consider any stochas-
tics. Deterministic upper bounds are obtained for each individual priority class,
not only for the totality of jobs, messages, customers, etc. Moreover, the CAN
bus also differs from the ∑D1/D/1 queue in its strict priority scheduling.

18

3 In-Car Communication System

Today, an upper class vehicle is equipped with up to 100 ECUs, serving for vari-
ous purposes of entertainment, infotainment, drivers’ assistance and comfort, or
applications of active and passive occupant protection. Besides the increasing
power consumption – just think of the current discussion on CO2 emissions – the
communication and data exchange between the single control units is one of the
most critical tasks to be considered when expanding the electronic functionality
inside the car. What all applications, regardless of the actual criticality, have in
common, is the demand for robust, reliable and efficient data transmission be-
tween incorporated ECUs. To interconnect these dozens of embedded controllers,
several bus systems have been established in automotive environments. The most
important representatives are Controller Area Network (CAN) [25], FlexRay [18],
Media Oriented Systems Transport (MOST) [42] and Local Interconnect Network
(LIN) [60]. They differ in data rate, media access and multiplexing schemes
and other, mostly hardware-related peculiarities. Typical structures of up-to-date
automotive in-car communication systems with a central gateway or multiple,
cascaded gateways and various buses are depicted in figure 3.1.

3.1 CAN - Controller Area Network

CAN development has been started in the 1980’s by Robert Bosch GmbH, aiming
to design a bus system for the specific needs of automotive applications. The
resulting CAN bus is now standardized as ISO 11898 [25]. It uses a differential
serial line architecture, cf. figure 3.2, with dominant and recessive bits, where a
dominant bit represents a logical 0 and a recessive bit a logical 1. An idle bus has
recessive level. Due to the open collector logic, if one station on the bus sends a
dominant bit while another controller sends a recessive bit, the dominant bit wins,
i.e. the bus is considered as logical 0. This feature allows for use of a bitwise

19

3 In-Car Communication System

�������

	��

����

�����

	��

�������

!	

��"

		

#��$%��

%�&��

�'�

*�+

��������

��������

	��

����

�����

�������

	��

!	 #��$%���

�������-

��"#��$%���

%�&��

�'�

*�+

#��$%��-

		

Figure 3.1: Network Topologies: Central Gateway (left) and Cascaded (right)

arbitration scheme for medium access, often called Carrier Sense Multiple Access
with Bitwise Arbitration (CSMA/BA). Using this mechanism, each station listens
to the bus while sending data. If a collision occurs, where one station tries to
send a recessive bit but receives a dominant bit, it will notice that another station
is sending simultaneously and will stop its own transmission immediately. This
makes the arbitration non-destructive, since the station sending the dominant bit
can continue to send without any negative effects on the bus, while the station
sending the recessive bit remains silent from the time on where the collision has
occurred. A retransmission of the interrupted frame is triggered automatically.

Before sending, each controller listens to the bus and starts sending only if the bus
has been recessive for at least 6 bit times (carrier-sense phase). A Non-Return-to-
Zero (NRZ) encoding is used for the line encoding of the bits, where the sender
inserts a complementary stuff bit when no change in the logic level has occurred
over 5 successive bits. These stuff bits are removed automatically by the receiver
of the message. This mechanism provides a base for synchronization and assures
that a potential sender receives at least one dominant bit during the 6 bit times of
carrier-sense phase if another station is sending.
CAN does not employ explicit sender or receiver addresses, but uses unique
message identifiers to describe the content of a CAN frame. The frames are

20

3.1 CAN - Controller Area Network

Transceiver

CAN
Controller

μC

�	�.� �	�.� �	�.�

12
0
�

120 �

	�0��5

	�6��

Figure 3.2: CAN Serial Line Architecture

broadcasted on the bus and each station can decide if the message content is
relevant by examining the message identifier of a received frame. The identifiers
have to be assigned statically during the design phase of the bus system to avoid
ambiguity in the interpretation of the frame content. A global view on the complete
communication system is needed in this process.
There are two variants of CAN frames: standard frames with 11-bit message
identifiers and extended frames with 29-bit identifiers. Both can coexist on the
same bus. The payload can be of variable size, but throughout this thesis, all
frames are standard CAN frames with 11-bit message identifiers and are assumed
to contain always 64 bits of payload. Thus, when considering a maximum number
of 19 stuff bits and including 3 bit times of inter-frame space (IFS), the maximum
frame size is 130 bits.
The transmission of a CAN frame starts with one dominant start bit, immediately
followed by the message identifier from the most significant bit to the least
significant bit. The structure of a standard CAN frame is shown in figure 3.3.

Due to the media access scheme as described above, the message identifiers create
an implicit hierarchy of priorities. If more senders start to send simultaneously,
the sender transmitting the frame with the highest message identifier has to send
a recessive 1 bit that is overwritten by a dominant 0 bit first, due to the binary
encoding of the message identifiers in the frame header. While listening to the bus
during the send process, it will notice the collision – dominant bus while sending

21

3 In-Car Communication System

Figure 3.3: CAN Frame Structure

a recessive bit – and stop sending. This process continues until only one sender
remains sending. This is always the one with the lowest message identifier and
thus with the highest priority [37], [14].

3.2 FlexRay

FlexRay [18] counters the increasing demands for transmission capacity, network
complexity and reliability. It is a field bus system, implementing a deterministic
Time Division Multiple Access (TDMA) media access scheme, which guarantees to
provide each connected ECU with transmission capacity in its dedicated time slot.
Two physical channels are available, each one offering a maximum data rate of
10 Mbps. Transmission can be performed either fully redundant on two channels
in parallel, or both channels can be used for data transfer individually, yielding
an increased overall data rate of 20 Mbps. A communication cycle in FlexRay is
organized as depicted in figure 3.4.

#��$%��.	����.�

����7�� ��7���.8��&�� 9&�������� ����7�� ��7���.8��&��������

��
��

.�

��
��

.�

��
��

.-

:::

��
��

.�

9&��

��

�.�

��

�.�

��

�.- :::

��

�.�

#��$%��.	����.�;�

Figure 3.4: FlexRay Communication Cycle

In the static segment, each ECU is allowed to sent data in its dedicated time

22

3.3 Automotive Gateway Architectures

slot. The following dynamic segment implements Flexible Time Division Multiple
Access (FTDMA), where, based on a-priori assigned priorities, ECUs are able to
send additional data in mini slots on demand. In its static FlexRay time slot, an
ECU can send several signals, which are packaged as payload in a FlexRay frame.
Figure 3.5 shows a FlexRay frame with header and trailer fields and a maximum
of 254 byte payload.

0��&�� <= ��� "�����& =.>.�?< ���� +������.�< ��� �� ���

�# 		 ����.8��& =.:.:.:.� 	%	 	9�9� "6 	%	

	������.@��� 	5��G��7.;.9&��.����7:

Figure 3.5: FlexRay Frame Structure

As in any TDMA-based communication system, a common time base for all
sending and receiving stations is indispensable. FlexRay provides a decentralized
synchronization of all ECU communication controllers, where a single controller
derives the global network time from a virtual global clock by evaluating timing
information from several other ECUs.

3.3 Automotive Gateway Architectures

An automotive gateway is an important node in the in-car communication system.
It connects buses, routes messages and performs network management tasks, e.g.
monitoring states of operation of ECUs or whole bus segments. With a dedicated
controller and transceiver for each bus system the gateway is connected to, it
performs just like any other ECU on the respective bus, e.g. regarding CAN or
FlexRay media access. Figure 3.6 depicts a possible structure of an automotive
gateway.

According to an internal routing table, the gateway receives and forwards mes-
sages from and to buses, where incoming messages can be processed in various
ways. As commonly applied for routing in the Internet or in local area networks,
automotive gateway routing mechanisms can basically be categorized into routing
by periodical scanning of ports of connected bus systems – so-called cyclic polling
– and into strategies which perform an event-based routing, e.g. triggered by an

23

3 In-Car Communication System

���������	
�����5���.����

8���5&�� ��"%*

	��

	��

*�+

#��$%��

69�

Figure 3.6: Typical Automotive Gateway Layout

interrupt if at any of the ports a message arrives. Figure 3.7 depicts an exemplary
cyclic polling mechanism in a gateway with three connected buses. The incoming
ports "Bus i in", i ∈ {0,1,2} are periodically checked for newly arrived data, com-
parable to a time-dependent token which is passed from one port to the next. If
the port contains data, the ordering strategy in the port determines which message
is to be taken out actually. For example, for first-in-first-out (FIFO), the oldest
message is routed whereas for priority queuing, the message with the currently
highest priority is forwarded. The timeout for proceeding from one bus port to the
next and the number of messages to process from the port within one cycle can
either be fix or adjusted individually, e.g. according to the communication load on
the source bus or the maximum number of messages to be stored. Anyway, both
parameters should be chosen such that an overflow and possible loss of messages
in the respective port is avoided.
In figure 3.8, the interrupt-based routing mechanism is illustrated. Again, three
buses are connected to the gateway via the incoming ports "Bus i in", i ∈ {0,1,2}.
Instead of cyclic polling and processing of data, arriving messages trigger routing
and forwarding directly, indicated by the single queue in which all data is stored
and processed from. Again, FIFO ordering in the central buffer is applicable as
well as other, more sophisticated ordering strategies, like priority-based routing.

24

3.4 Other Communication Technologies

@��.=.��

@��.�.��

@��.�.��

@��.=.���

@��.�.���

@��.�.���

�������
�����5���

����

Figure 3.7: Cyclic Polling Routing Functionality

@��.=.��

@��.�.��

@��.�.��

@��.=.���

@��.�.���

@��.�.���

�������
�����5���

����

Figure 3.8: Interrupt-based Routing Functionality

3.4 Other Communication Technologies

There exist several other automotive bus systems, like LIN, MOST or Ethernet-
based field buses. Due to system performance and peculiarities in communication
protocols, these technologies are rather employed for comfort, entertainment or
master-slave data exchange than for time- and safety-critical applications. Thus,
the following investigations are restricted to network topologies consisting of
CAN, FlexRay and a central gateway.

25

4 Prototype Measurements of
In-Car Data Transmission

The following chapter presents results from prototype measurements which were
conducted together with Bernhard Kloiber during his diploma thesis [30], super-
vised from July 2008 to January 2009 at the Department of Safety Electronics of
the Audi AG, Ingolstadt, Germany. Both the measurement hardware setup and
the software-based data evaluation strategy are introduced and applied to real-life
issues of ECU operation and in-car communication. The methodical approaches
and several outcomes of the investigations were published in [22] and [23].

4.1 Motivation

A modern car is a complex, electronic system-of-systems, composed of tens of
ECUs. Communication and data exchange between these controllers is essential
for manifold application areas of nowadays in-car electronics. While some in-
vestigations can easily be performed knowing the technical specifications of the
controllers or the communication infrastructure, others require a detailed inspec-
tion of the system in real-life operation. For example, the CSMA/BA mechanism
itself is implemented in every standardized CAN controller device, which thus
can be assumed to provide the intended functionality of priority-based media
access with bitwise arbitration. On contrary, technical specifications of many
ECUs do not provide sufficient information on the startup behavior of the ECU,
or on the frequency drift of the controller quartz, to reliably anticipate the actual
performance in daily operation.
Determining such parameters is a necessary task for several reasons. On the one
hand, a validation of the product quality and compliance to technical specifications
is achieved by an evaluation of the measured behavior of the component. On the

27

4 Prototype Measurements of In-Car Data Transmission

other hand, important system parameters can be derived for classical performance
evaluation approaches, e.g. realistic controller startup durations or frequency
drift values may serve as input for a dynamic simulation model of the in-car
communication system. Last but not least, real-life measurements are particularly
suited to emphasize the assumption that theoretically expectable effects are really
physically present in a system and are possibly of significant impact on the overall
communication performance, e.g. priority-dependent delays at CSMA/BA CAN
media access.
To achieve all this, a sophisticated measurement infrastructure is indispensable,
composed of measurement hardware and appropriate software constructs for a
reasonable and detailed evaluation of recorded data samples. Hardware devices
and software constructs must be easy to adapt to actual communication settings,
deployed ECUs and bus systems, and capable of yielding accurate and trustworthy
results for a broad variety of impressive performance measures.

4.2 Measurement Hardware Setup

The object of study for all following investigations was an Audi A6 Limousine 3.0
TDI with a prototype communication system topology consisting of 1 FlexRay
(10 Mbps), 5 CAN buses (500 kbps) and a central gateway. 28 ECUs are installed
in total inside the car, like engine and airbag control, entertainment devices
or driver assistance ECUs like ACC. To record in-car communication data, a
CONDALO CCO DLIII data logger was used as described in [8] and depicted in
figure 4.1.
The device comprises interfaces for 8 CAN buses, 1 FlexRay, 1 MOST, 1 LIN,
8 analogue and 8 digital line-in ports. It is equipped with an 80 gigabyte hard
disk and an USB port for direct connection to a computer. The data logger was
installed in the trunk of the car and connected to the central gateway by cable.
Figure 4.2 shows the prototype measurement infrastructure. Each bus segment is
recorded via its dedicated interface at the data logger. Incoming communication
data is marked with a timestamp, which is generated according to the time of the
internal processor clock of the device with an accuracy of 1 μs.

28

4.3 Software Tooling for Data Evaluation

Figure 4.1: CONDALO CCO DLIII Data Logging Device [8]

G
A

TE
W

A
YCAN1

CAN2

CAN3 CAN4

CAN5

FlexRay CONDALO CCO DLIII

Figure 4.2: Prototype Measurement Infrastructure

4.3 Software Tooling for Data Evaluation

4.3.1 Communication Access Programing Language and
VECTOR CANoe

The data recorded in various test scenarios was analyzed using the CANoe software
suite from VECTOR [61]. One major aspect of data evaluation in automotive
environments is to automate the evaluation process as far as possible, using
appropriate source code for inspection of content in data frames, tracking messages
along several branches in the network or determining actual communication startup
times of ECUs. To handle gigabytes of logged data in an efficient way, evaluation
routines were created using the C-based Communication Access Programming

29

4 Prototype Measurements of In-Car Data Transmission

Language (CAPL) [62]. The data processing strategy using CAPL programming
constructs is illustrated by the flowchart in figure 4.3.

Input
Data

Channel
Filter

Channel
Filter

Channel
Filter

CAPL
Node 1

CAPL
Node 2

CAPL
Node n

Logging 1

Logging 2

Logging n

Output 1

Output 2

Output n

Statistics

Trace

Figure 4.3: Processing of Measured Communication Data Samples in CAPL

The recorded data samples serve as Input Data. Processing of data is done along
various branches. The block Statistics yields statistical performance measures of
communication, like utilization of single buses or the overall amount of transmitted
data. Trace allows for individual observation of any predefined subset of data
transfer. Applying a Channel Filter restricts the measurement data to samples
from certain bus segments. A CAPL Node contains the appropriate programming
constructs with regard to the actual purpose of the measurement data evaluation,
e.g. extracting timestamp information or inspecting information content of a CAN
or FlexRay message. The Logging block is capable of collecting evaluation results
while the input data file is processed. Finally, Output generates a summary of data
evaluation and writes the results to an external file, e.g. in ASCII format.

30

4.4 Measurement Studies of In-Car Communication

4.3.2 ExpertFit®

A more detailed data analysis yields the probability distribution according to which
values of measured data samples occur. This is valuable information, e.g. if the
dynamic communication is to be simulated and appropriate input data modeling
for stochastic values is required, or if other analytical techniques with statistic
paradigms shall be applied to the measurement data. The statistical distribution
fitting tool ExpertFit® [35] was employed to evaluate the type of the distribution
as well as relevant distribution-specific parameters.
ExpertFit® is provided with measured data samples – as a list of comma-separated
values, e.g. for delays or startup durations – and applies statistical methods to
derive probability distribution functions that fit to the range and nature of occurring
values in the set of measured data. The outcome is typically a ranking of suggested
distribution functions with respect to the individual goodness-of-fit. The goodness-
of-fit describes qualitatively how close a suggested distribution fits to the measured
data samples, e.g. as ranking in terms of good, borderline or bad, together with
relevant parameters and moments of the distribution like mean, variance, standard
deviation or skewness.

4.4 Measurement Studies of In-Car Communication

4.4.1 Frequency Drift of Controller Quartzes

All measurements of ECU operation and in-car data transmission focus on aspects
of timing in the distributed system of communicating controllers, namely startup
durations, cyclic sending of CAN or FlexRay messages or end-to-end routing
and communication delays. Hence, time bases are indispensable, either a global
one like for FlexRay, or an individual time base in each CAN ECU or in the
CONDALO data logger. In general, timing in an electronic device is based on
oscillating crystals, where the oscillation of a quartz is used to derive a pulsing for
microcontroller operation. Consequently, different quartzes can vary significantly
in frequency, phase or temperature dependency of oscillation, leading to a so-
called drift in timing of the respective ECUs compared to a virtual global clock.
The drift is commonly denoted in parts per million (ppm) and can be either positive,
which means the quartz is oscillating faster than a reference time base, or negative,

31

4 Prototype Measurements of In-Car Data Transmission

for a quartz oscillating slower than a reference time. For CAN and FlexRay
data transmission, drift of ECUs might noticeably effect on communication as
illustrated in figures 4.4 and 4.5.

Cyclic Message from ECU 1

Cyclic Message from ECU 2 CSMA/BA Collisions

Communication Startup
ECU 1 and ECU 2

Clamp-15 “on”

t

Figure 4.4: Effect of Frequency Drift of CAN ECUs [30]

As depicted in figure 4.4, two CAN ECUs (ECU 1 and ECU 2) start cyclic CAN
communication at different points in time, such that initially the ECUs do not
collide one with each other at CAN media access. Due to frequency drift of
the controller quartzes, the ECUs will not keep this initial gap between cyclic
communication, but rather move the time instances of data transmission towards
each other. Hence, depending on the actual magnitude of frequency drift, collisions
between ECU 1 and ECU 2 will occur sooner or later in the long-run of operation.
Any collision at CSMA/BA media access contributes to transmission delays.
Since a CAN bus system typically consists of up to several tens of ECUs, the
frequency drift of a CAN ECU is a valuable measure in order to anticipate the
timing accuracy and in turn the overall communication performance.

For TDMA-based FlexRay communication, frequency drift of an ECU quartz
leads to mismatching of assigned TDMA slots for data transmission. As depicted
in figure 4.5, an ECU, e.g. the ACC radar sensor, acquires data and processes it to
FlexRay messages. If the time base of the ECU is subject to frequency drift, the
very next TDMA slot for transmission might be mismatched as the drift-prone data
from the operating system is not at the FlexRay bus controller in time. Hence, the
ECU has to wait for the next slot, causing additional delay in data transmission.

32

4.4 Measurement Studies of In-Car Communication

TDMA Cycle n TDMA Cycle n+1 TDMA Cycle n+2 TDMA Cycle n+3

Figure 4.5: Effect of Frequency Drift of FlexRay ECU [30]

Frequency Drift of Data Logging Device

First and foremost, the frequency drift of the CONDALO data logger was deter-
mined, as the timing information available from the assigned timestamps serves
as reference time base for all following investigations. Of course, the controller
quartz of the data logger is subject to frequency drift, too.
To derive the drift of the controller, an existing measurement setup at the com-
puter laboratory of the Chair of Computer Science 7 at the University Erlangen-
Nürnberg was employed. The basic infrastructure is depicted in figure 4.6. A
receiver for the Global Positioning System (GPS) on the rooftop of the Computer
Science Building generates a digital impulse exactly every second. This impulse
is recorded via the digital line-in port of the data logger, which was configured
such that a timestamp is assigned to each rising edge of an GPS impulse.

4114 GPS impulses were recorded, complying to 4114 seconds of measurement
duration. The timestamp for the first impulse recorded by the data logger was
at 0.588856 s (start time), the timestamp for the last recorded impulse at time
4114.619792 s (end time). This yields an effective measurement time in the data
logger of 4114.030936 s (actual time) compared to the reference time of 4114 s
(target time) and thus a frequency drift of +7.519688 ppm, which is computed
according to the following formula:

dri f t =
(actual_time− target_time)

(target_time)
×106, (ppm)

33

4 Prototype Measurements of In-Car Data Transmission

Figure 4.6: Measurement Setup for Evaluation of Data Logger Drift [30]

In detail, a frequency drift of +7.519688 ppm resembles a positive deviation of
7.519688 μs in the time span of exactly one second. The clock of the data logger
shows the time 1.000007519688 s at the GPS time 1.000000000000 s, which
means the quartz of the data logger is oscillating faster than the reference time. In
figure 4.7, the plot of the timing error, resulting from frequency drift, evolving over
the measurement time is depicted. The x-axis denotes the measurement time from
start to end. On the y-axis, the drift of the data logger, i.e. the increasing deviation
of the data logger’s timestamps from the GPS reference time, is shown.

34

4.4 Measurement Studies of In-Car Communication

Figure 4.7: Timing Error of Data Logger

Frequency Drift of ECUs

Knowing the frequency drift of the device which is capable of recording data
and assigning timestamps for communication – the CONDALO CCO DLIII data
logger – the individual frequency drifts of ECUs could be determined. To this
end, the recorded cyclic in-car communication data was evaluated using CAPL
and CANoe. The statechart depicted in figure 4.8 resembles the functionality of
the CAPL routine for determination of individual ECU frequency drifts.
Every incoming CAN message is inspected and it is determined whether it is
the first message recorded of a particular type. If so, the CAN identifier and the
expected cycle time are written to an external file. The cycle time of each message
is available from a communication database. Subsequently, and also for every
message of same type arriving consecutively to the first message, the timestamp of
data recording is determined and an integer-valued receive counter is incremented.
Figure 4.9 shows a screenshot of an output file as generated by the CAPL routine
for evaluation of recorded communication data. The receive counter, the time-
stamp of reception, the time difference to the last received message of same type
and the CAN identifier are written to the file. When the measurement stops, a
summary is generated, containing start time and stop time of the measurement,
from which the elapsed time in the data logger is computed. The number of
recorded messages times the dedicated cycle time yields the target time span

35

4 Prototype Measurements of In-Car Data Transmission

which should have elapsed if no frequency drift is present at the data logger and
the ECUs. The elapsed time in the data logger and the expectable target time allow
for a determination of the timing error of the measurement. In the example the
outcome is +0.027389 s, which means that more time has elapsed than expected.
From this information, the frequency drift of the ECU sending the recorded mes-
sage can be determined directly. For some exemplary ECUs, table 4.1 provides
timing information for the actual measurements and the resulting frequency drift
in the rightmost column.

wait for message

extract timestamp read cycle time

receive-counter += 1

write timestamp and
counter to log-file

identify message

first
msg?

no

process message

on message

start stop

read message ID
yes

Figure 4.8: Statechart for Determination of ECU Frequency Drift

36

4.4 Measurement Studies of In-Car Communication

Fi
gu

re
4.

9:
C

A
PL

O
ut

pu
tF

ile
fo

rE
C

U
Fr

eq
ue

nc
y

D
ri

ft
E

va
lu

at
io

n

37

4 Prototype Measurements of In-Car Data Transmission

Ta
bl

e
4.

1:
Fr

eq
ue

nc
y

D
ri

ft
E

va
lu

at
io

n
fo

rE
xe

m
pl

ar
y

E
C

U
s

E
C

U
St

ar
tT

im
e

(s
)

St
op

Ti
m

e
(s

)
A

ct
ua

lT
im

e
(s

)
Ta

rg
et

Ti
m

e
(s

)
D

ri
ft

(p
pm

)
C

C
O

D
LI

II
0.

58
88

56
41

14
.6

19
79

2
41

14
.0

30
93

6
41

14
.0

00
00

0
+

7.
51

96
88

A
ir

ba
g

12
09

0.
01

17
52

14
18

9.
98

91
41

20
99

.9
77

38
9

20
99

.9
50

00
0

+1
3.

04
26

91
Pa

rk
.B

ra
ke

12
09

0.
00

78
79

14
18

9.
99

49
61

20
99

.9
87

08
2

20
95

.2
00

00
0

+2
28

4.
78

52
23

E
SP

12
09

0.
00

83
47

14
18

9.
99

68
95

20
99

.9
88

54
8

21
00

.1
10

00
0

-5
7.

83
12

64
G

ea
rb

ox
12

09
0.

00
02

65
14

18
9.

99
72

66
20

99
.9

97
00

1
20

99
.9

80
00

0
+8

.0
95

79
1

E
l.

St
ee

ri
ng

12
09

0.
00

16
44

14
18

9.
99

79
71

20
99

.9
96

32
7

21
00

.1
80

00
0

-8
7.

45
58

37
E

ng
in

e
12

09
0.

00
57

10
14

18
9.

99
42

34
20

99
.9

88
52

4
20

99
.9

40
00

0
+2

3.
10

73
27

V
is

io
n

12
09

0.
02

87
05

14
18

9.
93

11
74

20
99

.9
02

46
9

21
00

.1
60

00
0

-1
22

.6
24

46
6

R
ev

.B
el

tL
12

09
0.

03
57

19
14

18
9.

91
94

65
20

99
.8

83
74

6
20

99
.9

00
00

0
-7

.7
40

36
8

R
ev

.B
el

tR
12

09
0.

03
44

13
14

18
9.

91
92

21
20

99
.8

84
80

8
20

99
.9

00
00

0
-7

.2
34

63
0

L
C

A
12

09
0.

01
84

71
14

18
9.

99
61

64
20

99
.9

77
69

3
20

99
.7

20
00

0
+1

22
.7

27
31

6

38

4.4 Measurement Studies of In-Car Communication

4.4.2 Durations and Distributions of CAN ECU Startup Times

In [29], analytical upper bounds were derived for delays in a CAN bus system with
priority-based media access, under the assumption of the worst-case scenario of a
bus-wide synchronous communication startup of all ECUs. The simultaneous start
of data transmission yields the maximum number of collisions at media access
and thus the maximum waiting times for ECUs to transmit a message.
However, in real operation, the startup phases of different ECUs might vary signif-
icantly and the analytically computed worst-case is a valid, but rarely occurring,
event in daily operation of the vehicle. The duration of ECU startup phases de-
pends on the performance of the processor, the complexity of internal software
routines, the extent of internal and external diagnosis tasks, the charge of capaci-
tors and several other aspects.
A methodic approach to obtain realistic use-case values for CAN communication
startup phase durations, and in turn the implicit schedule of media access, is
presented in the following.

Clamp-15 and Clamp-30 ECUs

According to the strategy of power supply and wakeup capabilities, automotive
controllers can basically be divided into ECUs which are able to start operation
directly from the supply voltage of the battery (clamp-30 ECU) and ECUs which
operate only if the ignition switch of the car is activated by the ignition key (clamp-
15 ECU).
While clamp-15 ECU startups are directly related to an engaged ignition switch,
clamp-30 ECU startups involve a sophisticated network management (NM) by the
gateway. This includes monitoring of timers for wakeup, sleep and wait-bus-sleep
(WBS) modes of ECUs, sending of NM messages and several other aspects. Figure
4.10 illustrates the process of shutting down a clamp-30 ECU. When the gateway
stops periodic sending of NM messages, the ECUs change to the sleep mode
if during a two-phase timeout period no further NM messages are received. A
meaningful detection of clamp-30 startups requires a detailed inspection of the
NM message content and the respective states of timers and timeouts.

39

4 Prototype Measurements of In-Car Data Transmission

�
.7�������

�	�.���������

����������� ���
��������

���7��
���������

���&�.��
�����

�������.��
����� �����

�

Figure 4.10: Change to Sleep Mode of Clamp-30 ECU

Data Evaluation Strategy

Knowing the startup phases, it is possible to evaluate the behavior of individual
ECUs regarding the duration from activating the controller (either by clamp-15 or
clamp-30) until the ECU is ready to communicate with other ECUs. In addition,
the single controller startup phases add up to a general view on the CAN bus
system with respect to the probability of simultaneous communication startups
and collisions at media access.
In order to obtain data samples for both clamp-15 ECUs and clamp-30 ECUs,
it was made use of the network management information as transmitted by the
gateway for clamp-30 ECUs and of the analogue signal representing an active
clamp-15 at an engaged ignition switch. The statechart in figure 4.11 depicts the
logical structure of the implemented CAPL routines. Basically, it is waited for any
CAN message on the bus when starting the measurement. In the process_message
state, it is determined for an incoming message whether it was sent by a clamp-
15 ECU or a clamp-30 ECU. In case of an active clamp-15, the wakeup can
directly be computed by tracking the timestamp of the first message received
from the respective ECU. In case of clamp-30, the actual state of the network
management must be incorporated, which means checking for any non-expired
wakeup- or sleep-timeouts, setting of new timers, or logging the time instance
of a CAN messages from a clamp-30 ECU. The process is automated in a sense,
as it examines the whole CAN bus data traffic until for each ECU, regardless of
its power supply strategy, a first CAN data message was detected and the actual
duration of the controller startup phase could be determined.

40

4.4 Measurement Studies of In-Car Communication

����.���
7������

+* ��7����8@�.��7����

�����
�� ���

���
��� �����

�����
�� ����

������
��!�����

��
"�������

�� 8@�.��7
���� �� +*.��7����

�� 7������

�����"��
��� #$"���

�����
��"��� ��� ������

������
��"�����

������
��
"�����

�����
��"�����

�������
�� ����

�����
�� ����

���

���

��

��

���

���

��

��

��

���

�������.7������

����� ����

Figure 4.11: Statechart for Determination of ECU Startup Durations

Measurement Data Analyses

A total of 221 prototype measurement cycles were conducted and 2358 data sam-
ples for durations of ECU communication startup phases were obtained for the 22
active CAN ECUs.
The startup duration is defined as the time span from initiation of in-car communi-
cation to the point of time, when the respective controller booted up completely
and sent a first CAN frame. For clamp-30, the start of communication is initiated
by NM from the gateway, e.g. waking up the door control ECU when the central
locking receives an open signal from the driver’s remote control. For clamp-15,
communication starts by manual engaging of the ignition switch. For some exem-
plary ECUs, values for minimum, mean and maximum startup durations are listed
in table 4.2.

An ECU is expected to comply with certain constraints of communication. For
example, other ECUs expect to receive CAN data before a maximum time after
activation of clamp-15 or clamp-30 has passed. To assess, whether any ECU
violates such bus-wide communication dependencies after startup, the startup time

41

4 Prototype Measurements of In-Car Data Transmission

Table 4.2: Communication Startup Durations for ECUs
Startup Duration (ms)

ECU Clamp Minimum Mean Maximum
Airbag 15 112 122 131
Body Computer 30 9 23 73
Engine 15 39 74 82
Door Control 30 11 21 102
ESP 15 19 62 79
Rev. Belt 15 162 164 167
LCA 15 247 250 252
Gearbox 30 121 157 167

durations as denoted in table 4.2 are valuable information about communication
behavior.
Keeping in mind the priority-based CAN media access, the results from table 4.2
can also be used to derive an estimation, whether two or more ECUs typically
wakeup close to each other or whether intervals of individual wakeup times are
likely to overlap, yielding increased probabilities for collisions in these time
frames. If critical constellations can be identified, the gateway might engage in
the startup process of clamp-30 ECUs via network management. For clamp-15
ECUs, the startup durations might be adapted – speeded up or delayed – internally
before startup.
The type of the distribution of measured startup durations, as well as relevant
distribution-specific parameters, were evaluated using ExpertFit®. Statistical eval-
uation was performed for all ECU startup times which were measured, exemplary
results and graphics are provided for the Airbag ECU (Airbag), the Lane Change
Assist ECU (LCA) and the Reversible Belt Tensioner ECU (RBT). The probability
distribution functions that fit best to the measured data samples are a Log-Logistic
distribution for the Airbag, a Weibull distribution for the startup behavior of the
LCA and a Random Walk distribution for the RBT, respectively.
Table 4.3 lists all relevant distribution parameters as computed by ExpertFit®. For
the Airbag, 316 measurements from the real system were available. Note that the
number of 221 observations for the LCA complies with the number of conducted
prototype measurement cycles for this particular ECU as well as the RBT. As the
RBT is installed two times in the vehicle - for the front seats on the left and on

42

4.4 Measurement Studies of In-Car Communication

Table 4.3: ExpertFit® Evaluation of ECU Startup Durations
Log-Logistic Weibull Random Walk

Parameter (Airbag) (LCA) (RBT)
Observations 316 221 442
Minimum (ms) 120.06 247.50 161.76
Maximum (ms) 130.16 252.38 166.75
Mean (ms) 123.20 250.40 164.03
Median (ms) 123.19 250.48 164.05
Variance (ms) 16.4544e-7 9.48239e-7 8.13686e-7
Coeff. of Variation 1.041e-2 3.88883e-3 5.49934e-3
Skewness 0.41683 -0.56557 -0.07891

the right - 442 observations were obtained, i.e. 221 for each RBT. In addition to
the minimum, mean and maximum values for the set of measured data, as already
provided by table 4.2, the moments of higher order, like variance and skewness,
are included in table 4.3.

In figures 4.12, 4.13 and 4.14, so-called frequency-comparison plots as generated
by ExpertFit® are shown for evaluation of Airbag, LCA and RBT, respectively.
The height of the blue bars resembles the proportion of measured data around a
certain numeric value for startup duration. The red bars depict the corresponding
proportion of samples from the suggested probability distribution. Hence, the
smaller the deviation between a pair of blue and red bars, the better resembles the
suggested distribution the actual behavior of measurement data. Obviously, the
distributions resemble the nature of the real-life measurement data closely.

4.4.3 Cycle Time Jitter of CAN Messages

The priority-based CAN media access is a potential source of delay. Whenever two
or more ECUs attempt the bus simultaneously, the ECUs trying to send messages
with lower priorities than the currently highest one have to retreat from sending
and wait for an idle bus. Generalizing from the particular case of simultaneous
media access to a wide range of typical scenarios in CAN data transmission,
messages of rather low CAN priorities should more often be prone to lose bus
arbitration than high priority CAN messages. To reveal this effect, investigating

43

4 Prototype Measurements of In-Car Data Transmission

Figure 4.12: Measurement Data Analysis (Airbag)

Figure 4.13: Measurement Data Analysis (LCA)

the transmission timing of cyclic CAN messages of different priorities, sent from
one ECU, is a promising approach for several reasons:

• Cyclic sent messages ideally appear on the bus according to the sending cy-
cle, i.e. the interarrival time between two consecutive instances of messages
of a certain CAN priority is equal to the cycle time.

44

4.4 Measurement Studies of In-Car Communication

Figure 4.14: Measurement Data Analysis (RBT)

• Any deviation in interarrival times is either caused by an inaccurate con-
troller timing, the frequency drift, or by varying delays at media access, i.e.
the actual time, when the next message of same type can be transmitted on
the bus.

• As stated beforehand, different ECUs exhibit differences in frequency drift.
Thus, interarrival times of messages from various ECUs cannot be compared
directly to figure out CSMA/BA effects. However, messages from the same
ECU experience the same inaccuracy of the controller quartz. Hence, the
frequency drift can be seen as a constant factor and these messages can be
compared directly.

• Consequently, any deviation in cycle times for messages from one ECU
must be caused by a varying delay at CAN media access.

• Messages of higher (or highest) CAN priority are expected to show minor
deviations – jitter – in cycle times, as the ECU should be able to transmit
them directly, except for at most one period of non-preemption.

• Messages of lower (or lowest) CAN priority are more likely to be subject
to significant deviations in interarrival times. Besides direct transmission
to an idle bus – resembling exactly the cycle time between to consecutive

45

4 Prototype Measurements of In-Car Data Transmission

messages – constellations can arise, where several higher priority messages
are transmitted before. This prolongates the interarrival time and yields
a positive jitter, whereas a shorter time gap to the appearance of the next
message, e.g. if the bus is by then idle again, leads to a negative jitter.

These assumptions could be validated by measurements from the real-life proto-
type vehicle. The histograms in figures 4.15 and 4.16 depict the distributions of
interarrival times for a high priority CAN message with CAN-ID 64 and 50 ms
cycle time and a low priority CAN message with CAN-ID 1408 and a cycle time
of 200 ms, respectively. Both messages are sent by the same ECU. The measured
interarrival times are depicted in seconds on the x-axis. The values were obtained
by evaluating the timestamps of each two consecutively sent messages of same
type. Determining the time span between these messages yields the effective
message cycle or interarrival time. The number of measured values for each cycle
time along the x-axis is depicted on the y-axis.
Obviously, the histogram in figure 4.15 is significantly narrower than the one in
figure 4.16. The concentration of values around the cycle time of 50 ms for the
high priority CAN message indicates less constellations with non-performable
direct bus access. The histogram for the low priority CAN message shows a wider
range of measured interarrival times. These deviations strengthen the assumption
that a rather low priority CAN frame will considerably more often be subject to
a loss of media access than a high priority CAN message. This is emphasized
by incorporating the standard deviation of cycle times for both sets of measured
data samples, which is 0.121203 ms for the high priority CAN message and with
0.332465 ms almost three times higher for the low priority CAN message.

4.4.4 Routing Delay in Central Gateway

In an in-car communication system composed of several bus systems and tens of
electronic devices, the dependencies in data exchange between various ECUs are
likely to span across the borders of local buses. As in any other communication
network, a gateway serves as central node, which is capable of interconnecting
the various, technologically different bus segments and of routing of messages.
For many networked applications, the real-time capabilities of the gateway in
terms of routing delays and timeliness of data transfer are a crucial factor for the
overall function performance. As motivated for time-critical precrash data transfer

46

4.4 Measurement Studies of In-Car Communication

Figure 4.15: Distribution of Cycle Times for High Priority CAN Message

Figure 4.16: Distribution of Cycle Times for Low Priority CAN Message

in chapter 1, the delay between sensing a dangerous situation, sending the infor-
mation and receiving and appropriate reacting to the threat strongly determines
the efficiency of any precrash means. As the following investigations clearly point
out, routing of data is a potential bottleneck in an end-to-end communication

47

scenario of networked ECUs and distributed applications.

4 Prototype Measurements of In-Car Data Transmission

Routing Dependencies and Communication Parameters

From the 5 CAN bus segments and the FlexRay bus in the prototype vehicle,
bidirectional routing dependencies were determined between 5 of the overall
28 ECUs on the buses CAN1, CAN2 and FlexRay. Namely, the ECUs which
are assumed to exchange data for safety-relevant applications are: Engine ECU
(Engine), Airbag ECU (Airbag), Lane Change Assist ECU (LCA), Adaptive Cruise
Control ECU (ACC) and Electronic Stability Program ECU (ESP). Figure 4.17
shows the respective parts of the topology of the in-car communication system.

FlexRay

CAN2CAN1

Gateway

ACC

Airbag LCAEngine

ESP

FlexRay � CAN2FlexRay � CAN1

CAN1 � CAN2

Figure 4.17: Safety-Relevant Data Exchange between ECUs in the Network

Obviously, routing is performed by the gateway for three different constellations:
from CAN to CAN (1), from CAN to FlexRay (2) and from FlexRay to CAN
(3). The aspects which are expected to be relevant for the routing delay are the
waiting time for CSMA/BA media access for a CAN message of certain priority

48

4.4 Measurement Studies of In-Car Communication

Table 4.4: Communication Parameters of Safety-Relevant Messages
CAN CAN FlexRay

Name #msg ID Cycle (ms) Cycle (ms)
ACC_01 26897 803 40 40
Airbag_01 21564 64 50 5
Airbag_02 5393 1312 200 −
ESP_01 53834 256 20 20
ESP_02 26919 776 40 40
Engine_01 107980 128 10 5
Engine_02 107982 261 10 5
LCA_01 26903 783 40 20
LCA_02 26907 788 40 20
LCA_03 26903 802 40 −

in (1) and (3) and the delay from the point of time when data is ready to be sent to
FlexRay by the gateway until the next dedicated time slot begins in (2). Several
messages were picked out for a determination of routing delay. Table 4.4 presents
the message parameters and has to be read as follows:

• Name is the descriptive name of the message, composed of the sending
ECU plus a unique number for each message.

• #msg is the number of messages recorded in order to determine the routing
delay.

• CAN ID is the CAN identifier of a message which is sent from or to a CAN
bus.

• CAN Cycle (ms) is the cycle in which the message is periodically sent on a
CAN bus.

• FlexRay Cycle (ms) is the time between consecutive TDMA time slots to
send the message.

The CAN-IDs are network-wide assigned uniquely to a message, a message from a
CAN bus retains its ID on every other CAN segment and a message from FlexRay
is assigned the same CAN-ID for every CAN bus it is routed to. If a message is
routed from FlexRay to a CAN bus, the cycle in which the message appears on

49

4 Prototype Measurements of In-Car Data Transmission

the sink bus is determined by the TDMA cycle time, as the gateway just tries to
forward the message as it receives it. The other way round, the TDMA cycle time
for a message which is routed from a CAN bus to FlexRay is typically chosen
such that the waiting time for the gateway’s next TDMA time slot is as short as
possible. One practical approach is to chose half of the initial CAN cycle1, e.g. as
done for the messages Engine_01, Engine_02, LCA_01 and LCA_02. If a
message contains profoundly time- and safety-critical information, even shorter
TDMA cycle times can be chosen to minimize the routing delay, e.g. as done for
Airbag_01 with a 5 ms FlexRay cycle.

Data Evaluation Strategy

The delay of a message was determined according to the evaluation strategy as
described by the statechart in figure 4.18.

The basic information is derived from the timestamps the data logger assigns to
each recorded message. A particular message, which is routed from a source
to a sink bus, will appear two times in the log-files of the data logger. First,
when it is transmitted from the source bus to the gateway and second, when
the gateway transmits the message to the destination bus. Each of the recorded
instances of the message is provided with a timestamp. This allows to determine
the routing delay directly by subtracting the time for sending the message on the
source bus from the time for transmission from the gateway to the sink bus. As a
message can not arrive on the destination bus before it was sent on the source bus,
this approach yields reasonable results for any source/sink-pair of consecutively
appearing messages.

Measurement Data Analyses

Various important aspects of routing in automotive ECU networks are emphasized
by the results in table 4.5. The mean and maximum routing delays are denoted in
a column-wise style according to "source ⇒ sink". An entry of "-" indicates that

1If the FlexRay cycle is 1/n-th of the CAN cycle, the same message is sent n times from the
gateway to the sink bus. The first time it is sent, a bit indicates new data content, the following
n−1 times, the gateway sets the bit such that it indicates repeated data.

50

4.4 Measurement Studies of In-Car Communication

����.���.7������

�$�����.��7����7�

�����O��������.Q.��

���������.&����

�����O���������.;Q.�

�����.&����.��.��������

�&������.7������

�$�����.��7����7�

�����O��������.Q.���

�����O���������.;Q.�

������T
���GT �����O�&T�����O�&T

���

����

������ ���G

�������.7������

��.7������

����� ����

Figure 4.18: Statechart for Routing Delay Evaluation

the message is not routed in the scenario described by the column. Depending
on the busload of the sink CAN bus and the number of messages with higher
priority, the CSMA/BA media access might be significantly delayed if the mes-
sage has a rather low priority. For example, routing the message Airbag_02
with CAN-ID 1312 from CAN1 to CAN2 takes an average/maximum time of
4.56 ms/11.01 ms, whereas routing the message Airbag_01 with CAN-ID 64
takes only 0.42 ms/1.16 ms on average/maximum. The same holds for routing the
messages ACC_01 and ESP_01 from FlexRay to CAN1, with average/maximum
delays of 1.37 ms/3.50 ms and 1.34 ms/2.65 ms, respectively.
Another considerable issue is the delay a message might experience at routing
to the TDMA-based FlexRay. An ECU is only allowed to access the bus in its
dedicated time slot in the static segment of a FlexRay cycle. If the data to be
sent is available when the time slot begins, it can be transmitted straight in the
current time slot. Otherwise, the ECU has to wait for the next time slot, which
might take as far as one cycle time. Actually, this leads to a remarkable delay in
message transfer. This effect becomes obvious for the messages Airbag_01,

51

4 Prototype Measurements of In-Car Data Transmission

Engine_01, Engine_02, LCA_01 and LCA_02, where the routing delay
from the buses CAN1 and CAN2 to FlexRay is in the range from half a TDMA
cycle time on average, up to a complete TDMA cycle for maximum routing de-
lay. As the efficiency of time- and safety-critical applications might significantly
decrease within a few milliseconds, such routing delays can be of considerable
impact on the overall application performance.

52

4.4 Measurement Studies of In-Car Communication

Ta
bl

e
4.

5:
D

el
ay

s
fo

rR
ou

tin
g

of
Sa

fe
ty

-R
el

ev
an

tM
es

sa
ge

s
M

ea
n/

M
ax

im
um

R
ou

tin
g

D
el

ay
s

(m
s)

C
A

N
1

C
A

N
2

Fl
ex

R
ay

C
A

N
1

Fl
ex

R
ay

C
A

N
2

M
es

sa
ge

⇓
⇓

⇓
⇓

⇓
⇓

C
A

N
2

C
A

N
1

C
A

N
1

Fl
ex

R
ay

C
A

N
2

Fl
ex

R
ay

A
C
C
_
0
1

−
−

1.
37

/3
.5

0
−

1.
27

/3
.3

3
−

A
i
r
b
a
g
_
0
1

0.
42

/1
.1

6
−

−
4.

49
/5

.0
0

−
−

A
i
r
b
a
g
_
0
2

4.
56

/1
1.

01
−

−
−

−
−

E
S
P
_
0
1

−
−

1.
34

/2
.6

5
−

1.
30

/1
.8

8
−

E
S
P
_
0
2

−
−

−
−

1.
34

/2
.2

9
−

E
n
g
i
n
e
_
0
1

−
−

−
3.

45
/5

.0
0

−
−

E
n
g
i
n
e
_
0
2

0.
41

/2
.0

7
−

−
3.

42
/5

.0
0

−
−

L
C
A
_
0
1

−
−

−
−

−
10

.6
0/

20
.0

0
L
C
A
_
0
2

−
−

−
−

−
10

.0
7/

20
.0

0
L
C
A
_
0
3

−
0.

53
/3

.1
1

−
−

−
−

53

4 Prototype Measurements of In-Car Data Transmission

4.5 Discussion of Prototype Measurements and
Data Evaluation Results

The prototype measurements as presented in this chapter are an important part
of performance evaluation of up-to-date and future in-car data transmission. The
measurement infrastructure is composed of both commonly employed hardware
devices and widespread automotive software tools. Thus, researchers and respon-
sible engineers are provided with the ability to make use of well-known and easily
adaptable technologies for investigations on a broad variety of aspects and "hot
topics" in future networked safety systems. To assure this, hardware configuration
and software parameterization are kept modular, maintainable and intuitive, which
allows for an straightforward employment of the measurement infrastructure in
various other prototype vehicle configurations.
The actual choice of performance measures was strongly influenced by the real-
time demands of networked safety applications. Both the ECUs incorporated
in these distributed safety functions and the underlying communication infras-
tructure contribute to the performance of time-critical data transfer and in turn
to the overall application performance. ECU-dependent performance measures –
startup duration and controller frequency drift – were derived from the recorded
communication data as well as measures which are more related to the network
topology, namely cycle time jitter and routing delay.
As a matter of fact, the single measures cannot be seen isolated from other out-
comes, moreover, there are interdependencies as the effects are influencing each
other. For example, from ECU startup durations constellations might emerge with
considerable CSMA/BA collisions at media access, which is in turn leading to
increased cycle time jitter at ECUs or significant routing delay at the gateway,
especially for lower CAN priorities.
The prototype measurements have shown that effects, which are discussed theoret-
ically, are really physically present in the communication network of a modern
vehicle. As a summary, the following peculiarities and pitfalls in in-car ECU
communication could be revealed:

• Frequency drift in the ECU controller quartzes varies significantly between
different ECUs. In the long-run of system operation, this inaccuracy in
controller timing leads to undesired side-effects in cyclic communication,

54

4.5 Discussion of Prototype Measurements and Data Evaluation Results

CAN media accesses and, as a consequence, increased CSMA/BA delays.

• The startup durations of CAN ECUs are also subject to considerable varia-
tion from one ECU to the other. At first glance, this weakens the worst-case
assumption of a bus-wide simultaneous CAN ECU transmission start for
real-life operation. However, several other problems might arise from actual
startup durations, like communication timeouts due to excessive controller
booting periods or unpredictable, significantly varying startup time spans.

• The cycle time jitter is an important indicator for losses in CAN media
access. Incorporating messages from one ECU, experiencing the same
frequency drift, allows for a straightforward and reasonable identification
of the influence of the CAN-ID on priority-based media access.

• The gateway is the central node in the communication system. Depending
on the priority of data routed to a CAN bus or depending on the TDMA
cycle time of messages to FlexRay, the routing delays vary significantly.
The evaluation results show that the delays for routing of a low priority
CAN message may be about a factor of ten times higher than for high
priority data. For FlexRay, the common-sense assumption of a waiting time
of half a TDMA cycle in the mean and a complete cycle time at maximum
could be validated.

Finally, the performed prototype measurements allow for determination of several
system parameters, which are either inaccurately specified or completely unavail-
able from technical specifications of ECUs. The frequency drift of the controller
quartz and the actual ECU startup durations are important measures in a system
of distributed safety applications. As shown in the following, these measured data
samples are valuable input parameters for simulation of the in-car communication
system. They strongly contribute to a realistic modeling of the stochastic and
dynamic behavior of an ECU network.

55

e.g. mismatching of FlexRay TDMA slots or burst-like concentration of

5 Discrete Event Simulation of
In-Car Data Transmission

In this chapter, an approach is presented to investigate the so-called use-case,
which resembles the typical real-life behavior of an automotive in-car communi-
cation system. By means of statechart modeling and discrete event simulation, the
dynamic behavior of the network can be captured appropriately. Research results
and application studies were published in [21] and [20].

5.1 Motivation

Just as in various other application domains of networking, automotive commu-
nication systems in modern cars are permanently increasing in both size and
complexity. Thus, performance evaluation of such a complicated network of tens
of ECUs and distributed applications becomes an inevitable task of system design.
As shown in the previous chapter, prototype measurements are a reasonable way
to generate important measures on the individual performance of ECUs and on
the capabilities of the communication system. However, measurements require
physically present systems – bus systems, ECUs and, of course, test cars. Con-
sequently, real-life measurements and tests must be performed either late in the
development process, e.g. shortly before putting a model to serial operation, or in
parallel to standard development as some kind of "engineering playground" for
new concepts or technologies.
A paradigm, that has been widely deployed in various domains and that allows to
investigate system behavior at an early stage of the design process, is simulation.
The idea of simulation is to resemble the structure and the dynamic behavior of the
system, to simulate its operation and to collect meaningful performance measures
during the simulation runs. Depending on the actual scope of the simulation and

57

5 Discrete Event Simulation of In-Car Data Transmission

the complexity of the system, the level of detail in modeling may be arbitrarily
high. It can range from an almost complete resemblance of real-life instances to
a very coarse modeling, restricted to basic components and behavioral patterns.
Several simulation tools and libraries for well-known programing languages are
available for an ease of modeling and simulation.
The main advantage of simulation is that the model is not necessarily related to the
physical presence of the system which is to be simulated. This makes simulation,
in most cases, cheaper, faster and less manpower-consuming than test campaigns
and measurement studies. In addition, structural changes in the simulation model
often require only minor, programmatic changes, compared to time-consuming
reconfigurations in a real-life system.
A reasonable simulation study requires an appropriate input modeling, either as
external stimuli to the system, e.g. arriving customers or data, or as stochastically
captured patterns in behavior of the components, like ECU startup durations or
processor failure rates. Furthermore, a simulation control should be applied to
assure the statistical relevance of the outcomes by replication of single simulation
runs and intensive variation of stochastical model parameters. Incorporating all
this, simulation is particularly suited to generate trustworthy outcomes for dy-
namic system operation and to support basic design decisions at an early stage of
the development process.

5.2 Discrete Event Simulation

The choice of the simulation paradigm is one of the very first steps in building a
simulation model. Assuming that operation of a system is to be resembled as it
evolves over time, there are two basic timing concepts possible: continuous time
simulation or discrete event simulation (or, as a combination of both, so-called
hybrid simulation approaches). In a continuous time simulation, the system’s
components and variables are typically described by mathematical formulas, e.g.
differential equations, which are evolving continuously over time, i.e. in timesteps
with a – theoretically infinitely – high granularity.
Discrete event simulation does not employ a constant advance in timing. The
dynamics and actions in a model are described as events, for which the execution
time is determined, i.e. the system time, when the event is to be performed and
all system states related to the execution of this particular event are to be updated.

58

5.3 AnyLogic™

Consequently, the system advances not continuously in time, but from one event
to the next. Typically, these events are managed in an event-list, depending on the
actual execution times, the time spans between two events may vary as depicted
in figure 5.1.

t

Ev
en

t 1

Ev
en

t 2

Ev
en

t 3

Ev
en

t 4

Ev
en

t 5

Ev
en

t 6

Ev
en

t 7

t1 t2 t3 t4 t5 t6 t7

Figure 5.1: Event-based Progress in Simulation

As an example for a hybrid model containing both continuous time and discrete
event simulation, just think of oil tankers arriving at a harbor for unloading of
oil. The tankers arrive one after the other, thus the number of tankers at the dock
changes discretely with every new arrival. To resemble this, an event list may
contain the points of time when the next tanker will arrive. However, once the
unloading process is started, the filling of oil within a particular tanker decreases
continuously over time, which is best described by continuous time differential
equations. As both paradigms, continuous and discrete, are employed in this
model, it is of hybrid character [36].

5.3 AnyLogic™

The modeling tool AnyLogic™ [64] was used to build a simulation model of data
transfer in the in-car communication system. AnyLogic™ supports discrete event
simulation in combination with UML statecharts. The relevant system components
are modeled as so-called active objects. These objects implement the functional
and dynamic behavior of the respective instances of the real-world system. An
active object is able to communicate with other objects by sending messages via
ports. Figure 5.2 shows a screenshot of the AnyLogic™ modeling environment,
together with a cascaded depiction of an active object, its variables, statechart and
Java™ source code for behavioral description.

59

5 Discrete Event Simulation of In-Car Data Transmission

Figure 5.2: Screenshot of AnyLogic™ Modeling Environment

5.4 Modeling Elements for Simulation of In-Car
Data Transmission

In this section, the modeling elements are presented, which were created in order
to resemble the basic components of a modern automotive communication system,
namely message objects for CAN frames and FlexRay protocol data units (PDUs),
CAN bus, FlexRay and an automotive gateway.

5.4.1 Message Objects

Message objects are the central instances of port-based data exchange between
active objects in the simulation model, inheriting from the Java™ class Object.
A message object may contain several information of various data types, which
are accessed from outside in the commonly known "."-notation. For example,
the fictitious message object class exampleObject provides the following
information:

60

5.4 Modeling Elements for Simulation of In-Car Data Transmission

• exampleObject.name returns a string variable bearing the name of the
object.

• exampleObject.counter contains an integer-valued counter variable,
indicating that the current message object is the n-th instance created of this
particular type.

• exampleObject.timeCreated returns a double variable containing
information on the point of system time when the actual message object
was created in the simulation model.

Several types of message objects can be included in the model in parallel, each of
those representing an own sub-class of Object. Standard or extended construc-
tors allow for generation of new instances of the message object class according
to

messageObject exampleObject = new messageObject()

Numerous messages of varying type may be "physically present" in the simulation.
Messages which are no longer needed are automatically deleted by the Java™
garbage collection.
As the simulation model resembles the structure and behavior of data transmission
in an in-car communication system, it appears to be worthwhile to make use of
message objects to model the central data transfer instances, namely CAN frames
and FlexRay PDUs.

CAN Frame

A CAN frame in the simulation is resembled by a can_msg message object. The
message object contains more information than included in the header-, payload-
and trailer-fields of a real CAN frame as presented in chapter 3. Table 5.1 lists the
variables of this message object. As shown later in this chapter, the size of each
CAN frame is assumed as the maximum value of 130 bits, with additional 6 bits
for carrier-sense phase at CSMA/BA media access.

61

5 Discrete Event Simulation of In-Car Data Transmission

Table 5.1: Variables of a CAN Frame Message Object
Variable Data Type Description
name string Descriptive name of the message
ID integer CAN-ID of the message
cycle double CAN cycle time in milliseconds
sender string Name of ECU sending the message
timeCreated double System time of message creation
timeAccess double System time of CAN media access
timeTransmitted double System time of end-to-end transfer

FlexRay PDU

In the simulation model, the message object class fr_pdu is the equivalent to
real-world FlexRay PDUs, in which the actual payload within a FlexRay frame is
packaged. Table 5.2 provides information on the variables an fr_pdu contains.

Table 5.2: Variables of a FlexRay PDU Message Object
Variable Data Type Description
name string Descriptive name of the message
sender string Name of ECU sending the message
length integer Payload size in bytes
timeCreated double System time of message creation
timeTransmitted double System time of end-to-end transfer

5.4.2 CAN

The simulation model of the CAN communication system consists of two top-level
building blocks as shown in figure 5.3, namely the CAN ECU and the CAN Bus.
The stacked representation of the CAN ECU resembles that multiple instances
of this object type may be connected to the same bus. Communication between
the bus and the ECUs is performed in a twofold manner. The bus receives CAN
messages from the ECUs, processes them and transmits the data as broadcast. In

62

5.4 Modeling Elements for Simulation of In-Car Data Transmission

addition, the bus communicates its current state – idle or busy – to each connected
ECU.

CAN BusCAN ECU

Figure 5.3: Conceptual Top-Level View on CAN Communication

CAN ECU

A CAN ECU is implemented in the simulation model as one active object on
the top-level view. For an appropriate modeling of the ECU functionality, this
building block is subdivided into an operating system (ECU OS) and a CAN
communication controller (CAN CTRL) as depicted in figure 5.4.

ECU OS CAN CTRL

Figure 5.4: Structure of the CAN ECU Object

Operating System The real-life in-car network awakes upon an external
event, like releasing door locks by remote control or starting the engine via
the ignition switch. Triggered by such an event, software tasks of the operating
systems are activated and the ECU starts operation. In the simulation, this behavior
is captured by a transition, which performs the change from sleep into awake
mode as denoted in the statechart in figure 5.5.

As validated by the prototype measurements presented in chapter 4, the duration of
this startup phase varies between different ECUs and even for one ECU from one
activation cycle to the next. The actual startup duration for a particular ECU in one
simulation run must be determined, i.e. the timeout for the timed transition from

63

5 Discrete Event Simulation of In-Car Data Transmission

sleep awake cyclic_msg

Figure 5.5: CAN ECU Operating System Statechart

state sleep to state awake. To this end, an external file, providing information
on the minimum and maximum startup times for the respective ECU, is read in at
simulation start and a timeout value is sampled from an appropriate distribution.
Once this startup phase is over, the ECU is awake and the operating system
changes to state cyclic_msg, where cyclic CAN messages of type can_msg
are generated. Generation starts with an initial burst of all messages from the
respective ECU. The variables for each can_msg object from table 5.1 are initial-
ized accordingly. For every message, a timer from the Java™ class CycleTimer
is set to the CAN cycle time. As the timers expire one after the other, periodical
generation of messages is achieved in the following. The actual mechanism is
depicted in figure 5.6, for two ECUs with dedicated durations of startup phases
and cyclic CAN messages to be sent.

t

tECU2

ECU1

twakeup, ECU1

twakeup, ECU2

Figure 5.6: Cyclic Communication of CAN ECUs after Startup

Upon generation and initialization, the can_msg objects are passed from the
operating system to the CAN communication controller, which is in charge of
transmitting the messages to the CAN bus. This port-based message exchange is
indicated by the unidirectional transition between ECU OS and CAN CTRL in
figure 5.4.

64

5.4 Modeling Elements for Simulation of In-Car Data Transmission

CAN Controller The functionality of a CAN communication controller is
implemented in the CAN CTRL active object as shown in the statechart in figure
5.7. A CAN controller is responsible of transmitting and receiving CAN messages,
complying to the CSMA/BA media access scheme for bus arbitration and data
transmission. Initially, and also if no data is to be sent or received, the controller is
in the idle state. If no CAN message is to be sent and instead a message from any
other ECU is received via the bus, the controller changes into the receive state
and processes the incoming data. Especially, the variable timeTransmitted
of the received CAN message object will be set to the current simulation time,
indicating reception of data at the controller and hence accomplished data transfer.
Each cyclic CAN message generated by the ECU operating system is stored in
the controller object in a list. Messages are sorted by CAN-ID, with the lowest
ID on top of the list. Therefore, a hashing-based approach for data storage is
implemented in each CAN CTRL active object, with a sorted linked list of type
TreeMap from the Java™ class library java.util.
If the CAN bus is idle and the sorted list is non-empty, the controller changes
from idle to send state. It retrieves a copy of the topmost message object
from the list, sets the variable timeAccess to the current simulation time and
transmits the message. Afterwards, the controller proceeds into the cs_phase
state, waiting for what it receives from the bus. This approach abstracts from a
bit-by-bit bus arbitration mechanism, i.e. the CAN controller sends the complete
message and, as shown later, the CAN Bus object is responsible for determining
which message won the arbitration by evaluating CAN-ID and timestamp of media
access as set by the controller.

idle receive

sendcs_phase

evaluate

Figure 5.7: CAN Controller Statechart

After the carrier-sense phase, the bus broadcasts the message which has actually
won media access. The CAN controller receives this message and changes from
cs_phase state to evaluate state, in which the received data is compared to
the originally sent CAN message, thus, to the topmost object in the sorted list.

65

5 Discrete Event Simulation of In-Car Data Transmission

If the data are identical, the transmission was successful. The topmost object is
removed from the list and the controller proceeds back into the idle state.
If a CAN controller receives a message different from the one it originally transmit-
ted, its message did not win media access, either due to other messages of higher
priority or due to non-preemption of earlier started transmissions. In this case,
another copy of the same topmost message on the TreeMap is retrieved. The
variable timeAccess is set to the up-to-date system time and the controller en-
ters the idle state, retrying transmission of this particular message as soon as the
bus is idle again. This explains why only copies of the topmost object are retrieved
from the list until transmission was successful. Otherwise, the highest priority
data would be removed even though it might be needed for retransmission.

CAN Bus

The CSMA/BA mechanism and the transmission of messages is resembled in the
CAN Bus active object. The bus is capable of receiving data from the ECUs,
namely from the CAN controllers, and of transmitting messages as broadcast to
all connected ECUs. This functionality is depicted by the bidirectional transition
between CAN ECU objects and CAN BUS in figure 5.3.
In a real-life CAN bus system, each ECU is permanently listening to the com-
munication channel and detecting by its own whether the bus is idle or busy. In
the simulation model, the CAN Bus object is in charge of monitoring its state.
The current value – idle or busy – is communicated to all connected ECUs, which
are able to act accordingly in terms of sending to an idle bus or waiting when
the bus is busy, complying with non-preemption in CAN data transfer. The uni-
directional transition from CAN Bus to CAN ECU in figure 5.3 resembles this
communication. The bus state is broadcasted via simple message objects of type
state_msg, containing only one boolean variable state, which is set to "true"
for an idle bus and to "false" in case the bus is busy.
Figure 5.8 shows the statechart of the CAN Bus active object. If no data is to be
transmitted, the bus is in the idle state. As soon as a message arrives from any
of the ECUs, the bus changes from idle state to cs_phase state for 6 bit times
of carrier sensing. The message is put into a TreeMap, which is used for storing
the messages, sorted by CAN-ID, with lowest ID of highest priority on top of the
list. During the carrier-sense phase, the state of the bus remains idle, such that

66

5.4 Modeling Elements for Simulation of In-Car Data Transmission

other ECUs are able to transmit CAN messages to the bus, too. Along these 6 bit
times, all incoming messages are stored in the TreeMap.

idle

cs_phase busy

transmit

proc_msg

Figure 5.8: CAN Bus Statechart

Once the carrier-sense phase has elapsed, the bus changes from cs_phase state
to busy state instantaneously. The respective state_msg object is broadcasted
to all connected ECUs, which stop performing media access immediately. Entering
the proc_msg state, all messages which have been stored in the sorted list during
the carrier-sense phase are inspected. Obviously, the message with the lowest
CAN-ID, thus with highest priority, is placed on top of the list. However, this
message is not necessarily the one which was sent first during the 6 bit times of
carrier sensing. To resemble real-life non-preemptive data transmission in the
simulation model, the message with the oldest timestamp – with a time resolution
of 1 bit time – from all messages in the TreeMap is the arbitration winner.
The system time of media access, as denoted in the variable timeAccess of a
can_msg message object, of every single message in the sorted list is inspected.
The message with the oldest timestamp – the smallest value of the double variable
– is the winner of media access. In case two or more messages with an equal lowest
timestamp are in the TreeMap, i.e. messages which were sent simultaneously
from different ECUs, the one with the lowest CAN-ID, thus the highest priority,
wins the arbitration. For inspection of the stored CAN messages no system time
elapses, as the state transition from busy to proc_msg is implemented as a
timeless, immediate transition.
On change to the transmit state, the respective message is removed from
the sorted list and transmitted to all ECUs, which process the data as described
beforehand. As CAN messages are assumed to be of maximum length of 130 bit,
the timeout for the transition from proc_msg state to transmit state is chosen
according to the message length and the actual CAN data rate. For example, for a
500 kbps CAN bus, the timeout computes to 0.00026 seconds. After transmission

67

5 Discrete Event Simulation of In-Car Data Transmission

of the arbitration-winning message, the TreeMap is cleared for the next carrier-
sense phase and transmission cycle and the bus returns to the initial idle state.
Figure 5.9 is intended to clarify the non-preemptive priority queuing and bus
arbitration mechanism as implemented in the CAN Bus active object of the
simulation model.

CAN-ID: 789
taccess : 12.543000

CAN-ID: 789
taccess : 12.543000

CAN-ID: 64
taccess : 12.543006

CAN-ID: 685
taccess : 12.543012

CAN-ID: 1203
taccess : 12.543010

CAN-ID: 789
taccess : 12.543000

CAN-ID: 64
taccess : 12.543000

CAN-ID: 1203
taccess : 12.543000

CAN-ID: 789
taccess : 12.543000

CAN-ID: 64
taccess : 12.543000

CAN-ID: 1203
taccess : 12.543000

CAN-ID: 685
taccess : 12.543012

(1) earliest time � non-preemption (2) simultaneous access � lowest CAN-ID

t tt+tcs_phase t+tcs_phase

Figure 5.9: CSMA/BA Mechanism in the Simulation Model

Two scenarios are illustrated, namely non-preemption due to earliest start of trans-
mission in (1) and a CAN-ID-based success in bus arbitration for simultaneous
bus access in (2). The 6 bit time carrier-sense phase is assumed to be 0.000012
seconds for a 500 kbps CAN bus and the time annotations for bus access of the
stored and sorted messages are denoted in seconds. Modeling of message-wise
data transmission instead of processing bit-by-bit of a CAN message and the
accuracy of AnyLogic™’s timestamp information are combined and allow for
a reasonable and simulation-time-efficient resemblance of real-life CAN media
access and data transmission.

68

5.4 Modeling Elements for Simulation of In-Car Data Transmission

5.4.3 FlexRay

On the top-level view, FlexRay communication is modeled in analogy to CAN,
which means that several ECUs are connected to a serial bus for data exchange
(cf. figure 5.10).

FlexRay
Bus

FlexRay
ECU

Figure 5.10: Conceptual Top-Level View on FlexRay Communication

Again, a stacked representation is used for the FlexRay ECU object to indicate
that possibly more instances are connected to the same FlexRay Bus object. As
described for the FlexRay system architecture in chapter 3, the TDMA-based data
transmission scheme requires a global schedule, according to which media access
and data transfer are organized for each of the ECUs. In the simulation model,
the FlexRay Bus object is in charge of coordinating a global communication
schedule by means of triggering ECUs for sending of data appropriately and of
receiving and broadcasting messages.

Generation of FlexRay TDMA Schedule

For event-based CAN communication, each control unit itself is capable of appro-
priate behavior at media access in terms of carrier sensing, evaluation of bitwise
bus arbitration and sending of data. For the TDMA-based data transmission
at FlexRay, a more sophisticated organization of distributed communication is
indispensable. From chapter 3, it is obvious that FlexRay data transfer is arranged
in cycles, with each cycle containing a certain number of static and dynamic
slots and again, each slot carrying FlexRay PDUs. To store this manifold nested
communication information, the Java™ data type LinkedList from the class
library java.util is particularly suited. Figure 5.11 illustrates the program-
matic approach of storing the relevant schedule information by means of cascaded
linked lists. As highlighted in the graphic, the focus of FlexRay operation in the
simulation model is on PDU-wise data transmission in the static segment in the

69

5 Discrete Event Simulation of In-Car Data Transmission

TDMA schedule. The LinkedList objects containing the information on the
schedule are variables of the FlexRay Bus object.

cycle 0

slot 0 slot 1

static segment dynamic segment symbol window NIT

slot 0 slot 1

cycle n

slot n

slot n

frame header payload frame trailer

PDU 0 PDU 1 PDU n

cycle 1

Figure 5.11: Organization of FlexRay Communication with Linked Lists

FlexRay ECU

Following the approach of modeling a CAN ECU, a FlexRay ECU is modeled by
subdividing it internally into an active object representing the operating system
(ECU OS) and a FlexRay communication controller (FlexRay CTRL). Figure
5.12 depicts the internal structure of a FlexRay ECU object.

ECU OS FlexRay
CTRL

Figure 5.12: Structure of the FlexRay ECU Object

Operating System The same basic structure and behavior are employed for
the operating system of a FlexRay ECU as already presented for the operating
system of a CAN ECU in figure 5.5. The ECU OS object is capable of transferring
the ECU from sleep to awake and of cyclic generation of communication data.
An external file provides information on reasonable minimum and maximum

70

5.4 Modeling Elements for Simulation of In-Car Data Transmission

startup times for the respective ECU. The file is read in at start of a simulation run
and a timeout value for ECU startup is sampled appropriately.
Of course, the ECU OS object of a FlexRay ECU differs from the ECU OS object
of a CAN ECU as it generates message objects of type fr_pdu. Upon cyclic
generation, the variables name, sender, length and timeCreated of the
message objects are set accordingly. The ECU OS object contains a boolean
variable synchronized, to accommodate the basic variations in automotive
ECU operating system architectures:

• "true" resembles that tasks of the operating system can be synchronized to
the time base of the FlexRay communication controller in the ECU and thus
to the global time in the TDMA communication system, e.g. by employing
a time-triggered AUTOSAR architecture [5]. This approach results in a
rather short time gap between message generation in the operating system
and transmission in the next TDMA time slot.

• "false" is the setting for event-based allocation of information, asynchronous
to the communication schedule of the bus. This may result in a maximum
waiting time for transmission of the current fr_pdu object of asymp-
totically one complete FlexRay cycle time, in case the operating system
sends up-to-date data to the controller just when the current TDMA time
slot for transmission passed by. This common issue of ECU design for
TDMA-based communication can significantly effect the end-to-end trans-
mission delays due to the large time gap between data acquisition and data
transmission.

In general, this distinction is only necessary for a FlexRay ECU operating sys-
tem and TDMA-based communication. For CAN, the CSMA/BA media access
mechanism itself is designed such that it complies with event-based transmission
requests. Hence, integrated synchronization from generation of CAN frames
down to media access is not necessarily needed. In figure 5.12, the unidirectional
transition from the ECU OS object to the FlexRay CTRL object resembles the
flow of generated FlexRay PDUs from the operating system to the bus controller
for data transmission.

FlexRay Controller The bus controller of a FlexRay ECU is modeled by the
active object FlexRay CTRL. The controller is in charge of receiving messages

71

5 Discrete Event Simulation of In-Car Data Transmission

from the operating system of the ECU and transmitting these data to the FlexRay
bus according to the global TDMA schedule. Of course, the controller is also re-
sponsible for reception and decoding of data from other communication partners.
The functional behavior of this object type is depicted by the statechart in figure
5.13. From the init state, the controller changes into the wait_for_slot
state after startup of the ECU. While a CAN controller tries to send data immedi-
ately upon arrival from the operating system, the FlexRay controller has to account
for the schedule in a FlexRay communication system and thus has to wait until
its dedicated time slot for data transmission begins. The schedule is organized
in FlexRay communication cycles as denoted in figure 3.4, with each slot in the
static segment being assigned to a particular ECU.

init

wait_for_slot

send_data

receive_data

Figure 5.13: FlexRay Controller Statechart

When the dedicated time slot for data transmission begins, the internal state of the
FlexRay CTRL object changes from wait_for_slot to send_data and
the latest data available from the operating system is transmitted as fr_pdu object
to the bus. When the PDU was sent, the controller returns to the wait_for_slot
state again. At any time while the FlexRay controller is waiting for transmission
capacity in the TDMA schedule, it is able to receive data from other FlexRay com-
munication partners. This functionality is indicated by the bidirectional transitions
from wait_for_slot to receive_data.
The functionality of a real-life FlexRay bus controller is implemented in the
FlexRay CTRL object and the bidirectional transition from the FlexRay
CTRL to the outside of the FlexRay ECU object in figure 5.12. As explained in
the following, the additional unidirectional transition from the outside world to
the FlexRay CTRL object in figure 5.12 is essential for information on central
scheduling of TDMA-based data transmission.

72

5.4 Modeling Elements for Simulation of In-Car Data Transmission

FlexRay Bus

In reality, each FlexRay ECU is provided with the overall TDMA schedule and
synchronized to a global time base in the communication system. Hence, a
controller knows exactly at which time it is allowed to send data to the bus and
what kind of data it can meanwhile expect to receive from other ECUs. In the
simulation model, the assumptions are made that data transmission is performed
in the static segment only and that the communication controller of a FlexRay
ECU is perfectly synchronized to the common time base.
Various approaches are imaginable to implement data transmission of several
ECUs via a time-triggered communication protocol in a simulation model:

• Each ECU is provided with the complete schedule and is permanently
evaluating the actual system time, the progress in cycle- and slot-based
communication and its own data generation and transmission. Of course,
this yields a close resemblance of real-world FlexRay ECU operation.
However, it might lead to a significant increase in computational load in
the simulation, in case each controller has to evaluate its own state and the
overall system state permanently.

• One central instance is responsible for coordination of communication. This
incorporates working off one cycle after the other, evaluating which ECU is
expected to send data in which dedicated slot and triggering of the respec-
tive ECUs appropriately in order to establish communication. Of course,
these additional scheduling tasks must not consume any simulation time.
Otherwise, the significant reduction of computational load comes to the
price of inaccurate timing behavior of data transmission in the simulation.

• A mixture of centralized and decentralized coordination of scheduled com-
munication, incorporating aspects of both other paradigms mentioned be-
forehand.

In the simulation model, the paradigm of one central entity for scheduling FlexRay
data transfer was chosen. It appears to be the most promising approach in terms of
computational performance of simulation runs, maintainability of the simulation
model and ease of understanding the modeling of complex, time-triggered commu-
nication mechanisms. Consequently, the very core component of a FlexRay com-
munication system is in charge of coordinating the TDMA schedule – the FlexRay

73

5 Discrete Event Simulation of In-Car Data Transmission

bus. According to the statechart as depicted in figure 5.14, the FlexRay Bus
object works off one TDMA cycle after the other, virtually triggering the FlexRay
ECUs to send data in the dedicated time slots. The latter task is achieved by broad-
casting fr_config_data messages, which are basically of type fr_pdu. The
sender is set to FLEXRAY and name to the name of the PDU which is to be sent
next in the schedule. The ECUs evaluate the data and the one which is actually
addressed by the fr_config_data message transmits its current data to the
bus. No system time elapses for this as the central scheduling messages of type
fr_config_data are not part of the actual FlexRay data transmission. No real
transmission time is consumed by these messages, thus they do not contribute to
the overall FlexRay bus utilization.
The statechart for FlexRay operation as illustrated in figure 5.14 represents the
complete TDMA data transmission with the additional functionality of central
scheduling. On change from init to awake, FlexRay bus operation is started,
which means the FlexRay Bus object initializes data structures for TDMA
operation, e.g. lists of cycles, slots and scheduled ECUs.
A TDMA communication cycle starts upon entering start_cycle, beginning
to process the static slots in start_slots. First, the header of a FlexRay
frame in the slot is sent in send_header, then the payload is inspected in
send_payload. In get_data, the next datum within the FlexRay frame is
evaluated. For payload (state payload), the sending ECU is determined and
forced to transmit its current data to the bus by triggering the respective ECU via a
fr_config_data message. If the desired data from this ECU is received, the
bus proceeds to data_ready state and broadcasts the current PDU via the state
broadcast to all ECUs in the system. A timed transition from broadcast
to send_payload resembles the transmission delay according to the actual
payload size and the data rate.
If either the whole FlexRay frame or a remaining part of the frame is idle
(1) – i.e. the slot is not assigned to any ECU or was not filled with payload
completely – or the complete payload with no remaining idle space was pro-
cessed (2), the bus enters the send_trailer state via idle_data for (1)
or send_payload for (2) and broadcasts the trailer of the current FlexRay
frame. From send_trailer, the bus advances to the next TDMA time slot.
If all slots of the current TDMA cycle have been worked off, the transition to
slots_finished is activated and the system proceeds to the next TDMA
cycle.

74

5.4 Modeling Elements for Simulation of In-Car Data Transmission

init

awake

start_cycle

start_slots

send_header

send_payload

send_trailer

slots_finished

get_data

idle_data

payload

data_readybroadcast

Figure 5.14: FlexRay Bus Statechart

5.4.4 Gateway

The model of the gateway incorporates the functionality as described in chapter 3
and the structure as depicted in figure 3.6. The top-level view on the Gateway ac-
tive object in figure 5.15 shows the internal composition, consisting of a Gateway
Switching Unit object and one or more Gateway Bus CTRL objects.

Bus
CTRL
Bus

CTRL
Gateway
Switching

Unit

Gateway
Bus CTRL

Figure 5.15: Conceptual Top-Level View on Central Gateway

The gateway can be connected to several bus systems, which is indicated by the
stacked representation of the bus controller. Each of the Gateway Bus CTRL
objects can be of type CAN CTRL or FlexRay CTRL, implementing exactly
the same functionality as the controller in a CAN ECU or FlexRay ECU object.
Instead of connection to an ECU operating system, each single bus controller of
the gateway is linked with the Gateway Switching Unit object.

75

5 Discrete Event Simulation of In-Car Data Transmission

The switching unit implements the routing mechanism in the gateway, i.e. how
incoming data from various connected buses is stored, processed and forwarded.
As for automotive gateways no commonly standardized architecture is available,
a choice of the two most prevalently employed technological strategies is imple-
mented in the simulation model. Both internal data processing strategies by cyclic
polling of connected bus ports and by interrupt- and priority-based routing from
one central queue are explained in the following.

Cyclic Polling Routing Strategy

A cyclic polling routing strategy in the gateway implements a periodical scanning
of ports of connected buses for data to be routed. The statechart in figure 5.16
depicts the behavior of a gateway switching unit with a cyclic polling routing
strategy.

init

routing_info poll_bus(i)

route

Figure 5.16: Switching Unit Statechart for Cyclic Polling

Along the transition from init to routing_info, the gateway processes
routing information and stores it in an appropriate data structure, e.g. a look-up
table. This allows for determining for any message that arrives at the gateway,
whether it has to be routed to any other buses than the bus it originates from.
Subsequently, the gateway starts operation by polling ports of connected buses
cyclically for any newly arrived communication data in state poll_bus(i).
If applicable, data is routed to destination buses in state route. The process
of scanning one bus port after the other is indicated by the variable i in state
poll_bus(i). For n buses connected to the gateway, each bus port is assigned
a number from 0 to n−1. Upon entering state poll_bus(i), i is set to zero
and, while i ≤ n−1 holds, increased by one each time the transition from route
to poll_bus(i) is activated, or reseted to zero if i = n−1 applies.

76

5.4 Modeling Elements for Simulation of In-Car Data Transmission

Priority-Based Routing Strategy

If messages are to be routed according to a certain ordering in priority, a necessary
prerequisite is that all single messages or message types in the network share
a common attribute, which allows for deriving a ranking of data from it. In a
communication system composed of CAN and FlexRay buses, the CAN-ID can
be such a characteristic for two reasons:

• A CAN frame, received by the gateway from any of the CAN buses, already
contains a CAN-ID. As these identifiers are assigned network-wide uniquely,
an ordering of CAN messages can easily be derived from already existing
CAN-IDs.

• A FlexRay PDU, which arrives at the gateway and is to be routed to one or
more CAN buses, will essentially obtain a CAN-ID for transmission to the
sink CAN bus(es). Again, this CAN-ID allows for an unambiguous sorting
of the message into a single priority queue.

If messages are to be routed in a scenario where a CAN bus is neither source nor
sink of the data, e.g. between two separate FlexRay buses, a more sophisticated
priority-based routing strategy must be employed in the gateway1. A priority-
based routing mechanism is basically event- or interrupt-based, which means that
processor performance of the gateway is only needed if data is actually to be
routed. This is oppositional to the paradigm based on cyclic polling, where bus
ports must be scanned regularly, regardless of effective data inside.
The statechart in figure 5.17 depicts the functional segmentation of a purely
priority-based routing. If the transition from init state to routing_info is
executed, routing information is processed and stored appropriately by setting up
a routing table. The first message arriving at the gateway triggers the immediate
transition from routing_info to data_available. The message and all
on-following ones are stored in the switching unit using a hashing-based approach.
Therefore, a TreeMap from the Java™ class library java.util is employed
and messages are ordered according to the CAN-ID for either the source or the
sink bus.

1For example, all messages with an accessible CAN-ID may be sorted into the routing list
according to this ID, all other data might be assigned "dummy-IDs" for routing, which are
chosen either out of the set of network-wide idle CAN-IDs or outside of the range of 11-bit
standard CAN-IDs.

77

5 Discrete Event Simulation of In-Car Data Transmission

If the TreeMap is non-empty, the topmost message is removed along the tran-
sition from state data_available to get_top_prio and routed according
to the information from the routing table when entering state route. A dedicated
timeout for proceeding back from state route to state data_available re-
sembles the whole process of removing data from the queue, retrieving routing
information and copying data to the controller objects of destination buses. Having
returned to state data_available, the now topmost message is removed and
the routing process is started over.

init

routing_info data_available get_top_prio

route

Figure 5.17: Switching Unit Statechart for Priority-based Routing

5.4.5 Overall In-Car Communication Network

The core components of the simulative investigations on in-car data transmission
have been presented in this chapter, namely message objects representing actual
communication data (can_msg and fr_pdu) and active objects resembling the
respective parts of the network infrastructure (CAN ECU and FlexRay ECU,
both with operating system and bus controller, CAN Bus, FlexRay Bus and a
Gateway).
Consequently, a simulation model of an automotive communication system must
be assembled of these components. Figure 5.18 depicts a possible structure of a
network model with one central gateway, which is represented as an active object
according to the top-level view in figure 5.15. The stacked representation of bus
controllers in the gateway, of buses and of ECUs is again used to emphasize that a
multitude of these devices can be joined towards an all-encompassing model.

78

5.5 Discussion of Discrete Event Simulation Approach

FlexRay
ECU

CAN
ECU

FlexRay
Bus

FlexRay
Bus

Bus
CTRL
Bus

CTRL
Gateway
Switching

Unit

Gateway
Bus CTRL

FlexRay
Bus

FlexRay
Bus

FlexRay
BusCAN Bus

FlexRay
ECU

CAN ECU

Figure 5.18: Conceptual Top-Level View on In-Car Communication System

5.5 Discussion of Discrete Event Simulation
Approach

A simulation model can never be a one-to-one copy of the real-world system. At
various levels of system modeling, structure and behavior have to be abstracted
and simplified in order to make the simulation approach applicable, to keep the
modeling efforts worthwhile and to avoid excessive runtimes of simulations due
to an "over-engineered" granularity in modeling.
Automotive communication systems reveal some characteristics, for which dis-
crete event simulation appears to be particularly suited. First and foremost, the
cyclic broadcasting of data at CAN and FlexRay allows for a processing of simu-
lation events and internal state updates according to a strictly ordered, discretely
timed event list. Yet, additional or unforeseen events, like failures or external
stimuli, could easily be included in the event list in addition to the fix planned,
periodic tasks. The simulation tool AnyLogic™ was a very good choice for
modeling for several reasons:

• AnyLogic™ supports an integrated modeling of the system, using the
discrete event simulation paradigm. This allows for resembling real-world
ECUs, CAN, FlexRay and a gateway on a level of abstraction fulfilling the
demands of reasonable detailedness and sufficient simulation performance.

• The relevant functional and structural entities of the system can easily and
clearly be modeled using a statechart-based approach. The segmentation of
a physical device into its hardware and, from a functional point of view, its
most characteristic behavioral patterns, yields a structured, adaptable and
understandable model.

79

5 Discrete Event Simulation of In-Car Data Transmission

• The transitions between single states can be annotated with (almost) arbitrar-
ily chosen timing constraints. Several aspects in an in-car communication
system have shown to be time-dependent, e.g. controller startup durations,
cyclic generation and transmission of data and routing between bus systems.
With the ability to annotate deterministic timeouts for state transitions or
to sample values from stochastic distributions, the system operation can be
well reproduced as it evolves over time.

• The integration of Java™ and the full compatibility with programming con-
structs and libraries allows for employing a widespread, advanced program-
ming language. The object-oriented programming supports the modeling
significantly, e.g. by simple instantiation of tens of messages or by using
constructs for data storage and maintenance in the simulation model.

• In addition, AnyLogic™ offers capabilities for a sophisticated simulation
control. Whenever a system with partly stochastic characteristics is to
be investigated, a reasonable number of replications of a simulation run
with varying random seeds is indispensable in order to obtain trustworthy
outcomes. In AnyLogic™, several constructs are available to automate
replications by permanent evaluation of the level of confidence of achieved
performance measures.

The single components in the simulation model are designed modularly and
feature standardized interfaces, which significantly contributes to flexibility in
composition of a communication system out of the single devices. The structure
of the model is easy to be adapted, which is one merit of the intuitive modeling
environment in AnyLogic™. With respect to the capabilities and the performance
of a statechart-based, discrete event simulation approach, the communication
networks investigated in this thesis are only an exemplary sample for technical
relevant, real-world-related in-car network topologies.

80

6 Worst-Case Analysis of In-Car
Data Transmission

Research on worst-case analytics for in-car data transmission was carried out
together with Dr. Kai-Steffen Hielscher, Dr. Ulrich Klehmet and Prof. Dr. Reinhard
German from Chair of Computer Science 7, University of Erlangen-Nürnberg.
Results were published in [27], [28], [29] and [21].

6.1 Motivation

The approaches that have been presented and discussed in the previous chapters of
this thesis, namely real-world measurement studies and discrete event simulation,
are well-suited to capture the dynamic behavior of networked, modern in-car
electronics, especially regarding data transmission for distributed applications.
The outcomes from these investigations are closely related to daily operation of
the system, which was already introduced beforehand as the typical use-case.
For many automotive applications which are not safety-critical, like comfort- or
entertainment-oriented functions, it is sufficient to know the characteristics of
in-car data transmission in these normal operation scenarios.
For example, occupants will hardly realize a deviation of a few tens of millisec-
onds in delay between manipulation of an entertainment device and actual system
reaction. Moreover, variations in communication delays for safety-uncritical
functions are not likely to expose passengers to serious threats in terms of system
malfunctions or instable and dangerous driving situations. Quantile-related infor-
mation on system behavior, as it can be derived from measurements and simulation
studies, has shown to be a reasonable part in engineering of such applications, e.g.
"in 99% of activation, an entertainment device will react after a maximum of 100
milliseconds to a customer’s input".

81

6 Worst-Case Analysis of In-Car Data Transmission

For time- and safety-critical applications from the fields of vehicle safety, a more
all-encompassing view on system operation is indispensable. Of course, quantiles
for performance measures are a worthwhile component in system design and
evaluation of expectable system behavior. Yet, depending on the criticality of
the actual intelligent safety application – especially in terms of unmotivated or
significantly delayed activation – the absolute worst-case operation scenario must
be incorporated. Timing aspects of these networked precrash functions are a key
issue for application performance and in turn for the efficiency of future vehicle
safety concepts. Consequently, a worst-case investigation must be related to the
worst-case behavior of data transmission in the distributed system of ECUs.
The pitfall of both simulation and measurement studies is that, regardless of the
number of replications or recorded data samples, one can never assure that the
computed maximum values for performance measures, like transmission delays,
buffer sizes or packet losses, were achieved having covered the real worst-case
constellation of possible system behavior. Hence, other approaches must be
employed to round off the quantile- and measurement-based system evaluation,
with respect to determination of reliable thresholds for system performance in all
operation scenarios.
Several analytical methods are available, which allow for computation of guar-
anteed worst-case results for performance measures. Typically, purely analytical
and deterministic algebraic constructs are applied to a set of system-dependent
input parameters, like transmission capacity, communication schedule or service
strategy. No stochastic aspects play into the analyses, such that the outcomes
are not prone to a remaining "statistical uncertainty" and yield valid upper (or
lower) bounds on system performance. In this thesis, the analytical method of
Network Calculus is adapted to the demands of typical automotive communication
networks and applied for worst-case performance evaluation of time-critical in-car
data transmission.

6.2 Network Calculus

The method of Network Calculus offers a theoretical framework for determin-
istic performance evaluation of computer networks. It represents a theory for
investigations on deterministic queuing systems and is applied to these systems
comparable to classical system theory from electrical engineering for analyses of

82

6.2 Network Calculus

electronic circuits. In Network Calculus, the operation of addition known from
system theory is replaced by the computation of a minimum and the multiplication
from system theory becomes the addition.
As depicted in figure 6.1, Network Calculus is typically applied to evaluate a
system with an input x(t) and an output y(t). Both x(t) and y(t) are regarded
as cumulative flows, which means that the number of bits, packets, jobs, etc.
arriving to or leaving from the system is increasing along time of observation.
This increase is typically denoted by appropriate functions, for example a step
function. Except for the service strategy, the internal characteristics of the system
may be widely unknown.

$j�q

��7�����O�.�����.����

�j�q

��7�����O�.������.����
�����7

Figure 6.1: System-theoretical View on Network Calculus

The method can be seen as a worst-case analysis for determination of performance
bounds for a system in a worst-case operation scenario. Emanating from computer
network engineering, typical performance measures to determine bounds for
are:

• The (end-to-end) transmission delay. Applying Network Calculus to a
communication system allows for determining the guaranteed maximum
transfer time a message, packet, etc. will experience from sending to
reception.

• The traffic backlog in one device or in the overall system. Knowing the
maximum possible number of data which is in transfer in the system, sup-
ports adequate dimensioning of buffers or other storage components and in
turn to avoid losses due to overflows.

• The minimum system output. For many systems and applications, it is
essential that the output of data at the edge of a system never under-runs
a certain lower limit, e.g. for constant further processing. By means of
worst-case analyses, these guaranteed lower thresholds can be determined.

83

6 Worst-Case Analysis of In-Car Data Transmission

These performance-bounding values – characterizing worst-case behavior of traffic
flows – are valuable information, whenever systems are to be evaluated for which,
due to the criticality of decreased performance, all possible scenarios of operation
must be considered. The remaining part of this chapter is intended to give an
overview on the most important constructs of Network Calculus, especially on
those, which were employed to analyze time-critical in-car data transmission. A
comprehensive overview on Network Calculus can be found in [38], [9] or [10].

6.2.1 Theoretical Foundations

Network Calculus is an analytical method and algebraic constructs are an ele-
mentary part of this deterministic performance evaluation approach. The most
important modeling elements in Network Calculus are the arrival curve and the
service curve. In addition, the operation of min-plus convolution is of central
interest.
For all following definitions and explanations, it is assumed that there is a flow
F of bits, messages, etc. into a system S. x(t) shall be the amount of data of F
arriving in the time interval [0, t] and y(t) the amount of data leaving S in the time
interval [0, t]. x(t) is the arrival function of flow F . By definition, x(0) = 0 and
x(t)≥ x(s) for all t ≥ s.

Arrival Curve

In most cases, the performance of a system is strongly influenced by the load,
which is placed on the single components or on the overall system. Thus, the
maximum number of arriving jobs, messages, etc. is an important modeling
parameter in Network Calculus. To estimate which is "the maximum number",
a specific function α(t) – the so-called arrival curve – is determined, which
resembles an upper bound to the input x(t) and fulfills the following:

Let α(t) be a non-negative, non-decreasing function. A flow F is constrained by
or has the arrival curve α(t) if and only if

x(t)− x(s)≤ α(t − s) ∀t ≥ s ≥ 0

In other words, the arrival curve α(t) must be chosen such that the cumulative
input flow x(t) is kept below this function at any time, i.e. it is guaranteed that at

84

6.2 Network Calculus

no time more data arrives to the system than described by α(t). To achieve this,
it is necessary to describe the arrivals of flow x(t) mathematically with a closed
formula for a valid arrival curve α(t).

An example for a commonly used arrival curve in Network Calculus is the so-
called token bucket function according to

αr,b(t) = b+ rt for t > 0 and 0 otherwise

In a token bucket function, a bucket is assumed as an abstract container, imple-
menting a control mechanism that dictates when traffic can be transmitted. The
bucket is of size b, which means it can contain at most b tokens. Each of the
tokens represents a unit of bytes or a single packet of predetermined size. A
specified amount of tokens is removed for the ability to send a packet and the
bucket is refilled with tokens according to a constant rate r. If there are no tokens
in the bucket, a flow cannot transmit its packets. The peak burst rate, up to which
a flow can transmit traffic, is limited by the bucket size b. The token bucket
function is often confused with the leaky bucket function, both traffic shaping
mechanisms are adequately described in [39]. Figure 6.2 depicts an arrival curve
α(t) of token bucket type, which forms an upper limit for input x(t) with rate r
and instantaneous burst b immediately after start time t = 0.

&���

�

�

��z�j�q
$j�q

�

���

Figure 6.2: Token Bucket Arrival Curve

85

6 Worst-Case Analysis of In-Car Data Transmission

token bucket constraint yields:

x(t)− x(s)≤ αr,b(t − s) = b+ r(t − s)

For Δt := t − s and Δt → 0 it holds that

lim
t→s

{x(t)− x(s)} ≤ lim
Δt→0

{r ⋅Δt +b}= b

Min-Plus Convolution

An important operation in Network Calculus is the min-plus convolution. Min
hints at the computation of the minimum, plus stands for addition, which replaces
the operation of multiplication in convolution of classical system theory.

The min-plus convolution of two non-negative, non-decreasing functions f (t) and
g(t), which fulfill f (t) = 0 and g(t) = 0 for t ≤ 0, is defined as:

(f ⊗g)(t) = inf
0≤s≤t

{ f (s)+g(t − s)}

The min-plus convolution can be applied to the arrival curve α(t) and the cumula-
tive input flow x(t), in order to emphasize that α(t) is a valid upper bound for x(t)
at any time t:

x(t)≤ (x⊗α)(t)

Service Curve

The concept of arrival curves describes an upper bound for an input stream to
a system processing some type of data. Thus, the input can be bounded and
handled mathematically. However, the performance of a system is also strongly
influenced by the service capabilities, i.e. the speed and the strategy in processing
of incoming jobs. The function β (t) – the service curve – is the modeling element
which describes the service offered by a system. As shown later, the service curve
is essential for determining the worst-case performance of the system, e.g. in
terms of estimating the guaranteed minimum output y(t) or determining worst-
case backlog and delays. The definition of a service curve, which is compliant to
the theory of Network Calculus, is as follows:

86

Applying the general definition of an arrival curve to a modeling scenario with a

6.2 Network Calculus

Given is a system S with input flow x(t) and output flow y(t). The system offers
a (minimum) service curve β (t) to the flow if and only if β (t) is a non-negative,
non-decreasing function with β (0) = 0 and y(t) is lower bounded by the min-plus
convolution of x(t) and β (t):

y(t)≥ (x⊗β)(t)

Obviously, the service curve β (t) must be chosen such that processing the input
x(t) according to β (t) – which is expressed by convolving x(t) and β (t) – yields
the minimum expectable system performance, hence a lower bound for the system
output y(t).

One commonly used service curve is the rate-latency function, defined as:

β (t) = βR,T (t) = R ⋅ [t −T]+ := R ⋅max{0; t −T}

The rate-latency function reflects a service element, which offers a minimum
service of constant rate R after a worst-case latency of T . In figure 6.3, the green-
colored graph βR,T (t) is a rate-latency service curve with rate R and worst-case
latency T .

&���

�+

�%z+j�q

%

Figure 6.3: Rate-Latency Service Curve

The arrival curve and the service curve are the core modeling elements for a worst-
case performance evaluation using Network Calculus. Of course, the guaranteed

87

6 Worst-Case Analysis of In-Car Data Transmission

worst-case performance bounds for a system can only be as good as the functions
α(t) and β (t) resemble the traffic and service characteristics. Hence, considerable
effort must be spent in order to derive mathematical system descriptions that fit
closely to the actual system behavior.

Bounds on Performance Measures

With the modeling elements arrival curve and service curve, together with the
min-plus convolution, it is possible to derive bounds for performance measures
for a system in a worst-case operation scenario. Especially for systems which are
expected to fulfill any real-time demands, knowing the performance capabilities
in terms of maximum transmission times and/or maximum buffer sizes is valuable
information at system design. Applying Network Calculus, upper bounds can be
derived for the transmission delay and for the backlog of jobs in process in the
system.

Delay Bound Assume a flow x(t), constrained by an arrival curve α(t), passes
a system which offers a service according to the service curve β (t). The maximum
delay d is given as the supremum of all possible delays of data, i.e. is defined
as the supremum of the horizontal deviation between the arrival curve and the
service curve:

d ≤ sup
s≥0

{inf{τ : α(s)≤ β (s+ τ)}}

To illustrate this, suppose there is a system with input x(t) that is upper-bounded
by a token bucket arrival curve αr,b(t), thus x(t)−x(s)≤ αr,b(t − s), and a service
that is resembled by a rate-latency function βR,T (t):

y(t)≥ inf
s≤t

{x(s)+βR,T (t − s)}, r ≤ R

Based on the theorems introduced beforehand, the delay bound d can be deter-
mined as d ≤ b/R+T . Figure 6.4 depicts both the token bucket arrival curve
αr,b(t) and the rate-latency service curve βR,T (t). The worst-case delay d is
denoted as horizontal, dashed, double-headed arrow, remarking the maximum
horizontal distance between arrival curve and service curve.

88

6.2 Network Calculus

Backlog Bound The backlog is the amount of data that is held inside the
system. If the system is a single buffer, it is the queue length, if the system is more
complex, then the backlog is the number of data in transit, assuming that input
and output can be observed simultaneously.
Considering a system S with input flow x(t) and output flow y(t), where x(t)
is constrained by an arrival curve α(t) and S offers a service according to a
service curve β (t). The backlog v at time t, v(t) = x(t)− y(t), is bounded by the
supremum of the vertical deviation of arrival curve α(t) and service curve β (t):

x(t)− y(t)≤ sup
s≥0

{α(s)−β (s)}

For a system with token-bucket-constrained input and rate-latency service, the
backlog v is actually bounded by v = b+ rT . In figure 6.4, the vertical, dashed,
double-headed arrow resembles the maximum deviation between arrival curve
and service curve – the worst-case backlog v of jobs, etc. in the system.

&���

�+

�%z+j�q

�

��z�j�q

&

{

Figure 6.4: Delay Bound and Backlog Bound

Strict Service Curve For many classes of systems, networks and network
nodes where backlog can appear, it is important that the service curve fulfills the
conditions of a strict service curve, which is, according to [38], defined as:

A system S is said to offer a strict service curve β (t) to a flow x(t) if, during any
backlogged period [ts, te] with start time ts, end time te and te − ts = u, it holds

89

6 Worst-Case Analysis of In-Car Data Transmission

that y(te)− y(ts) ≥ β (u), i.e. the output flow is at least equal to the minimum
service.

Concatenation If a flow traverses a system with two network elements, each
one offering a specific service according to βi, i = 1,2, the concatenation of the
two systems offers a service curve of β1 ⊗β2 to the flow.

For example, imagine two nodes with rate-latency service curves βRi,Ti , i = 1,2.
The concatenation of these nodes yields:

βR1,T1 ⊗βR2,T2 = βmin(R1,R2),T1+T2

The concatenation theorem allows to understand a phenomenon known as Pay
Bursts Only Once, which states that the bounds obtained by considering the
concatenated service curve are tighter than the bounds obtained by considering
every network element in isolation and addition of the individual bounds.

6.3 Application of Network Calculus to CAN
Communication

As motivated in chapter 3, the priority-based CSMA/BA media access at CAN
is a potential source of delay. The real-life measurements presented in chapter 4
substantiated this effect in typical use-case scenarios. In order to compute valid
upper bounds for CAN transmission delays in worst-case operation scenarios,
Network Calculus was applied to CAN communication systems.

6.3.1 Input Data

CAN ECUs typically communicate cyclically, i.e. CAN messages are broadcasted
to the bus in pre-defined fix time intervals1. For each message, two important
CAN parameters are accessible, which are sufficient to apply Network Calculus,
namely the CAN identifier (CAN-ID) and the cycle time.

1Some messages may also be sent on-event, which depends on the actual driving situation and is
not considered in the traffic analysis in the following.

90

6.3 Application of Network Calculus to CAN Communication

One remark regarding the CAN-ID: In the following, the distinction between
CAN-ID and priority class (or simply priority) is made. The CAN-ID is the actual
identifier of a certain message, ranging from 0 to 2047 for standard 11-bit CAN-
IDs. In a set of CAN messages, each single message has its own, unique CAN-ID.
A ranking according to the priority can be established by ordering the messages
in the data set from lowest to highest ID in use. Priority class 0 corresponds
to the lowest CAN-ID and hence has highest priority, class 1 complies with the
next-lowest ID, class 2 with the third-lowest ID and so on.

6.3.2 Generation of Arrival Curves

A central issue of performance evaluation with Network Calculus is the generation
of appropriate arrival curves for data traffic. For cyclically sent messages, CAN
media access will also be performed in a cyclic manner. Ideally, the bus is idle
when an ECU attempts transmission and the respective data can be sent right
away. If two or more ECUs are trying to sent CAN messages simultaneously, the
individual priorities determine, which message will be sent first, second, third,
etc. Depending on the number of messages accessing the bus simultaneously, this
might cause considerable delays in data transmission for messages which lose
CSMA/BA media access several times consecutively.
To determine the worst-case delays at media access for all cyclic messages on
a CAN bus, the priority-wise cyclic data transmission has to be captured with
adequate arrival curves.

Therefore, let P denote the number of the lowest priority and p ∈ {0,1, . . . ,P}
be a priority for one particular CAN message. Basically, three types of priorities
must be distinguished: The own priority p (a certain CAN message belongs to),
the higher priorities from 0 to p− 1 (winning the competitive media access if
sent simultaneously to priority class p) and the lower priorities from p+1 to P.
The lower priority classes are dominated by class p at media access and can be
neglected in the following.
Simultaneous arrivals of higher priority data from classes 0 to p− 1 affect the
transmission of messages from class p and need to be considered when computing
worst-case delays for a message of class p. An individual, cumulative arrival
curve must be formed for each priority class higher than p. The superposition
of all p−1 arrival curves of higher priority classes yields the overall amount of

91

6 Worst-Case Analysis of In-Car Data Transmission

data sent in a specified time interval, during which no media access is possible for
class p due to higher prioritized traffic2. The generation of arrival curves is based
on the assumption that at each discrete point of time, all messages with matching
cycle period occur at once.
For instance, assume four ECUs ECU1 to ECU4, sending the messages MSG1 to
MSG4 in cycles of 5 ms, 10 ms, 15 ms and 20 ms. Table 6.1 depicts the actual
scheduling, i.e. at which time instance which messages are assumed to be sent
simultaneously in this exemplary scenario, which is indicated by "x" as an entry
in the respective column.

Table 6.1: Example for Simultaneous CAN Media Access
Message (Cycle Time (ms))

Time (ms) MSG1 (5) MSG2 (10) MSG3 (15) MSG4 (20)
0 x x x x
5 x - - -

10 x x - -
15 x - x -
20 x x - x
25 x - - -
30 x x x -
...

...
...

...
...

Except for non-preemption of transmissions in progress, simultaneous sending is
the explicit event causing delays at media access. As performance evaluation with
Network Calculus is specifically aiming at determination of upper, worst-case
bounds on performance measures, the underlying constellations of system oper-
ation must be identified. A valid constellation is that all ECUs are sending data
simultaneously, yielding the maximum number of collisions at media access and
in turn the maximum delays. Of course, this assumption requires that all ECUs
start sending at once at a global system time t = 0.

Continuing in the formal construction of arrival curves, it holds that a CAN mes-
sage of priority p is sent in cycles of length cp. Without loss of generality, cp are

2The highest priority class 0 has to be treated separately, since here the arrival curve for higher
classes is constantly zero as no higher priorities exist.

92

6.3 Application of Network Calculus to CAN Communication

integer values in the following, depending on application specific demands for
update rates of information exchange between ECUs. A new message of priority
p will be sent immediately after times k ⋅ cp,k ∈ ℕ0, i.e. at integer multiples of
cp. Let C denote the least common multiple (lcm) of all cp. At this point of time,
messages of all priorities are sent, and since all messages are sent in a cyclic
manner, the cycle of message arrivals will repeat in the same sequence for all
messages of all priorities after the total cycle time C = lcm{c0,c1, . . .cP}.

A step function is particularly suited to resemble the cyclic sending of data and the
increasing amount of data sent cumulatively along time. The arrival curve αp(t)
for a message of priority class p can be written as the following step function:

αp(t) =
⌈

t
cp

⌉
⋅ l

Note that l denotes the maximum length of a CAN message, which is 136 bits,
including the maximum number of stuff-bits and the 6-bit carrier-sense phase.
The cumulative arrival curve α̂p(t) resembles all arrivals of data with priority
higher than p. Consequently, it is constructed as the superposition of all individual
arrival curves:

α̂p(t) =
p−1

∑
i=0

αi(t) =
p−1

∑
i=0

⌈
t
ci

⌉
⋅ l

6.3.3 Determination of the Service Curve

Having determined a step function as an arrival curve, which bounds the input
flow appropriately, an adequate service curve must be found in order to reflect
the behavior of CAN data transmission. Like in many other worst-case modeling
scenarios, a rate-latency service curve βR,T (t) is an adequate choice.
First and foremost, a CAN bus offers a fix data rate R to all CAN messages, e.g.
for a low-speed CAN 125 kbps and for a high-speed CAN 500 kbps or 1 Mbps.
Thus, the parameter R of the rate-latency service curve can easily be determined
knowing the data rate of the CAN bus.
As data transmission in a CAN bus system is non-preemptive, the worst-case
latency T in βR,T (t) is determined as follows:

93

6 Worst-Case Analysis of In-Car Data Transmission

Assuming a worst-case scenario, a CAN message always has to wait until a
transmission in progress of another CAN message – possibly of lower priority –
is completely finished, i.e. it is always subject to non-preemption and finds the
bus never idle when attempting data transmission. The maximum non-preemption
period can be computed from the given CAN data rate and the maximum frame
size of 136 bits. For example, for a high-speed CAN with a data rate of 500 kbps,
T is determined as:

T = l/R = 136 bits/500 kbps = 0.000272 s

The CAN data rate in this example is set to 500 kbps, since all following in-
vestigations focus on high-speed CAN bus systems as typically employed in
the automotive industry. For the rate-latency service curve βR,T (t) of a CAN
communication system, it holds:

βR,T (t) = R ⋅ [t −T]+

= 500 kbps ⋅ [t −0.000272 s]+

6.3.4 Calculation of Delay Bounds

A central issue in CSMA/BA media access is the priority scheduling of CAN
messages, i.e. how simultaneous transmissions of several CAN messages of
different priority influence the transmission of a particular message. The arrival
curves and the service curve are sufficient to compute the guaranteed worst-case
delays at media access for CAN messages of all priority classes.

Let xp(t) denote the input data and yp(t) the output data of priority p ∈ {0, ⋅ ⋅ ⋅ ,P}
at time t. The iterative procedure of calculating upper delay bounds for all
priorities starts with the highest priority class 0, considering input x0(t) and output
y0(t):

d0 ≤ sup
t≥0

{inf{τ : α0(t)≤ β (t + τ)}}

The arrival curve α0(t) is a step function bounding the input x0(t). The service
curve β (t) is defined as presented beforehand:

β (t) = βR,T (t) = 500 kbps ⋅ [t −0.000272 s]+

94

6.3 Application of Network Calculus to CAN Communication

CAN messages from the highest priority class 0 dominate all other priorities at
simultaneous media access. Thus, only the worst-case non-preemption period of
duration T contributes to the worst-case delay d0.
Next, the maximum delay d1 for the next lower priority class 1 must be determined.
However, it would not be correct to apply the general service curve β (t), as in
the worst-case scenario, CAN messages of priority 1 will be served only after
sending of CAN messages from class 0 is completed. In other words, the higher
priority CAN messages detract CAN service capabilities from lower priorities
by being sent first. This has to be reflected by adjusting the service curve β (t)
appropriately. Construction of the priority-class-dependent service curves follows
the approaches of aggregate traffic modeling [17] and CPU task scheduling with
preemption [57], [63].

For a reasonable application of aggregate scheduling, the service curve is required
to be strict according to the definition given beforehand. For CAN, this can be
guaranteed with respect to the actual technological realization of media access
and data transfer: Assume there is a period with backlog in the system, i.e.
several messages are waiting for service, ordered by priority. Non-preemption of
transmission of a message applies only at the very beginning of servicing of the
set of backlogged messages. Afterwards, messages are transfered continuously
according to the priority, as soon as the bus becomes idle and no lower priority
message can interrupt this process and cause additional, unexpected delay. Thus,
the output of a CAN bus will never under-run the service guaranteed by the priority-
dependent rate-latency service curve, as an idle bus never remains unemployed
during a backlogged period.

In general, for servicing of CAN messages of priority class 1, the cumulative
arrivals of messages from class 0 are subtracted from the service curve β (t)
according to:

β1(t) := [β (t)− α̂1(t)]
+

Even though α̂1(t) = α0(t) is a valid arrival curve for the cumulative input flow
of class 0, constructing a service curve according to the formula above yields a
service curve as shown in figure 6.5. For sure, this cannot be a valid cumulative
service constraint, as the leaps in this saw-tooth-like curve would mean that the
overall number of served data both increases and decreases along time, which is
not possible for a cumulative service curve.

95

6 Worst-Case Analysis of In-Car Data Transmission

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
20

00
40

00
60

00
80

00
10

00
0

t �s�

�
at

a
�b

its
�

Figure 6.5: Nonmonotonic Service Curve

To overcome this, a linear function ᾱp(t) is constructed as an upper bound for the
step function arrival curve α̂p(t) of higher priority CAN messages:

ᾱp(t) = p ⋅ l + ∑p−1
i=0 C/ci ⋅ l

C
⋅ t

= p ⋅ l +
p−1

∑
i=0

l
ci
⋅ t

=
p−1

∑
i=0

(
t
ci
+1

)
⋅ l

The construction of the arrival curve ᾱp(t) is based on the following considera-
tions:

Without loss of generality, ᾱp(t) is assumed to be a token bucket arrival curve.
Thus, the vertical offset – the instantaneous burst b – and the slope of the curve
– the rate r – have to be identified. The offset is obtained by adding all single
offsets of the arrival curves αp(t), i.e. it is assumed that all possible bursts occur

96

6.3 Application of Network Calculus to CAN Communication

instantaneous after time t = 0. The slope is determined by summation of all slopes
bounding the arrivals of higher priority classes, for which the boundaries are given
as C/ci

C ⋅ l = l/ci, because exactly C/ci messages of length l with priority i are
generated in each interval of length C.
As one can easily see, ᾱp(t) ≥ α̂p(t), thus, ᾱp(t) is an upper bound for the
cumulative arrivals of higher priority messages that fulfills all preconditions for
an arrival curve in Network Calculus.
Defining bp := p ⋅ l and rp := ∑p−1

i=0 (l/ci), ᾱp(t) can be written in the typical token
bucket form:

ᾱp(t) = bp + rp ⋅ t

Using ᾱp(t) instead of α̂p(t) for calculating β1(t) guarantees that a non-decreasing
function and thus a valid service curve is obtained:

β1(t) := [β (t)− ᾱ1(t)]
+

Now, the maximum delay d1 for CAN messages of priority 1 can easily be
computed:

d1 ≤ sup
t≥0

{inf{τ : α1(t)≤ β (t + τ)− ᾱ1(t + τ)}}

Continuing the iterative determination of worst-case delays from priority p to the
next lower one p+1, a new service curve is built by diminishing the previous one
by the arrival curve ᾱp+1(t) for all frames with priority 0,1, . . . , p. Hence, at each
step of the iteration, only two kinds of priorities are considered: the messages of
current priority and the sum of all higher priority CAN messages. All lower prior-
ity classes from (p+1, ⋅ ⋅ ⋅ ,P) have no impact on the transmission of messages
from priority p, besides maybe a single message just in service. However, this has
already been modeled by the non-preemptive scheduling in the latency component
T of βR,T (t).

97

6 Worst-Case Analysis of In-Car Data Transmission

dependent calculation of upper delay bounds ∀p ∈ {0,1, . . . ,P} and t ∈ [0,∞]:

αp(t) =

⌈
t

cp

⌉
⋅ l

ᾱp(t) = bp + rp ⋅ t
βp(t) = [β (t)− ᾱp(t)]

+

=
[
R[t −T]+− (bp + rp ⋅ t)

]+
= [R(t −T)− (bp + rp ⋅ t)]+

=

[
(R− rp) ⋅

(
t − RT +bp

R− rp

)]+

Again, a rate latency service curve is obtained with rate R′
p := R− rp and latency

T ′
p := (RT +bp)/(R− rp). The input flow of priority p, together with the adjusted

service curve βp(t), allow for a determination of the worst-case delay bound
according to:

dp ≤ sup
t≥0

{inf{τ ≥ 0 : αp(t)≤ βp(t + τ)}}

Due to the actual shape of the arrival curve αp(t) and the service curve βp(t) in this
case, this inequation can be solved geometrically by calculating the intersection
point of βp(t) with the height of the first step of the arrival curve αp(t), which is
exactly l = 136 bits. This yields the following results:

dp ≤ l
R′

p
+T ′

p

=
l +RT +bp

R− rp

=
(p+2) ⋅ l

R−∑p−1
i=0 (l/ci)

The application of this simple equation is sufficient to calculate the maximum
delay dp for each priority class p, given the data rate R and the message length l.
The only input data needed for each priority class p is the cycle length cp.

98

The following procedure summarizes the approach for an iterative, priority-

6.3 Application of Network Calculus to CAN Communication

6.3.5 Exemplary Message Schedule

The following example illustrates the process of generating the arrival curves and
determining the service curves and delays. Assume five different CAN priority
classes with arbitrarily chosen cycle times as shown in table 6.2. All CAN
messages from these priorities are standard CAN frames with a maximum length
of 130 bits, therefore l = 136 bits. The results for worst-case communication
delays for a CAN data rate of 500 kbps are shown in the rightmost column of
table 6.2.

Table 6.2: Application of Network Calculus to Exemplary Message Schedule
Prio. Cycle ᾱp(t) βp(t)

p cp bp rp R′
p T ′

p dp

(ms) (bits) (bps) (bps) (ms) (ms)
0 50 0 0 500000 0.272 0.544
1 10 136 2720 497280 0.547 0.820
2 100 272 16320 483680 0.844 1.125
3 20 408 17680 482320 1.128 1.410
4 30 544 24480 475520 1.430 1.716

The results are depicted in figure 6.6. In the leftmost column, the arrival curve
αp(t) for each priority class p is shown. The center column contains the step
functions α̂p(t), depicted in black steps, and the upwards bounding linear function
ᾱp(t), drawn as a solid gray line. Since α̂p(t) is the superposition of individual
step functions for the individual priority classes, the height of the steps in vertical
direction varies for different points in time.
The rightmost column shows the arrival curve αp(t) as a solid horizontal line and
the corresponding service curve βp(t) as a dashed line. The horizontal distance
between the thin vertical lines marks the geometrically determined maximum
delay dp as the intersection point of βp(t) and l = 136 bits.
Different scales are used for time and data axis in the third column, compared to
the first two columns in this figure. Otherwise, the intersection points would not
be visible due to the different orders of magnitude in temporal and data dimension
of arrival curve and service curve.

99

6 Worst-Case Analysis of In-Car Data Transmission

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��
Arrival Curve (Prio. 0)

����

�
�

��
��

��
�

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Higher Prio. Arrivals (Prio. 0)

����

�
�

��
��

��
�

������ ������ ����	� ����	�

�
��

	�
�

	�
�

AC and SC (Prio. 0)

����

�
�

��
��

��
�

��

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Arrival Curve (Prio. 1)

����

�
�

��
��

��
�

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Higher Prio. Arrivals (Prio. 1)

����

�
�

��
��

��
�

������ ������ ����	� ����	�

�
��

	�
�

	�
�

AC and SC (Prio. 1)

����

�
�

��
��

��
�

�	

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Arrival Curve (Prio. 2)

����

�
�

��
��

��
�

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Higher Prio. Arrivals (Prio. 2)

����

�
�

��
��

��
�

������ ������ ����	� ����	�
�

��
	�

�
	�

�

AC and SC (Prio. 2)

����

�
�

��
��

��
�

�

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Arrival Curve (Prio. 3)

����

�
�

��
��

��
�

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Higher Prio. Arrivals (Prio. 3)

����

�
�

��
��

��
�

������ ������ ����	� ����	�

�
��

	�
�

	�
�

AC and SC (Prio. 3)

����

�
�

��
��

��
�

��

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Arrival Curve (Prio. 4)

����

�
�

��
��

��
�

���� ���� ��	� ��	� ��
� ��
�

�

�

��
��

��
��

��

Higher Prio. Arrivals (Prio. 4)

����

�
�

��
��

��
�

������ ������ ����	� ����	�

�
��

	�
�

	�
�

AC and SC (Prio. 4)

����

�
�

��
��

��
�

��

Figure 6.6: Graphical Visualization of Analysis Results for the Example

100

6.4 Application of Network Calculus to Overall In-Car Communication Topology

6.4 Application of Network Calculus to Overall
In-Car Communication Topology

The application of worst-case analytics to local CAN data transmission is a
valuable part of performance evaluation. However, a modern car comprises of
several bus segments of various transmission technologies like CAN, FlexRay
or MOST, which are typically connected by a gateway. Distributed, time- and
safety-critical applications may rely on data which has to be transmitted from a
source bus to a destination bus.
Like for local CAN data transmission, the method of Network Calculus is well-
suited to derive guaranteed upper bounds for delays in a network-wide end-to-end
communication scenario. The methodical approach and the required enhancements
in modeling are presented in the following.

6.4.1 Methodical Approach

For an end-to-end communication scenario, it is assumed that several bus systems
are connected to a gateway as depicted in figure 6.7. On contrast to the investiga-
tions of data transmission in a single CAN bus system, data dependencies may
now span across borders of local bus segments, which is indicated in figure 6.7 by
the labels Source and Dest. for an arbitrarily chosen pair of bus systems. Such a
communication scenario requires more sophisticated analyses of data traffic in the
network.

Gateway

Bus 1 Bus 2 Bus m...
Source
SSource

Source
Dest.
DDest.
Dest.

Figure 6.7: End-to-End Communication Scenario via Gateway

101

6 Worst-Case Analysis of In-Car Data Transmission

To obtain reasonable upper bounds, the complete flow of data traffic across
the network must be considered when deriving worst-case end-to-end delays
for certain messages. Assume data transmission along several sections of a
communication system as depicted in figure 6.8.

�

�11 �22 �33�23�13�12

Network
Element 1

Network
Element 2

Network
Element 3

�1 �2 �3

Figure 6.8: Arrival Curves in End-to-End Communication Scenario

In compliance to the nomenclature of Network Calculus, the single sections of the
end-to-end transmission path are denoted as Network Elements. The traffic flow
from source to destination is indicated by a broad, gray arrow, which is assumed
to be bounded by an arrival curve α . Each network element offers specific service
capabilities to the traffic flow, according to the service curves β1, β2 and β3.
The traffic flow is compartmentalized into single flows with arrival curves αn,m,
n,m ∈ {1,2,3}. These sub-flows join and leave the overall flow at the respective
elements of the network, consume service capacity and thus contribute to trans-
mission delays. Assuming an end-to-end communication scenario via network
element 1, 2 and 3, the following holds for the sub-flows of traffic:

• α1,m are arrival curves of sub-flows which attempt servicing at the first
network element. Higher priority data in α1,m consumes service capabilities
from lower priority data at network element 1.

• α2,m are arrival curves of sub-flows which demand service from network
element 2. Depending on the strategy of processing, higher priority data
may be served before lower priority data.

• α3,3 is the arrival curve of the sub-flow of data which is generated locally
on network element 3. Higher priority data in α3,3 consumes local service
capacity from network element 3, before lower priority data from network
element 1, via network element 2, is served.

102

6.4 Application of Network Calculus to Overall In-Car Communication Topology

For derivation of reasonable end-to-end delay bounds, identifying which data
from which sub-flow is relevant at which network element is a central issue in
application of Network Calculus to a complete in-car communication system.

Identification of Traffic Flows

In figure 6.8, the general, flow- and sub-flow-based approach for worst-case
analysis of end-to-end data transmission is illustrated. Substantiating it to an actual
automotive network yields a scenario as depicted in figure 6.9. In dependence on
the illustrations in figures 6.7 and 6.8, the communication system is composed of
a source bus (S, 1 for network element 1), a gateway (G, 2 for network element 2)
and a destination bus (D, 3 for network element 3). In addition, other bus systems
are denoted by O and O’, respectively.
Again, α is the arrival curve of the complete end-to-end traffic flow from source
to destination via the gateway, depicted as gray, arrow-headed line. The direction
of the single sub-flows is indicated by the orientation of the black, arrow-headed
lines. Source and destination are described by 2-tuples at the starting point and
end point of the lines according to (source, destination). Some examples:

• (S,S) in the sub-flow α1,1 resembles data which is generated on the source
bus and kept local on the source bus.

• (D,S) in the sub-flow α1,1 stands for data which originates from the destina-
tion bus and is transfered via the gateway to the source bus.

• (O,D) in the sub-flow α2,3 depicts data being routed by the gateway from
any other bus system to the destination bus.

Table 6.3 provides an overview, which sub-flows of data traffic in the network
actually contribute to which arrival curve. Some sub-flows appear more than one
time in the list, e.g. (O,S) contributes to α1,1 and α2,2. This is not a typo, moreover,
data from these flows has to be considered at more than one network element, as
clarified in the following.

A central issue in worst-case performance evaluation is to identify all traffic that
possibly diminishes service capacity for a certain priority class on the one hand.
On the other hand, an over-pessimistic modeling has to be avoided, e.g. by incor-
porating more traffic than theoretically present at the network elements.

103

6 Worst-Case Analysis of In-Car Data Transmission

G
2

S
1

D
3

O O’

(S
,S

)
(S

,S
)

(S
,O

)
(S

,D
)

(D
,S

)
(O

,S
)

(G
,S

)

(D
,D

)
(D

,D
)

(D
,S

)
(D

,O
)

(S
,D

)
(O

,D
)

(G
,D

)

(O
,O

)
(O

,O
)

(O
,D

)
(S

,O
)

(D
,O

)
(O

,S
)

(G
,O

)
(O

,O
’)

(O
,O

’)

� 1
,1

� 1
,1

� 1
,1

� 1
,1

� 1
,2

� 1
,3

� 2
,2

� 3
,3

� 3
,3

� 3
,3

� 2
,2

� 2
,2

� 1
,3

� 2
,3

� 2
,3

� 2
,3

� 1
,2

� 2
,2

� 2
,2

� 2
,2

� 2
,2

� 1
,1

�

Figure 6.9: Traffic Flows for Worst-Case Analysis of Data Transfer

Table 6.3: Building Arrival Curves from Sub-Flows of Data Traffic
Arrival Curve Sub-Flows

α1,1 (S,S) (D,S) (O,S) (G,S)
α1,2 (S,O)
α1,3 (S,D)
α2,2 (D,S) (D,O) (O,S) (O,O’) (G,S) (G,O)
α2,3 (O,D) (G,D)
α3,3 (D,D) (D,S) (D,O)

For example, data exchange between other bus segments than source and destina-
tion – denoted by (O,O’) – will surely neither effect bus arbitration at the source
nor at the destination. Therefore, the flow from (O,O’) does not contribute to the
arrival curves α1,m and α3,3, cf. table 6.3. However, data from (O,O’) must be

104

6.4 Application of Network Calculus to Overall In-Car Communication Topology

routed by the gateway and at that point it may affect servicing of the flow from
source to destination. That is why (O,O’) is listed as part of the arrival curve α2,2
and has to be considered in network element 2.

Packetizing

Network Calculus is operating on flows of data, which is emphasized by the
continuous-time functions modeling arrival curves and service curves. For local
CAN communication, the ECUs are assumed to be direct receivers of data and
hence the transmission delays can be computed straightforward, based on a
continuous data flow into an ECU.
In a scenario of network-wide communication, a store-and-forward mechanism
must be employed, as typically a data unit has to be received completely before it
can be transfered to the next network element. For example, imagine two different
CAN buses as source and destination. Data from the source bus arrives at a central
gateway bit-by-bit with line speed. The gateway has to wait until the complete
CAN frame was received from the source bus before the message can be routed.
The continuous flow of bits cannot be transfered one-on-one continuously, but
rather experiences a delay for storing all bits of one CAN frame and forwarding
the complete message.
This constant store-and-forward delay is considered by application of a packetizer
PL. Assuming a sequence L of cumulative packet lengths, which is wide sense
increasing, i.e. (L(0) = 0,L(1),L(2), ...), such that

lmax = sup
n
{L(n+1)−L(n)}

is finite. In the following, lmax is set for all routed messages to 136 bits, which is
the maximum size of a CAN frame3. An L-packetizer is the system that transforms
an input R(t) into PL(R(t)) and fulfills for any real number x:

PL(x) = sup
n∈ℕ

{L(n)1{L(n)≤x}}

3FlexRay messages routed to a CAN bus, must be of at most 64 bit payload to be packageable in
a standard CAN frame. Thus, data at the gateway or at the destination bus, originating from
FlexRay, is assumed to be packaged as a 136-bit CAN frame already.

105

6 Worst-Case Analysis of In-Car Data Transmission

A packetizer Pn
L is applied to the service curve of a network element n as fol-

lows:
βn(t)⊗Pn

L

The concatenation of βn(t) and Pn
L leads to a service time prolongated according

to the time span for storing and forwarding of a complete message. Without
this important delay component, too optimistic upper bounds for end-to-end
transmission delays would be achieved.

Modeling of FlexRay

Throughout this thesis, FlexRay communication is restricted to the static segment
of a TDMA cycle. Thus, data transmission is strictly organized according to a
TDMA communication schedule and no priorities have to be assigned in order
to manage media access. Consequently, no arrival curves for higher priority data
have to be constructed and accounted for effective servicing as done for CAN.

Arrival Curve Assuming a set of N FlexRay messages, a message i out of
this set, i ∈ {0,1, ⋅ ⋅ ⋅ ,N − 1}, is of certain length li – including header, trailer
and payload – and sent in individual cycles ci. Hence, the cumulative arrivals of
FlexRay messages are best resembled by individual arrival curves αi(t), which
are step functions bounding the single input flows xi(t).

Service Curve A FlexRay bus typically provides a data rate of 10 Mbps – the
rate R in a service curve βFR(t), which is shown in figure 6.10.

Obviously, servicing at FlexRay depends on the message cycle ci, the length li
and the data rate R. In the worst-case, the very first message of type i has to wait
a complete cycle time ci before it can be transfered on the bus with rate R. This
takes a transmission time of exactly li/R. The next message of the same type can
be transmitted in the next time slot, which begins exactly ci − li/R time units after
sending of the first message was completed. The same holds for the third, the
fourth and the fifth message and so on.

106

6.4 Application of Network Calculus to Overall In-Car Communication Topology

&���

�

�#%j�q

%

�� �� �� ��

��!%

���li/R

Figure 6.10: FlexRay Service Curve

Modeling of Central Gateway

As depicted in figures 6.8 and 6.9, the gateway typically relates to Network
Element 2 in worst-case analysis of network-wide communication. The analytical
modeling approach for this element depends on the actual routing strategy.
Basically, a gateway offers service capabilities in terms of routing functionality,
i.e. receiving and sending of data from and to various connected bus systems.
The routing process itself is assumed to be performed non-preemptive, with a
constant rate that depends on the processor performance of the switching unit.
This allows for determining the rate Rgw in a service curve for the gateway. The
worst-case latency, a CAN or FlexRay message has to wait before it is routed, has
to be derived according to the routing strategy.

Gateway Routing by Cyclic Polling Figure 6.11 shows a routing scenario
according to a cyclic polling routing strategy. Data from source buses is received
via dedicated in-ports at the gateway and stored for service according to FIFO. The
switching unit cyclically checks the ports for newly arrived data and withdraws
the head of queue. Once the message is taken out of the queue, the routing is
performed, which means the message is sent to the out-port of one or several
destination buses.

107

6 Worst-Case Analysis of In-Car Data Transmission

Source
Buses

Gateway Destination
Buses

PRIO

PRIO

PRIO

PRIO

PRIO

PRIO

FIFO

FIFO

FIFO

Cyclic
Polling

Figure 6.11: Routing by Cyclic Polling of In-Ports

The service curve β̃gw(t) for a gateway with a cyclic polling routing strategy with
cycle time cgw and a switching unit performance according to rate Rgw is depicted
in figure 6.12.

&���

�

���j�q

%��

��� ��� ��� ���

�7�$!%��

����lmax/%��

~

Figure 6.12: Gateway Service Curve for Cyclic Polling

The service curve for a cyclic polling routing strategy in the gateway is built in
analogy to the FlexRay service curve. A first message of length lmax, arriving to a
port, waits a worst-case time of cgw and is processed in a time lmax/Rgw afterwards.

108

6.4 Application of Network Calculus to Overall In-Car Communication Topology

The next message can be routed in the next cycle, which begins cgw − lmax/Rgw

time instances after processing of the first message, etc.

Gateway Routing by Strict Priority In figure 6.13, the routing strategy
according to the priority of data is illustrated. Data from all source buses is stored
in one central queue in the gateway and sorted by priority. A non-empty queue
causes an interrupt, which triggers routing of the message with the currently
highest priority in the queue.

Source
Buses

Gateway Destination
Buses

PRIO

PRIO

PRIO

PRIO

PRIO

PRIO

PRIO

Figure 6.13: Interrupt-based Routing with Priority Queuing

In the worst-case, a message has to wait a latency T = lmax/Rgw before routing.
Servicing with gateway rate Rgw of a previous message of length lmax may just
have started upon arrival of the current message and T captures non-preemptive
servicing. For the highest priority message in the queue, the service curve β̄gw(t)
can be written as a rate-latency function:

β̄gw(t) = βR,T (t) = Rgw ⋅ [t − lmax/Rgw]
+

As shown in the following, for messages from the second-highest and all lower
priority classes, an individual service curve must be constructed as done for CAN
servicing. To this end, the initial rate-latency function β̄gw(t) is diminished by the
superposition of all higher priority arrivals at the gateway.

109

6 Worst-Case Analysis of In-Car Data Transmission

Worst-Case End-to-End Communication Analysis

The priority-dependent service curves for a priority class p are built individually
for each network element along the end-to-end communication path. The fol-
lowing formulas summarize the determination of service curves for source bus,
gateway and destination bus.

The service curve β1,p(t) for priority class p at the first network element, i.e. the
source bus, is defined as:

β1,p(t) =

(
β1(t)− ∑

j∈{1,2,3}
α̂1, j,p(t)

)
⊗P1

L

If β1,p(t) violates the requirements of a service curve according to aggregate
scheduling, a linear upper bound ᾱ1,p(t) for all higher priorities is constructed to
achieve a valid service curve β1,p(t):

β1,p(t) = (β1(t)− ᾱ1,p(t))⊗P1
L

If the source bus is a CAN bus, this priority-dependent service curve complies
to servicing in local CAN communication, except for the additional delay due to
packetizing. If the source bus is a FlexRay bus, no arrivals of higher priority exist,
i.e. ᾱ1,p(t) := 0.

Servicing at the second network element – the gateway – is performed either
according to cyclic polling with β̃gw(t) or strict priority with β̄gw(t). As the service
in the cyclic polling scenario is performed priority-independent, the service curve
β̃gw(t) directly reflects worst-case servicing. β2,p(t) is determined for each priority
class p as:

β2,p(t) = β̃gw(t)⊗P2
L

For routing from one central queue, strictly ordered by priority, the service capa-
bilities of the gateway must be diminished by all data of higher priority. β2,p(t) is
obtained as follows:

β2,p(t) =

⎛
⎜⎜⎝β̄gw(t)− ∑

i∈{1,2}
j∈{2,3}

α̂i, j,p(t)

⎞
⎟⎟⎠⊗P2

L

110

6.4 Application of Network Calculus to Overall In-Car Communication Topology

Applying a linear upper bound to the superposition of all higher priority arrivals
yields:

β2,p(t) =
(
β̄gw(t)− ᾱ2,p(t)

)⊗P2
L

At the third network element – the destination bus – the service curve is determined
in analogy to the first network element, except for packetizing, as storage for
further processing is not required at the end of the transmission path:

β3,p(t) = β3(t)− ∑
i∈{1,2,3}

α̂i,3,p(t)

To assure generation of a definition-compliant service curve, ᾱ3,p(t) bounds the
sum of higher priority arrivals linearly:

β3,p(t) = β3(t)− ᾱ3,p(t)

Again, if the destination bus is a FlexRay bus, no arrivals of higher priority exist,
i.e. ᾱ3,p(t) := 0.

From the individual, priority-dependent service curves β1,p(t), β2,p(t) and β3,p(t),
the overall service curve βp(t) for a priority class p is obtained by min-plus
convolution, i.e. by concatenation of the single service elements:

βp(t) = β1,p(t)⊗β2,p(t)⊗β3,p(t)

Once the overall service curve is determined, the worst-case end-to-end delay for
priority class p in the network can be computed as:

dp ≤ sup
t≥0

{inf{τ ≥ 0 : αp(t)≤ βp(t + τ)}}

Geometrically, calculating the intersection point of the height of the first step of the
arrival curve αp(t) and the end-to-end service curve βp(t) yields the worst-case
end-to-end delay.

111

6 Worst-Case Analysis of In-Car Data Transmission

6.5 Discussion of Worst-Case Analysis Approach

Achieving guaranteed delay bounds for time-critical data transfer is a supremely
valuable part of an all-encompassing performance evaluation of the underlying
communication system. Although the analytical method of Network Calculus
originates from research on classical Internet traffic, the mathematical basis and
the modeling elements could be well adapted for modern automotive commu-
nication systems and transmission technologies. The adaption, enhancements
and reasonable application studies remark the major contribution of this thesis
regarding research on analytical network modeling.
Once the worst-case scenario in CAN data transmission was identified – bus-wide
simultaneous sending of data from all ECUs – capturing CAN communication
behavior was best done with commonly applied constructs, namely step functions
for individual priorities, token bucket functions for higher priority arrivals and
non-preemptive, constant rate service according to rate-latency functions.
Expanding the worst-case analysis to a complete in-car communication system,
consisting of several buses and a gateway, required a sophisticated differentiation
of the single flows of data within the network. At each network element, the
distinction had to be made which data is relevant in terms of prioritized servicing.
Therefore, generalized theoretical considerations, as illustrated in figures 6.8 and
6.9, were necessary to disentangle data flows in end-to-end transmission scenarios
along several network elements.
Basically, the same mathematical modeling elements as for local CAN communi-
cation could be applied for end-to-end worst-case performance evaluation. Only
minor changes were necessary, e.g. regarding the actual service strategy in the
gateway or priority-independent TDMA data transmission at FlexRay.
The main benefit of worst-case analysis with Network Calculus is that basic com-
munication data – message lengths, sending cycles and data rates or switching
speeds – are sufficient to perform reasonable modeling at all stages for both local
CAN communication and heterogeneous in-car networks.

112

7 Application Examples

This chapter presents detailed application studies for discrete event simulation and
Network Calculus to issues of real-life in-car communication. The investigations
were carried out in cooperation with engineers from the Department of Safety
Electronics at Audi, Ingolstadt, who provided up-to-date communication data for
performance evaluation of time-critical data transmission in various scenarios and
safety system architectures.

7.1 Local CAN Bus Communication

For local CAN communication, a scenario was investigated, where a total of 19
ECUs are connected to the same CAN bus with a data rate of 500 kbps. The ECUs
are broadcasting an overall number of 56 cyclic CAN messages to an error-free
channel without packet-losses and retransmissions. Thus, some of the 19 ECUs
are sending two or more different messages, i.e. with different CAN-ID and data
content. Figure 7.1 provides a logarithmic-scaled presentation of the actually
occurring cycle times for the 56 cyclic CAN messages.

7.1.1 Simulation Experiments

The simulation experiments were conducted with the AnyLogic™ simulation
model as described in chapter 5. The actual number of ECUs – in this case 19 –
determines the number of replicated CAN ECU active objects in the simulation.
Each CAN ECU object is provided with its dedicated CAN messages (name,
CAN-ID, cycle time) from an external file upon start of the simulation.

113

7 Application Examples

� � � � 	
 	�
�
�
� �
 �� �� �� �� �

�������������

�
��

��
��

�!
��

�!
��

	�

�

��
	�

�

�

�
��

�
	�

��

�

��

Figure 7.1: Cycle Times for 56 CAN Priority Classes

Typical Use-Case Simulation

From real-life measurements as presented in chapter 4, reasonable ranges and
bounds for certain ECU parameters with impact on communication performance
in use-case scenarios could be derived, namely for the controller startup duration
and the frequency drift. Upon start of a simulation run, each replicated CAN ECU
object is provided with a controller-dependent, realistic wake-up interval from
which the actual point of time for ECU activation is sampled, and with a realistic
value for μC frequency drift.

114

7.1 Local CAN Bus Communication

Worst-Case Simulation

In the worst-case simulation, all CAN ECU objects communicate simultaneously
during the whole simulation run, i.e. the controller startup time is set to t = 0 and
the frequency drift is also set to zero for each ECU.

7.1.2 Network Calculus

To compute upper bounds for worst-case delays analytically, the CAN-IDs –
yielding a ranking in terms of priority classes – and the corresponding cycle times
are sufficient.

7.1.3 Performance Evaluation Results

According to the actual approach, the performance evaluation results were ob-
tained differently. For use-case simulation, stochastically independent replications
were performed with a control mechanism aborting the simulation, if the rela-
tion between mean confidence interval and mean delay – calculated as the time
difference between message creation and reception – for a particular priority
class1 falls below a threshold ε of 10% [36]. Actually, 119 replications, each
one representing 10 seconds of real-life CAN communication, were necessary to
achieve to predefined accuracy.
As no statistical variation plays a role in a worst-case communication scenario,
worst-case simulation was performed in a single simulation run with global ECU
startup time t = 0 and no frequency drift. Again, this simulation run represented
10 seconds of real CAN operation. Obviously, the expectable delays from a
worst-case simulation must be larger or at most equal to the maximum delays in
the typical use-case simulation scenario, where varying startup times are utilized.
Analytical results for Network Calculus were computed according to the formulas
derived for local CAN communication in chapter 6.

Table 7.1 provides the concrete numeric values for some priority classes p and
allows for comparing them to the simulation results.

1Priority 52 was chosen due to the promising combination of low CAN-ID and rather fast cycle
time, cf. black bar in figure 7.1.

115

7 Application Examples

Ta
bl

e
7.

1:
N

um
er

ic
R

es
ul

ts
fo

rP
er

fo
rm

an
ce

E
va

lu
at

io
n

of
L

oc
al

C
A

N
C

om
m

un
ic

at
io

n
N

et
w

or
k

C
al

cu
lu

s
Ty

pi
ca

lU
se

-C
as

e
W

or
st

-C
as

e
ᾱ

p(
t)

β p
(t
)

Si
m

ul
at

io
n

Si
m

ul
at

io
n

p
c p

b p
r p

R
′ p

T
′ p

d p
M

ea
n

M
ed

ia
n

M
ax

.
M

ax
.

(m
s)

(b
its

)
(b

ps
)

(b
ps

)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
(m

s)
0

50
0

0
50

00
00

0.
27

2
0.

54
4

0.
35

4
0.

29
6

0.
54

4
0.

54
4

1
10

13
6

27
20

49
72

80
0.

54
7

0.
82

0
0.

43
2

0.
48

1
0.

81
6

0.
81

6
2

10
27

2
16

32
0

48
36

80
0.

84
4

1.
12

5
0.

63
3

0.
64

1
1.

08
8

1.
08

8
3

10
40

8
29

92
0

47
00

80
1.

15
7

1.
44

7
0.

42
8

0.
41

5
1.

36
0

1.
36

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

27
50

36
72

20
87

60
29

12
40

13
.0

75
13

.5
42

0.
95

0
0.

54
4

6.
23

3
7.

61
6

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
54

10
00

73
44

24
26

92
25

73
08

29
.0

70
29

.5
99

1.
30

1
0.

81
6

10
.1

20
17

.1
40

55
10

00
74

80
24

28
28

25
71

72
29

.6
14

30
.1

43
1.

74
4

1.
16

4
11

.2
10

17
.4

10

116

7.1 Local CAN Bus Communication

In figures 7.2 and 7.3, important statistics for the delays of each priority class are
depicted, namely the range of the occurring delays as whiskers with minimum and
maximum as short horizontal lines, the mean delays as black dots as well as the
medians shown as wider horizontal lines and the 99%-quantiles as white triangles
for all transmitted messages from the typical use-case simulation, together with
the maximum delays from both the worst-case simulation as crosses and from
Network Calculus as circles.

● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

� 	�
� �� �� ��

�
�

	�
	�

�

�

��

�������������

�
��

��
��!

��

● ● ● ● ● ● ● ● ● ● ● ●
●
●
● ●

● ●

●
●

●

●
●

● ● ●

●

●

●

●
● ●

●

●
●
●
● ●

●

●

●

● ●
●

●

●
●

●
●
●

●

●

●

●

●
●

Figure 7.2: Performance Evaluation Results (Local CAN Bus, linear scale)

7.1.4 Comparison and Discussion

A comparison of use-case and worst-case simulation results with outcomes from
analytical evaluation with Network Calculus yields first of all an implicit validation
of the simulation experiments and in turn of the simulation model. No delay value
from both simulation scenarios exceeds the hard analytical bounds, which is
especially in the logarithmic-scaled representation in figure 7.3 very well visible.
However, it can also be seen that the bounds provided by Network Calculus are
not absolutely tight, which is caused by the approximation of both the arrivals
and services as linear functions and the resulting rate reduction for the service

117

7 Application Examples

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

� 	�
� �� �� ��

��
�

	�
�

�
�

��
�

	�
��

�
��

�������������

�
��

��
��!

��

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

Figure 7.3: Performance Evaluation Results (Local CAN Bus, logarithmic scale)

of lower priority classes. In detail, the upwards bounding of the step-function-
type arrival curves mainly contributes to this effect, as the linearization yields a
slightly but inevitably increase of maximum input flow. Due to the superposition
of higher priority arrivals, this overestimation intensifies, the lower the priority
class. This explains, why the gap between simulation outcomes and analytical
results increases from highest to lowest CAN-ID in use.
The discontinuity in the step height from priority 36 to 37 for maximum use-case
simulation results in figures 7.2 and 7.3 is caused by the specific distribution of
cycle times and priority classes as depicted in figure 7.1. Inspecting the simulation
trace shows that the first message of priority class 37 is trying to arbitrate the bus
at time t = 0. Until it can successfully be transmitted, messages of higher priority
are sent first. Due to the shorter cycle times of several higher priority messages,
some of them are sent multiple times before a message from priority class 37 can
be sent for the first time, resulting in a higher, non-linear increase in the maximum
delay. This also clarifies that a message of priority class p in some constellations
has to wait more than p times the duration of one CAN message before winning
bus arbitration.

118

7.2 Network-Wide Data Transmission

7.2 Network-Wide Data Transmission

Network-wide end-to-end data transmission was investigated for a typical upper-
class vehicle communication topology as depicted in figure 7.4. Four high-speed
CAN buses CAN 1, CAN 2, CAN 3, CAN 4 and one FlexRay segment are
connected to a central gateway. The respective number of ECUs connected
to a bus segment is denoted in the figure, yielding a total of 48 ECUs in the
communication system.

ECU 1

Gateway

CAN 1

ECU 2

ECU 3

ECU 7

ECU 1

CAN 2

ECU 2

ECU 3

ECU 9

ECU 1

CAN 4

ECU 2

ECU 3

ECU 17

ECU 1

CAN 3

ECU 2

ECU 3

ECU 8

ECU 1

FlexRay

ECU 2

ECU 3

ECU 7

Figure 7.4: Network Topology for End-to-End Communication Scenario

Table 7.2 provides information on the communication parameters of the single
buses, especially on the number of messages generated locally from the ECUs
and of messages routed by the gateway from other segments to the respective
bus. Again, error-free transmissions are assumed, i.e. no bit- or packet-errors and
-losses on the communication channels and no retransmissions.

119

7 Application Examples

Table 7.2: Settings for Bus Segments in the Network
CAN 1 CAN 2 CAN 3 CAN 4 FlexRay

Data Rate (bps) 500k 500k 500k 500k 10M
No. of ECUs 7 9 8 17 7
Messages from ECUs 30 33 15 54 140
Messages to Gateway 24 16 10 33 23
Messages from Gateway 31 68 40 25 38

For the gateway, the two operation modes – cyclic polling and strict priority – as
presented in chapter 3 were considered according to the modeling approaches in
chapters 5 and 6. The gateway processing rate Rgw was set to 13.6 Mbps, yielding
an effective processing time of 10 μs for a 136-bit CAN frame. Consequently,
the cycle time cgw for cyclic polling was set to 50 μs for 5 connected buses. The
gateway itself generates 15 relevant messages, for example for tasks of central
network management or on-board diagnostics. These messages are routed to the
CAN buses and to the FlexRay bus segment.

7.2.1 Simulation

On contrast to local CAN, a worst-case communication scenario which is valid at
each of the single network elements cannot be identified directly for simulation of
end-to-end data transmission. Imagine a message being transfered from one CAN
bus to another via the gateway. If all ECUs at the single CAN buses are assumed
to start operation at global time t = 0, the arbitration of the source bus will take the
maximum possible time for this message. Considering the delay at media access,
the transmission delay on the source CAN bus and the processing in the gateway,
the message will access the destination bus at a time, when the initial burst of
messages generated at time t = 0 has already been worked off to some extent. Of
course, this reduces the arbitration delay for this particular message compared to a
scenario, where all higher priority messages are present and preferentially served.
Thus, only use-case simulation has been employed for network-wide data transmis-
sion. Again, the stochastically varying parameters are the ECU startup durations
and the μC frequency drift. The replication mechanism for independent simula-
tion runs is subject to the same simulation control as employed for simulation of

120

local CAN data transmission.

7.2 Network-Wide Data Transmission

The FlexRay ECUs are assumed to generate messages asynchronous to the TDMA
schedule, yielding the maximum time gaps of asymptotically one message cycle
time between generation and sending.

7.2.2 Network Calculus

The parameters for buses, messages and the gateway, as well as routing depen-
dencies and communication paths, could be derived from the communication
data provided by Audi. From these, the traffic flows were identified according
to the Network Calculus application methodology as presented beforehand. The
data rates and message lengths contributed to the generation of individual arrival
curves, service curves and packetizer elements. The priority-dependent ranking of
all messages transfered from one bus system to any other was accomplishable for
the following reasons:

• CAN messages retain the assigned, network-wide unique CAN-ID, even in
case of being routed to another CAN bus segment. Thus, the ID of a CAN
message directly yields the respective priority class.

• For FlexRay messages which are routed to a CAN bus, the allocated CAN-
ID for the destination bus also allows to assign a priority class to these
messages.

• FlexRay messages which are not routed to other buses do not own a CAN-ID.
As TDMA media access at FlexRay is performed independent of priorities
and local FlexRay messages do not consume routing capacity in the gateway,
these messages do not have to be considered in any priority ranking.

From table 7.2, it is obvious that a total of 272 messages are generated by ECUs
on the five buses, plus an additional 15 messages from the gateway, yielding an
overall number of 287 messages in the network. From the 140 FlexRay messages,
only 23 are routed, the remaining 117 messages stay locally on the bus. Thus,
170 priority classes have to be introduced to establish a CAN-ID-based ranking
of all relevant messages in the network. In a logarithmic-scaled representation,
figure 7.5 depicts the CAN and FlexRay cycle times in which the 170 messages
are generated.

121

7 Application Examples

0 8 18 29 40 51 62 73 84 95 108 122 136 150 164

Priority Class

C
yc

le
 T

im
e

(m
s)

5
10

20
50

10
0

20
0

50
0

20
00

Figure 7.5: Cycle Times for all 170 Priority Classes in the Network

7.2.3 Performance Evaluation Results

The results for end-to-end performance evaluation were obtained for the given
network topology of 4 CAN buses and 1 FlexRay for both a central gateway
routing according to cyclic polling and strict priority.
As for local CAN communication, use-case simulation based upon independent
replications. The end-to-end transmission delay of priority class 137 from FlexRay
to CAN 2 was considered as abortion criterion, cf. black bar in figure 7.5. This
message was particularly suited, as the rather slow cycle time at FlexRay yields a
broad variety of durations between generation in the asynchronously operating
FlexRay ECU and matching of the respective TDMA slot for sending. At the
destination bus, priority class 137 is a rather low priority, leading to longer delays
at CAN media access. A single replication runs at least until 10 messages from

122

priority class 137 were transmitted.

7.2 Network-Wide Data Transmission

For a network, where the gateway routes data by cyclic polling of in-ports, 268
replication were necessary until the relation between mean confidence interval
and mean delay of priority class 137 messages under-ran a threshold ε of 10% in
relative error. For a strict priority gateway routing mechanism, 350 independent
replications were performed.
The application of Network Calculus was based on the formulas derived for
network-wide worst-case analysis in chapter 6.
Applying both simulation and worst-case analysis, performance evaluation for all
messages transfered between any pair of the 4 CAN buses and the FlexRay bus
could be performed. In the following, exemplary outcomes for meaningful source
and destination constellations will be shown and discussed thoroughly.

The graphical representation in figures 7.6 to 7.11 exactly follows the illustration
as presented for local CAN communication in figures 7.2 and 7.3, e.g. the mean
delays are shown as filled dots and the 99%-quantiles as white triangles. For
each priority class, a pair of result values is given in each graphic. The left,
gray-colored lines and symbols correspond to the evaluation outcomes for a strict
priority routing and the right, black-colored properties comply with findings for
cyclic polling routing. For reasons of better visibility – especially for results
for higher priority classes lying at close quarters – all results are shown in a
logarithmic scale.
The numerical values given in tables 7.3 to 7.8 are shown row-wise for the
respective priority classes, for both routing according to cyclic polling (CP) and
strict priority (SP). All results are denoted in milliseconds.

CAN-to-CAN Communication

In this scenario, messages are generated on a CAN bus and routed to another CAN.
At both source and destination, the delay at media is expected to be related to the
priority of the respective data. In figures 7.6 and 7.7, the results of simulative and
analytical performance evaluation are illustrated graphically, tables 7.3 and 7.4
provide exemplary numerical values for highest, mid-range and lowest priority
classes in these communication scenarios.

123

7 Application Examples

��
�

	�
�

�
�

��
�

	�
��

�
��

��
��

�������������

�
��

��
��!

��

�
 	� 	
 	� 	� �� �� �" �� �	 �� 	�� 	
" 	
� 	
� 	��

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ● ● ●

●

●
●

● ● ● ●

Figure 7.6: Performance Evaluation Results (CAN 1 → CAN 2)

Table 7.3: Numeric Results (CAN 1 → CAN 2, (ms))
Prio. NC Simulation

Max. Min. Max. Mean Median q99
0 CP 1.158 0.544 1.092 0.653 0.600 1.014

SP 1.128 0.545 1.092 0.639 0.560 1.019
2 CP 2.023 0.816 1.559 0.920 0.867 1.282

SP 2.013 0.814 1.584 0.892 0.826 1.258
...

...
...

...
...

...
...

...
38 CP 20.613 1.664 8.160 3.019 3.003 5.808

SP 20.899 1.642 8.160 2.951 2.912 5.994
...

...
...

...
...

...
...

...
134 CP 56.994 4.112 19.580 6.187 5.912 10.142

SP 57.990 4.090 19.580 6.158 5.722 10.043

124

7.2 Network-Wide Data Transmission

��
�

	�
�

�
�

��
�

	�
��

�
��

��
��

�������������

�
��

��
��!

��

� "� "� �� �� �� 	�� 		� 		� 	
� 	

 	
� 	�� 	�" 	�� 	��

●
●

● ●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●
●

● ●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

● ● ● ●
● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ●

Figure 7.7: Performance Evaluation Results (CAN 4 → CAN 2)

Table 7.4: Numeric Results (CAN 4 → CAN 2, (ms))
Prio. NC Simulation

Max. Min. Max. Mean Median q99
28 CP 5.939 0.816 2.301 0.940 0.864 1.632

SP 6.133 0.819 2.363 0.944 0.826 1.656
52 CP 10.275 0.544 4.624 0.846 0.830 1.914

SP 10.675 0.548 4.624 0.846 0.826 2.019
...

...
...

...
...

...
...

...
119 CP 40.145 1.664 16.590 2.193 1.946 4.844

SP 41.008 1.642 16.590 2.148 1.914 4.544
...

...
...

...
...

...
...

...
163 CP 65.574 1.932 29.100 4.375 4.394 10.932

SP 66.746 1.914 29.100 4.233 4.100 10.689

125

7 Application Examples

CAN-to-FlexRay Communication

Communication from a CAN bus to FlexRay captures CSMA/BA media access
at the source bus and TDMA-based data transmission from the gateway to the
destination. Again, for CAN media access the priority is assumed to be of impact,
whereas bus access at FlexRay will mainly depend on the communication cycle in
which TDMA slots are provided for a certain message. The results are denoted in
both figures 7.8 and 7.9 and tables 7.5 and 7.6

FlexRay-to-CAN Communication

Data is generated by a FlexRay ECU, sent in the according TDMA time slot,
received by the gateway and routed to a CAN destination bus. Again, the TDMA
cycle time and the respective CAN priority class are considered to mainly con-
tribute to the end-to-end transmission delay as depicted in figures 7.10 and 7.11
and illustrated numerically in tables 7.7 and 7.8.

126

7.2 Network-Wide Data Transmission

��
#�

	
��

$�
�

��
$�

	
��

$�

�������������

�
��

��
��!

��

� 	
 � � " 	� 	
 	�
�
� �� 	
�

● ●
●

●
● ●

● ●

●

● ●

●

●

● ●
●

● ● ●

●
●

●

● ●

●

●

●

● ● ● ● ●

● ●

●

● ●

●

●

Figure 7.8: Performance Evaluation Results (CAN 1 → FlexRay)

Table 7.5: Numeric Results (CAN 1 → FlexRay, (ms))
Prio. NC Simulation

Max. Min. Max. Mean Median q99
0 CP 50.886 0.316 40.840 2.916 2.716 5.407

SP 50.856 0.322 36.770 3.009 2.976 5.323
1 CP 11.164 0.314 9.934 2.806 2.889 5.266

SP 11.144 0.289 10.240 2.776 2.781 5.282
...

...
...

...
...

...
...

...
10 CP 24.621 0.848 20.080 6.166 6.467 10.956

SP 24.672 0.925 20.730 6.074 6.415 11.061
...

...
...

...
...

...
...

...
128 CP 1027.860 6.104 324.300 202.400 248.700 322.778

SP 1028.805 5.175 326.400 194.000 243.700 323.338

127

7 Application Examples

��
#�

	
��

$�
�

��
$�

	
��

$�

�������������

�
��

��
��!

��

	" �
 �� �� �� 	�� 	��

●

●

● ● ●

● ●

●

●

● ● ●

● ●

●

●

● ● ●

● ●

Figure 7.9: Performance Evaluation Results (CAN 2 → FlexRay)

Table 7.6: Numeric Results (CAN 2 → FlexRay, (ms))
Prio. NC Simulation

Max. Min. Max. Mean Median q99
17 CP 103.500 0.342 100.000 6.296 5.613 52.784

SP 103.622 0.301 100.100 6.244 5.378 51.174
32 CP 55.226 0.308 49.880 10.470 10.460 20.140

SP 55.451 0.336 49.970 10.460 10.380 20.271
...

...
...

...
...

...
...

...
54 CP 89.050 0.864 79.850 21.260 20.580 41.482

SP 89.470 0.978 81.490 20.780 18.990 41.455
...

...
...

...
...

...
...

...
166 CP 1041.492 4.118 327.600 205.600 218.000 320.765

SP 1042.684 5.798 327.600 199.900 212.200 319.168

128

7.2 Network-Wide Data Transmission

��
�

�
�

��
�

�
��

	�
��

�

�������������

�
��

��
��!

��

� � �� �� �" �� �� 	�"

● ●

● ● ●

●
●

●

● ●

● ● ●

● ●

●

● ●

● ● ●

● ●

●

Figure 7.10: Performance Evaluation Results (FlexRay → CAN 2)

Table 7.7: Numeric Results (FlexRay → CAN 2, (ms))
Prio. NC Simulation

Max. Min. Max. Mean Median q99
8 CP 21.194 0.313 20.480 10.540 10.750 20.197

SP 21.225 0.296 20.630 9.738 9.646 20.065
9 CP 21.495 0.585 20.750 10.830 11.020 20.469

SP 21.537 0.568 20.900 10.020 9.926 20.337
...

...
...

...
...

...
...

...
47 CP 47.520 0.761 41.430 20.140 20.220 40.667

SP 47.868 0.565 40.610 20.960 21.330 40.370
...

...
...

...
...

...
...

...
137 CP 349.226 0.329 321.900 168.100 241.800 319.477

SP 350.232 1.460 322.300 149.900 68.950 320.127

129

7 Application Examples

��
�

	�
�

�
�

��
�

�
��

��
��

�������������

�
��

��
��!

��

� � 		 	� 	�
	

� �� �� �� �� �� �	 �� ��

● ● ● ● ● ● ●
●

●
● ●

● ● ●

● ●

● ● ● ● ●
● ●

●

●
●

●
●

● ●

● ●

● ● ● ● ● ● ● ●

●
● ● ● ● ●

● ●

Figure 7.11: Performance Evaluation Results (FlexRay → CAN 3)

Table 7.8: Numeric Results (FlexRay → CAN 3, (ms))
Prio. NC Simulation

Max. Min. Max. Mean Median q99
8 CP 21.857 0.313 20.570 10.580 10.790 20.224

SP 21.888 0.296 20.900 9.773 9.634 20.146
9 CP 22.187 0.585 20.890 10.880 11.060 20.540

SP 22.227 0.568 21.170 10.070 9.918 20.423
...

...
...

...
...

...
...

...
30 CP 46.237 1.825 43.610 22.430 22.200 42.203

SP 46.441 2.391 42.930 22.920 23.440 42.312
...

...
...

...
...

...
...

...
66 CP 96.008 1.008 88.110 44.940 46.330 85.399

SP 96.531 1.348 85.270 44.130 43.840 83.577

130

7.2 Network-Wide Data Transmission

7.2.4 Comparison and Discussion

Several parameters contribute differently to end-to-end communication perfor-
mance in the various scenarios. First and foremost, a cyclic-polling routing
strategy appears to perform slightly better for a wider range of messages than
routing according to a strict order of priority. For most lower priority classes, the
FIFO ordering in the gateway buffer and a fix maximum timeout for service show
more beneficial effects on delay than a priority-based routing, where higher classes
are served preferentially. In turn, the higher priorities gain a bit more from the
strict priority routing than from cyclic polling – at least as long as the worst-case
timeout according to a ranking of priorities is lower than the gateway cycle time
(cf. priority class 0 in figure 7.6). This is valid for both Network Calculus results
and outcomes from use-case simulation throughout all scenarios.

For end-to-end transmission from one CAN bus to another, the priority class of
data mainly contributes to the computed worst-case delays and the maximally
observed simulation results. Again, the maximum results from both approaches are
closer to each other for higher priority classes, whereas the gap between analytics
and simulation increases for lower priorities due the necessary approximations
and superpositions in Network Calculus as already discussed for local CAN
communication2. However, analytics and simulation yield maximum values which
monotonically increase from highest to lowest priority in use. The stochastic
parameters in the simulation model were varied intensively, leading to a multitude
of communication constellations in 268 and 350 independent replications. For
example, the minimum end-to-end delay for class 143 is significantly lower than
the minima values achieved for many higher priorities, cf. figure 7.7. Within
the numerous replications, at least one message of this priority could be served
very quickly, e.g. if source bus, gateway and destination bus were idle when the
respective message had to be transfered. The 99%-quantiles of the simulation
results emphasize that most of the messages in a use-case scenario experience
delays of 5 - 10 milliseconds at most, the mean and median values are even
significantly lower.

Data transmission from a CAN bus to FlexRay and vice versa is mainly dominated
by the waiting time for the next transmission slot in the TDMA schedule. If the
ECUs and the gateway operate asynchronous to the bus timing – which is up to

2In addition, no explicit worst-case could be simulated for end-to-end data transfer.

131

7 Application Examples

now standard, unless cost- and development-intensive AUTOSAR architectures
are employed – end-to-end data transmission is considerably influenced by this
asynchronism. From figures 7.8 to 7.11 and tables 7.5 to 7.8, it is obvious that
the contribution of the priority class at routing and CAN media access is strongly
dominated by the proportion of delay caused by the actual TDMA cycle time of the
respective message. Consequently, a higher priority message does not necessarily
experience a shorter end-to-end delay than a lower priority class. Moreover, the
transmission time is widely independent of the initially assigned CAN-ID or
priority class. Comparing priority classes 0 and 10 in figure 7.8 and table 7.5 or
classes 17 and 54 in figure 7.9 and table 7.6 emphasizes this assumption.

The results are valuable information for the design of time-critical automotive
applications. For example, imagine an ECU hosting functions for intelligent
occupant protection, connected to CAN 2. Two environment sensors at CAN
1 and FlexRay provide essential information for this application, packaged in
messages of global priority classes 0 and 47, respectively. For transmission from
CAN 1 to CAN 2, class 0 data experiences delays of at most 1.158 ms and about
half a millisecond in the mean, cf. figure 7.6 and table 7.3. Figure 7.10 and table
7.7 reveal that the transmission delay of priority 47 from FlexRay to CAN 2 is
approximately 40 times higher both at maximum and on average, which is mainly
caused by the delay at TDMA media access. Depending on the effective range
and the actual design of the function, this significant difference in transmission
delay would have to be considered thoroughly, e.g. by employing synchronization
mechanisms for the respective sensor ECU at FlexRay or faster cycle times for
information update and TDMA transmission.

Regarding TDMA and CSMA/BA media access and data transmission, the findings
from the performance evaluation studies also comply with the results of the
prototype measurements presented in chapter 4. The major benefit of the combined
analytical and simulative performance evaluation is that for any message in an
arbitrary end-to-end communication scenario both typically expectable delays and
worst-case values are available. Instead of restricting the evaluation to data which
is currently exchanged for time- and safety-critical applications, the consideration
of the overall network traffic is meaningful for two reasons. First of all, the
complete background traffic in a given network has to be incorporated anyway, as
focusing only on the data of interest surely leads to overoptimistic performance
measures. Once the background traffic is accounted for, it appears to be worthwhile
to compute relevant performance characteristics for these data in one go. Messages,

132

7.2 Network-Wide Data Transmission

which are not yet relevant in automotive safety applications of today, might
contain data which is essential for innovative functions of tomorrow. Hence, any
performance evaluation including the entirety of traffic yields reasonable studies
for time-critical data transfer of nowadays. Over and above to this, a sound basis is
provided for discussions about the expectable performance of innovations, which
rely on additional data and thus enlarge the set of time-critical transmissions to be
considered.

133

8 Conclusions and Future Work

8.1 Conclusions

The scope of this thesis was to enable an integrated performance evaluation of time-
and safety-critical data transfer in automotive in-car networks, composed of CAN
and FlexRay buses and a central gateway. From meaningful measurement studies
on the communication system in a real-life prototype vehicle, several phenomena
with a significant impact on the real-time capabilities of data transmission could
be revealed.
The dynamic behavior of the communication system in the use-case, i.e. in
normal operation mode, could be captured best with a discrete event simulation
model based on the paradigms of UML-compliant statechart modeling and object
oriented programming, employing the modeling tool AnyLogic™. The structure
and behavior of basic components of the network – ECUs, messages, buses,
gateway – were resembled closely. Meaningful simulation studies could be
performed due to the reasonable parameterization and input modeling as obtained
from measurements. The minima-, maxima-, mean- and quantile-related results
are worthwhile information for the basic dimensioning of the system.
The worst-case of operation, which is for sure not negligible for data transmission
with a scope on safety applications and occupant protection, was incorporated by
analyses based on the method of Network Calculus. These worst-case analytics
were applied to the field of automotive networking for the first time ever, requiring
sophisticated considerations and enhancements to cope with constraints of in-car
data transfer. The results are valuable information on the guaranteed maximum
transmission delays and in turn on the lowermost expectable communication
performance. Furthermore, the analytical outcomes allow for a sound validation
of the maximum results from the simulation studies.
The three pillars of performance evaluation – measurements, simulation and
analytics – have proven to be well-suited to facilitate comprehensive investigations

135

8 Conclusions and Future Work

on timing aspects of in-car data transmission. The results from simulation and
analytics were obtained for the entirety of data traffic, which assures a high level
of trustworthiness. The complete background traffic is considered, which equips
responsible engineers with an all-encompassing view on transmission performance
on pretty much every message, data, etc. which is of interest for current or future
networked safety applications.

8.2 Future Work

Automotive in-car electronics feature dynamics like currently few other techno-
logical application areas. Thus, there is plenty of room for future work on the
topics investigated in this thesis. The measurement infrastructure can be enhanced
in various directions, e.g. data collection inside the ECUs by employing ASAM
XCP [2], determination of further performance measures like bit errors and packet
losses or detailed inspection of data content for a signal- and situation-based
evaluation of data traffic and behavior of the distributed system.
In the simulation model, real payload of varying size could be included in the
CAN and FlexRay message objects, either as binary bit streams being coded in
the sender and decoded in the receiver, or as semantical information on current
states and signal values in a certain message. This would also support a more
content-based simulation of communication and allows for extending the transmis-
sion chain, e.g. from data acquisition in a sensor to A/D conversion and coding,
sending, receiving, decoding and, finally, triggering of applications, actuators,
etc. Up to now, FlexRay data transmission is restricted to the static segment.
Considering the dynamic segment in the simulation is an open issue to permit
on-event sending beyond the static TDMA schedule in the model. Of course,
other bus systems, like LIN or Ethernet, might be incorporated as well as wireless
transmission technologies, like W-LAN, UMTS or RFID, in case the simulation
model is to be coupled with Car-2-X environments, covering complete road traffic
scenarios.
Regarding the worst-case analytics with Network Calculus, some efforts could be
spent to achieve even tighter delay bounds. For example, an approximation for
the step functions of message arrivals, which is closer than the linear upper bound,
might be found and expressed mathematically. Processing the individual sub-
flows, which contribute to the delays at the single network elements, according to

136

8.2 Future Work

the approach of Pay Multiplexing Only Once (PMOO) [53] would be an alternative
to obtain more optimistic end-to-end delay bounds. Just as for simulation, the
dynamic segment of FlexRay may also be considered in worst-case analytics,
where the priority-based media access in the dynamic part poses some interesting
questions on the worst-case on-event transmission times of the individual FlexRay
priorities. The concept of Stochastic Network Calculus [26] could be applied to
determine guaranteed, quantile-related thresholds for communication performance.
Finally, computing guaranteed upper bounds for the backlog in the system might
be valuable information for dimensioning, e.g. of the buffers in the gateway or in
the individual ECUs.

137

Bibliography

[1] A. Albert and W. Gerth. Evaluation and Comparison of the Real-Time
Performance of CAN and TT-CAN. In 9th International CAN Conference
(iCC), October 2003.

[2] ASAM - Association for Standardisation of Automation and Measuring
Systems. ASAM MCD-1 XCP: The Universal Measurement and Calibration
Protocol Family. http://www.asam.net/.

[3] AUDI AG. Audi Insassenschutz - Passive Systeme, Selbststudienprogramm
410.

[4] AUDI AG, Department for Safety Electronics. Data Sheets on Airbag
Control Systems.

[5] AUTOSAR Consortium. Automotive Open System Architecture (AU-
TOSAR). http://www.autosar.org.

[6] P. Castelpietra, S. Ye-Qiong, F. Simonot-Lion, and M. Attia. Analysis
and Simulation Methods for Performance Evaluation of a Multiple Net-
worked Embedded Architecture. IEEE Transactions on Industrial Electron-
ics, 49:1251–1264, 2002.

[7] CoCar Consortium. CoCar - Cooperative Cars, Project Report on UMTS-
based Car2X Approaches. 2008. http://www.cocar.org.

[8] Condalo Ltd. Condalo Data Logger CCO DLIII Data Sheet and Manual.
http://www.condalo.de/pid130.html.

[9] R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in
Isolation. IEEE Transactions on Information Theory, 37:114–131, 1991.

[10] R. L. Cruz. A Calculus for Network Delay, Part II: Network Analysis. IEEE
Transactions on Information Theory, 37:132–141, 1991.

139

Bibliography

[11] A. Davare, M. DiNatale, and Q. Zhu. Period Optimization for Hard Real-time
Distributed Automotive Systems. In 44th IEEE/ACM Design Automation
Conference (DAC). ACM, June 2007.

[12] R. I. Davis, A. Burns, J. R. Bril, and J. J. Lukkien. Controller Area Network
(CAN) Schedulability Analysis: Refuted, Revisited and Revised. Real-Time
Systems, 35:239–272, 2007.

[13] R. Ernst and K. Richter. Real-Time Analysis as a Quality Feature: Automo-
tive Use-Cases and Applications. In Embedded World Conference, February
2006.

[14] K. Etschberger. Controller Area Network. Carl Hanser Verlag, München,
Germany, second edition, 2000.

[15] Faurecia Industries. Final Report for SAVE-U (Sensors and System Archi-
tecture for Vulnerable Road Users Protection). 2005. http://www.save-u.org.

[16] J. Ferreira, A. Oliveira, P. Fonseca, and J. A. Fonseca. An Experiment
to Assess Bit Error Rate in CAN. In The 3rd International Workshop on
Real-Time Networks (RTN), 2004.

[17] M. Fidler and V. Sander. A Parameter-based Admission Control for Differ-
entiated Services Networks. Computer Networks, 44:463–479, 2004.

[18] FlexRay Consortium. FlexRay Communications System Protocol Specifica-
tion. Version 2.1 edition, 2005.

[19] A. Hamann, R. Racu, and R. Ernst. Formal Methods for Automotive Platform
Analysis and Optimization. In Future Trends in Automotive Electronics and
Tool Integration Workshop (DATE Conference), March 2006.

[20] T. Herpel and R. German. A Simulation Approach for the Design of Safety-
Relevant Automotive Multi-ECU Systems. In 4th International Conference
on System of Systems Engineering. IEEE, June 2008.

[21] T. Herpel, K.-S. J. Hielscher, U. Klehmet, and R. German. Stochastic and
Deterministic Performance Evaluation of Automotive CAN Communication.
Computer Networks 53, pages 1171–1185, 2009.

140

Bibliography

[22] T. Herpel, B. Kloiber, R. German, and S. Fey. Assessing the CAN Commu-
nication Startup Behavior of Automotive ECUs by Prototype Measurements.
In International Instrumentation and Measurement Technology Conference
(I2MTC). IEEE, May 2009.

[23] T. Herpel, B. Kloiber, R. German, and S. Fey. Routing of Safety-Relevant
Messages in Automotive ECU Networks. In IEEE 70th Vehicular Technology
Conference. IEEE, September 2009.

[24] Institut für Datentechnik und Kommunikationsnetze, Universität Braun-
schweig. SymTA/S - Symbolic Timing Analysis for Systems.
http://www.ida.ing.tu-bs.de/forschung/projekte/symtas/.

[25] International Standard ISO 11898. Road vehicles - Interchange of Digital
Information - Controller Area Network (CAN) for High Speed Communi-
cation. International Organization for Standardization (ISO), first edition,
1994. ISO Reference Number ISO 11898:1993(E).

[26] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer Verlag, 2008.

[27] U. Klehmet, T. Herpel, K.-S. J. Hielscher, and R. German. Worst Case
Analysis for Multiple Priorities in Bitwise Arbitration. In Leistungs-,
Zuverlässigkeits- und Verlässlichkeitsbewertung von Kommunikationsnetzen
und verteilten Systemen (MMBnet), pages 27–35, September 2007.

[28] U. Klehmet, T. Herpel, K.-S. J. Hielscher, and R. German. Delay Bounds
for CAN Communication in Automotive Applications. In 14th GI/ITG
Conference on Measurement, Modelling and Evaluation of Computer and
Communication Systems (MMB), pages 157–171. VDE Verlag, April 2008.

[29] U. Klehmet, T. Herpel, K.-S. J. Hielscher, and R. German. Real-Time
Guarantees for CAN Traffic. In IEEE 67th Vehicular Technology Conference,
pages 3037–3041. IEEE, May 2008.

[30] B. Kloiber. Messung, Analyse und Bewertung der Echtzeitfähigkeit vernet-
zter Fahrzeugsicherheitskomponenten. Diploma thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Lehrstuhl Informatik 7 (Rechnernetze und
Kommunikationssysteme), Erlangen, Germany, 2009.

141

Bibliography

[31] K. H. Kraft. Simulation von CAN-Bus-Komponenten und -
Übertragungsnetzen. In GMM Fachbericht Analog 2002 - Entwicklung
von Analogschaltungen mit CAE Methoden. VDE Verlag, 2002.

[32] J. Krakora and Z. Hanzalek. Verifying Real-Time Properties of CAN Bus by
Timed Automata. In FISITA 2004 - World Automotive Congress, May 2004.

[33] F. Kramer. Passive Sicherheit von Kraftfahrzeugen. Vieweg + Teubner,
Wiesbaden, Germany, third edition, 2009.

[34] J. Langheim. CARSENSE - New Environment Sensing for Advanced Driver
Assistance Systems. In IEEE Intelligent Vehicle Symposium, pages 89–94,
2001.

[35] A. M. Law. ExpertFit - Distribution Fitting Software. http://www.averill-
law.com.

[36] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-
Hill, Boston, MA, USA, third edition, 2000.

[37] W. Lawrenz, editor. CAN Controller Area Network. Hüthig Verlag, Heidel-
berg, Germany, fourth edition, 2000.

[38] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer Verlag LNCS
2050, 2001.

[39] A. Leon-Garcia and I. Widjaja. Communication Networks. McGraw-Hill,
New York, NY, USA, 2004.

[40] M. Meinecke. Approach for Protection of Vulnerable Road Users Using
Sensor Fusion Techniques. In International Radar Symposium, 2003.

[41] U. Meis and R. Schneider. Radar Image Acquisition and Interpretation for
Automotive Applications. In IEEE Intelligent Vehicle Symposium, pages
328 – 332. IEEE, 2003.

[42] MOST Cooperation. MOST Media Oriented Systems Transport. Revision
2.4 edition, 2005.

[43] N. Navet and Y.-Q. Song. Validation of In-Vehicle Real-Time Applications.
Computers in Industry, 46:107–122, 2001.

142

Bibliography

[44] L. D. Ortega, K. H. Kraft, and L. Claus. Untersuchung von passiven FlexRay-
Sternkopplern. ELEKTRONIK automotive, 7:64–67, 2007.

[45] R. Pallierer, M. Horauer, M. Zauner, A. Steininger, E. Armengaud, and
F. Rothensteiner. A Generic Tool for Systematic Tests in Embedded Auto-
motive Communication Systems. Embedded World Conference, February
2005.

[46] PSI 5 Consortium. PSI 5 - Peripheral Sensor Interface for Automotive
Applications, Technical Specification, 2007. http://www.psi5.org.

[47] R. Racu, A. Hamann, and R. Ernst. Sensitivity Analysis of Complex Embed-
ded Real-Time Systems. Real-Time Systems, 39:31–72, 2008.

[48] K. Reif. Automobilelektronik. Vieweg + Teubner, Wiesbaden, Germany,
third edition, 2009.

[49] P. Richardson, L. Sieh, A. Elkateeb, and P. Haniak. Real-time Controller
Area Networks (CAN) - Managing Transient Surges. Integrated Computer-
Aided Engineering, 9:149–165, 2002.

[50] Robert Bosch GmbH. CAPS - Combined Active and Passive Safety. http://rb-
k.bosch.de/de/sicherheitkomfort/fahrsicherheit/caps.

[51] J. Roberts, U. Mocci, and J. Virtamo. Broadband Network Traffic - Perfor-
mance Evaluation and Design of Broadband Multiservice, volume 1155 of
Lecture Notes in Computer Science. Springer Verlag, December 1996.

[52] S. Samii, S. Rafiliu, P. Eles, and Z. Peng. A Simulation Methodology for
Worst-Case Response Time Estimation of Distributed Real-Time Systems.
In Conference on Design, Automation and Test in Europe (DATE), pages
556–561. ACM, 2008.

[53] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic. Improving Performance
Bounds in Feed-Forward Networks by Paying Multiplexing Only Once.
In 14th GI/ITG Conference Measurement, Modelling and Evaluation of
Computer and Communication Systems (MMB), pages 13–27. VDE Verlag,
March 2008.

[54] C. Schröder, M. von der Beeck, M. Rappl, and P. Braun. Modellbasierte
Softwareentwicklung für automobilspezifische Steuergerätenetzwerke. In
Bericht 1646 zur VDI Fachtagung 2001. VDI, 2001.

143

Bibliography

[55] M. Schulze, T. Maekinen, J. Irion, M. Flament, and T. Kessel. Final Report
of Preventive and Active Safety Applications Integrated Project. 2008.
http://www.prevent-ip.org.

[56] SimTD Consortium. SimTD Project Report on Wireless Car2X Communi-
cation in Road Traffic. 2008. http://www.simtd.org.

[57] L. Thiele, S. Chakraborty, and M. Naedele. Real-Time Calculus for Schedul-
ing Hard Real-Time Systems. In IEEE International Symposium on Circuits
and Systems, pages 101–104. IEEE, May 2000.

[58] K. Tindell and A. Burns. Guaranteed Message Latencies for Distributed
Safety Critical Hard Real-Time Networks. Technical Report YCS 229,
Department of Computer Science, University of York, UK, 1994.

[59] University of Uppsala, Sweden and University of Aalborg, Denmark. UP-
PAAL - An integrated Tool Environment for Modeling, Validation and
Verification of Real-Time Systems. http://www.uppaal.com.

[60] H.-C. v. d. Wense, editor. LIN Specification Package. LIN Consortium,
2003.

[61] Vector Informatik. CANoe. http://www.vector.com.

[62] Vector Informatik. CAPL. http://www.vector.com.

[63] E. Wandeler and L. Thiele. Real-time Interfaces for Interface-based Design
of Real-Time Systems with Fixed Priority Scheduling. In 5th ACM Interna-
tional Conference on Embedded Software (EMSOFT), pages 80–89. ACM
Press, 2005.

[64] XJ Technologies Company. AnyLogic. http://www.xjtek.com.

[65] W. Zimmermann and R. Schmidgall. Bussysteme in der Fahrzeugtechnik.
Vieweg + Teubner, Wiesbaden, Germany, third edition, 2008.

144

