

Induction and Fuzzification

of Classification Rules

Dissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften

(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

vorgelegt

von

Jens Christian Hühn

aus Marburg

Marburg 2009

Vom Fachbereich Mathematik und Informatik der Philipps-Universität Marburg
als Dissertation angenommen am: 1.12.2009

Erstgutachter: Prof. Dr. Eyke Hüllermeier
Zweitgutachter: Prof. Dr. Johannes Fürnkranz

Tag der mündlichen Prüfung: 8.12.2009

Diese Dissertation wurde durch ein Graduiertenstipendium der Begabtenförderung

der Konrad-Adenauer-Stiftung e.V. gefördert.

Bibliografische Information er Deutschen ibliothek

http://dnb.d-nb.deiabrufbar.

�

Zugl.:

978-3-86955-186-9

978-3-86955-186-9

d Nationalb

Nationalbibliografie;idetaillierteibibliografischeiDatenisindiimiInternetiüber

1.iAufl.i- Göttingen:iCuvillier,i2009

CUVILLIERiVERLAG,iGöttingeni2009
Nonnenstiegi8,i37075iGöttingen
Telefon:i0551-54724-0
Telefax:i0551-54724-21
www.cuvillier.de

AlleiRechteivorbehalten.iOhneiausdrücklicheiGenehmigung
desiVerlagesiistiesinichtigestattet,idasiBuchioderiTeile
darausiaufifotomechanischemiWegi(Fotokopie,iMikrokopie)
zuivervielfältigen.
1.iAuflage,i2009
GedrucktiaufisäurefreiemiPapier

Die DeutscheiNationalbibliothekiverzeichnetidieseiPublikationiinideriDeutschen

i
iMarburg,iUniv.,iDiss., 2009i

To my parents

i

Abstract

The ability to learn new things is one of the main characteristics of intelligent
behavior. It is this that enables us humans to recognize patterns and to gen-
eralize following the structures we encounter. We are able to learn riding a
bike, playing the piano, speaking a foreign language and so much more. But
when confronted with too much information, it might be impossible for us to
find a pattern. This is where the computers come in: A computer might not
be able to learn the examples mentioned above, but it is definitely capable of
crunching numbers. In fact, there are specific learning tasks that a computer
can tackle very effectively.

The discipline in which such kind of intelligent algorithms are sought is called
“machine learning”. One challenging task from this domain is classification
learning which is considered to be a supervised learning scenario: Consider-
ing examples that belong to distinct classes, the task is to learn a generalizing
pattern — one which is capable of predicting the true class membership of an
instance for which the class is unknown. This is a very general setup. Indeed,
every problem that can be formulated accordingly, can be solved with a clas-
sification algorithm. For example, diagnosing the disease a patient suffers
from, predicting whether loans will be defaulted on, recognizing the digits
from a handwritten number. For this generalizing leap there exists a wealth
of different methods that all have different characteristics.

One classical approach for this problem are classification rules. Such a rule
consists of two parts: The antecedent part as a conditional expression and
the consequence as a class assignment. While for a conventional rule the
antecedent part consists of selectors on the attributes, the antecedent of a
linguistic rule contains fuzzy sets. The latter are combined by means of
fuzzy logic connectives. A key feature of rule-based classification is the com-
prehensible reasoning mechanism. This is a priceless quality for a human
expert who must rely on the prediction. He can intervene in an informed
way if the reasoning is not proper. This holds for linguistic fuzzy rule-based
classifiers especially: They are even more readable and comprehensible. Ba-
sically so far, the development of conventional and fuzzy rule learners has
been conducted independently. While discriminative abilities have been in
the focus for the conventional algorithms, the aspect of interpretability has
been the most prominent design maxime for the linguistic ones.

ii

The purpose of this thesis is to bring the scientific realms of conventional
and fuzzy rule learning together. For achieving this objective we will com-
bine the best of both worlds for developing three new classifiers. Two of them
— the FURIA and the FR3 algorithm — will combine novel fuzzy methods
with an improved variant of a proven conventional rule learner and one —
the HELLFIRE algorithm — will be an all new linguistic fuzzy rule learner
using a new discretization framework and new boundary softening techniques.

The FURIA algorithm swiftly learns a well-classifying fuzzy ruleset. Its main
contribution are (A) a novel data-driven rule boundary softening that finds
better decisions in borderline regions and (B) a novel method for efficiently
stretching the rules if a query instance is not covered at all. The FR3 classi-
fier is based on FURIA but it has the ability to distinguish between different
kinds of uncertainty in classification decisions. For every query instance FR3
creates a so-called fuzzy preference structure — based on coverage degrees —
that discerns two types of uncertainty called conflict and ignorance respec-
tively. Complementary to these two approaches, the HELLFIRE algorithm
induces linguistic fuzzy rule-based models. It uses an innovative strategy for
obtaining both a data discretization and a rule model simultaneously. The
outcome of this procedure are conventional grid-based rules that are made
fuzzy using a technique which is slightly related to the one of FURIA and
FR3. The background of all three fuzzification techniques is to provide rule
coverage degrees which match the support of the class found in the training
data.

We will show that our novel fuzzification techniques are very effective at
improving the discriminative abilities of the introduced classifiers. We will
point out in detail that softened rule boundaries are both more flexible and
more reliable. All three algorithms are comparable or superior to state-of-
the-art conventional and fuzzy rule-based classification algorithms in terms
of classification and ranking performance. The result is remarkable: Conven-
tional rule learning techniques and fuzzy methods are a fertile combination.
Even though rule learning has been researched in both the fuzzy set and the
machine learning communities for years, this dissertation will be the first to
make a well-founded investigation of a constructive union of both fields.

iii

Zusammenfassung

Die Fähigkeit neue Dinge zu erlernen ist eine der Haupteigenschaften in-
telligenten Verhaltens. Dies ermöglicht uns Menschen Muster zu erkennen
und gemäß diesen zu verallgemeinern. Wir lernen das Fahrradfahren, das
Klavierspielen, eine Fremdsprache zu beherrschen und vieles mehr. Sobald
aber der Umfang der Informationen überhand nimmt, sind wir nicht mehr in
der Lage die Muster zu finden. An dieser Stelle kommen Computer ins Spiel.
Sie sind vielleicht noch nicht in der Lage die oben genannten Beispiele zu
erlernen, aber dafür können sie mit vielen Zahlen umgehen. Tatsächlich gibt
es spezielle Lernaufgaben, die ein Computer sehr effektiv handhaben kann.

Die Disziplin, in der solche intelligente Algorithmen gesucht werden, heißt
‚Maschinelles Lernen‘. Eine anspruchsvolle Aufgabe aus diesem Bereich ist
das überwachte Lernproblem des Klassifizierens: Hierbei soll aus zu unter-
schiedlichen Klassen zugeordneten Beispielen ein generalisierendes Schema
abgeleitet werden, mit dem die Klassifikation neuer Beispiele möglich wird.
Da diese Aufgabenstellung sehr allgemein gehalten ist, kann jedes entsprech-
ende Problem mit einem Klassifikationsalgorithmus gelöst werden, beispiel-
sweise das Diagnostizieren einer Krankheit, das Vorhersagen ob Schulden
nicht beglichen werden oder die Erkennung handgeschriebener Ziffern. Für
diese Art von Vorhersage wurden verschiedene Algorithmen entworfen.

Ein klassischer Ansatz, dieses Problem zu lösen, ist der Einsatz von Klassi-
fikationsregeln. Diese bestehen aus zwei Teilen: Der Antezedens als kondi-
tionellem Ausdruck und der Konsequenz als Klassenzuweisung. Während für
eine konventionelle Klassifikationsregel die Antezedens aus Bedingungen an
die Attribute besteht, enthält die Antezedens einer unscharfen Fuzzy-Klas-
sifikationsregel linguistisch interpretierbare Fuzzy-Mengen. Letztere werden
mit Hilfe von fuzzy-logischen Operatoren verknüpft. Der Kern der regel-
basierten Ansätze ist das verständliche Schlussfolgern. Dies ist eine un-
schätzbare Eigenschaft, wenn ein menschlicher Experte der Vorhersage ver-
trauen muss. Er kann einschreiten, wenn die Schlüsse nicht sinnvoll sind. Dies
gilt ganz besonders für die linguistischen Fuzzy-Regelklassifizierer, welche als
besonders interpretierbar und verständlich gelten. Die Entwicklung von kon-
ventionellen und unscharfen Regellernern verlief bisher jedoch unabhängig
voneinander. Während die Unterscheidungsfähigkeit im Fokus für die konven-
tionellen stand, war die Interpretierbarkeit die bedeutendste Design-Maxime
für die linguistischen Ansätze.

iv

Der Zweck dieser Dissertation ist das Vereinen der wissenschaftlichen Felder
des konventionellen und unscharfen Regellernens. Um dieses Ziel zu erre-
ichen, wird das beste beider Felder in drei neuen Algorithmen kombiniert.
Zwei davon — der FURIA- und der FR3-Algorithmus — kombinieren neue
Fuzzy-Methoden mit einer erweiterten Variante des ursprünglichen RIPPER-
Regellerners. Der dritte, der HELLFIRE-Algorithmus, ist ein neuer linguis-
tischer Fuzzy-Regellerner. Er lernt die Regeln mit Hilfe eines neuen Dis-
kretisierungssystems und Grenzaufweichungsverfahrens.

Der FURIA-Algorithmus ist in der Lage, gut klassifizierende Fuzzy-Regel-
sätze effizient zu lernen. Die Hauptbeiträge von FURIA sind (A) eine neue
datengetriebene Technik um Regelgrenzen aufzuweichen, was zu besseren
Entscheidungen in Grenzregionen führt und (B) eine neue effiziente Meth-
ode, die Regeln zu dehnen, wenn die zu klassifizierende Instanz von keiner
Regel überdeckt wird. Der FR3-Klassifizierer baut auf FURIA auf, aber
hat die Fähigkeit, verschiedene Arten von Unsicherheiten zu unterscheiden.
Für jede zu klassifizierende Instanz erzeugt er anhand der Überdeckungs-
grade eine Fuzzy-Präferenzstruktur, die zwischen Konflikt und Ignoranz —
als Ausprägungen von Unsicherheit — unterscheiden kann. Als Ergänzung
zu diesen Verfahren erzeugt der HELLFIRE-Algorithmus linguistische Fuzzy-
Regel-Modelle. Dies geschieht anhand einer innovativen Strategie, die sowohl
eine Diskretisierung als auch Regeln gleichzeitig lernt. Das Produkt sind kon-
ventionelle, rasterbasierte Regeln, die mit einem Verfahren — ähnlich denen
von FURIA und FR3 — fuzzyfiziert gemacht werden. Der Hintergrund aller
drei Fuzzyfizierungsstrategien ist es Regelüberlappungsgrade zu bestimmen,
die mit der Sicherheit der Regel übereinstimmen.

Die neuen Fuzzifieriungstechniken verbessern die Vorhersagegüte der bisher
konventionellen Klassifizierer. Dies liegt an den weichen Regelgrenzen, die
flexibler und zuverlässiger sind. Alle drei Algorithmen sind — in Bezug
auf Klassifikationsgüte und Rangordnungsgüte — ähnlich oder überlegen
zu modernen konventionellen und unscharfen Regellernern. Das Ergebnis
ist beachtenswert: Konventionelle Regellerntechniken und Fuzzy-Methoden
bilden eine fruchtbare Kombination. Obwohl diese Methoden sowohl in der
Fuzzy- und der Machine-Learning-Gemeinde seit Jahren untersucht werden,
ist dies die erste fundierte Untersuchung einer Vereinigung beider Felder.

Contents

Abstract i

Zusammenfassung iii

Contents v

1. Introduction 1

1.1. A Brief History of Conventional and Fuzzy Rule-Based Clas-

sification . 2

1.2. Purpose of this Thesis . 4

1.3. Contribution of this Thesis 4

1.4. Publications in the Context of this Thesis 5

1.5. Software Developments in the Context of this Thesis 6

1.6. Outline . 7

2. Foundations 9

2.1. Classification . 9

2.2. Binary Decomposition Techniques for Multi-Class Problems . 11

2.2.1. 1-vs-All Decomposition 11

2.2.2. All-vs-All Decomposition 11

2.2.3. Comparison of 1-vs-All and All-vs-All Decomposition 13

2.3. Rule-Based Classification . 15

2.3.1. Separate-and-Conquer Rule Learning 15

2.3.2. Rule Learning with FOIL, REP and IREP 17
2.3.3. RIPPER . 20

2.4. Fuzzy Rule-Based Classification 22

2.4.1. Fuzzy Logic . 23

v

vi Contents

2.4.2. Fuzzy Classification Rules 29

2.4.3. Linguistic Fuzzy Classification Rules 29

2.4.4. Fuzzy Reasoning Methods 31

2.5. Experimental Settings . 32

2.5.1. Testing Environment 32

2.5.2. Data Sets . 33

2.5.3. Benchmark Classifiers 33

2.5.4. Performance Measures 35

2.5.5. Test Setup . 38

2.5.6. Statistical Evaluation 39

2.6. Summary . 42

3. FURIA: Fuzzy Unordered Rule Induction Algorithm 43

3.1. Introduction . 43

3.2. Fuzzy Unordered Rule Induction Algorithm 44

3.2.1. Learning Unordered Rulesets 44

3.2.2. Pruning Modifications 45

3.2.3. Rule Fuzzification . 46

3.2.4. Classifier Output . 53

3.2.5. Rule Stretching . 55

3.3. Experiments . 57

3.3.1. Classification Performance Analysis 57

3.3.2. Ranking Performance Analysis 59

3.3.3. Fuzzification Analysis 61

3.3.4. Model Complexity Analysis 67

3.3.5. Rule Stretching Analysis 67

3.3.6. Runtime Analysis . 69

3.4. Summary . 73

4. HELLFIRE: Learning Linguistic Fuzzy Classification Rules 75

4.1. Introduction . 75

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 76

4.2.1. Rule Learning . 76

4.2.2. From Split-Based Rules to Interval-Based Rules 86

Contents vii

4.2.3. Pruning . 90

4.2.4. Rule Selection . 91

4.2.5. Interval Fuzzification 91

4.2.6. Rule Weighting . 95

4.2.7. Handling of Missing Values 95

4.2.8. Classification with Rule Stretching 96

4.2.9. Complexity Analysis 96

4.3. Comparing HELLFIRE with Other Discretization Techniques 98

4.4. Experiments . 100

4.4.1. Classification Performance Analysis 100

4.4.2. Ranking Performance Analysis 102

4.4.3. Fuzzification Analysis 104

4.4.4. Comparison between the Discretization Procedures of

HELLFIRE and MDLP 113

4.4.5. Interpretability Analysis 114

4.5. Exemplary Model . 122

4.6. Summary . 124

5. FR3: Learning Fuzzy Preference Structures using Fuzzy Rules 127

5.1. Introduction . 128

5.2. Preference Relations and Structures 130

5.3. Learning Valued Preference Structures for Classification . . . 133

5.4. Fuzzy Round Robin RIPPER 134

5.4.1. Pairwise Decomposition 135

5.4.2. Fuzzy Rules for Learning Fuzzy Preference Structures 136

5.4.3. Making Classification Decisions Based on Fuzzy Pref-

erence Structures . 140

5.5. Visualization of Fuzzy Preference Structures 141

5.6. Experiments . 142

5.6.1. Classification Performance Analysis 142

5.6.2. Ranking Performance Analysis 144

5.6.3. Fuzzification Analysis 146

5.6.4. Model Complexity Analysis 147

viii Contents

5.6.5. Analysis of Conflict and Ignorance as Measures of Un-

certainty . 147

5.7. Summary . 149

6. Comparison of FURIA, HELLFIRE and FR3 153

6.1. Comparison of Motivations and Methods 153

6.1.1. Motivation . 153

6.1.2. Problem Decomposition Technique 154

6.1.3. Rule Learning Strategy 154

6.1.4. Fuzzy Partitioning . 154

6.1.5. Fuzzification Technique 154

6.1.6. Handling of Uncovered Instances 155

6.1.7. Score Aggregation . 155

6.2. Experimental Comparison . 156

6.2.1. Binary Data Sets . 156

6.2.2. Multi-class Data Sets 157

6.2.3. Summary . 159

6.3. Discussion . 160

7. Related Work 163

7.1. Conventional Rule-Based Classifiers 163

7.1.1. Separate-and-Conquer Rule Learning 163

7.1.2. Decision Tree Rule Learning 165

7.1.3. AUC-Optimizing Rule Learning 166

7.1.4. Nearest Generalized Examples 167

7.2. Fuzzy Rule-Based Classifiers 168

7.2.1. Grid-Oriented Approaches 168

7.2.2. Non-Grid-Oriented Approaches 169

7.2.3. Fuzzy Propositional and Fuzzy First-Order Logic Rule
Learning . 170

7.2.4. Fuzzy Set Covering . 170

7.2.5. Hybrid Approaches . 171

7.2.6. Clustering-Based Techniques 175

7.2.7. Divide-and-Conquer 176

Contents ix

7.2.8. Conventional vs. Fuzzy Partitions 177

7.2.9. Rule Weights and Confidence Factors 177

7.3. Dealing with Uncertainty . 178

7.4. Interpretability . 179

7.5. Discussion . 180
7.5.1. FURIA . 180

7.5.2. HELLFIRE . 181

7.5.3. FR3 . 182

7.6. Summary . 182

8. Conclusion and Outlook 183

8.1. Conclusion . 183

8.2. Future Work . 184

8.2.1. FURIA . 184
8.2.2. FR3 . 184

8.2.3. HELLFIRE . 185

8.2.4. General Directions . 185

8.2.5. Outlook . 186

A. Tables 187

Acknowledgements 197

Glossary 199

List of Tables 201

List of Figures 205

Bibliography 207

Erklärung 229

Resume 231

Index 233

1Introduction

The advent of the computer provided mankind with a new tool that was able
to solve problems which were infeasible so far. The computer made possible
the solving of difficult and extensive calculations in shorter time. Machines
were increasingly improved and today they are able to make millions of cal-
culations in the blink of an eye. Even though machines have already been
calculating in speeds that outperformed human capability for a long time,
they are unable to act intelligently or in a self-aware manner. So far, re-
ally intelligent and self-aware machines only exist in science fiction, such as
HAL 9000 or the Terminator. But there are niches where a computer or
device might learn to act “intelligently”.

So far, it is not known how a computer could learn in a human way, how
it could learn any arbitrary concept from its experience or its failures. Nev-
ertheless, there are special tasks which a computer can learn to solve, e.g.
trying to find treatments for a new disease from medical records or saving
energy costs of a house by setting the heating apparatus according to the
usage patterns of the occupants. Despite the fact that those tasks are in
general quite specific and must be clearly defined, a computer can make use
of its calculating speed and create new insights that the human user or even
expert in that field is unaware of yet [Mit97].

The question of how a computer can be enabled to solve certain problems
on its own is dealt with in machine learning research. The purpose of this field
is to find new algorithms that let a computer create generalizing knowledge
from the experience or data that was available so far.

1

2 Introduction

One of the most popular and interesting problems in machine learning is
classification. It assumes a set of examples from which each belongs to exactly
one distinct class. The generalization desired from the machine learning
algorithm is a mapping that is able to predict an unknown instance’s true
class.

Researchers from various backgrounds have developed a wealth of algo-
rithms that are able to cope with classification problems. The perhaps most
famous one might be the neural network that emerged from the Perceptron
idea introduced by the psychologist Rosenblatt in the late 1950s [Ros58].
Others include Support Vector Machines, Logistic Regression or probabilis-
tic approaches such as the family of Bayesian classifiers. Even though the
mentioned techniques apply very different learning strategies, they all have
a lack of interpretability in common. This materializes in classification de-
cisions that can neither be understood nor explained. The reasoning mech-
anism within those black box algorithms remains untransparent. But in ad-
dition to these algorithms, symbolic approaches such as decision trees and
rule-based models have also been developed: Machine learning algorithms
that are considered to be interpretable. When classification decisions can be
explained with the model, a human expert could intervene if the reasoning
does not fit. To make those algorithms even more interpretable, researchers
have conceived linguistic variants based on Zadeh’s fuzzy logic. Fuzzy logic
is an extension of the classical two-valued logic that allows intermediate de-
grees of truth [Zad65]. In contrast to decision trees and rule-based models the
linguistic ones do not operate on the attribute values directly but on linguis-
tically interpretable fuzzy sets instead. This meaning is attached to the fuzzy
set in form of a label. Consequently, linguistic fuzzy models are very readable
and understandable even without an underlying knowledge of the attribute
domains. This is especially useful when a human expert is interacting with
such a system.

1.1. A Brief History of Conventional and Fuzzy
Rule-Based Classification

The domain of rule-based classification emerged in the 1960s, most notably
with expert systems — a realm pioneered by Edward A. Feigenbaum [Fei80].
These systems were built to reproduce specific human knowledge, e.g. through

1.1. A Brief History of Conventional and Fuzzy Rule-Based Classification 3

inference rules. While in the beginning the rule logic had to be elicited within
expert interviews, Ryszard S. Michalski developed the idea of separate-and-
conquer learning, an inductive technique which is able to infer rules from
data automatically. At roughly the same time, Lotfi A. Zadeh was working
on a multi-valued logic which he coined fuzzy logic. Fuzzy logic was mainly
intended as a formal framework of a human-like approximate reasoning and
“computing with words”.

From the late 1980s until the mid 1990s the realm of separate-and-conquer
rule learning was studied by a large number of researchers in the machine
learning community. Competition concerning efficiency and predictive qual-
ity led to significant improvements in this field. During that time a large
number of heuristics and strategies to learn simple but well-classifying mod-
els emerged. A cornerstone of separate-and-conquer rule learning was de-
veloped by Johannes Fürnkranz with the IREP algorithm, which was used
by William W. Cohen in the RIPPER classifier from 1995, which remains a
state-of-the-art algorithm even today.

The task of classification learning was also discovered by researchers from
the fuzzy set community. In 1992, Li-Xin Wang and Jerry M. Mendel pub-
lished their work on how to learn a linguistic fuzzy rule-based classification
model. In contrast to the discoveries from the machine learning field, Wang
and Mendel used a rather simple grid-partitioning scheme that was able to
yield interpretable rules but which was lacking effectivity and efficiency. Re-
searchers from the fuzzy set community developed new algorithms as a rem-
edy for the weakness of the initial idea. The main objective was to maintain
interpretability while improving discriminative power. One of the dominat-
ing approaches since then has been the idea of using evolutionary algorithms
for improving the grid-oriented linguistic fuzzy rules. In contrast to the fast
and steady improvements in the machine learning community, no bench-
mark state-of-the-art learner within the fuzzy set community evolved. Albeit
dozens of evolutionary and other hybrid algorithms for linguistic fuzzy rule
learning have been published, there is none which excels. While the machine
learning community designed lean but effective methods and heuristics, the
fuzzy set community applied even more gargantuan approaches which were
both ineffective and slow. The direct comparison of conventional with these
fuzzy rule learning techniques shows clearly that the latter are not yet com-
petitive in terms of predictive power. It is by no means an exaggeration to
describe the efforts to build these gargantuan systems as a scientific dead end
so far.

4 Introduction

Basically, there has been little effort in establishing a link between the
possibilities that fuzzy logic offers with the experience and efficiency from the
conventional rule-learning realm. In this direction there are still opportunities
for improvements for either fields.

1.2. Purpose of this Thesis

So far, the realms of conventional and fuzzy classification rule learning have
been researched separately. Researchers from the machine learning commu-
nity developed rule-based classification algorithms with a notable attention
on the discriminative abilities and to the efficient use of processor time and
memory consumption. The focus of researchers from the fuzzy logic com-
munity emphasized the aspect of interpretability when developing linguistic
fuzzy rule-based classification algorithms. As a result, both communities are
relatively disjunct: There are no remarkable efforts to bring the best of both
worlds together. The consequence is that in the world of machine learning
the fuzzy rule-based approaches are not taken seriously due to their weak
predictive qualities.

This thesis will revolve around the combination of conventional rule learn-
ing methods and techniques for fuzzifying the rules. Therefore, we will intro-
duce procedures to soften conventional rule boundaries. We will investigate
the consequences of that fuzzification process and analyze the differences
between the original conventional and the fuzzy version.

1.3. Contribution of this Thesis

In this thesis the following aspects will find consideration:

New data-driven fuzzy rule-based classifiers The main contribution of this
thesis will be the development of novel methods for fuzzy rule-based classi-
fication. We will introduce three algorithms, two will improve on an exist-
ing state-of-the-art conventional rule learner from the separate-and-conquer
realm and one will be a completely novel approach that is related to both
decision tree learning and data discretization techniques.

1.4. Publications in the Context of this Thesis 5

Effective fuzzification techniques The transformation of conventional into
fuzzy rules plays the key role in this work. We introduce two procedures that
soften existing rule boundaries making a conventional rule fuzzy: (A) a fuzzi-
fication strategy for ordinary classification rules that do not grid-partition the
numeric attributes, (B) a fuzzification strategy for rules that partition the
data set into a grid.

Deep investigation into the effects of rule fuzzification This thesis en-
compasses serious investigations into the effects of fuzzification. In the focus
are the consequences that are caused by the fuzzification process. As we
will see, fuzzification comes with side effects that influence the classification
decision. In a step-by-step examination the side effects will be peeled off in
order to go to the very heart of fuzzification influence.

Comprehensive experimental analysis In machine learning, benefits of new
algorithms are typically proven experimentally in a statistically sound way.
Due to the concentration on objective, quantitive characteristics — e.g. the
predictive accuracy — a comparison of two or more classifiers is rather sim-
ple. This enables researchers to compare their algorithms on a large number
of data sets without making the evaluation more complicated or time con-
suming. Researchers are encouraged to further improve their algorithms in
order to be competitive. This governance is also a kind of selection that
keeps the standard high. In this work, we analyze the introduced algorithms
extensively using 45 data sets from different domains.

Apart from testing the classifiers on a large testbed we will evaluate their
strengths and weaknesses. To this end, we will consider classification and
ranking performance for investigating the discriminative power and e.g. the
number of rules and the average rule length to measure the model complexity.

The analyses will encompass thorough statistical evaluations that allow us
to reach a convincing and significant conclusion.

1.4. Publications in the Context of this Thesis

Parts of this thesis have already been published in international journals
or at international conferences. The following list gives an overview of the
publications related to the topics of this thesis.

6 Introduction

• J.C. Hühn and E. Hüllermeier. FR3: A fuzzy rule learner for inducing
reliable classifiers. In L. Magdalena, M. Ojeda-Aciego and J.L. Verde-
gay, editors: Proceedings of the 12th International Conference on In-
formation Processing and Management of Uncertainty in Knowledge-
Based Systems, IPMU, Torremolinos (Málaga), Spain, pages 1543–
1550, June 22–27, 2008.

• J.C. Hühn and E. Hüllermeier. FR3: A fuzzy rule learner for inducing
reliable classifiers. IEEE Transactions Fuzzy Systems, 17(1):138–149,
2009.

• J.C. Hühn and E. Hüllermeier. FURIA: an algorithm for unordered
fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3)293–
319, 2009.

• J.C. Hühn and S.A. Vinterbo. HELLFIRE: Learning interpretable and
effective fuzzy rule-based classification models. Fuzzy Sets and Systems,
with editor.

• J.C. Hühn and E. Hüllermeier. An analysis of the FURIA algorithm
for fuzzy rule induction. In J. Koronacki, Z. Ras, S.T. Wierzchon and
J. Kacprzyk, editors, Advances in Machine Learning I: Dedicated to the
memory of Professor Ryszard S. Michalski, volume 262 of Studies in
Computational Intelligence. Springer, Berlin, Germany, 2010.

1.5. Software Developments in the Context of
this Thesis

The main part of this thesis is related to the development of fuzzy rule-based
classification algorithms. All three new algorithms — FURIA, HELLFIRE
and FR3 — were implemented in JAVA for the WEKA machine learning
framework [WF05]. These implementations are publicly available in the soft-
ware repository of the Knowledge Engineering & Bioinformatics Lab at Mar-
burg University1:

http://www.uni-marburg.de/fb12/kebi/research

1The HELLFIRE implementation will be made available for download as soon as the
article is accepted for publishing.

1.6. Outline 7

Moreover, the FURIA algorithm will be part of the official WEKA package
in a contribution later than 3.7.0. Today, it is already available in the nightly
build via the WEKA subversion system:

http://www.cs.waikato.ac.nz/~ml/weka/

1.6. Outline

This thesis will be structured following the algorithms introduced. First of
all, we will provide the foundation for this dissertation in Chapter 2. This
chapter will encompass the necessary theoretical and methodical background
for the remaining thesis. In the next three chapters, we will introduce three
different fuzzy rule-based classification algorithms: The FURIA algorithm in
Chapter 3, the HELLFIRE algorithm in Chapter 4 and the FR3 algorithm in
Chapter 5. In Chapter 6 we will contrast the three algorithms both from a
formal but also from an experimental point of view. A comprehensive survey
of related work will be given in Chapter 7. We will conclude this dissertation
and give an outlook on future work in Chapter 8.

2Foundations

In this thesis, three different fuzzy rule-based classification algorithms will
be proposed. However, first of all, we will provide the foundations necessary
for understanding the later chapters without repeating ourselves.

In Section 2.1, we will explain the task of classification and will then intro-
duce reduction techniques to binary problems in Section 2.2. In Section 2.3
and Section 2.4, we will focus on conventional and fuzzy rule-based classi-
fication, respectively. Finally, we will explain the experimental setup and
statistical methods used throughout this dissertation in Section 2.5.

2.1. Classification

The classification task is a classic machine learning scenario: The challenge
is to assign an instance with unknown class label a class membership that is
based on training examples for which this information is known. The fasci-
nation of this task is that it can be applied to a legion of different problems
with different characteristics, which range from being rather simple to be-
ing incredibly difficult to solve. Formally, the classification scenario can be
described as follows:

Let
L

df
= {λ1, . . . , λm}

9

10 Foundations

for m ≥ 2 be the set of class labels. Let

D
df
= A1 × . . .× Ak

be the data space, where Ai is a nominal or numerical attribute. Let

x

df
= (x1, . . . , xk) ∈ D

be an instance. Let
(x, λ) ∈ D× L

be an example. A data set

D
df
=

{
(x1, λx1), . . . , (xn, λxn

)
} ⊆ D× L

is a collection of examples.

Let p be a discrete probability distribution on D×L with p : 2D×L → [0, 1].
Extracting p from a data set D is called inference. This can be achieved by
learning an inference model M.

In classification, the task is to assign a class λ to an instance x, for which
this information is not known. The quality of such an assignment is measured
by a loss function

L : L× L→ {R+ ∪ {0}} .

L(λ, λ) measures the cost when λ is the true class and λ is the prediction. A
typical loss function in classification is

L(λ, λ)
df
=

{
0 if λ = λ
1 else

.

A classification model M : D → L is a function from the data space D to
the set of classes L. The true risk R of M as predictor of p(D,L) is defined
using the expected loss as follows:

R(M)
df
=

∑
(x,λ)∈D×L

L(λ,M(x)) · p(x, λ)

Since probabilities p(x, λ) are unknown, the empirical risk R̂ can be deter-

2.2. Binary Decomposition Techniques for Multi-Class Problems 11

mined from the known data set D only:

R̂(M)
df
=

∑
(x,λ)∈D

L(λ,M(x)) · 1

|D|

In order to minimize the true risk R, a classification model M is sought
by minimizing the empirical risk R̂.

2.2. Binary Decomposition Techniques for
Multi-Class Problems

The multi-class classification scenario is a very common problem in machine
learning research. The task is to assign an instance with unknown class
exactly one from m > 2 class labels. To make existing binary classifiers
applicable to this kind of problem, decomposition techniques were conceived.
These break down the original multi-class problem into multiple two-class
problems.

2.2.1. 1-vs-All Decomposition

A very simple technique for decomposing a polychotomous classification prob-
lem into binary ones is 1-vs-All. This means that the m-class problem is
decomposed into m binary problems, where the respective classifier Mi de-
cides whether the query instance x belongs to λi or not. In the optimal case,
exactly one classifier Mi returns true while the others return false. In this
case the classification decision is in favor of λi. However, when there is a
conflict — multiple classifiers returning true or all classifiers returning false
— this conflict must be broken. A common solution for a scoring classifier is
to choose the class with the highest score. For classifiers which do not return
scores, such as rule learners, the conflict can be broken by selecting the most
frequently observed class in the training data.

2.2.2. All-vs-All Decomposition

The notion of pairwise learning, aka round robin learning, All-vs-All or 1-vs-1
as an approach to solve polychotomous classification problems was introduced

12 Foundations

by Friedman [Fri96]. The main idea behind pairwise learning is to decom-
pose an m-class classification problem with m > 2 into m(m − 1)/2 binary
problems. The decomposition process creates pairwise problems that contain
exactly two classes λi, λj with 1 ≤ i < j ≤ m. To distinguish between in-
stances with labels from either class a classifier Mi,j is trained. Therefore,
an original example (x, λα) ∈ D, which means that x belongs to class λα, is
considered as a positive example for all modelsMα,j , α < j and as a negative
example for all modelsMi,α, i < α. At classification time, a query instance x

is submitted to all learners. The result of one of those base classifiersMi,j(x)
can be interpreted as a vote for label λi or λj . The simplest assumption is
that the output of Mi,j is a real-valued score si,j ∈ [0, 1]. A score close
to 1 could be considered as evidence in favor of λi, while a score close to 0
reflects a support of class λj . Given the m(m − 1)/2 pairwise evidence, a
classification decision could be inferred from the sum of votes

si(x)
df
=

∑
1≤i�=j≤m

si,j (2.1)

assuming that si,j = Mi,j(x) for i < j and sj,i = 1−Mj,i(x) for i > j. The
class λi maximizing si(x) will be predicted.

A faster evaluation of the winner class was put forward by Park and
Fürnkranz with Quick Weighted Voting [PF07]. This algorithm is able to
reduce the quadratic number of comparisons to nearly linear in the number
of classes during classification. The trick is to evaluate the classifier Mi,j

next, where λi and λj have the smallest loss. In this regard, the loss is
the sum of (weighted) votes λi and λj respectively. This procedure tries to
avoid an evaluation of Mk,� where λk or λ� have no chance of winning the
(weighted) voting ballot.

An analysis of weighted voting as aggregation technique for pairwise de-
composition can be found in [HV10].

Friedman proposed to vote for the class which obtains the largest number
of wins in the pairwise comparison [Fri96]. In contrast to (2.1) this strategy
ignores the magnitude of the results.

A different take on aggregating the pairwise results — known as vote-
against — was proposed by Cutzu [Cut03]. He reasoned that if a classifier
Mi,j makes a prediction for an instance x from class λk with k �= i, j it
inevitably makes a mistake. However, when letting Mi,j vote against either
λi or λj in the same situation, this would reduce the number of wrong pre-

2.2. Binary Decomposition Techniques for Multi-Class Problems 13

dictions in comparison to conventional voting — assuming that the pairwise
classifiers are trained properly.

Another strategy to combine the pairwise predictions si,j is the pairwise
coupling strategy introduced by Hastie and Tibshirani [HT97]. This approach
follows the idea of Bradley and Terry that si,j and sj,i with si,j +sj,i = 1 are
probability estimates [BT52]. In such a case, the question would be whether
there is a probability distribution si which is compatible with the pairwise
probability observations. However, a solution for this does not necessarily
exist: The problem is over-constrained, since the number of probabilities si

is m and the number of pairwise models is m(m− 1)/2. Hastie and Tibshi-
rani proposed to find pairwise probabilities ŝi such that the average weighted

Kullback-Leibler distance δ between si,j and ŝi,j
df
= ŝi

ŝi+ŝj
is minimized. For

this purpose they suggested an iterative method that strictly decreased δ. A
more stable approach for this problem was put forward by Wu et al. who
suggested to obtain the probabilities with the help of convex quadratic pro-
gramming [WLW04].

An approach based on the Dempster-Shafer theory of evidence to combine
pairwise classifiers was proposed by Quost et al. [QuM07]. The authors pro-
pose to combine the pairwise results as non-probabilistic evidence in favor of
the classes involved. Comparable to the approach of pairwise coupling is the
need to find a non-conditional belief function which is consistent with the
belief functions from the binary classifiers.

2.2.3. Comparison of 1-vs-All and All-vs-All Decomposition

Fürnkranz found that the pairwise decomposition technique is superior to
1-vs-All decomposition. He explained this through smaller problems involv-
ing less examples which are simpler to separate in general [Für02, Für03].
Another revelation was made by Rifkin and Klautau who found that there
might be no clear winner between all pairs and 1-vs-All, when the 1-vs-All
algorithm is well-tuned [RK04].

One clear advantage of decomposition in pairwise learning is that it creates
very small problems containing two classes only. In general, it holds that the
smaller the number of classes, the easier they can be separated. Consequently,
the decision boundaries for pairwise problems should be simpler than multi-
class decision boundaries, cf. Figure 2.1 [Für03].

One drawback of the pairwise approach is that it needs a quadratic number

14 Foundations

A2

A1

(a) A 5-class classification
problem.

A2

A1

(b) Exemplary 1-vs-All de-
composition.

A2

A1

(c) Exemplary pairwise de-
composition.

Figure 2.1.: Decision boundaries of different decomposition schemes according to
Fürnkranz [Für03].

of m(m− 1)/2 models in comparison to the m modes in the 1-vs-All scheme.
However, the total effort of building the classifier using pairwise decomposi-
tion is smaller than the effort necessary when using 1-vs-All, assuming that
the base learner has at least super-linear complexity. This can be explained
by the decreased pairwise problem sizes. Interestingly, when the complexity
of the learning algorithm rises, the gain of pairwise learning in comparison
to 1-vs-All will increase [Für02].

Decomposition techniques for reducing multi-class to binary classification
problems have been investigated quite extensively in recent years. Many
standard decomposition schemes, including the all-pairs (round robin) and
the 1-vs-All scheme (cf. Section 2.2), are special cases of the more general ap-
proach of Error Correcting Output Codes (ECOC) [DB95] or, more precisely,
their generalization that has been introduced by Allwein et al. [ASS01].

Even though ECOC allows for a more flexible decomposition of the original
problem into simpler ones, the all-pairs approach has the advantage that it
provides a fixed, domain-independent and non-stochastic decomposition with
a good overall performance. In several experimental studies, including the
work of Allwein et al. [ASS01], it performed en par or better with competing
decoding matrices.

2.3. Rule-Based Classification 15

2.3. Rule-Based Classification

The idea in rule-based classification is to learn a model that generalizes the
data with simple IF-THEN-rules. A single classification rule typically has the
form r = 〈rA | rC〉, consisting of an antecedent part rA and a consequent part
rC . In the realm of conventional rule-based classification, the antecedent part
is a logic expression that combines conditions constraining the attributes. For
a numerical attribute A, a condition can be expressed in the form v ∈ I, where
I = [b, c] ⊂ A. A value v is covered if and only if b ≤ v ≤ c holds. For nominal
attributes, the conditions are of the form v θ A for θ ∈ {=, �=}. To distinguish
this interval-based rule and antecedent from other ones introduced below, we
write rI and rI

A, respectively. Formally, we consider antecedents

rI
A

df
= (Ai ∈ Ii,i1 ∨ . . . ∨Ai ∈ Ii,ik

) ∧ . . . ∧ (Aj ∈ Ij,j1 ∨ . . . ∨Aj ∈ Ij,j�
) ,

where Ai is an attribute, {i1, . . . , ik} ⊆ {1, . . . |Ii|} are indices of occurring
intervals and |Ii| is the number of intervals for Ai.

The consequent part rC is a class assignment of the form (class = λ), where
λ ∈ L. A rule rI = 〈rI

A | rC〉 is said to cover an instance x = (x1, . . . , xn) if
the antecedent rI

A evaluates to true.

2.3.1. Separate-and-Conquer Rule Learning

In order to learn a well-performing classification model effectively, the idea
of separate-and-conquer rule learning has been popular throughout the last
decades [PH90, Für99]. The general strategy of separate-and-conquer learn-
ing (cf. Algorithm 1) is to create a rule rI for a specific class λi that explains
a part of the training set D by covering examples {(x, λi) ∈ D} from the
same class: The separating step. Those examples are removed from D, such
that the process may be repeated to cover the remainder: The conquering
step. This procedure creates a single rule in every loop thus forming a ruleset

RSI df
= {rI

1 , . . . , rI
k}.

An important distinction, when dealing with rule-based classifiers, is the
one between a list of rules and a ruleset. In a list of rules the order, in which
the rules were learned, plays an important role during classification: The first
rule covering the query instance is the one which decides the classification in
favor of its class, while subsequently learned rules will be ignored. Typically,
for the largest class there is one rule only which has an empty antecedent and

16 Foundations

Algorithm 1 Separate-And-conquer(D)

1: RS ← ∅
2: for i = 1, . . . , m do
3: DGrow ← D
4: while {(x, λi) ∈ DGrow} �= ∅ do
5: // Separate:

Find rule r = 〈rA |λi〉 covering Dr such that Dr ∩DGrow �= ∅
6: RS ← RS ∪ r
7: // Conquer:

DGrow ← DGrow \ {(x, λj) ∈ DGrow | rA(x) = TRUE}
8: end while
9: end for

10: return RS

which is placed at the very end of the list. Instances that are not covered by
earlier rules are then covered and classified by this default rule.

On the contrary, the learning order is of no effect in a ruleset: Every
rule covering the query instance can have an influence on the classification
decision. In fact, only when rules from one class cover the query instance, a
clear decision can be made. Otherwise, if rules from different classes cover
the instance, a remedy must be found, e.g. by letting the rules that cover the
query instance vote in favor of their consequent classes. If no rule covers the
instance, a typical solution is to select the most frequent class in the training
data.

The concept of separate-and-conquer learning introduced so far is too gen-
eral yet. To make it applicable in practice, one has to define the learning
bias that makes the generalization possible. According to Fürnkranz, three
different types of bias for a separate-and-conquer learner exist [Für99]:

Language Bias The space of hypotheses, which contains concepts that may
describe the training data, is constituted by the hypothesis language. This
language sets a frame of which concepts are allowed and of which are not.
Consequently, it is important to select a hypothesis language that is able to
model a well-generalizing concept. This makes the hypothesis language an
important bias for rule learning.

2.3. Rule-Based Classification 17

Search Bias Since the hypothesis space is typically too large to be enumer-
ated, a good concept must be searched selectively. To make such a search
fast and effective, it has to be guided by an appropriate search bias.

Overfitting Avoiding Bias The training set for a learning problem is typi-
cally of limited size, while the number of possible concepts that describes the
data flawlessly is unlimited. Yet, such a perfect concept becomes problem-
atic, if the data is noisy or when the training sample is too small to reflect the
true distribution. A well fitted model reflecting the setbacks of the training
has a poor generalizing performance on unseen data. In concordance with
Occam’s razor, the overfitting avoiding bias should prefer the simple models
to more complex ones.

Fürnkranz pointed out that the latter bias is — strictly seen — a form
of search bias. His argument to list it separately is due to the fact that in
separate-and-conquer algorithms both types of bias are applied more or less
independently.

2.3.2. Rule Learning with FOIL, REP and IREP

One representative algorithm of the separate-and-conquer realm is the FOIL-
algorithm, which was presented by Quinlan [Qui90]. It is able to learn a
logical concept description from relational data. FOIL uses two nested loops
for learning. The outer loop is the classical separate-and-conquer loop that
tries to explain a part of the training data, removes that part and then
starts over to explain the rest. The inner loop of FOIL builds a single rule
by greedily adding literals to a function-free Horn clause. This is done by
adding one literal at a time according to a selection criterion.

The original purpose of FOIL was to learn general logical descriptions.
Therewith it is also able to learn classification rules. This can be done by
replacing the notion of the function-free Horn clause with a rule antecedent
rA and by using a conjunction of predicates (or “selectors” [Mic73]) Ai θ vi

as literals given θ ∈ {≤,≥}. Note that this type of rule can also be written
as an interval-based rule rI using

Ai ≤ vi ⇔ Ai ∈ (−∞, vi]

and
Ai ≥ vi ⇔ Ai ∈ [vi,∞) .

18 Foundations

Algorithm 2 FOIL-Separate-And-conquer(D)

1: RS ← ∅
2: for i = 1, . . . , m do
3: DGrow ← D
4: while {(x, λi) ∈ DGrow} �= ∅ do
5: rI ← 〈TRUE |λi〉
6: DLocal ← DGrow

7: while {(x, λj) ∈ DLocal | i �= j} �= ∅ do
8: Find selector Ak θ vk according to some criterion
9: DLocal ← {(x, λ) ∈ DLocal |x = {x1, . . . , xn} ∧Ak covers xk}

10: rI ← 〈rI
A ∧Ak θ vk |λi〉

11: end while
12: RS ← RS ∪ rI DGrow ← DGrow \ {(x, λj) | rI

A(x) = TRUE}
13: end while
14: end for
15: return RS

Algorithm 2 shows a separate-and-conquer algorithm, which uses the FOIL
strategy to grow the rules. Note that FOIL never uses disjunctions as opera-
tors. This assures that the rule coverage monotonically shrinks with the rule
length.

Let p and n be the number of positive and negative examples in DLocal,
respectively. The information, which is required to signal that among (p+n)
examples are p positives is given by:

I(DLocal)
df
= − log2

(
p / (p + n)

)
(2.2)

Quinlan proposed the Information Gain as a criterion to evaluate the util-
ity of the ith condition in the rule:

Gain(DLocali
, DLocali−1

)
df
= |DLocali | ×

(
I(DLocali)− I(DLocali−1

)
)

(2.3)

The Information Gain describes how much information was won by adding
up another condition to the original rule.

To avoid overfitting in noisy domains, Quinlan added a premature stopping
criterion to the learning process. For the case that the coverage of additional

2.3. Rule-Based Classification 19

examples is more costly than the description of the examples themselves
in terms of the Minimum Description Length (MDL) [Ris83], the learning
process will be aborted.

Another way to avoid overfitting due to noise was proposed by Brunk and
Pazzani: The Reduced Error Pruning (REP) is a post-pruning procedure
for a model learned by FOIL [BP91]. The authors proposed splitting the
training data into a growing set that is used for learning the model and a
pruning set to cut selectors from the rule antecedent. The pruning procedure
works in a simple, hill-climbing fashion by trying to maximize the accuracy
on the pruning set. Therefore, the algorithm evaluates the removal of the
last condition or of a whole rule. REP keeps removing conditions and rules
until a further simplification would lead to an accuracy reduction.

Very serious issues with the REP algorithm were found by Fürnkranz and
Widmer [FW94]: (A) Complexity of REP is Ω(n4) which is worse than the
complexity for learning with Ω(n2 log n) [Coh93]. (B) The rule learning pro-
cedure fails to exploit the information in the pruning data and makes pruning
mistakes when the split into growing and pruning data was somehow unfortu-
nate. (C) Post-pruning of a rule might affect other rules as well. These other
rules would be learned using the “wrong” examples and, thus, contain the
wrong conditions, (D) due to the immense search space of REP, the pruning
is likely to get stuck in a local optimum.

To redeem the shortcomings of REP, Fürnkranz and Widmer proposed the
Incremental Reduced Error Pruning (IREP) algorithm [FW94]. The strat-
egy is to prune every rule right after learning in a greedy way. In contrast
to REP, the removal of any condition is allowed instead of only the last one.
Apart from this, IREP uses the pruning also as a stopping criterion for the
rule learning process. As soon as the empty rule has a better accuracy than
any of the pruned variants, the learning is stopped. This tackles the men-
tioned problems of REP in the following ways: (A) Complexity goes down
to Ω(n log2 n) due to the rule-wise pruning strategy. (B) The failure to ex-
ploit the information in the pruning data is reduced from the model learning
level to the rule learning level and, thus, (C) The IREP pruning is done after
learning a rule and, to avoid affecting other, already learned rules. (D) The
risk of getting stuck in a local optimum is reduced since there is no overly
complex model as a starting point for a complicated pruning problem.

20 Foundations

2.3.3. RIPPER

The RIPPER algorithm was introduced by Cohen as a sucessor to the IREP
algorithm [Coh95].

The result of RIPPER — and also of most conventional rule learners — is
a decision list. To produce such a list, rules are learned for each class in turn,
starting with the smallest (in terms of relative frequency of occurrence in the
training data) and ending with the second largest one. Finally, a default rule
is added for the majority class. A new query instance is then classified by
the first rule in the list by which it is covered.

Cohen’s modifications to the IREP algorithm were more of evolutionary
than of revolutionary nature. There are three main changes: (A) The prun-
ing phase is updated with a new metric. (B) A new stopping criterion is
introduced and (C) an optimization strategy is added.

2.3.3.1. Pruning Modifications

Pruning is changed in several ways. In contrast to IREP, RIPPER was
allowed to not only prune one condition from a rule, but instead may prune
any final sequence of conditions from a rule. The criterion to find the position
at which the rule is cut is the rule-value metric

V (r)
df
=

pr − nr

pr + nr

.

Therewith all antecedents that were learned after the antecedent maximiz-
ing V (r) will be pruned. Shorter rules are preferred in the case of a tie.

The motivation for this new criterion is that IREP is sometimes unable
to converge when the training data increases. According to Cohen, this is
due to the original pruning criterion, which prefers a rule which covers 2000
positive examples and 1000 negative examples to a rule covering 1000 positive
examples and only 1 negative example — a quite unintuitive behavior.

2.3.3.2. New Stopping Criterion

The stopping criterion of IREP ceases the learning process, when the last
rule constructed has an error rate larger than 50%. Cohen found that this is
often too early, especially for low coverage rules which may have an error that
is larger only by chance. This stopping criterion seems to be too sensitive to
the “small disjunct problem” [HAP89].

2.3. Rule-Based Classification 21

The proposed solution uses the idea of description length as stopping cri-
terion [Qui93, Qui95]: The learning procedure is aborted in case of the last
learned rule having been too specific. This is the case if the total description
length of the ruleset is more than d bits larger than the shortest description
found so far. Cohen proposes to set d = 64.

2.3.3.3. Rule Optimization

The two changes proposed above improve the classification accuracy of IREP
significantly. In order to distinguish the novel version, it is denoted as IREP*.
Nevertheless, the optimization of the rules is the most significant change from
IREP to RIPPER.

The ruleset RS, which was learned by IREP* so far, is taken as a starting
point for a subsequent optimization process. This process re-examines the
rules ri ∈ RS in the order in which they were learned. For each ri, two
alternative rules r′

i and r′′
i are created. The replacement rule r′

i is an empty
rule, which is grown and pruned in a way that minimizes the error of the
modified ruleset (RS ∪ {r′

i}) \ {ri}. The revision rule r′′
i is created in the

same way, except that it starts from ri instead of the empty rule. To decide
which version of ri to retain, the MDL criterion is used [Qui93]. Afterward,
the remaining positives are covered using the IREP* algorithm.

The RIPPERk algorithm iterates the optimization of the ruleset and the
subsequent covering of the remaining positive examples with IREP* k times,
hence the name RIPPER (Repeated Incremental Pruning to Produce Error
Reduction). See Algorithm 3 for a simplistic overview which omits unneces-
sary details.

The classification of new instances having an unknown class label with the
list of rules learned by RIPPER is done as follows: The rules are scanned in
the order they were learned. The first rule covering the query instance decides
the classification in favor of its consequence class. Rules subsequently learned
will be ignored. If no learned rule covers the example, then the final default
rule, having as consequence the label of the most frequent class in the training
data, determines the classification.

22 Foundations

Algorithm 3 RIPPERk(D)

1: RS ← ∅
2: Sort classes {λ1, . . . , λm} by class frequency ascendingly
3: for i = 1, . . . , m− 1 do
4: // Build phase
5: RS ← RS ∪GrowAndPruneRulesWithIREP*(D)
6: // Optimization phase
7: for j = 1, . . . , k do
8: // Consider replacement r′ and revision r′′ rules as alternatives
9: RS ← GrowAndPruneRuleAlternativesWithIREP*(RS, D)

10: // Cover remaining positive instances
11: RS ← RS ∪ CoverRemainderWithIREP*(D)
12: end for
13: end for
14: RS ← RS ∪ 〈TRUE |λm〉
15: return RS

2.4. Fuzzy Rule-Based Classification

A different way of dealing with classification problems is to use fuzzy instead
of conventional rules. Even though both types are rules, there are significant
differences between these two approaches:

Fuzzy rules are more general than conventional rules and have a number
of advantages. For example, conventional (non-fuzzy) rules produce models
with “sharp” decision boundaries resulting in two arbitrarily close points be-
ing assigned to different classes. This problem is compounded by the bound-
aries often being chosen arbitrarily in some interval. Alternatively, one could
expect the support for a class provided by a rule to decrease from “full” (in-
side the core of the rule) to “zero” (near the boundary) in a gradual rather
than an abrupt way. Fuzzy rules have “soft” boundaries, which is one of their
main characteristics. In addition, conventional boundaries constructed from
combinations of fuzzy ones are potentially more flexible. For example, by
using suitable operators for combining fuzzy rules, those boundaries are not
necessarily axis-parallel [PFTV92].

2.4. Fuzzy Rule-Based Classification 23

2.4.1. Fuzzy Logic

Fuzzy logic was introduced by Zadeh as an extension to the classical binary
(or Boolean) logic [Zad65]. While in Boolean Logic a variable can be either
true or false, in fuzzy logic it can assume arbitrary degrees of truth. The
advantage of this concept is the ability to cope with imprecise definitions
that cannot describe unambiguously which expressions are true and which
are not.

Boolean logic can be connected with classical set theory using a so-called
indicator function

IA(v)
df
=

{
1 if v ∈ A
0 if v �∈ A

,

which states whether element v belongs to the set A or not.
However, this sharp distinction is problematic, when both IA(v) = 0 and

IA(v) = 1 seem to be inappropriate. Consider the following example:

Example 2.4.1 (Sharp and not so sharp descriptions)
The description “people taller than 185 cm” is a sharp set description, because
every person’s body height can be precisely determined with a yardstick for
example. Either the body height is taller than 185 cm or not. In contrast,
the description “tall people” is not sharp. Here, it is not so clear whether a
person belongs to this set or not. The reason in this example is the lack of
a clear threshold value. In such a case one might think that a person with a
body height of 180 cm might be “rather tall” and, thus, belong to the concept
of “tall people” only partially.

2.4.1.1. Fuzzy Set

As an extension to the classical set, Zadeh introduced the fuzzy set. Let
v ∈ X , where X is the reference set. For this work we assume X = R. To
denote to which degree the value v belongs to a fuzzy set A, the membership
function μA(v) was introduced.

Definition 1 (Membership Function)
A fuzzy set A of the real numbers is characterized by its membership function

μA : R→ [0, 1] ,

which maps the reference set R to the unit interval. μA(v) describes to which

24 Foundations

degree v belongs to A. As an abbreviation

A(v)
df
= μA(v)

will be used.

The membership function μ is a generalization of the indicator function I.

Example 2.4.2 (Fuzzy sets of sharp and not so sharp descriptions)
The two notions of tall people that were given in the previous example need
different membership functions to be represented as fuzzy sets. The set for
the description of “people taller than 185 cm” results in the indicator function

I>185 cm(v) =

{
1 v > 185 cm
0 else

that is depicted in Figure 2.2a.
The fuzzy set for “tall people” can be described through the following

membership function

μtall people(v) =

⎧⎨
⎩

1 v > 190 cm
v−180

10 180 ≤ v ≤ 190
0 else

that is able to express memberships gradually, as it can be seen in Figure 2.2b.
Of course, since there exists an infinitive number of reasonable membership
functions for the concept of “tall people”, it is clear that this is only one
example.

The exemplary membership functions show the advantage of fuzzy sets in
comparison to ordinary sets. In the latter framework, a person with a body
height of 185.1 cm might be considered as tall, while a person with a body
height of 185 cm does not belong to this group. This transition from “full”
to “zero” membership due to the difference of only 0.1 cm is — in this case
— unnatural to distinguish tall from other people. In general, the difference
between two instances from which one belongs to a certain set, while the other
does not, could be arbitrarily small. A more natural characteristic would be
that points lying near to each other should also have similar membership
degrees. In the example this could mean that a person with a height of
185 cm belongs to the concept “tall people” to the degree of 0.5, while a
slightly taller person with 185.1 cm has a membership of 0.51.

2.4. Fuzzy Rule-Based Classification 25

0
I

1

cm

160 170 180 190 200

(a) The indicator function for the set
“people taller than 185 cm”.

0

μ
1

cm

160 170 180 190 200

(b) A reasonable membership function
for the fuzzy set “tall people”.

Figure 2.2.: Membership representations for concepts of “tall people”.

The flexibility of fuzzy membership functions allows unlimited shapes of
fuzzy sets. Yet, only some of them fulfill the following demands:

Definition 2 (Fuzzy Set Normalization)
A fuzzy set A is said to be normalized if and only if there exists a v ∈ R such
that μA(v)=1.

Definition 3 (Fuzzy Set Convexity)
A fuzzy set A is said to be convex if and only if μA(λ · v1 + (1 − λ) · v2) ≥
min

(
μA(v1), μA(v2)

)
for all v1, v2 ∈ R and λ ∈ [0, 1] holds.

Definition 4 (Fuzzy Set Continuity)
A fuzzy set A is said to be continuous if and only if its membership function
μA(·) is continuous.

There exists an abundance of fuzzy set shapes that can be described
through their membership function. However, for our purposes, we con-
centrate on fuzzy intervals which are simple, trapezoidal fuzzy sets:

Definition 5 (Fuzzy Interval)
A fuzzy interval IF = [a, b, c, d] is a fuzzy set with a trapezoidal membership
function of the form

IF (v)
df
= μIF (v) =

⎧⎪⎪⎨
⎪⎪⎩

1 b ≤ v ≤ c
v−a
b−a

a < v < b
d−v
d−c

c < v < d

0 else

,

where b and c are, respectively, the lower and upper bound of the core of the
fuzzy set; likewise, a and d are, respectively, the lower and upper bound of
the support.

26 Foundations

a b c d

interval core

interval support

0

IF

1

Figure 2.3.: A fuzzy interval IF .

Figure 2.3 depicts the membership function for a general fuzzy interval.
The fuzzy interval is normalized, convex and also continuous.

The fuzzy interval IF = [b, b, c, c] can be seen as a generalization of the
conventional interval I = [b, c]. As it will be shown below, this characteristic
will be helpful for transforming conventional rules into fuzzy ones.

In practice, the use of fuzzy logic is often seen with a partition of the data
space into several fuzzy sets.

Definition 6 (Fuzzy Partition)
A fuzzy partition of an attribute is a set of fuzzy sets {A1, . . . , Ak} on that
attribute.

This definition of a fuzzy partition is very general and a single fuzzy set
can already be considered to be a fuzzy partition. As it was already the case
for the fuzzy set, certain characteristics of fuzzy partitions exist as well:

Definition 7 (Fuzzy Partition Completeness)
A fuzzy partition {A1, . . . , Ak} is said to be complete if and only if for all
v ∈ R there exists a A ∈ {A1, . . . , Ak} such that μA(v) > 0 holds.

Definition 8 (Ruspini Fuzzy Partition)
A fuzzy partition {A1, . . . , Ak} is said to be a Ruspini partition if and only
if μA1 (v) + . . . + μAk

(v) = 1 holds for all v ∈ R.

2.4.1.2. Fuzzy Operators

The extension from a conventional set to a fuzzy set makes it necessary to
also extent the Boolean logic to a fuzzy logic. Consequently, it is necessary

2.4. Fuzzy Rule-Based Classification 27

to introduce fuzzy operators that are able to cope with the notion of gradual
set memberships.

As a fuzzy AND-operator the T-norm will be used:

Definition 9 (Fuzzy T-norm)
Let � : [0, 1]× [0, 1] → [0, 1] be a function. � is called T-norm if the following
conditions hold for all 0 ≤ a, b, c ≤ 1:

�(a, 1) = a Neutral element

�(a,�(b, c)) = �(�(a, b), c) Associativity

�(a, b) = �(b, a) Commutativity

�(a, b) ≤ �(c, b), if a ≤ c Monotonicity

Example 2.4.3 (Fuzzy T-norms)

�(a, b) = min(a, b) Minimum

�(a, b) = a · b Product

�(a, b) = max(0, a + b− 1) Łukasiewicz

As a fuzzy OR-operator the T-conorm will be used:

Definition 10 (Fuzzy T-conorm)
Let ⊥ : [0, 1] × [0, 1] → [0, 1] be a function. ⊥ is called T-conorm if the
following conditions hold for all 0 ≤ a, b, c ≤ 1:

⊥(a, 0) = a Neutral element

⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c) Associativity

⊥(a, b) = ⊥(b, a) Commutativity

⊥(a, b) ≤ ⊥(c, b), if a ≤ c Monotonicity

Example 2.4.4 (Fuzzy T-conorms)

⊥(a, b) = max(a, b) Maximum

⊥(a, b) = a + b− a · b Product

⊥(a, b) = min(1, a + b) Łukasiewicz

Finally, the fuzzy negation operator is introduced.

28 Foundations

Definition 11 (Fuzzy negation)
Let ¬ : [0, 1] → [0, 1] be a function. ¬ is called fuzzy negation if the following
conditions holds:

¬(1) = 0 and ¬(0) = 1 Boundary condition

¬(a) ≤ ¬(b) if b ≤ a Monotonicity

Example 2.4.5 (Fuzzy negation)

¬(a) = 1− a Zadeh

Definition 12 (De Morgan triplet)
Let � a fuzzy T-norm, ⊥ a fuzzy T-conorm and ¬ a fuzzy negation. (�,⊥,¬)
is a De Morgan triplet if for all u, v ∈ [0, 1] the following conditions hold:

¬�(u, v) = ⊥(¬u,¬v)
¬⊥(u, v) = �(¬u,¬v)

Using T-norm, T-conorm and fuzzy negation the following fuzzy set oper-
ations can be introduced:

Definition 13 (Fuzzy set union)
Let A, B be two fuzzy sets, ⊥ a fuzzy T-conorm and v ∈ R. Then the fuzzy
set union ∪⊥ is defined as:

μA∪⊥B(v)
df
= ⊥(

μA(v), μB(v)
)

Definition 14 (Fuzzy set intersection)
Let A, B be two fuzzy sets, � a fuzzy T-norm and v ∈ R. Then the fuzzy set
intersection ∩� is defined as:

μA∩�B(v)
df
= �(

μA(v), μB(v)
)

Definition 15 (Fuzzy set complement)
Let A be a fuzzy set, ¬ a fuzzy negation and v ∈ R. Then the fuzzy set
complement A is defined as:

μ
A

(v)
df
= ¬μA(v)

2.4. Fuzzy Rule-Based Classification 29

2.4.2. Fuzzy Classification Rules

The general form of a fuzzy classification rule rF = 〈rF
A | rC〉 resembles the

interval-based classification rule rI introduced in Section 2.3. The main dif-
ference is the antecedent part rF

A which is now a fuzzy logic expression for
which the Boolean logic operators have been replaced with their fuzzy logic
counterparts. For this work we consider only fuzzy rules with antecedents in
conjunctive normal norm (CNF):

rIF

A

df
= (Ai ∈ IF

i,i1
⊥ . . .⊥Ai ∈ IF

i,ik
)� . . .�(Aj ∈ IF

j,j1
⊥ . . .⊥Aj ∈ IF

j,j�
) ,

where Ai is an attribute, {i1, . . . , ik} ⊆ {1, . . . |IF
i |} are indices of occurring

fuzzy intervals and |IF
i | is the number of fuzzy intervals for Ai.

In contrast to the conventional case an instance can be partially covered
by a fuzzy rule. This is denoted as coverage degree or activation level

μrF (x)
df
=

(
IF

i,i1
(xi)⊥ . . .⊥IF

i,ik
(xi)

)� . . .�(
IF

j,j1
(xj)⊥ . . .⊥IF

j,j�
(xj)

)
, (2.4)

where IF
i,ij

(xi) is the membership of the j-th fuzzy interval of attribute Ai.

2.4.3. Linguistic Fuzzy Classification Rules

The idea behind linguistic fuzzy classification rules is closely related to fuzzy
rules in general. Rules of these kind use fuzzy sets with attached linguistic
meanings for the given attributes, e.g. the set “tall people” that was intro-
duced on the measurements of body heights in Example 2.4.1. The origin
of the fuzzy set definitions and the attached labels can be a domain expert
or a data-driven technique [INN05, pp. 7,8]. While the domain expert can
ensure that fuzzy sets and attached labels are appropriate, the data-driven
way is unable to achieve this. For the latter, the common approach is to
discretize numeric attributes and to attach labels in a generic way low, . . .,
high as it is exemplary shown in Figure 2.4. This semantical drawback is
problematic for all fuzzy set definitions that are not legitimated by domain-
specific knowledge. This holds for data-driven fuzzy sets and partitions but
also for homogeneous ones. Consequently, one might argue that only legiti-
mated fuzzy sets might be considered as truly linguistic fuzzy sets. Ishibuchi
et al. claimed that a homogeneous (or generic) fuzzy partition instead of a
data-driven one can be “more easily understood by humans” [INN05, p. 8].

30 Foundations

low middle high
0
μ
1

Ai

Figure 2.4.: An exemplary fuzzy partition with generic linguistic labels for each
fuzzy set.

A discussion of this claim would be beyond the scope of the thesis, but it is
important to mention that Ishibuchi et al. used the minimum value and the
maximum value of the numeric domains as a starting point for introducing
the generic partition. Ironically, these values have to be determined from
the known data and, thus, the generic partition is data-driven none the less.
With an increasing amount of data this weakness might be mitigated but
it remains prone to outliers. Moreover, such a generic partition is problem-
atic, when the number of fuzzy sets is too small or too large to model the
underlying pattern.

In summary, it is important to underline that linguistic fuzzy classifica-
tion rules which are obtained in a data-driven way might not be legitimated
through a domain expert. These fuzzy sets and labels might be inappropriate
for the considered domain.

In order to obtain readable rules, the fuzzy set descriptions are replaced
by their linguistic meaning and the T-norm and T-conorm are replaced with
and and or. The development of methods to learn linguistic fuzzy rule-based
classifiers has been a very hot topic since the work of Wang and Mendel in
1992, who introduced the idea using fuzzy grid-partitioning [WM92]. The
reason for the popularity of these models are manifold. Not only is under-
standing a classification decision very attractive, but the option to intervene
or modify the decision in an informed way is what makes interpretable mod-
els special in real-life situations. This is arguably the main strength and it
is this that distinguishes them from black box approaches. Linguistic fuzzy
rule-based classifiers are not only interpretable, but also very readable. In-
stead of working on attributes directly, those classifiers make use of linguistic
terms.

The grid-partitioning of linguistic fuzzy rule-based classifiers is both a
blessing and a curse. While the grid is a corset which makes a tight fit-
ting of the model to the training data difficult, it is this that helps avoiding

2.4. Fuzzy Rule-Based Classification 31

overfitting effects. The use of grid cells in the antecedents of a classification
rule has the advantage of reducing the number of distinct conditions. This is
due to the fact that non-grid-based rules fit the fuzzy sets on a per-rule basis.
Consequently, it is likely that fuzzy sets, which could be represented through
the same grid cell, are slightly different. However, aggregating these fuzzy
sets might be rather hard. Furthermore, when using a grid-partitioning of
an attribute it is much simpler to comply with demands such as the Ruspini
partition or the completeness criterion, see above.

2.4.4. Fuzzy Reasoning Methods

The evaluation of conventional classification rules is of course non-trivial but
also not too difficult. The reasoning becomes a little more complex when
allowing variable degrees of coverage. In such fuzzy cases not only gradual
memberships themselves, but generalized logical operators allow a larger flex-
ibility when evaluating fuzzy rules and making classification decisions. The
distinction between an ordered list of rules and an unordered ruleset, as it
was made in Section 2.3.1, is irrelevant. The case of lists can typically be ig-
nored because every rule is evaluated independently. The question whether it
applies to a gradually covered instance leads to an imminent defuzzification
which could also be reproduced with a conventional rule. For this reason,
fuzzy reasoning deals only with rulesets for classification.

When considering fuzzy reasoning methods for classification with fuzzy
rules there are two dominant schemes for obtaining classification decisions
[INN05]: (A) single-winner, (B) voting.

In the single-winner scenario a classification decision is caused by one rule
rF only, namely the one that covers the instance x to the largest degree
μrF (x). Other rules are completely ignored in this setting such that over-
lapping rules are not taken into consideration. This makes understanding
classification decisions simple, but it has the cost of decreased predictive
performance [CdH99].

The voting technique for obtaining classification decisions with fuzzy clas-
sification rules is quite similar to the one proposed for conventional rulesets,
cf. Section 2.3.1. The major difference is that in the fuzzy case the gradual
coverages lead to gradual votes in this kind of ballot. In order to obtain results
in the unit interval, the scores can be normalized. Alternatively, T-conorms
can be used to aggregate the gradual votes — making the normalization step
superfluous.

32 Foundations

A full account of the fuzzy reasoning methods used for the novel algorithms
will be separately given in the subsequent chapters.

Cordon et al. employed an analysis of different fuzzy reasoning methods re-
lated to voting [CdH99]. Recently, Fernández et al. investigated the influence
of fuzzy reasoning techniques in the context of imbalanced data [FGHd07].

2.5. Experimental Settings

The practical utility of a novel classification algorithm is a very important
aspect. To be useful in real life situations, a classifier should deliver correct
predictions and comply with certain qualitative demands. The classifiers
proposed in this work will not be application-specific. They will be able
to process any typical classification problem. Unfortunately, this generality
makes designing a good classifier a difficult task since there are many different
challenges to cope with, e.g. small problems, large problems, noisy data,
missing attributes, skewed distributions, etc. In order to deal with these
complications, we will evaluate the algorithms we propose very thoroughly.
Therefore, we run the tests on up to 45 different real-world data sets. This
setup will be very demanding, however, it will disclose the strengths and
weaknesses of the algorithms.

2.5.1. Testing Environment

The experimental tests in this thesis were conducted using the WEKA 3.5.8
framework [WF05]. WEKA is a comprehensive machine learning suite that
allows the experimental testing of classification algorithms. All proposed al-
gorithms in this work were implemented under the WEKA framework to al-
low a fair comparison. The benchmark classifiers used within this thesis were
all original WEKA implementations, with two exceptions: The fuzzy rule
learners CHI and SLAVE, see below, were implementations from the KEEL
suite [AFSG+09]. To ensure fairness, these classifiers were wrapped within
the WEKA framework. Since some of the classifiers are non-deterministic,
the order of the seed values for the random number generators was fixed.

2.5. Experimental Settings 33

2.5.2. Data Sets

The testbed for the experiments was created by selecting or engineering 45
real-world classification data sets. Most of the data sets, 24 in total, were
taken from the UCI Repositories [AN07], thirteen data sets belong to the
Statlib Repositories [MV07] and three come from an agricultural domain
[Bul07, Bar07, Har07]. The remaining five data sets were generated from me-
teorological station data, published by the German Weather Service (DWD).
Table 2.1 shows an overview of the 2- and m-class data sets and their main
characteristics. The selection of the data sets was guided by the criterion
that the number of numeric attributes should have been at least as large as
the number of nominal attributes, since the fuzzy techniques presented in
this work are not effective for nominal data.

2.5.3. Benchmark Classifiers

The classifiers which will be developed in the current work will be tested
experimentally. To analyze potential benefits of the novel algorithms, a com-
parison with existing classification algorithms will be undertaken. Since a
wealth of algorithms exist that might be considered for this purpose, we had
to be selective. The selection of benchmark algorithms was, first of all, guided
by the availability of the implementations. This criterion might seem trivial,
but unfortunately many algorithms exist only on paper and, due to imprecise
descriptions, it is impossible to implement them in a way that reproduces the
original results.

2.5.3.1. RIPPER

The RIPPER algorithm is a conventional rule learner introduced in Sec-
tion 2.3.3. For the experiments we used the WEKA implementation “JRIP”.
The minimum number of covered examples per antecedent was set to 2 and
for the number of folds and the number of optimizations in RIPPER we used
values 3 and 2, respectively (which is the default setting in WEKA leading
to RIPPER2).

2.5.3.2. CHI

The CHI -algorithm is a grid-based fuzzy classifier [CWY95, CYP96]. To
learn a fuzzy rule-base, it requires a fixed fuzzy partition for every input

34 Foundations

Table 2.1.: The data sets used in the experiments. The values “Num.”, “Nom.”
and “Miss.” denote the numeric and nominal attributes and the ones
involving missing values.

Data set # Inst. # Classes # Num. # Nom. # Miss. Origin

analcatdata-authorship 841 4 70 0 0 Statlib
analcatdata-bankruptcy 50 2 5 1 0 Statlib
analcatdata-cyyoung8092 97 2 7 3 0 Statlib
analcatdata-cyyoung9302 92 2 6 4 0 Statlib
analcatdata-esr 32 2 2 0 0 Statlib
analcatdata-halloffame 1340 3 15 2 1 Statlib
analcatdata-lawsuit 264 2 3 1 0 Statlib
analcatdata-votesurvey 48 4 3 1 0 Statlib
biomed 209 2 7 1 2 Statlib
cars 406 3 6 1 2 Statlib
collins 500 15 20 3 0 Statlib
ecoli 336 8 7 0 0 UCI
eucalyptus 736 5 14 5 9 agricult.
glass 214 6 9 0 0 UCI
haberman 306 2 2 1 0 UCI
heart-statlog 270 2 13 0 0 UCI
ionosphere 351 2 34 0 0 UCI
iris 150 3 4 0 0 UCI
liver-disorders 345 2 6 0 0 UCI
metStatCoordinates 4748 16 3 0 0 own
metStatRainfall 4748 16 12 0 0 own
metStatRST 336 12 3 0 0 own
metStatSunshine 422 14 12 0 0 own
metStatTemp 673 15 12 0 0 own
mfeat-factors 2000 10 216 0 0 UCI
mfeat-fourier 2000 10 76 0 0 UCI
mfeat-karhunen 2000 10 64 0 0 UCI
mfeat-morphological 2000 10 6 0 0 UCI
mfeat-zernike 2000 10 47 0 0 UCI
optdigits 5620 10 64 0 0 UCI
page-blocks 5473 5 10 0 0 UCI
pasture 36 3 21 1 0 agricult.
pendigits 10992 10 16 0 0 UCI
pima diabetes 768 2 8 0 0 UCI
prnn-synth 250 2 2 0 0 Statlib
schizo- 340 2 12 2 11 Statlib
segment 2310 7 19 0 0 UCI
sonar 208 2 60 0 0 UCI
squash-unstored 52 3 20 3 8 agricult.
synthetic control 600 6 60 1 0 UCI
vehicle 846 4 18 0 0 UCI
vowel 990 11 10 2 0 UCI
waveform 5000 3 40 0 0 UCI
wine 178 3 13 0 0 UCI
wisconsin-breast-cancer 699 2 9 0 1 UCI

2.5. Experimental Settings 35

dimension. These partitions form a grid on the data space. A single fuzzy
rule consists of such a grid cell as antecedent part and a class as consequent
part. The consequence is determined by finding the most frequent class in
that grid cell according to the fuzzy memberships of the training data. A
problem for this strategy concerns empty grid cells lacking evidence in favor
of any class. Chi proposed that a classifier should abstain for query instances
falling in such areas. In this work we will instead assign the most frequent
class according to the training data.

For the experiments we used an implementation provided from the KEEL
group [AFSG+09]. We used the following parameter setting: 3 fuzzy sets,
product T-norm, maximum inference and weighting scheme number 2 in ac-
cordance with Ishibuchi and Yamamoto [IY05].

2.5.3.3. SLAVE

A genetic fuzzy rule-based classifier was proposed by González and Perez
under the acronym SLAVE which is short for Structural Learning Algorithm
in Vague Environment [GP99, GP01]. This algorithm learns rules in an
iterative way by using a genetic algorithm. For the experiments we used
an implementation provided from the KEEL group [AFSG+09]. We used
the following parameter setting: 5 fuzzy sets, 500 iterations without change,
mutation probability 0.01, use weights true, population size 100.

2.5.3.4. C4.5

The C4.5 decision tree learner was introduced by Quinlan [Qui93]. The main
characteristics, which make it very attractive as a benchmark classifier, are
the good classification accuracy and the small amount of time that is needed
to build it. The C4.5 algorithm splits the data into subsets recursively. For
each split it considers all attributes and selects the one for splitting that
maximizes the information gain. In order to avoid overfitting effects, C4.5
uses an effective pruning strategy without separating the data into growing
and pruning data.

2.5.4. Performance Measures

The perhaps most important aspect of a classifier in the realm of machine
learning is the quality of the prediction it gives. It is legitimate to demand

36 Foundations

that such a classifier should always return the true class of an instance with
unknown class label. Unfortunately, this is often not easy and sometimes
impossible, e.g. due to noisy data or missing values. To measure how good
the prediction of a classifier is on average, we will use two different measures
for reasons that will be explained below: (A) We will measure the classical
classification accuracy. (B) We will also measure the area under the ROC
curve which has a sound theoretical justification.

2.5.4.1. Classification Performance

The first performance measure we choose is classification rate, which we syn-
onymously denote as classification accuracy. It reflects the relative number
of correctly classified instances. This measure has its place in the history of
machine learning. It was used in countless works on different classification
algorithms. In some papers, classification accuracy appears as classification
error, denoting the relative number of incorrectly classified instances. Note
that we will deal with classifiers that are allowed to abstain from a classifi-
cation decision within this thesis. These special cases, in which the accuracy
and the error are not reciprocal, will be mentioned explicitly.

Unfortunately, classification accuracy is a questionable quality measure
when the number of classes is very large or when the class distribution is
skewed. Moreover, classification accuracy is unable to take the confidences of
the predictions into consideration. For these reasons, a novel measure entered
the stage in recent times.

2.5.4.2. Ranking Performance

As an alternative measure, the area under the ROC curve (AUC) is often cal-
culated [PF97, PFK98, LHZ03, PD03, HL05]. To this end, the ROC (Receiver
Operating Characteristic) curve and the area beneath will be considered.

In binary classification, when the task of a binary classifier M is to dis-
tinguish between a positive class λ+1 and a negative class λ−1, four different
cases for a prediction can be distinguished:

True Positive The true class and the prediction were positive

True Negative The true class and the prediction were negative

False Positive The true class was negative, the prediction was positive

False Negative The true class was positive, the prediction was negative

2.5. Experimental Settings 37

Let T P be the number of true positives, let T N be the number of true
negatives, let F P be the number of false positives and let F N be the number
of false negatives.

The true positive rate T P R (or sensitivity) measures the fraction of posi-
tive instances that were classified correctly:

T P R
df
=

T P

T P + F N

Similarly, the false positive rate F P R (or specificity) describes the fraction
of negative instances that were classified falsely:

F P R
df
=

F P

F P + T N

Assume that M returns a score or pseudo-probability for a query instance.
The ROC curve measures the sensitivity and the specificity of the prediction
by ordering the predictions according to these scores and plotting T P R versus
F P R, see Figure 2.5 for an example. The larger the area beneath the ROC
curve, the better the predictive scores will rank.

Formally, the AUC can be introduced as follows: Let p be a discrete prob-
ability distribution on D × {λ+1, λ−1} with p : 2D×{λ+1,λ−1} → [0, 1]. And
let s(x) ∈ [0, 1] be the score that was returned by classifier M so that s(x)
reflects the (pseudo-) probability that x belongs to class λ+1. The AUC is
defined as the probability that a randomly drawn positive example (x, λ+1)
has a larger score s(·) than a randomly drawn negative (x, λ−1). However,
in order to approximate p with data D ⊆ D×{λ+1, λ−1} the non-parametric
Wilcoxon-Mann-Whitney statistic can be used [Wil45, MW47, HM82]. In
this case the empircal AUC is defined as

AUC(M, D)
df
=

∣∣∣{(
(xi,λ+1),(xj ,λ−1)

) ∣∣ s(xi)>s(xj)

}∣∣∣∣∣∣{(
(xi,λ+1),(xj ,λ−1)

)}∣∣∣

+
1

2
·

∣∣∣{(
(xi,λ+1),(xj ,λ−1)

) ∣∣ s(xi)=s(xj)

}∣∣∣∣∣∣{(
(xi,λ+1),(xj ,λ−1)

)}∣∣∣ ,

where i �= j and (xi, λ+1), (xj , λ−1) ∈ D. Ties are counted with 0.5.

38 Foundations

0
F P R

1
0

T P R

1

Figure 2.5.: A sample ROC curve (solid) and the ROC curve for random guessing
(dashed). The size of the tinted area corresponds to the AUC.

To make the two-class AUC measure applicable for the multi-class case we
report the weighted average AUC of the m 1-vs-All AUC values proposed by
Provost and Domingos [PD03].

A characteristic of the ROC curve is that ties between instances deteriorate
the AUC value [HV09]. It was found that the larger the spectrum of scores,
the better the AUC tends to be [HV09, ZBHH08]. This variety of scores helps
to dissolve ties in a sound way that works better than a random ordering of
the predictions having the same score provided the classifier does better than
random guessing.

According to this behavior, it is reasonable to assume that a fuzzy rule-
based classifier has a fundamental advantage over its conventional counter-
part. For the latter, the number of different scores is bound by the number
of rules. For a fuzzy rule learner, the number of return values is unbound
due to the infinite number of fuzzy membership values. We will investigate
this assumption in our experiments.

2.5.5. Test Setup

In order to evaluate a classifier in terms of discriminative power, the data
set is randomly split into two groups. The first group contains two thirds of
the data set and is called training data. The remaining examples are called

2.5. Experimental Settings 39

testing data. The classifier will learn a model using the training data, while
the testing data is not used. Afterwards, the classifier will use its learned
model to predict the class memberships of the testing data instances one
after the other. In this work, this test will be repeated 100 times to reduce
the standard deviation and, thus, to stabilize the effects of the random data
set splitting.

2.5.6. Statistical Evaluation

The experiments conducted in this work must be verified from a statistical
point of view. The motivation for this is to assure that the observations in the
experiments did not occur by chance and are, therefore, statistically signifi-
cant. Again, it is important to note here that the data sets contain real-world
information, for which no further assumptions concerning commensurability
of the results (e.g. for classification accuracy) can be made. This has to be
considered for the selection of the statistical tests. Thus, we will follow the
recommendations of Demšar [Dem06]. These tests will not analyze classifier
differences on single data sets, since a classifier should be able to achieve
good results on (nearly) any data set given. Consequently, classifiers are to
be compared according to the results achieved on a variety of data sets.

2.5.6.1. Comparison of Two Classifiers

In order to test two classifiers for significant differences, e.g. in terms of
classification accuracy, a sign test will be conducted [Sal97, She07]. The idea
is to count the number of wins, losses and ties. Let N be the number of data
sets, then the null hypothesis states that each one gains approximately N/2
wins. Since the distribution of wins is — provided a sufficiently large N —
normally distributed according to N(N/2,

√
N/2), a significant difference in

classifier performance is found if the z-test rejects the null-hypothesis. This
is the case as soon as one classifier exceeds a critical number of wins. Ties
are split equally.

2.5.6.2. Comparison of Multiple Classifiers

In order to test multiple classifiers for significant differences, e.g. in terms of
classification accuracy, the Friedman Test will be conducted as a first step
[Fri37, Fri40]. If the Friedman Test confirms significant differences among

40 Foundations

the tested classifiers in general, the classifiers will be tested for significant
differences in more detail using a post-hoc test.

The Friedman test is a non-parametric test which is based on the relative
performance of classifiers in terms of their ranks: For each data set, the
methods to be compared are sorted according to their performance, i.e., each
method is assigned a rank (in case of ties, average ranks are assigned). Let
k be the number of classifiers and N the number of data sets. Let rj

i be

the rank of classifier j on data set i and Rj = 1
N

∑N

i=1 rj
i the average rank

of classifier j. Under the null-hypothesis of equal classifier performance, the
Friedman statistic

χ2
F =

12N

k(k + 1)

⎡
⎣ k∑

j=1

(Rj)2 − k · (k + 1)2

4

⎤
⎦

is asymptotically χ2 distributed with k − 1 degrees of freedom. If N and k
are not large enough, it is recommended to use the following correction which
is F-distributed with (k − 1) and (k − 1)(N − 1) degrees of freedom [ID80]:

(N − 1) · χ2
F

N · (k − 1)− χ2
F

(2.5)

If that statistic for the given experiment is larger than the critical value, the
null-hypothesis of equal classifier performance can be rejected. This means
that there are significant differences among the classifiers, which have to be
analyzed in a post-hoc test separately.

To test the outcome of the Friedman Test for specific differences statisti-
cally, Demšar proposed two test:

1. To analyze differences in between pairs of classifiers, the Nemenyi Test
as a post-hoc will be conducted [Nem63]. According to this test, the
performance of two classifiers is significantly different, if the distance
of the average ranks has at least the critical distance

CDNemenyi
α = qα,k,∞ · 1√

2
, (2.6)

where the q-value is from the Studentized Range Statistic [New39].

2. To compare competitors against a control classifier the Bonferroni-

2.5. Experimental Settings 41

123

Avg. Rank

AC

B

CD0.01

Figure 2.6.: Nemenyi Test visualization according to Demšar [Dem06]. Classifiers
with no significant differences in terms of their ranks are connected.

Dunn Test is the post-hoc analysis to chose [Dun61]. According to
this test, the performance of the control classifier and another classifier
are significantly different if the distance of the average ranks exceeds
the critical distance

CDBonferroni-Dunn
α = q α

k−1 ,k,∞ · 1√
2

, (2.7)

where the q-value is from the Studentized Range Statistic [New39].

To visualize the statistical test results, Demšar proposed a number line
from 1 to k. Every single classifier is marked on that number line at the
position of its average rank R. As an example assume a test between three
classifiers A, B and C. The best result with an average rank of roughly
1.5 was achieved by A, while B and C scored a rank between 2 and 2.5.
Figure 2.6 shows the visualization for the Nemenyi Test results. Classifiers
differ significantly, when the distance of the average ranks is larger than the
critical distance. In the example this does not hold for B and C denoted by
the horizontal bar connecting either. Classifier A is unconnected denoting
that it performs better than both B and C.

The visualization of the Bonferroni-Dunn Test is very similar to the one
before. The main difference is that the test is concentrated on the control
classifier which is A in this example. Consequently, Figure 2.7 shows an
interval around A that has twice the width of the critical distance. Another
classifier is said to be non-significantly different if and only if it lies within
this interval. As this is not the case in the example, the outcome is that A is
significantly better than B and C. Note that the Bonferroni-Dunn Test does
not analyze the difference between the latter.

42 Foundations

123

Avg. Rank

AC

B

Figure 2.7.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
Classifiers lying within the interval around the control classifier A do
not differ significantly from it.

2.6. Summary

In this chapter we introduced the theoretical and methodical foundations
for this thesis. We outlined the problem setting of classification learning
within the field of machine learning. We explained the fundamental ideas of
separate-and-conquer rule learning and also of rules based on fuzzy logic. For
the practical parts of this thesis we presented the experimental framework
and the statistical tests we will use in detail.

3FURIA: Fuzzy Unordered
Rule Induction Algorithm

In this chapter we introduce the novel fuzzy rule-based classification method
called Fuzzy Unordered Rule Induction Algorithm, or FURIA for short, which
is a modification and extension of the state-of-the-art rule learner RIPPER
[Coh95], cf. Section 2.3.3.

This chapter is structured as follows: In Section 3.1 we will introduce
the idea behind FURIA. In Section 3.2 we will present the novel FURIA
algorithm in depth. In the next part, Section 3.3, FURIA will be evaluated
experimentally. Finally, we will conclude this chapter in Section 3.4 with a
summary.

3.1. Introduction

The history of the learners FOIL, REP, IREP and finally RIPPER revealed
that there was always room for some improvement — even when the current
baseline was high. Regarding this development, one can definitely claim that
RIPPER is a sophisticated algorithm which contains the findings from several
years of research. Taking this into consideration makes the intention to build
an even better algorithm based on RIPPER a challenging yet promising plan.

The FURIA algorithm is a successor to RIPPER that introduces novel
techniques and modifications for improving the discriminative power of this
algorithm without sacrificing too much of its effectiveness.

43

44 FURIA: Fuzzy Unordered Rule Induction Algorithm

The main novelty of FURIA will be the use of flexible fuzzy or soft classi-
fication rules (for more information about fuzzy rule characteristics cf. Sec-
tion 2.4). For this purpose we will introduce a novel rule fuzzification tech-
nique, which will soften RIPPER’s rule boundaries making it a fuzzy rule-
based classifier.

As we mentioned before, RIPPER learns an ordered list of classification
rules. This approach has advantages, but also some some disadvantages. For
example, it may come along with an unwanted bias since classes are no longer
treated in a symmetric way. Moreover, sorting rules by priority compromises
comprehensibility (the condition part of each rule implicitly contains the
negated conditions of all previous rules). To avoid these problems, FURIA
learns an unordered set of rules, namely a set of rules for each class in a 1-vs-
All scheme. This, however, means that the resulting model is not necessarily
complete, i.e., it may happen that a new query is not covered by any rule (in
this regard, decision lists are obviously less problematic). To deal with such
cases, we propose a novel rule stretching method which is based on Eineborg
and Boström’s rule stretching method [EB01]. The idea is to generalize the
existing rules until they cover the example. As an advantage over the use
of a default rule, note that rule stretching is a local strategy that exploits
information in the vicinity of the query.

3.2. Fuzzy Unordered Rule Induction Algorithm

This section introduces the novel algorithm. FURIA is mainly build upon the
RIPPER rule learning procedure, cf. Section 2.3.3: While the separate-and-
conquer rule induction remains mostly the same, other parts of the algorithm
were modified or enhanced.

3.2.1. Learning Unordered Rulesets

A first modification of RIPPER concerns the type of rule model that is
learned and, related to this, the use of default rules. As already mentioned
in the introduction, learning a decision list and using one class as a default
prediction has some disadvantages. In particular, it comes along with a sys-
tematic bias in favor of the default class. To avoid this problem, Eineborg
and Boström proposed an unordered version of RIPPER’s predecessor IREP
[Bos04, FW94]. Likewise, we propose learning a ruleset for every single class,

3.2. Fuzzy Unordered Rule Induction Algorithm 45

using a 1-vs-All decomposition. Consequently, FURIA learns to separate
each class from all other classes, which means that no default rule is used
and the order of the classes is irrelevant.2

When using an unordered ruleset without default rule, two problems can
occur in connection with the classification of a new query instance: First,
a conflict may occur if the instance is equally well covered by rules from
different classes. As will be seen in Section 3.2.4, this problem is rather
unlikely to occur and, in case it still does, can easily be resolved. Second, it
may occur that the query is not covered by any rule. To solve this problem,
we propose a novel rule stretching method. The idea, which will be discussed
in more detail in Section 3.2.5, is to modify the rules in a local way that
makes them applicable to the query.

A drawback of the unordered approach concerns its efficiency. The un-
ordered rule learning of RIPPER is a 1-vs-Rest approach. In contrast to the
1-vs-All, this means that examples from the earlier learned classes are not
considered as negatives during the subsequent learning process. The conse-
quence is three-fold: (A) The number of examples shrink with every new rule
learned throughout the training process. (B) The rules learned are simpler
since there are less negative examples that these rules must be distinguished
from. (C) The number of rules remains relatively small since the largest class
is not described in terms of rules.

3.2.2. Pruning Modifications

The RIPPER algorithm can be divided into the building and the optimiza-
tion phase. Rule building is done via the IREP* algorithm, which essentially
consists of a propositional FOIL algorithm, the pruning strategy (cf. Sec-
tion 2.3.3.1) and the stopping conditions. Interestingly, we found that the
pruning strategies in IREP* have a negative influence on classification accu-
racy of FURIA. We therefore omitted the pruning step and instead learned
the initial ruleset on the whole training data directly. To explain this finding,
note that, without pruning, IREP* produces more specific rules that better
fit the data. More importantly, small rules provide a better starting point
for our fuzzification procedure, to be detailed in Section 3.2.3, in which rules
can be made more general but not more specific.

2It is worth mentioning that, while Release 1 based on [Coh95] only supported ordered
rule lists, an unordered approach is also included in a more recent RIPPER implementation
of Cohen (Release 2.5).

46 FURIA: Fuzzy Unordered Rule Induction Algorithm

In the optimization phase, the pruning was retained, as its deactivation
was not beneficial. This is in agreement with the goal to minimize the MDL.
The coverage of the remaining positive examples, which is again accomplished
by IREP*, also benefited from omitting the pruning, in the same manner as
IREP* in the building phase.

FURIA still applies pruning when it comes to creating the replacement
and the revision rule. Here, the original pruning strategy is applied, except
in case of the pruning strategy trying to remove all antecedents from a rule,
thereby generating a default rule. In this case, pruning will be aborted and
the unpruned rule will be used for the MDL comparison in the optimization
phase. We found that these pruning strategies are still sufficient for avoiding
overfitting. Thus, the removal of pruning in the IREP* part has no negative
impact on classification accuracy.

3.2.3. Rule Fuzzification

To obtain fuzzy rules, the idea is to fuzzify the final rules from our modified
RIPPER algorithm. More specifically, using the training set D ⊆ D for
evaluating candidates, the idea is to search for the best fuzzy extension of each
rule, where a fuzzy extension is understood as a rule of the same structure,
but with intervals replaced by fuzzy intervals. Taking an interval I from an
original RIPPER rule as the core [b, c] of the sought fuzzy intervals IF =
[a, b, c, d], the problem is to find optimal bounds for the respective supports,
i.e., to determine a and d.

For the fuzzification of a single interval Ii on attribute Ai it is important
to consider only the relevant training data Di, i.e., to ignore those examples
that are excluded by any other fuzzy intervals IF

j , j �= i:

Di df
=

{
(x, λ) ∈ D |x = (x1, . . . , xk) ∧ IF

j (xj) > 0 for all j �= i
}

(3.1)

We partition Di into the subset of positive examples, Di
+ and negative

examples, Di
−. To measure the quality of a fuzzification, the purity will be

used:
pur =

pi

pi + ni

, (3.2)

3.2. Fuzzy Unordered Rule Induction Algorithm 47

A

possible support bounds dc

0

IF

1

Figure 3.1.: Examination of possible support bounds d of a conventional interval
[−∞, c].

where

pi
df
=

∑
(x,λ)∈Di

+

Ii(x)

ni
df
=

∑
(x,λ)∈Di

−

Ii(x) .

Rules are fuzzified in a greedy way, as shown by Algorithm 4. In each
iteration, a fuzzification is computed for every antecedent, namely the best
fuzzification in terms of (3.2). This is done by testing all values

{xi | (x, λ) ∈ Di, x = (x1, . . . , xk), xi < bi}

as candidates for ai and, likewise, all values

{xi | (x, λ) ∈ Di, x = (x1, . . . , xk), xi > ci}

as candidates for di (see Figure 3.1). Ties are broken in favor of larger fuzzy
sets, that is, larger distances from the core.

Fuzzification is then realized for the antecedent with the largest purity,
cf. Figure 3.2. This is repeated until all antecedents have been fuzzified.

Note that the fuzzification of a single antecedent may change the relevant
training data (3.1), which is hence recomputed in each iteration. In fact,

48 FURIA: Fuzzy Unordered Rule Induction Algorithm

A

c d

0

IF

1

Figure 3.2.: The fuzzified interval [−∞, −∞, c, d] maximizing the fuzzy purity.

each fuzzification may increase the number of covered examples, which in
turn may also influence the rule purity. Furthermore, note that, after the
complete premise part of a rule has been fuzzified, the whole procedure could
in principle be repeated until convergence is achieved (convergence is guaran-
teed, as purity can only increase in each iteration). We did not implement this
option, however, as we observed that, except for very rare cases, convergence
is already achieved after the first iteration.

To analyze the complexity of the above fuzzification procedure, note that,
in each iteration, |D| examples (support bounds) — at the most — are
checked for every candidate attribute. Since the total number of iterations is
bound by the number of attributes, n, the overall complexity is O(|D|n2).

3.2.3.1. Effectivity of the Rule Fuzzification Procedure

One might argue that there is no rule support found, claiming that the orig-
inal conventional rule has the maximum purity. But if this is the case, then
there exists a trivial fuzzification which is always found, namely the one that
sets the support bound to the first example behind the core bound, see Fig-
ure 3.3. Even though this fuzzification does not change the purity on the
training data, it is meaningful when it comes to classifying new instances.
The reason is that it extrapolates the original rule very carefully to an area
that might not have been covered by any rule at all.

Following this line of argumentation, the next logical question to ask would
be whether there is any non-trivial fuzzification for which the support thresh-

3.2. Fuzzy Unordered Rule Induction Algorithm 49

Algorithm 4 The antecedent fuzzification algorithm for a single rule r

1: Let A be the set of numeric antecedents of r
2: while A �= ∅ do
3: amax ← null // amax denotes the antecedent with the highest purity
4: purmax ← 0 // purmax is the highest purity value, so far
5: for i ← 1 to size(A) do
6: compute the best fuzzification of A[i] in terms of purity
7: purA[i] ← be the purity of this best fuzzification
8: if purA[i] > purmax then
9: purmax ← purA[i]

10: amax ← A[i]
11: end if
12: end for
13: A ← A \ amax

14: Update r with amax

15: end while

A

c d

0

IF

1

Figure 3.3.: Trivially fuzzified interval [−∞, −∞, c, d].

old is not set to the very first example beyond the original rule core. In fact,
when a rule contains only one fuzzy interval as numerical antecedent, then
there is no non-trivial fuzzification. The reason is that RIPPER learned this
rule with the objective to maximize the information gain (2.3) that implicitly
contains the purity (2.2). Consequently, the last example — marking the core
boundary — covered by that interval must be from the rule’s class. There

50 FURIA: Fuzzy Unordered Rule Induction Algorithm

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 3.4.: A two-dimensional classification problem showing the myopic failure
of separate-and-conquer learning and the correction through fuzzifi-
cation.

can be no non-trivial fuzzification since the growing procedure would have
selected this non-trivial support bound as core position.

A non-trivial fuzzification can be found when a rule uses at least two nu-
meric attributes within its antecedent. In such cases it might happen that
the myopic rule-learning strategy hinders the RIPPER rules from finding the
global solution. Note that this is not a failure specific to RIPPER, since it
might happen to any separate-and-conquer rule learner without look-ahead.
Consider the following example:

Example 3.2.1 (Non-trivial fuzzification)
Assume examples from classes and lying in A1×A2 ⊆ R

2, cf. Figure 3.4.
Moreover, let us consider a rule learner that tries to optimize the purity. The
optimal conventional rule for the latter class is given by the rule

IF A1 ∈ (−∞, 6] ∧A2 ∈ (−∞, 6] THEN

with a purity of 4
5 , cf. Figure 3.5.

The myopic separate-and-conquer strategy is not able to find this rule,
because it adds one antecedent after the other. It first finds the rule

IF A1 ∈ (−∞, 5] THEN

3.2. Fuzzy Unordered Rule Induction Algorithm 51

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 3.5.: Optimal conventional solution.

having a purity of 7
13 . The optimal first antecedent

IF A1 ∈ (−∞, 6] THEN

is disguised since it has a purity of only 1
2 which is smaller than 7

13 .

The next step in the rule learning procedure cannot recover the mistake as
it finds the rule

IF A1 ∈ (−∞, 5] ∧A2 ∈ (−∞, 5] THEN

having a purity of 7
9 which is smaller than 4

5 , cf. Figure 3.6. Note that due
to the symmetry of the data set, the same values hold when considering A2

first.

In this situation, a non-trivial fuzzification leads to the rule

IF A1 ∈ (−∞,−∞, 5, 10] ∧A2 ∈ (−∞,−∞, 5, 10] THEN .

The example at (6, 6) is covered to a degree of 10−6
10−5 = 0.8 by each con-

dition such that the rule’s purity is 39
49 when using the minimum T-Norm,

see Figure 3.7.

This example shows that the fuzzification, which is also a generalization

52 FURIA: Fuzzy Unordered Rule Induction Algorithm

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 3.6.: FURIA solution without fuzzification.

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 3.7.: FURIA solution with fuzzification.

procedure, of FURIA might help to recover mistakes that were made due to
the short-sighted learning strategy.

3.2.3.2. Rule Readability and Linguistic Interpretability

With regard to the readability of the rules, we consider our fuzzy extension
as uncritical. Essentially, the difference is that sharp boundaries of a rule are

3.2. Fuzzy Unordered Rule Induction Algorithm 53

replaced by “soft” boundaries: A fuzzy rule is uniquely characterized by its
core and its support values. It is valid inside the core and invalid outside the
support; in-between, validity drops in a gradual way. Consider, for example,
the rule 〈A ≤ 5 |+ 〉, which indicates that if attribute A is smaller or equal
to 5, then the class is positive. Here, the rule is valid for A ≤ 5 and invalid
for A > 5. Similarly, a fuzzy rule 〈A ∈ (−∞,−∞, 5, 8) |+ 〉 suggests that
the rule is completely valid for A ≤ 5, invalid for A > 8 and partially valid
in-between.

The models induced by FURIA are not linguistically interpretable in the
classical sense of linguistic fuzzy rule learning as it was described by Ishibuchi
et al. [INN05], see above Section 2.4.3. This is due to several reasons. First
of all, FURIA learns rules which are not based on a common knowledge base
containing fuzzy sets. Instead, the fuzzy sets learned by FURIA are rule-
specific. Consequently, it is impossible to find a reasonable and small set
of labels valid for all these fuzzy sets in general. Moreover, the fuzzy sets
induced by FURIA do not comply with certain demanding characteristics,
which are considered to improve interpretability, such as the completeness
or Ruspini criteria for fuzzy partitions, cf. Definitions 7 and 8. For these
reasons, models learned by FURIA cannot be considered being linguistic.
For more information about linguistic fuzzy rules, interpretability and the
problems with FURIA, see Chapter 4 and especially Section 4.1.

3.2.4. Classifier Output

The classification output of the RIPPER algorithm is determined in a sim-
ple way: The rules are examined in the order they were learned until a rule
covering the query instance is found. This scheme leaves no room for inter-
pretation since there is no interaction between the rules. FURIA abolishes
rule ordering. Consequently, there might be none, one or multiple rules cov-
ering the query instance. To cope with such different situations a prod-sum
rule voting procedure is used.

The degree to which a query instance x is covered by a rule rF having rF
A

in conjunctive normal form is given by (2.4). The rules learned by FURIA
are plain conjunctions of conditions. As fuzzy T-norm we select the prod-
uct operator since it enables non-linear decision boundaries. Thus, the rule

54 FURIA: Fuzzy Unordered Rule Induction Algorithm

coverage of FURIA is given by

μrF (x)
df
=IF

i (xi) · . . . · IF
j (xj) .

Suppose that fuzzy rules r
F (j)
1 . . . r

F (j)
k have been learned for class λj . For

a new query instance x, the score of this class is defined by

sj(x)
df
=

∑
i=1,...,k

μ
r

F (j)
i

(x) ·CF
(

r
F (j)
i

)
, (3.3)

where CF(rF (j)
i) is the certainty factor of the rule r

F (j)
i . It is defined as

CF
(

r
F (j)
i

)
=

2 |D(j)|
|D| +

∑
(x,λj)∈D(j) μ

r
F (j)
i

(x)

2 +
∑

(x,λ)∈D μ
r

F (j)

i

(x)
, (3.4)

where D(j) denotes the subset of training examples with label λj . Ishibuchi
argued that weighing the rules allows for modeling more flexible decision
boundaries and thereby improves classification accuracy [IN01, IY05]. The
rule weight or certainty factor (3.4) is the m-estimate for m = 2 [PFTV92].

The calculation of the scores {sj | 1 ≤ j ≤ m} according to (3.3) can be
interpreted as a voting procedure in which every rule covering the instance
has a vote.

The class predicted by FURIA is the one with maximal score sj . In the case
where x is not covered by any rule, which means that sj(x) = 0 for all classes
λj , a classification decision is derived in a separate way; see Section 3.2.5
below. In the case of a tie, a decision in favor of the class with highest
frequency in the training data is made.

Example 3.2.2 (Flexible decision boundaries)
The interval fuzzification can lead to non-linear decision boundaries. Con-
sider the three-class problem in Figure 3.8a. For the top-left and bottom-right
class a one-dimensional rule is sufficient. The rule cores tightly fit the data,
while the rule supports stretch to the lower left class. To separate the latter,
a rule with conditions on both attributes is necessary. Again, the rule core
covers the data in a firm way, while the support decreases to the edge of the
other classes. As can be seen, all rule conditions are parallel to the axes.
But the effective decision boundaries, which are showing where a transition

3.2. Fuzzy Unordered Rule Induction Algorithm 55

A2

A1

(a) Rule cores and support edges

A2

A1

(b) Decision boundaries

Figure 3.8.: A three-class problem generalized through three fuzzy rules with axis-
parallel conditions and the respective, more complex decision bound-
aries.

from one class to the other occurs, look very different, see Figure 3.8b: The
regions, in which instances are assigned to the same class, are neither rectan-
gular nor fully parallel to the axes. Even more flexibility is possible through
the selection of appropriate fuzzy operators, e.g. the product T-Norm, which
allow non-linear decision boundaries. In comparison to conventional rules,
this is a clear improvement in terms of flexibility.

3.2.5. Rule Stretching

To handle the aforementioned non-covering problem, Eineborg and Boström
proposed replacing all rules by their minimal generalizations for the given
instance [EB01]. A generalization or “stretching” of a rule is obtained by
deleting one or more of its antecedents and a generalization is minimal if it
does not delete more antecedents than necessary to cover the query instance.
Thus, the minimal generalization of a rule is simply obtained by deleting
all antecedents that are not satisfied by the query instance. Having derived
all minimal generalizations, the authors re-evaluate each rule by its Laplace
accuracy on the training data and then classify the query by the rule with
the highest evaluation. Experimentally, it has been shown that this strategy,

56 FURIA: Fuzzy Unordered Rule Induction Algorithm

which we subsequently refer to as EB-stretching, is better than using a default
rule, i.e., simply predicting the most frequent class.

Unfortunately, EB-stretching has a high computational complexity, as it
requires generalizing and re-evaluating every rule. Doing this on demand, for
a fixed query, has a complexity of O(|RS| · |DT |), with |RS| the number of
rules and |DT | the size of the training set. Besides, it is worth mentioning
that all training examples have to be stored. Alternatively, it is possible to
pre-compute the evaluation of each possible generalization. However, since a
rule r with an antecedent part rA can be generalized in 2|rA| different ways,
this goes hand in hand with large storage requirements.

To avoid these disadvantages, we propose an alternative approach that
exploits the order in which the antecedents were learned, treating them as
a list 〈α1, α2 . . . αm〉 instead of a set {α1, α2 . . . αm}. The idea is that the
ordering reflects the importance of the antecedents, an assumption that is
clearly justified in light of the underlying rule learning algorithm. As gen-
eralizations, we then only allow lists of the form 〈α1, α2 . . . αk〉 with k ≤ m.
For the minimal generalization, k is simply given by j − 1, where αj is the
first antecedent which is not satisfied by the query instance. To re-evaluate
generalized rules, we use the measure

p + 1

p + n + 2
× k + 1

m + 2
,

where p is the number of positive and n the number of negative examples
covered by the rule. The second factor accounts for the degree of general-
ization: Heavily pruned rules are discounted, as pruning is likely to decrease
the rule’s relevance for the query. Furthermore, by Laplace-correcting the
relative number of remaining antecedents, k/m, preference is given to longer
and, hence, more specific rules.3

Example 3.2.3 (Rule stretching procedures)
Consider an instance x = (5, 6, 7, 8) ∈ (A1, A2, A3, A4) and the following
conventional rule:

rorig = IF A1 ∈ [0, 10] ∧A2 ∈ [0, 10] ∧A3 ∈ [0, 5] ∧A4 ∈ [0, 10] THEN λj

3In order to present the following more concisely, we combined two selectors (half-
intervals) referring to the same attribute into a single fuzzy interval, cf. Section 3.2.3. It
is important to mention that, in the context of rule stretching, the two selectors are still
treated as different antecedents.

3.3. Experiments 57

In fact, x is not covered by this rule since 7 �∈ [0, 5]. The minimum gener-
alization according to Eineborg and Boström deletes only this condition:

rEB = IF A1 ∈ [0, 10] ∧A2 ∈ [0, 10] ∧A4 ∈ [0, 10] THEN λj

The novel stretching procedure instead cuts the rule after the second con-
dition:

rNovel = IF A1 ∈ [0, 10] ∧A2 ∈ [0, 10] THEN λj

Computationally, the above outlined rule stretching strategy is much more
efficient than EB-stretching. The complexity for re-evaluating a rule r is
O(|rA|). Moreover, since the evaluations of all generalizations of a rule can
be calculated and stored directly in the course of the rule learning process, in
which antecedents are learned in a successive way, there is no need for storing
the training data.

3.3. Experiments

In order to analyze the performance of FURIA, we conducted several experi-
mental studies. As a starting point, we used the RIPPER implementation of
WEKA (“JRip”), cf. Section 2.3.3, for implementing the rule learning part
of FURIA.

3.3.1. Classification Performance Analysis

In the first experiment, we compared FURIA to other classifiers with respect
to classification accuracy. For RIPPER, we used the WEKA default settings
according to Section 2.5.3.1. Moreover, we added two fuzzy rule-based classi-
fiers from the KEEL suite [AFSG+09]: The fuzzy grid-based CHI algorithm
and the genetic fuzzy rule learner SLAVE, cf. Sections 2.5.3.2 and 2.5.3.3.
Finally, we also included the C4.5 decision tree learner as a benchmark clas-
sifier, cf. Section 2.5.3.4.

The testbed for this comparison consisted of the binary- and multi-class
data sets, cf. Table 2.1. The experimental settings followed the setup pro-
posed in Section 2.5.5. Table 3.1 summarizes the results in terms of mean
classification accuracies4.

4The classifier FURIAc, which also appears in the table, will be analyzed in Sec-
tion 3.3.3.

58 FURIA: Fuzzy Unordered Rule Induction Algorithm

Table 3.1.: Average classification accuracies and ranks for FURIA and its com-
petitors.

Data set FURIA RIPPER C4.5 CHI SLAVE FURIAc

acd-authorship 95.67(1) 93.05(3) 93.50(2) 71.60(5) 91.87(4) 95.26
acd-bankruptcy 82.57(1) 81.97(2) 81.29(3) 74.40(5) 77.80(4) 83.83
acd-cyyoung8092 80.02(2) 80.04(1) 79.86(3) 70.72(5) 79.32(4) 80.17
acd-cyyoung9302 82.64(2) 82.01(3) 80.82(4) 80.27(5) 83.90(1) 82.96
acd-esr 80.90(2) 82.38(1) 80.36(3) 79.55(4) 77.72(5) 81.73
acd-halloffame 92.92(1) 92.87(3) 92.87(2) 92.18(5) 92.68(4) 92.89
acd-lawsuit 98.00(1) 97.54(3) 97.94(2) 94.93(4) 94.81(5) 97.96
acd-votesurvey 36.92(3) 34.40(4) 38.75(2) 40.19(1) 29.51(5) 36.35
biomed 88.31(1) 87.40(3) 87.80(2) 80.64(5) 84.74(4) 88.12
cars 79.08(2) 75.93(3) 82.15(1) 68.97(5) 70.68(4) 78.51
collins 96.35(1) 92.89(3) 96.10(2) 42.63(5) 50.87(4) 95.29
ecoli 83.12(1) 80.57(4) 81.35(2) 77.43(5) 81.03(3) 82.44
eucalyptus 60.62(1) 58.69(3) 59.98(2) 54.09(5) 58.16(4) 60.29
glass 68.22(1) 63.18(3) 66.69(2) 61.39(5) 61.83(4) 67.01
haberman 72.72(3) 72.16(4) 71.75(5) 73.08(2) 73.31(1) 72.80
heart-statlog 79.75(1) 78.44(2) 77.08(4) 68.66(5) 78.44(3) 79.56
ionosphere 89.59(2) 88.64(4) 88.72(3) 66.40(5) 89.83(1) 89.40
iris 94.76(2) 93.45(4) 94.25(3) 92.27(5) 94.92(1) 94.10
liver-disorders 67.15(1) 65.93(2) 63.40(3) 58.75(5) 59.77(4) 66.76
metStatCoord. 93.02(1) 92.04(3) 92.87(2) 46.79(5) 58.77(4) 92.83
metStatRainfall 64.51(1) 60.66(2) 59.47(3) 24.51(5) 29.35(4) 63.79
metStatRST 33.56(4) 36.08(3) 38.60(2) 25.24(5) 42.02(1) 33.31
metStatSunshine 49.05(1) 44.48(3) 46.78(2) 37.93(4) 28.83(5) 48.50
metStatTemp 50.71(2) 47.45(3) 53.18(1) 30.63(4) 22.10(5) 50.39
mfeat-factors 92.09(1) 87.05(4) 87.96(3) 89.19(2) 86.83(5) 91.76
mfeat-fourier 76.69(1) 71.37(4) 74.42(2) 69.27(5) 73.49(3) 76.07
mfeat-karhunen 86.47(1) 79.13(4) 80.20(3) 82.55(2) 78.37(5) 85.57
mfeat-morpholog. 72.09(1) 70.74(3) 71.60(2) 57.93(5) 67.08(4) 72.08
mfeat-zernike 73.67(1) 67.58(5) 69.11(3) 72.37(2) 68.26(4) 72.80
optdigits 94.78(1) 89.68(3) 89.51(4) 45.90(5) 93.45(2) 94.42
page-blocks 97.02(1) 96.79(3) 96.89(2) 91.96(5) 93.58(4) 96.91
pasture-prod. 74.67(1) 68.46(3) 73.67(2) 44.23(5) 53.63(4) 73.23
pendigits 97.77(1) 95.54(4) 95.92(3) 97.45(2) 87.26(5) 97.32
pima diabetes 74.71(1) 74.56(2) 73.43(4) 72.55(5) 73.65(3) 74.76
prnn-synth 83.57(2) 82.50(4) 83.18(3) 84.14(1) 81.51(5) 83.46
schizo- 80.52(1) 75.33(2) 74.93(3) 56.08(5) 56.29(4) 79.97
segment 96.50(1) 94.53(3) 95.95(2) 83.65(5) 88.87(4) 96.04
sonar 77.01(1) 72.41(3) 72.09(4) 74.61(2) 68.50(5) 76.34
squash-unstored 76.44(1) 71.74(3) 76.08(2) 70.56(4) 65.56(5) 77.10
synthetic control 89.75(2) 82.85(4) 90.00(1) 68.33(5) 89.23(3) 88.60
vehicle 70.10(2) 67.80(3) 71.38(1) 61.99(5) 64.08(4) 69.75
vowel 75.43(2) 64.71(3) 75.60(1) 59.49(5) 63.84(4) 71.87
waveform 82.24(1) 78.72(2) 75.05(4) 72.38(5) 75.34(3) 82.23
wine 93.25(1) 90.02(5) 91.22(4) 92.77(2) 92.46(3) 92.21
w.-breast-cancer 95.68(1) 95.58(2) 94.51(4) 90.20(5) 95.49(3) 95.53

average 1.40 3.07 2.60 4.24 3.69

3.3. Experiments 59

12345

Avg. Rank

FURIA

C4.5

RIPPER

CHI

SLAVE

Figure 3.9.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
FURIA is significantly better than all competitors in terms of classi-
fication accuracy. Significance level α = 0.1

The overall picture conveyed by the results is clearly in favor of FURIA,
which outperforms the other methods on most data sets. To evaluate the
performances in more detail, we conducted the Friedman Test, cf. Table 3.1.
The corrected Friedman statistic for large N and k according to (2.5) is 39.77,
while the critical value for the significance level α = 0.01 is only 3.43. Thus,
the null-hypothesis can quite safely be rejected, which means that there are
significant differences in the classifiers’ performance.

Given the result of the Friedman Test, we conducted the Bonferroni-Dunn
Test as a post-hoc test to compare the competing classifiers to FURIA as the
control classifier [Dun61]. The critical distance according to (2.7) between
two classifier ranks is CDα = 0.75. The results of this test are summarized
in Figure 3.9: FURIA is significantly better than all other classifiers at the
significance level α = 0.1.

3.3.2. Ranking Performance Analysis

The second analysis concerned with the discriminative power was conducted
by measuring the area under the ROC curve (AUC). We used the same
competitors, the same settings and the same choice of data sets as in the test
before. Table 3.2 summarizes the results in terms of mean AUC4.

The analysis of the results suggests the very same result on the first peek
as the previous one: FURIA outperforms the field. In fact, the Friedman
Test again finds significant differences with a value of 7.97 for (2.5), while
the critical value for the significance level α = 0.01 is only 3.43. Thus, the
null hypothesis is rejected.

The critical distance according to (2.7) between FURIA as control classifier

60 FURIA: Fuzzy Unordered Rule Induction Algorithm

Table 3.2.: Average AUC and ranks for FURIA and its competitors.

Data set FURIA RIPPER C4.5 CHI SLAVE FURIAc

acd-authorship 0.98(1) 0.96(3) 0.96(4) 0.90(5) 0.98(2) 0.98
acd-bankruptcy 0.87(1) 0.82(5) 0.83(4) 0.87(2) 0.86(3) 0.87
acd-cyyoung8092 0.74(2) 0.71(3) 0.67(4) 0.65(5) 0.77(1) 0.74
acd-cyyoung9302 0.77(2) 0.71(4) 0.70(5) 0.75(3) 0.79(1) 0.77
acd-esr 0.67(1) 0.62(3) 0.63(2) 0.60(4) 0.59(5) 0.67
acd-halloffame 0.83(3) 0.79(5) 0.81(4) 0.87(2) 0.89(1) 0.83
acd-lawsuit 0.95(2) 0.92(4) 0.93(3) 0.81(5) 0.96(1) 0.95
acd-votesurvey 0.52(3) 0.50(4) 0.54(2) 0.55(1) 0.49(5) 0.52
biomed 0.90(3) 0.86(5) 0.87(4) 0.93(1) 0.91(2) 0.90
cars 0.88(2) 0.82(4) 0.90(1) 0.86(3) 0.81(5) 0.87
collins 1.00(1) 0.97(3) 0.98(2) 0.88(4) 0.83(5) 1.00
ecoli 0.91(3) 0.89(4) 0.89(5) 0.94(1) 0.91(2) 0.91
eucalyptus 0.79(3) 0.82(2) 0.82(1) 0.79(4) 0.77(5) 0.79
glass 0.81(1) 0.76(5) 0.79(3) 0.77(4) 0.79(2) 0.81
haberman 0.62(2) 0.60(3) 0.56(5) 0.65(1) 0.60(4) 0.62
heart-statlog 0.82(1) 0.79(3) 0.78(4) 0.76(5) 0.81(2) 0.82
ionosphere 0.91(2) 0.88(4) 0.88(5) 0.89(3) 0.92(1) 0.91
iris 0.97(3) 0.96(5) 0.96(4) 1.00(1) 0.98(2) 0.97
liver-disorders 0.68(1) 0.64(2) 0.62(3) 0.57(5) 0.60(4) 0.68
metStatCoord. 0.98(2) 0.98(1) 0.98(3) 0.78(5) 0.82(4) 0.98
metStatRainfall 0.87(1) 0.85(2) 0.81(3) 0.76(4) 0.66(5) 0.87
metStatRST 0.65(3) 0.70(2) 0.71(1) 0.59(4) 0.58(5) 0.65
metStatSunshine 0.77(2) 0.75(4) 0.74(5) 0.80(1) 0.75(3) 0.77
metStatTemp 0.76(3) 0.77(2) 0.77(1) 0.66(5) 0.68(4) 0.76
mfeat-factors 0.98(2) 0.95(4) 0.94(5) 0.98(1) 0.97(3) 0.98
mfeat-fourier 0.92(2) 0.92(4) 0.88(5) 0.92(1) 0.92(3) 0.92
mfeat-karhunen 0.96(2) 0.92(4) 0.90(5) 0.98(1) 0.95(3) 0.96
mfeat-morpholog. 0.88(5) 0.94(1) 0.92(3) 0.93(2) 0.89(4) 0.88
mfeat-zernike 0.91(2) 0.90(4) 0.87(5) 0.95(1) 0.90(3) 0.91
optdigits 0.99(1) 0.96(3) 0.95(4) 0.82(5) 0.96(2) 0.99
page-blocks 0.95(1) 0.93(3) 0.93(2) 0.82(5) 0.83(4) 0.95
pasture-prod. 0.86(1) 0.79(3) 0.83(2) 0.64(5) 0.71(4) 0.86
pendigits 1.00(2) 0.98(4) 0.98(5) 1.00(1) 0.99(3) 1.00
pima diabetes 0.73(4) 0.71(5) 0.74(3) 0.80(1) 0.76(2) 0.73
prnn-synth 0.85(3) 0.84(5) 0.84(4) 0.90(1) 0.90(2) 0.85
schizo- 0.86(1) 0.78(3) 0.81(2) 0.56(5) 0.59(4) 0.86
segment 0.99(1) 0.98(2) 0.98(3) 0.97(4) 0.96(5) 0.99
sonar 0.81(2) 0.74(4) 0.72(5) 0.82(1) 0.75(3) 0.81
squash-unstored 0.83(1) 0.77(3) 0.81(2) 0.71(5) 0.76(4) 0.83
synthetic control 0.97(3) 0.93(5) 0.95(4) 0.99(1) 0.99(2) 0.97
vehicle 0.85(1) 0.85(2) 0.85(4) 0.85(3) 0.83(5) 0.85
vowel 0.93(1) 0.88(5) 0.91(3) 0.91(2) 0.89(4) 0.93
waveform 0.91(2) 0.88(4) 0.83(5) 0.91(3) 0.91(1) 0.91
wine 0.97(3) 0.93(5) 0.93(4) 0.98(1) 0.97(2) 0.97
w.-breast-cancer 0.97(3) 0.96(4) 0.95(5) 0.98(1) 0.97(2) 0.97

average 2.02 3.53 3.51 2.84 3.09

3.3. Experiments 61

12345

Avg. Rank

FURIA

CHI

SLAVE

C4.5

RIPPER

Figure 3.10.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
FURIA is significantly better than all competitors in terms of AUC.
Significance level α = 0.1

and any competitor is CDα = 0.75 for a significance level of α = 0.1. The
results of this test are summarized in Figure 3.10: FURIA is significantly
better than all other classifiers at the significance level α = 0.1.

Another interesting observation can be made in this context: The rank-
ing of the competing classifiers changed completely from classification accu-
racy to AUC. We conjecture that the weak performance in terms of AUC
of C4.5 and RIPPER can be explained through the limited spectrum of
scores, cf. Section 2.5.4.2. The larger score variability of CHI and SLAVE im-
proved their ranking position dramatically. From this point of view, we can
confirm the findings of Hüllermeier and Vanderlooy as well as Zhang et al.
[HV09, ZBHH08], see also Section 2.5.4.2.

3.3.3. Fuzzification Analysis

The previous results have demonstrated that FURIA is a significant im-
provement in comparison to RIPPER. Since FURIA differs from RIPPER
in several ways, it is interesting to investigate the influence of the different
modifications. One may wonder, for example, to what extent the improve-
ments can be attributed to the use of fuzzy instead of conventional rules. To
answer this question, we conduct some additional experiments with a con-
ventional (crisp) variant of FURIA under the name FURIAc, cf. Table 3.1
and Table 3.2. To optimize an interval as originally produced by RIPPER,
this variant conducts a search process quite similar to the search for an op-
timal fuzzy interval (cf. Section 3.2.3). Instead of a trapezoid, however, it is
again only allowed to use intervals, i.e., it simply tries to optimize the original
decision boundary in terms of the rule’s purity.

62 FURIA: Fuzzy Unordered Rule Induction Algorithm

Even though FURIAc still compares favorably to RIPPER (42 wins and 3
losses for accuracy and 40 wins and 5 losses for AUC) and C4.5 (34 wins and
11 losses for accuracy and 38 wins and 7 losses for AUC), the gains are less
clear than those of FURIA. More importantly, in a direct comparison FURIA
achieves 38 wins in terms of accuracy and 36 in terms of AUC. Besides, six of
the seven data sets won by FURIAc in terms of accuracy are two-class data
sets and the remaining one is a three-class data set, suggesting that fuzzy
rules are especially useful for problems with many classes. This is confirmed
from the AUC analysis, where 7 out of the 9 wins of FURIAc over FURIA
are on data sets with four classes or less.

3.3.3.1. Effect of Fuzzification

Unfortunately, it is very hard to grasp the influence of fuzzification in a
theoretically sound way. The reason is that fuzzification affects classification
in several different ways, which all might influence the final outcome. To
cope with this difficulty, we will conduct tests using modified versions of
FURIA. The idea is to locate the reason for the predictive strength of FURIA
by looking at the performance differences. We are hoping to explain the
consequences of fuzzification by examining its individual effects with this sort
of differential diagnosis. For this test we will focus on classification accuracy
only.

Setup

To examine the impact of fuzzification (or more general: post-generaliza-
tion), we measure the discriminative power of the overall rule model. To
minimize the interference, we will disable the rule stretching technique for
this test. Since FURIA is now allowed to abstain from classification for
uncovered instances, we have to take this into consideration and measure
both classification accuracy and classification error, i.e. the relative number
of correctly and incorrectly classified instances. For this analysis, we will
compare four different versions of FURIA that differ only slightly:

FURIA-prod The FURIA algorithm using the product T-norm as it was
presented.

FURIA-min The FURIA algorithm using the minimum T-norm.

3.3. Experiments 63

Table 3.3.: Wins and losses in terms of classification accuracy and error on the
test data for variants of FURIA.

Accuracy Error

prod min crisp w/o prod min crisp w/o

FURIA-prod - 22 37 45 - 23 37 0
FURIA-min 8 - 37 45 7 - 37 0
FURIA-crisp 7 7 - 45 7 7 - 0
FURIA-w/o 0 0 0 - 45 45 45 -

Table 3.4.: Wins and losses in terms of classification accuracy and error on the
training data for variants of FURIA.

Accuracy Error

prod min crisp w/o prod min crisp w/o

FURIA-prod - 1 6 43 - 1 6 28
FURIA-min 9 - 6 43 9 - 6 28
FURIA-crisp 26 26 - 42 26 26 - 29
FURIA-w/o 0 0 1 - 10 10 9 -

FURIA-crisp This version is very similar to the original FURIA version. It
learns the very same model. The only difference is that during classifi-
cation all interval memberships IF (xi) > 0 are rounded to 1. Note that
this algorithm is different from the FURIAc variant discussed above.

FURIA-w/o This FURIA version does not apply any post-generalization
technique. The rules remain in the same shape in which they were
learned by RIPPER.

The complete results of this test can be found in Table A.1, Table A.2,
Table A.3 and Table A.4. A short overview can be found in Table 3.3 and
Table 3.4. To cope with the large amount of information, we analyze these
tables step by step:

The effect of rule post-generalization on predictive performance

For this analysis we will have to compare FURIA-w/o to the rest. We know
that the rules of FURIA-w/o are the original, unmodified RIPPER rules.
Furthermore, recall that FURIA can only increase the coverage of the rules
in the process of fuzzification. Consequently, FURIA will abstain on less

64 FURIA: Fuzzy Unordered Rule Induction Algorithm

instances during classification than FURIA-w/o. In fact, when looking at
classification accuracy and classification error on the test data, cf. Table 3.3,
FURIA-w/o has the lowest classification accuracy and also the lowest classi-
fication error always. From this we cannot conclude whether FURIA-w/o is
better or worse than the rest.

The effect of rule post-generalization on myopia

In Section 3.2.3.1 and Example 3.2.1 we argued that generalizing the rules
after learning could correct an improper placement of the interval cores. We
found so far that FURIA-w/o is a very careful variant that has the smallest
classification accuracy and also the smallest classification error on the test
data. Unfortunately, this information is not very telling and does not explain
whether the other FURIA-variants that apply the post-generalization of the
rules behave less myopic. For this examination we have to concentrate on the
results on the training data. The reason is that if the generalization process
had no beneficial impact, the accuracies and errors of FURIA-w/o and the
rest should be the same. But surprisingly, we find that FURIA-w/o has a
worse classification accuracy than the other FURIA variants on practically
all data sets, cf. Table 3.4. On top of that, we see that FURIA-w/o has also
a worse classification error as well. The variants have a lower classification
error on at least 28 data sets and are tying on 7. In accordance with the null-
hypothesis that the performances are equal, we can conduct the sign test,
cf. Section 2.5.6.1. The sign test rejects this hypothesis with an error prob-
ability of α = 0.01. From this we can conclude that the post-generalization
has a beneficial impact on both accuracy and error on the training data. Es-
pecially the observation that the training error is smaller adds weight to the
claim that the post-generalization mitigates the initial myopia.

The effect of the gradual rule coverage on classification accuracy

One of FURIA’s key features is the fuzzification in the post-generalization
procedure. The membership function of a fuzzy interval decreases linearly
from its core suggesting that “nearer” instances belong to a larger degree
to the interval than others farther away. While this notion makes sense
intuitively, the consequences in terms of predictive power have to be exam-
ined. For this purpose we will compare the fuzzy versions FURIA-prod and
FURIA-min to FURIA-crisp. Following this approach, we will analyze the

3.3. Experiments 65

influence of the fuzziness alone. Table 3.3 displays the results on the test
data: FURIA-prod and FURIA-min win 37 and lose only 7 data sets over
FURIA-crisp in terms of both classification accuracy and classification error.

A surprising observation can be made in the results on the training data,
cf. Table 3.4. FURIA-crisp wins 26 and ties 13 data sets over both fuzzy
competitors FURIA-prod and FURIA-min in terms of classification accuracy
and classification error. This is worth noting since this was not to be expected
from the results on the test data. A very similar observation has been made
by Kuwajima et al. [KNI08]. In a — to some extend — related analysis they
also found that a stronger fuzzification leads to worse results on the training
data, but not on the test data. For more information about the work of
Kuwajima et al. see Section 7.2.8.

The results show that the gradual instead of the conventional extrapola-
tion causes significant improvements. This can be explained by the fact that
instances which are nearer to the core obtain a larger support from the inter-
val than instances farther away. What happens in the conventional variant,
where this is not the case, is that if two conventional rules from different
classes overlap, the rule with the larger confidence prevails. Consequently,
the conventional classification expands the influence of the stronger rule to
the core of the weaker rule, overriding the weaker rule’s support. An instance
which is arbitrarily near to the weaker rule’s core would always be classified
through the stronger rule — a behavior that we criticized for conventional
rules in general. Figure 3.11 depicts the membership degrees according to
Example 3.2.2 (see page 54). We see that for the fuzzy variants, there are
only smooth, continuous changes. But FURIA-crisp realizes hard decision
boundaries that would treat instances in the pink, grey and ocher area in the
same manner, respectively.

Comparing the effect of the product and the minimum T-norm on
classification accuracy

As a conjunction operator to combine the coverage degrees of multiple fuzzy
intervals, we proposed using the product T-norm. One of the characteristics
of the product T-norm is that the decision boundaries have a smooth, round
shape which extrapolate more carefully in terms of interpolation: Suppose
an instance x covered by I1 and I2 with 0 < I1(x1) ≤ I2(x2) < 1, then
�prod

(
I1(x1), I2(x2)

)
< �min

(
I1(x1), I2(x2)

)
. We assumed this to be benefi-

66 FURIA: Fuzzy Unordered Rule Induction Algorithm

(a) FURIA-prod (b) FURIA-min (c) FURIA-crisp

Figure 3.11.: Visualization of the decision boundaries. The different colors re-
semble the (fuzzy) coverage to the classes.

cial for classification accuracy in comparison to a T-norm with more rectan-
gular decision boundaries such as the minimum T-Norm, see Figure 3.11.

Table 3.3 shows the test data results for the respective versions of FURIA,
namely FURIA-prod and FURIA-min. We find that FURIA-prod wins over
FURIA-min on 22 data sets and ties on 15 for classification accuracy. For
classification error 23 wins and 15 ties convey a similar impression. Following
the sign test, cf. Section 2.5.6.1, we cannot confirm the null-hypothesis of
equal classifier performance according to an error probability of α = 0.05:
FURIA-prod is significantly better than FURIA-min. The results on the
training data are different: FURIA-min is better than FURIA-prod on 9 data
sets and worse on only one for both classification accuracy and error. Here,
the sign test fails to reject the null-hypothesis of equal classifier performance
with an error probability of α = 0.1.

Synthesis

The previous analysis revealed very interesting results concerning the post-
generalization procedure of FURIA: (A) Post-generalization is able to correct
the myopic behavior of greedy rule learning. (B) Soft boundaries tend to
improve the decision boundaries even when the underlying rule model is the
same. (C) The product T-norm is significantly better than the minimum
T-norm according to the results on the test data.

One might argue that FURIA-crisp had a structural disadvantage in com-
parison to FURIA-prod. The reason is that the conventional and fuzzy gen-
eralizations are different as we learned from the comparison of FURIA and

3.3. Experiments 67

FURIAc. Thus, one could assume that using the “wrong” fuzzification could
be the reason for the bad results of FURIA-crisp. But this is not the case:
We ran the conventional optimization of the model as we did for FURIAc
(FURIAc-crisp), but made the final classification decision in a fuzzy way
(FURIAc-prod). We found FURIAc-prod outperforming FURIAc-crisp with
36 wins and 8 losses in terms of classification accuracy and classification error
on the test set. Actually, the fuzzy set community might assign this latter
insight even more importance: It is a proverbial away victory for the fuzzy
variant.

3.3.4. Model Complexity Analysis

Since FURIA disables the pruning step in IREP*, it learns more special-
ized rules. Therefore, it is likely to produce models that are more complex,
in terms of the number of rules and their lengths, than those produced by
RIPPER. Indeed, while FURIA learns 25.4 rules on average, RIPPER gen-
erates only 15.5 rules.5 Moreover, while a FURIA rule has 2.5 conditions on
average, a RIPPER rule has only 1.7; see Table 3.5 for detailed statistics.
Consequently, the performance gain of FURIA in comparison with RIPPER
comes at the cost of slightly more complex models.

Still, however, FURIA compares favorably with the other algorithms. Its
average model size is quite comparable to the one of SLAVE, which creates
19.8 rules per model. Besides, the rules of FURIA are much shorter than the
rules of SLAVE, which consist of 4.4 conditions on average. Since the CHI
classifier uses a grid-based approach, every rule contains all attributes. In
general, this leads to very large rulesets with long condition parts.

3.3.5. Rule Stretching Analysis

To investigate the effectiveness of our novel rule stretching method, we com-
pared it to the original EB-stretching of (author?) [EB01]. More specifically,
we compared the performance of FURIA with the performance of a variant
of FURIA that uses EB-stretching instead of our rule stretching method,
cf. Table A.5. The results, 19 wins for the variant, 26 losses and one tie, sug-
gest that both methods are comparable in terms of classification accuracy.
Furthermore, we can confirm that rule stretching works more effectively than

5Including RIPPER’s default rule.

68 FURIA: Fuzzy Unordered Rule Induction Algorithm

Table 3.5.: FURIA model statistics. The number of rules per rule set and the
average number of antecedents per rule.

Data set FURIA RIPPER CHI SLAVE

rules cond. rules cond. rules cond. rules cond.

acd-authorship 15.9 2.7 9.6 1.7 555.1 3.0 12.1 5.9
acd-bankruptcy 3.8 1.8 2.5 0.7 23.9 3.0 2.5 1.6
acd-cyyoung8092 3.7 1.5 2.6 0.7 55.0 3.0 3.4 2.0
acd-cyyoung9302 3.5 1.3 2.8 0.8 49.5 3.0 3.1 2.0
acd-esr 2.1 1.1 2.0 0.5 6.8 3.0 2.6 1.1
acd-halloffame 14.3 2.8 6.5 1.8 458.9 3.0 7.2 3.4
acd-lawsuit 3.7 1.5 2.0 1.0 24.7 3.0 2.6 1.7
acd-votesurvey 1.7 1.4 2.3 0.8 13.6 3.0 7.3 2.1
biomed 8.6 2.0 4.4 1.0 55.1 3.0 4.3 2.7
cars 12.9 2.4 7.1 1.8 54.4 3.0 12.5 3.3
collins 15.9 1.1 15.2 1.0 321.7 3.0 45.8 6.6
ecoli 13.8 2.5 8.3 1.6 47.2 3.0 11.3 3.0
eucalyptus 14.7 2.6 10.2 1.8 375.0 3.0 38.3 5.7
glass 11.3 2.2 6.7 1.7 42.7 3.0 12.3 3.3
haberman 4.4 1.5 2.0 0.8 15.8 3.0 4.0 1.7
heart-statlog 8.4 2.5 4.3 1.5 164.9 3.0 7.0 3.6
ionosphere 8.3 2.0 4.7 1.1 168.9 3.0 8.0 3.8
iris 4.4 1.5 3.3 0.8 14.9 3.0 3.1 1.2
liver-disorders 8.2 2.2 4.3 1.8 42.1 3.0 5.9 3.4
metStatCoord. 69.7 2.3 38.8 2.1 15.6 3.0 12.8 2.4
metStatRainfall 123.9 4.5 82.7 3.6 215.6 3.0 30.3 4.4
metStatRST 9.9 2.2 10.0 1.7 15.0 3.0 9.5 2.3
metStatSunshine 25.0 2.7 17.0 1.9 91.0 3.0 39.3 4.3
metStatTemp 31.5 2.8 22.4 2.2 36.4 3.0 15.6 3.5
mfeat-factors 45.0 3.0 28.5 2.2 1317.2 3.0 44.3 12.2
mfeat-fourier 52.4 3.8 29.2 2.6 1317.2 3.0 73.2 10.6
mfeat-karhunen 59.1 3.2 38.4 2.6 1314.4 3.0 64.7 9.7
mfeat-morpholog. 25.1 2.6 19.0 2.1 31.4 3.0 15.7 3.1
mfeat-zernike 44.9 3.7 30.6 2.8 1257.6 3.0 77.7 10.0
optdigits 97.8 4.9 59.6 3.9 3708.5 3.0 68.6 8.0
page-blocks 25.6 3.2 14.7 2.2 47.6 3.0 10.1 3.5
pasture-prod. 3.4 1.4 3.2 0.7 24.0 3.0 3.6 3.3
pendigits 110.9 4.8 67.6 3.4 2745.2 3.0 37.0 7.6
pima diabetes 8.5 2.6 3.9 1.8 98.6 3.0 9.3 3.7
prnn-synth 4.4 1.4 3.5 1.0 8.0 3.0 2.4 1.6
schizo- 15.1 1.7 6.5 1.2 136.7 3.0 7.9 5.3
segment 26.9 3.1 17.0 2.2 275.1 3.0 15.8 4.5
sonar 8.1 2.3 4.3 1.4 137.1 3.0 6.9 4.7
squash-unstored 4.0 1.5 3.2 0.8 33.8 3.0 4.1 2.6
syntheticcontrol 17.3 2.6 10.6 1.8 394.3 3.0 9.1 6.3
vehicle 20.7 3.3 13.8 2.2 314.4 3.0 26.4 6.5
vowel 53.8 3.3 34.2 2.5 251.5 3.0 51.1 5.6
waveform 79.9 5.9 27.9 3.8 2874.7 3.0 50.7 9.3
wine 6.2 1.9 3.5 1.1 101.2 3.0 3.8 2.9
w.-breast-cancer 12.2 2.9 4.8 1.5 172.4 3.0 5.8 3.7

average 25.4 2.5 15.5 1.7 431.7 3.0 19.8 4.4

3.3. Experiments 69

default classification (predicting the most frequent class): Both FURIA and
EB-stretching achieve 42 wins against this strategy.

The rule stretching procedure applies only in cases in which the given in-
stance is not covered by any rule. Since the number of uncovered instances
depends on the data set (see Table 3.6), a theoretical comparison between
the complexity of the two methods is difficult: Our approach conducts a
fixed number of weight calculations, whereas EB-stretching recalculates the
weights only on demand. Therefore, we compared the number of times a rule
weight has to be calculated in EB-stretching with the total number of all
antecedents, which corresponds to the number of calculations conducted by
our rule stretching procedure. To avoid repetitious calculation of the same
weights, we cached the weights in EB-stretching. Table 3.6 shows the results
of this comparison and Figure 3.12 plots the number of calculations as a func-
tion of the number of antecedents. As can be seen from the corresponding
regression curves, this dependency is super-linear for EB-stretching, while
being linear for our approach. This is in perfect agreement with the theoret-
ical considerations in Section 3.2.5. Thus, from a complexity point of view,
our approach is especially advantageous for complex models.

As another advantage, recall that our approach is not required to store the
training data. In this regard, it is interesting to note that, if the complete
training data is kept in memory during classification, as done by Eineborg
and Boström’s approach, uncovered examples could also be handled by a
simple nearest neighbor (NN) classifier [AKA91]. We tested this idea and,
interestingly, found that FURIA in combination with a simple 1-NN classifier
outperforms FURIA with EB-stretching for 35 out of 45 data sets.

3.3.6. Runtime Analysis

It is clear that FURIA, as an extension of RIPPER, which encompasses more
complex strategies such as fuzzification and rule stretching, will pay for its
improved accuracy with an increase in runtime. To elaborate on this aspect,
we compared the following algorithms:

• RIPPER

• RIPPER without IREP (RIP*)

• RIPPER learning an unordered ruleset again without IREP (RIP**)

• FURIA without post-generalization or fuzzification of rules (FUR*)

70 FURIA: Fuzzy Unordered Rule Induction Algorithm

Table 3.6.: Absolute rule weight calculation frequencies. The first column shows
the relative amount of uncovered data.

Data set Uncov. Ours EB Diff.

acd-authorship 0.05 42.70 49.40 6.70
acd-bankruptcy 0.02 6.80 0.80 -6.00
acd-cyyoung8092 0.08 5.50 1.80 -3.70
acd-cyyoung9302 0.07 4.70 1.10 -3.60
acd-esr 0.04 2.30 0.20 -2.10
acd-halloffame 0.03 39.80 48.50 8.70
acd-lawsuit 0.00 5.50 0.70 -4.80
acd-votesurvey 0.77 2.40 1.70 -0.70
biomed 0.05 17.60 9.80 -7.80
cars 0.11 31.20 34.50 3.30
collins 0.01 18.00 7.20 -10.80
ecoli 0.05 34.70 26.30 -8.40
eucalyptus 0.30 38.50 61.70 23.20
glass 0.15 24.60 22.40 -2.20
haberman 0.07 6.40 2.40 -4.00
heart-statlog 0.08 21.20 21.40 0.20
ionosphere 0.04 17.00 9.90 -7.10
iris 0.01 6.60 0.90 -5.70
liver-disorders 0.17 18.20 19.90 1.70
metStatCoordinates 0.02 163.20 120.30 -42.90
metStatRainfall 0.23 556.60 1737.60 1181.00
metStatRST 0.49 22.10 24.10 2.00
metStatSunshine 0.26 67.60 91.10 23.50
metStatTemp 0.33 89.00 121.40 32.40
mfeat-factors 0.06 134.40 227.60 93.20
mfeat-fourier 0.13 200.60 622.00 421.40
mfeat-karhunen 0.10 189.30 426.00 236.70
mfeat-morphological 0.08 65.70 72.60 6.90
mfeat-zernike 0.18 167.60 489.20 321.60
optdigits 0.04 482.10 1949.60 1467.50
page-blocks 0.01 82.00 87.90 5.90
pasture-production 0.23 4.60 1.40 -3.20
pendigits 0.01 528.00 1429.30 901.30
pima diabetes 0.13 22.00 30.60 8.60
prnn-synth 0.08 6.10 2.00 -4.10
schizo- 0.13 25.20 25.90 0.70
segment 0.02 83.70 91.10 7.40
sonar 0.13 18.80 20.00 1.20
squash-unstored 0.06 6.10 1.40 -4.70
synthetic control 0.08 45.50 49.70 4.20
vehicle 0.22 68.60 118.60 50.00
vowel 0.11 175.00 291.00 116.00
waveform 0.10 474.70 2645.80 2171.10
wine 0.04 11.50 4.30 -7.20
w.-breast-cancer 0.02 34.90 26.11 -8.79

3.3. Experiments 71

Ant.
0 200 400 600

Calc.

0

500

1000

1500

2000

2500

3000
EB

Ours

Figure 3.12.: The number of rule weight calculations as a function of the number
of antecedents for our rule stretching method () and EB-stretching
(). Trends are shown in terms of corresponding regression curves.

• FURIA

Table 3.7 shows the runtime results in seconds6. As expected, RIPPER
is the most efficient variant. Disabling the IREP procedure (RIP*) does
indeed slow down the algorithm (keep in mind that, since the pruning set
is now empty, the growing data is larger at the beginning). A further in-
crease in runtime is caused by switching from an ordered rule list to the
unordered ruleset (RIP**). This is also expected since the unordered version
learns rules in a 1-vs-All fashion, while for the ordered variant, the training
data becomes successively smaller (training examples from already covered
classes are dropped). There is not much difference between the unordered
RIPPER without IREP (RIP**) and FURIA without fuzzification or con-
ventional generalization after rule learning (FUR*). The difference between
RIP** and FUR* can be explained by the rule stretching procedure that
needs additional time to determine the weights during classification.

The quintessential outcome of this study is that, compared to RIPPER,
the extensions and modifications of FURIA (disabling of the IREP procedure,
the change from an ordered rule list to an unordered list, the calculation of
the rule stretching weights and the fuzzification procedure) cause an increase
of runtime by a factor between 1.5 and 7.7 (average 3.4).

6All measurements were performed on an Intel Core2Duo 2.4Ghz.

72 FURIA: Fuzzy Unordered Rule Induction Algorithm

Table 3.7.: Average model building times in seconds for variants of FURIA. FUR*
= FURIA w/o fuzzification process, R* = RIPPER unordered w/o
IREP, R** = RIPPER w/o IREP.

Data set RIPPER RIP* RIP** FUR* FURIA

acd-authorship 0.348 0.588 0.828 0.840 0.873
acd-bankruptcy 0.001 0.002 0.003 0.003 0.003
acd-cyyoung8092 0.004 0.005 0.012 0.010 0.010
acd-cyyoung9302 0.003 0.004 0.008 0.008 0.008
acd-esr 0.000 0.000 0.001 0.001 0.001
acd-halloffame 0.461 0.706 0.996 1.008 1.046
acd-lawsuit 0.003 0.003 0.006 0.005 0.007
acd-votesurvey 0.002 0.004 0.003 0.004 0.004
biomed 0.012 0.013 0.027 0.030 0.031
cars 0.045 0.094 0.125 0.138 0.146
collins 0.210 0.300 0.329 0.321 0.327
ecoli 0.032 0.066 0.084 0.089 0.095
eucalyptus 0.280 0.659 0.890 0.953 0.976
glass 0.034 0.054 0.079 0.084 0.090
haberman 0.010 0.016 0.034 0.045 0.046
heart-statlog 0.023 0.033 0.068 0.077 0.080
ionosphere 0.082 0.115 0.221 0.228 0.233
iris 0.002 0.004 0.007 0.006 0.006
liver-disorders 0.024 0.049 0.100 0.121 0.124
metStatCoordinates 1.327 4.199 4.834 7.481 10.266
metStatRainfall 11.287 24.868 29.186 35.720 42.819
metStatRST 0.065 0.134 0.164 0.170 0.181
metStatSunshine 0.321 0.566 0.669 0.658 0.684
metStatTemp 0.423 0.887 1.033 1.108 1.156
mfeat-factors 10.623 23.466 25.879 25.537 25.762
mfeat-fourier 9.733 30.836 33.859 32.685 33.236
mfeat-karhunen 7.973 19.593 21.658 20.720 21.164
mfeat-morphological 0.571 1.808 2.059 2.263 2.826
mfeat-zernike 6.563 17.002 18.605 17.943 18.383
optdigits 14.817 39.101 44.720 50.118 58.243
page-blocks 1.574 2.599 3.426 3.954 5.667 9
pasture-production 0.002 0.005 0.006 0.006 0.007 1
pendigits 10.716 30.488 35.114 47.218 77.755
pima diabetes 0.073 0.132 0.278 0.335 0.358
prnn-synth 0.007 0.010 0.024 0.027 0.030
schizo- 0.050 0.081 0.173 0.196 0.203
segment 0.940 2.178 2.666 2.818 3.074
sonar 0.082 0.103 0.224 0.230 0.233
squash-unstored 0.005 0.006 0.009 0.009 0.009
synthetic control 0.650 1.301 1.563 1.476 1.495
vehicle 0.282 0.787 0.900 0.949 0.988
vowel 0.715 1.755 1.949 2.013 2.164
waveform 7.778 29.359 42.688 50.521 57.809
wine 0.010 0.015 0.025 0.025 0.026
w.-breast-cancer 0.025 0.053 0.085 0.102 0.117

3.4. Summary 73

3.4. Summary

In this chapter we introduced a fuzzy rule-based classifier called FURIA,
which is an advancement of the famous RIPPER algorithm. FURIA differs
from RIPPER in several respects, notably in the use of fuzzy instead of
conventional rules. Thus, it becomes possible to model decision boundaries
in a more flexible way. Besides, FURIA makes use of a novel rule stretching
technique which is computationally less complex than a hitherto existing
alternative and improves performance in comparison to the use of a default
rule. Combined with the sophisticated rule induction techniques employed
by the original RIPPER algorithm, these improvements have produced a
rule learner with a superb discriminative performance in both classification
accuracy and AUC, which comes at the price of an acceptable increase in
runtime. In fact, extensive experiments on a large number of benchmark data
sets have shown that FURIA significantly outperforms the original RIPPER,
as well as other fuzzy rule learning methods included for comparison purposes.

Apart from the practical innovations we also investigated the influence of
fuzzification empirically. Therefore, we compared different FURIA variants
and discovered that fuzzification had a beneficial impact on classification
accuracy. Our analysis found two main reasons for the improvement: (A)
Fuzzification, which is also a kind of post-generalization, mitigates the my-
opia of the greedy rule learning framework and (B) Fuzzification is a careful
extrapolation because it assigns instances in the fuzzy support of the rule
smaller values with increasing distance from the core.

4HELLFIRE: Learning
Linguistic Fuzzy
Classification Rules

In this chapter we develop a novel fuzzy rule-based classifier that improves
on FURIA in terms of interpretability. We found that the non-grid-oriented
partitioning scheme of FURIA is problematic for the assignment of labels to
the fuzzy set. We will discuss this problem and show an alternative approach
that is able to create linguistic fuzzy rule-based classifiers.

We will give a short introduction into the motivation and the background of
the new algorithm in Section 4.1. In Section 4.2 we will present the novel ap-
proach. After comparing it to other discretization approaches in Section 4.3,
an experimental analysis will be done in Section 4.4. Before concluding this
chapter, we will show an exemplary model and discuss the interpretability
in Section 4.5. Finally, we will conclude this chapter in Section 4.6 with a
summary.

4.1. Introduction

In the previous chapter we introduced the FURIA algorithm which is a
fuzzy rule-based classifier. Fuzziness was obtained through a fuzzification
of RIPPER rules. It was shown that this fuzzification had a beneficial im-

75

76 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

pact on the classifier’s discriminative power. But the facet of interpretable
linguistic fuzzy rules has yet to become the focus so far. Due to the RIPPER-
based fuzzy rules, it is difficult to assign the fuzzy sets reasonable linguistic
labels. Some reasons for this difficulty are: (A) The fuzzy sets are rule-
and not model-specific. So there could be multiple intervals of the form
[−∞,−∞, c, d] that could be represented through the label “low”. (B) The
fuzzy sets might overlap a lot which also leads to the previous consequence.
(C) The options of how to resolve those overlaps are manifold, especially
when there are more than two rules that lie in different attribute subspaces.
Without going into too much detail, we state that the conversion of a FURIA-
based model into a grid-based linguistic rule-based model — without losing
the discriminative abilities — is extraordinarily complex or perhaps even
impossible.

A rule learning scheme which avoids the overlapping problem through a
grid-orientation would help create a linguistic algorithm. Interval-based clas-
sification rules obtained from a decision tree would solve this, if there was
no recursion creating independent subtrees making those intervals overlap.
In this chapter we will present the High-End Learning of Linguistic Fuzzy
Interval Rule Expertise — or HELLFIRE for short — algorithm that learns
fuzzy rules based on a combination of rule induction and data discretization.
The idea behind this algorithm is the coordination of independent subprob-
lems from a decision tree. This rather simple idea leads to an algorithm that
learns conventional classification rules and a data discretization parallely.
The transformation from conventional to fuzzy rules is done via a separate
fuzzification step.

In contrast to FURIA, this approach will lead to a linguistic fuzzy rule-
based classifier that is both interpretable and comprehensible.

4.2. High-End Learning of Linguistic Fuzzy
Interval Rule Expertise

We can conceptualize learning the HELLFIRE classifier as follows.

4.2.1. Rule Learning

The rule learning of HELLFIRE is done via a coordinated splitting approach
to ensure certain rule characteristics. In order to introduce this novel ap-

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 77

Ai]
sD≤ D>

Figure 4.1.: The data is split along attribute Ai at position s into D≤ and D>.

proach, we first consider the divide-and-conquer strategy of decision tree
learners. This will help introduce HELLFIRE since there are common char-
acteristics of both.

In the typical decision tree learning algorithm [BF+84], the data D is
separated by a split Aiθs at position s of a numerical attribute Ai into two

subsets Dθ
df
= {(x, λ) ∈ D |xiθs} for θ ∈ {≤, >} for a numerical attribute Ai

or θ ∈ {=, �=} for a nominal attribute Ai, cf. Figure 4.1. This is recursively
repeated until the resulting subsets are pure enough to form the leaves of the
tree.

In the usual classification tree generation method there is no coordina-
tion between different branches of the tree. This independence makes this
approach able to locally adjust the decision boundaries to the data. It is well-
known that a path from a leaf to the root in such a tree can be considered as
a classification rule. The ruleset RSS induced by an ordinary decision tree

consists of rules rS df
= 〈rS

A | rC〉, where the antecedent part

rS
A

df
= {Aiθi,i1 si,i1 ∧ . . . ∧Aiθi,ik

si,ik
∧ . . . ∧Ajθj,j1 sj,j1 ∧ . . . ∧Ajθj,j�

sj,j�
}

is a conjunction of the splits of attributes {Ai, . . . , Aj} that occurred in the
path from the leaf to the root and the consequence part rC is the most
frequent class of the data covered by rS

A; where {i1, . . . , ik} ⊆ {1, . . . |xiθs|}
are indices of occurring splits and |xiθs| is the number of splits for Ai.

Linguistic fuzzy rules are typically build upon fuzzy sets instead of con-
ditions on the underlying attributes. A typical fuzzy ruleset RSF contains
fuzzy rules rF = 〈rF

A | rC〉, where the antecedent part rF
A is a fuzzy logic

expression and the consequent part rC is again a class assignment.

In order to learn linguistic fuzzy rules with a conventional decision tree,
several adjustments have to be made. Initially, it has to be assumed that the
fuzzy sets in the rules are made of simple, conventional intervals I = [b, c].
This constraint makes it possible to map the splits in the antecedent part rS

A

from a decision tree rule to a fuzzy rule antecedent rF
A by a small detour over

78 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

an interval-based antecedent rI
A:

data set

decision tree
like learning
� RSS

transformation
� RSI

fuzzification
� RSF

Unfortunately, the rules derived from an ordinary decision tree are not
useful for a direct transformation of that kind. The reason is that every rule
was learned locally which might lead to an abundance of distinct intervals
with potentially many overlaps. This makes assigning linguistic variables to
those intervals awkward. Accordingly, the decision tree learning algorithm
has been altered in such a way that the individual subtrees are not learned
independently anymore. Instead, splitting is coordinated layer-wise. This
assures that the intervals, which are induced by the splitting, are pairwise
disjunct and cover the attribute domain completely. From another point of
view, this approach is a data-driven discretization technique that decomposes
all relevant numeric attributes into bins. Compare Figure 4.2 where a simple
classification problem (4.2a) and the different data-driven solutions of deci-
sion tree learning (4.2b) and of the coordinated learning of HELLFIRE (4.2c)
are shown. Due to its simplicity the decision tree solution is of course more
elegant, but the discretization of HELLFIRE alleviates the labeling of the
generated intervals.

Algorithm 5 and Algorithm 6 outline the learning procedure of HELLFIRE.
The Main function contains the general rule learning procedure. The tree is
learned in an implicit way by only keeping track of the data in the leaf layer
and their respective rules in P . A tuple 〈D | rS〉 ∈ P represents a leaf’s single
split rule rS and the data that is covered by rS .

4.2.1.1. Tree Splitting

In classical decision tree learning the data is split recursively into two subsets.
Well-known criteria for that purpose are e.g. the Gini Index or Shannon’s
entropy which may be used to measure the imbalance in distributions [Gin21,
Sha48]. Shannon’s entropy is defined as

H(p1, . . . , pn)
df
= −

n∑
i=1

pi · log2 pi ,

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 79

(a) Data space. (b) Decision tree solu-
tion.

lo
w

m
ed

iu
m

h
ig

h

low high

(c) HELLFIRE solution.

Figure 4.2.: A comparison between an ordinary decision tree and the data-driven
discretization induced by HELLFIRE that can be easily labeled with
linguistic variables.

where p1, . . . , pn with
∑n

i=1 pi = 1 is a discrete probability distribution and

0 · log2 0
df
= 0. Shannon’s entropy will reach its maximum value when the

probabilities are all the same describing a situation of “maximum entropy”
and will be zero for a distribution where exactly one outcome has a probability
of 1. Entropy measures have been extensively used and studied in the field
of decision tree research in the recent past [SJ06, OBG06, MZR08, MD08].
Generally, the procedure to split the data D in a node into two halves DAi≤s

and DAi>s involves an examination of all possible split positions s of all
attributes Ai and selecting the split position and its respective attribute that
minimizes the entropy:

split(D)
df
= argmin

Ai,s

|DAi≤s|
|D| ·H(DAi≤s) +

|DAi>s|
|D| ·H(DAi>s) ,

where H(DAiθs) with θ ∈ {≤, >} denotes the entropy of the distribution
of the elements (x, λ) ∈ D for which xiθs holds. The set of split positions
{si,1, . . . , si,n′−1} can be determined e.g. by taking the middle position be-
tween two consecutive points si,j = (xi,j + xi,j+1)/2, where xi,j < xi,j+1 for

80 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

every 1 ≤ j ≤ n′ − 1 holds, assuming n′ is the number of distinct values
|{xi | (x, λ) ∈ D}|.

HELLFIRE coordinates the split across a whole layer in this tree-like struc-
ture all at once. This makes the standard entropy measures not directly ap-

plicable. Let P df
= 〈DL1 | rL1〉 . . . 〈DLk | rLk〉 be the data sets in the nodes

1, . . . , k of the layer L with its respective rules containing the respective in-
formation of previous splits. To coordinate the splitting across L, the split
position and the attributes have to be determined in a way respecting all
DL1 , . . . , DLk :

coordinatedSplit(DL1 , . . . , DLk)
df
=

argmin
Ai,s

k∑
�=1

|D
L�
Ai≤s

|

|DL� |
·H(DL�

Ai≤s) +
|D

L�
Ai>s

|

|DL� |
·H(DL�

Ai>s)
(4.1)

The selection of a split according to (4.1) looks for the best split on average.
In general, this split selection is not the same as determining the individual
splits for an attribute and averaging those positions afterwards.

Example 4.2.1 (Individual splits vs. coordinated split)
In this example we will show the benefits of a coordinated split in compar-
ison to the individual splits. Figure 4.3 shows an example in which three
data sets DAj=A, DAj=B, DAj=C have to be split in a coordinated way. For
starters, it is important to note that multiple optimal split positions in terms
of Shannon’s entropy H exists for each of these data sets, e.g. {s5, . . . , s11}
for DAj=A. When considering one of these subsets DAj=∗ individually, it is
reasonable to select the middle point that maximizes the margin.7 However,
only one point is optimal in this example when splitting in a coordinated
way: All three data sets can be perfectly separated when splitting at s11.
Consequently, a coordinated split is able to partition Ai in only two intervals
(−∞, s11] and (s11,∞), while the three individual splits would lead to four
intervals (−∞, s8], (s8, s10], (s10, s13] and (s13,∞).

When plotting entropy versus the split position, this “curve” will have
potentially multiple plateaus of minimum values because of symmetric splits.
Moreover, this “curve” will show two potential plateaus of maximum values
on the lower and upper end of the numeric attribute. This is due to the

7For more information on margin maximization see Boser et. al. for example [BGV92].

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 81

optimal individual split
positions s8, s10, s13

optimal coordinated
split position s11

s1 s3 s5 s7 s9 s11 s13 s15 s17 s19

Ai

, ∈ DAj=C

, ∈ DAj=B

, ∈ DAj=A

Figure 4.3.: Splitting three data sets DAj =A, DAj =B and DAj =C along Ai in a
coordinated way. The coordinated split is different from the conven-
tional splits for each independent data set.

fact that for all subsets Dθ the set of split positions is the same, namely the
ones that were defined using the initial data D. The potential plateau of
H(DLj) on the lower (upper) end of attribute Ai is a result of split points
{s | s ≤ min(xi)} ({s | s > max(xi)}) for all (x, λ) ∈ DLj since in that case

H(D
Lj

Ai>s) = H(DLj) (H(D
Lj

Ai≤s) = H(DLj)). Another consequence of this
definition of split points is that for a subset Dθ there might be several split
points leading to the very same split entropy, see Figure 4.4 for an example.

The averaging of split entropies can destroy the concavity characteristic of
the respective averaged curve. Consequently, there might be more than one
coordinated split point having an averaged minimal entropy, cf. Figure 4.4
for an example. In such a case, HELLFIRE selects a split having minimal av-
eraged entropy randomly. In fact, it might even happen that the coordinated
split of the averaged curve is not a minimum in any of the individual curves,
but a “concession” split point that would not be selected by an ordinary
decision tree algorithm.

Example 4.2.2 (Concession split)
This example demonstrates that the coordinated split is not necessarily an
optimal split for the individual subproblems. Figure 4.5 shows an example
in which three data sets DAj=A, DAj=B, DAj=C have to be split in a coordi-
nated way. The numbers below the examples from data set DAj

= A denote

82 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

0

H H(DAj =t)
H(DAj =f)

0

H

(H(DAj =f) + H(DAj =t)) ·
1

2

optimal coordinated split
positions s6 and s8

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Ai

, ∈ DAj=f

, ∈ DAj=t

Figure 4.4.: Splitting two data sets DAj =t and DAj =f along Ai in a coordinated
way. The entropy and averaged entropy are plotted versus the split
values. (Note the interpolation for better visualization.)

multiple occurrences. The best individual split points can be found at s5, s10

and s15 for the three data sets but the optimal coordinated splits are at s7

and s13.
Finding a situation in which such a coordinated split is concessive is quite

difficult, but the shown data sets are a working example.

4.2.1.2. Avoiding Exponential Ruleset Growth

The learning approach of HELLFIRE creates a structure for which the splits
are the same for every node in a given layer according to the coordinated split
criterion that was introduced in Section 4.2.1.1. Without effective counter-
measures this would lead to an exponential rule growth with the number of
coordinated splits. We will avoid this scenario through pre-pruning mecha-
nisms that abort the learning process early.

The first strategy SplitIsAllowed(split, Dθ) examines whether the layer-
coordinated split can be conducted for the node data Dθ, cf. Algorithm 6,
Line 4. It tests two criteria: (A) hinders the procedure from branching into

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 83

0

H

H(DAj =A)
H(DAj =C)
H(DAj =B)

0

H

1

3
·

∑
k={A,B,C}

H(DAj =k)

optimal coordinated split
positions s7 and s13

s1 s3 s5 s7 s9 s11 s13 s15 s17 s19

Ai

2 2 18 2218

, ∈ DAj=C

, ∈ DAj=B

, ∈ DAj=A

Figure 4.5.: Splitting three data sets DAj =A, DAj =B and DAj =C along Ai in a co-
ordinated way. The entropy and averaged entropy are plotted versus
the split values. (Note the interpolation for better visualization.)

D≤ and D> if at least one would not be sufficiently large after the split.
This would be the case if no class has more than one example in Dθ since
no reasonable rule could be induced from that branch. (B) checks whether
the separation would lead to a deterioration in the accuracy on the training
data. Thus, instead of the two new nodes the unsplit data D of the original
node will be passed on to the next lower level of the tree, assuring that it is
considered for that lower level split, if it is not sorted out by the following
mechanism.

The second strategy IsFine(rS) is used to evaluate a rule rS resembling a
path from its leave to the root whether it is already specific enough, cf. Al-
gorithm 5, Line 6. This is the case if r overlaps not more than one example
from classes other than its consequence class rC or if rS overlaps less than
twice the number of attributes occurring in its antecedent rS

A. If at least one
of either condition is true then the respective branch will be removed from
the learning process and rS will be added to set the of rules RSS.

The final simplification criterion forces the transformation of the remaining
leaves into rules in the case that the coordinated split for layer L could not
be applied to any of the data sets DL1 , . . . , DLk , cf. Algorithm 5, Line 12.

84 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Algorithm 5 Main(Data set D)

1: P ← {〈D | empty rule〉}
2: RSS ← ∅
3: f ← false
4: while P �= ∅ do
5: for all 〈D | rS〉 ∈ P do
6: if IsFine(rS) or f = true then
7: RSS ← RSS ∪ ri

8: P ← P \ 〈D | r〉
9: end if

10: Pold ← P
11: P ← split(P)
12: f ← Pold = P
13: end for
14: end while
15: RSS ← Prune(RSS , D)
16: RSI ← ConvertSplitsIntoIntervals(RSS)
17: RSI ← CalculateRuleWeights(RSI , D)
18: RSI ← SetCoverRules(RSI , D)
19: RSI ← JoinAdjacentIntsAppearingAlwaysTogether(RSI)
20: RSF ← Fuzzify(RSI , D)
21: RSF ← CalculateRuleWeights(RSF , D)

The tree-like learning stops as soon as P is empty. This means that all
decision tree leaves were transformed into rules.

Example 4.2.3 (Coordinated splitting in action)
We explain the learning process of HELLFIRE on the simple artificial prob-
lem involving three labels shown in Figure 4.6. The initial data and the first
split can be found in Figure 4.6a; here the split is an ordinary decision tree
split because there is nothing to coordinate so that P = {DA1≤6.5, DA1>6.5}.
This split is unable to represent any subset of P as a classification rule in a
reasonable way. Since P �= ∅, another split will be conducted. This time the
split will be a coordinated one according to (4.1). It separates the data at
A2 = 4.5, cf. Figure 4.6b, leading to P = {DA1≤6.5,A2≤4.5, DA1≤6.5,A2>4.5,
DA1>6.5,A2≤4.5, DA1>6.5,A2>4.5}. The new split is still incapable of inducing
a classification rule. Again, P �= ∅ holds and another coordinated split will

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 85

Algorithm 6 Split(Partition P)

1: split ← argmin
〈Ai | s〉

∑
〈D | r〉∈P

SplitEntropy(D, Ai, s)

2: Pnew ← ∅
3: for all 〈D | r〉 ∈ P do
4: if SplitIsAllowed(split, D) then
5: for all θ ∈ {≤, >} do
6: Dθ ← {(x, λ) ∈ D |xi θ s}
7: rS

A ← rS
A ∪ 〈split | θ〉

8: rC ← MostFrequentClass(Dθ)
9: Pnew ← Pnew ∪ 〈Dθ | rθ〉

10: end for
11: else
12: Pnew ← Pnew ∪ 〈D | r〉
13: end if
14: end for
15: return Pnew

be conducted. Note that this second split is already different from what a
decision tree would do: In this setting after the first split, a perfect sec-
ond split for the subset DA1>6.5 would be at A2 = 2.5 inducing a rule
〈A1 > 6.5 ∧A2 ≤ 2.5 | 〉. For coordinated splitting, the next step is shown
in Figure 4.6c. This split is able to separate some homogeneous areas in
terms of the class distribution in such a way that the respective subsets can
be removed from P and transformed into split-based rules:

rS
1 = 〈A1 ≤ 6.5 ∧A2 > 4.5 ∧A1 ≤ 4.5 | 〉

rS
2 = 〈A1 ≤ 6.5 ∧A2 > 4.5 ∧A1 > 4.5 | 〉

rS
3 = 〈A1 ≤ 6.5 ∧A2 ≤ 4.5 ∧A1 > 4.5 | 〉

This process continues with P = {DA1≤6.5,A2≤4.5,A1≤4.5, DA1>6.5,A2≤4.5,
DA1>6.5,A2>4.5} ignoring the removed data for the subsequent splits, see Fig-
ures 4.6d–4.6f. The learning ends here after the induction of eleven rules
RSS = {rS

1 . . . rS
11} as P runs empty.

Note that the only purpose of this example was to give a rough impres-

86 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

sion on the learning process using the coordinated splitting technique of
HELLFIRE. We are well aware that for this data, a decision tree algorithm
could induce a very similar set of rules using the very same split points.

4.2.2. From Split-Based Rules to Interval-Based Rules

The ruleset RSS that is learned through the coordinated splitting approach
must be converted to an interval-based set of rules RSI , cf. ConvertSplits-
IntoIntervals(RSS) in Algorithm 6, Line 16. The transformation process
will remove obsolete splits from the rules rS ∈ RSS which might occur when
an attribute is split more than once.

The transformation from splits to intervals is straightforward: Given an
attribute Ai, the coordinated splits {si,�1 , . . . , si,�k

} ⊆ {si,1, . . . , si,k | si,j <
si,j+1} are considered in ascending order such that the intervals I can be
defined in the following way:

ILow
df
= (−∞, si,�1] j = 1

IMiddle j−1
df
= (si,�j

, si,�j+1] 1 ≤ j ≤ k − 1 (4.2)

IHigh
df
= (si,�k

] j = k

A characteristic of this interval definition is that it covers the underlying
attribute Ai completely as soon as at least one split was made. Because
of globally coordinated splitting in the learning process, all interval edges
are directly data-driven and appear as split points in the rules of RSS. To
obtain the same coverage as a rule rS using intervals, it might be necessary
to disjunct more than one interval, however. The reason for this is that rS

might be removed from P early and that its intervals were split further after
that. The splitting of intervals occuring in rS

A which are done after its removal
have no effect on rS .

The way the intervals are derived from the splits in (4.2) alleviates the
mapping from the split rule rS to a semantically identical interval rule rI .
The rule rI is created by adding all intervals I which are covered by the rule
rS . To allow the use of several intervals from the attribute, another rule
syntax has become necessary. In a rule rS , all conditions — regardless of
their attributes — were conjuncted and, thus, an instance x would only be
covered if every split condition Aiθsi from rS

A covered x. In the interval-based
rule antecedent the intervals from the same attribute have to be disjuncted

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 87

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(a) Data set and first split at A1 = 6.5

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(b) Second split at A2 = 4.5

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(c) Third split at A1 = 4.5.

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(d) Forth split at A1 = 8.5.

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(e) Fifth split at A2 = 2.5.

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(f) Final split at A1 = 2.5. RSS is com-
pleted.

Figure 4.6.: The learning process using coordinated splitting of HELLFIRE for
inducing the set of split-based rules RSS.

88 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

to clauses and the latter have to be conjuncted:

rI
A

df
=

(
Ai ∈ Ii,i1 ∨ . . . ∨Ai ∈ Ii,ik

) ∧ . . . ∧ (
Aj ∈ Ij,j1 ∨ . . . ∨Aj ∈ Ij,j�

)
,

where Ai is an attribute, {i1, . . . , ik} ⊆ {1, . . . |Ii|} are indices of occurring
intervals and |Ii| is the number of intervals for Ai.

It is necessary to allow disjunctions in the antecedent since multiple dis-
junct intervals from the same attribute would otherwise be mutually exclu-
sive. An interval rule rI covers an instance x if and only if the evaluation of
rI

A on x satisfies all conditions.

Example 4.2.4 (Transforming split-based into interval-based rules)
This brief example illustrates the transformation from the split-based ruleset
RSS from the previous example into an interval-based ruleset RSI , see Fig-
ure 4.7. Initially, the split points {2.5, 4.5, 6.5, 8.5} ⊂ A1 and {2.5, 4.5} ⊂ A2

of the rules in Figure 4.7a are mapped to intervals, e.g. ILow = (−∞, 2.5],
IMiddle 1 = (2.5, 4.5], . . . for A1, cf. Figure 4.7b and Figure 4.7c. Now, every
split-based rule rS induces an interval-based rule rI with exactly the same
coverage. To illustrate this more effectively we dotted the lines between the
intervals which appear in rules together, cf. Figure 4.7d. As the example
shows, a complete grid-partitioning including non-atomic classification rules
could be induced.

From the discretization point of view, it is important to take the flexibility
of this approach into consideration. The data-driven splitting leads to data-
driven intervals. This characteristic is important for the predictive quality
of the rules [ER99]. It is interesting to see that many fuzzy rule learners
are using non-data-driven fuzzy partitions for inducing classification rules,
cf. Section 7.2.1. The problem with learning rules on a predefined partition
are that (A) it is difficult to define the correct number of bins, (B) sometimes
there has no data been observed within a bin, (C) that the split points are
inept to reflect the true data distribution. It is clear that these problems
become even worse the more number of dimensions are considered. Of course,
using a fuzzy partition might mitigate these lacks to a certain degree. Yet,
for an illustrative example, even one dimension is enough.

Example 4.2.5 (Data-driven vs. pre-defined discretization)
A quite frequently seen discretization in various fields of research, e.g. medici-
ne, is the partition of “age” into decades [0, 9), [10, 19), Typically, such a

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 89

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(a) RSS

A2

A1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

(b) Splits

A2

A1
Low M1 M2 M3 High

L
o
w

M
H

ig
h

(c) Induced Intervals

A2

A1
Low M1 M2 M3 High

L
o
w

M
H

ig
h

(d) RSI

Figure 4.7.: The transformation of a split-based into an interval-based ruleset.

discretization is rather ad hoc, which is not a bad thing per se. But sometimes
it may happen that this discretization is unable to grasp the underlying logic.
Consider the question of whether a person is in puberty or not. For this
concept the discretization into decades is treacherous. Consider Figure 4.8a
where this discretization leads to puberty for [0−20) year old persons and to
no puberty for persons between [20− 40) and [50− 70) years. This concept
is problematic due to several factors: (A) This generalization concludes that
small children and also adults older than 17 years are in puberty although
there is no such evidence, (B) It is unknown whether people in the 40s or in
the 70s are in puberty, (C) The number of bins is larger than actually needed.

A data-driven discretization for this problem is shown in Figure 4.8b. This
concept does not suffer from the problems that were found for the pre-defined

90 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

0
IF

1

Age
0 10 20 30 40 50 60 70 80

(a) Pre-defined partition

0
IF

1

Age
0 10 20 30 40 50 60 70 80

(b) Data-driven partition

Figure 4.8.: Describing the concept of puberty using different forms of discretiza-
tion. People in puberty are denoted by and not in by .

partitioning: All ages are covered, neither are small children in puberty nor
people in their 40s or 70s. Moreover, the concept is much simpler, since there
are only two split points which enclose the people in puberty.

Note that this example was a rather simplistic demonstration of the ben-
efits of data-driven fuzzification. This example was not meant to illustrate
the multi-dimensional data-driven discretization of HELLFIRE.

4.2.3. Pruning

A common approach to avoiding overfitting and to enhancing generalization
capabilities is to prune rule conditions [BP91, FW94, Für97, Bos04]. The
pruning approach used for the HELLFIRE algorithm is applied on the split
ruleset RSS . Essentially, it serves two purposes: (A) The pruning should
shorten the rule length by removing conditions. (B) The pruning should
remove unnecessary splits which leads to a smaller number of intervals. This
is the case if a distinct type of split is removed from all rules.

The pruning procedure considers each rule rS ∈ RSS individually and
examines whether the deletion of a condition, i.e. split, does not worsen the
rule accuracy. In such a case the condition will be removed. The order in

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 91

which the conditions are considered is from the back towards the beginning
of the rule since the conditions at the end are typically the ones that might be
responsible for overfitting [Coh95]. Each time a condition could be removed,
the pruning process restarts in order to take the modified overall rule coverage
into consideration.

Even though this kind of pruning is not conducted on a separate pruning
set, it is quite effective at reducing rule size and at increasing classification
accuracy on the testing data.

4.2.4. Rule Selection

The pruning process generalized the rules in RSS by removing split condi-
tions. The increased rule coverage leads to situations where instances might
be covered by several rules, potentially of the same class. This redundancy
should be taken into consideration by finding a sufficient subset of rules with-
out sacrificing classification ability. For this purpose a very simple set cover-
ing approach SetCoverRules(RSI , D) is used that selects rules until the
training data is sufficiently covered, cf. Algorithm 5, Line 18. The selection
criterion looks for the rule with the largest positive coverage among the still
uncovered examples. It stops selecting rules as soon as the coverage on the
uncovered data is less than 5% of the rules’ positive coverage on the training
data.

In Algorithm 5, the ruleset covering is applied after transforming the split-
based ruleset RSS into the interval-based ruleset RSI . This order is not
mandatory since the transformation does not change the rule coverage in any
way.

4.2.5. Interval Fuzzification

Up until now, the ruleset RSI learned by the HELLFIRE algorithm consists
of rules containing conventional intervals in the antecedent part. To soften the
decision boundaries, leading to a fuzzy ruleset RSI , the conventional intervals

I = [b, c] will be replaced by fuzzy intervals of the form IF df
= [a, b, c, d], where

b and c denote the fuzzy interval core bounds and a and d the fuzzy interval
support bounds, see Figure 2.3 on page 26.

The fuzzification procedure starts with the interval rules RSI that have
been learned so far. The transformation from the conventional rule rI ∈ RSI

to the fuzzy rule rF ∈ RSF is done as follows: First of all, the conventional

92 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

intervals I = [b, c] were replaced with fuzzy intervals IF = [b, b, c, c] by simply
assuming that the support boundaries of the lower and upper side of the
interval equal the respective core boundaries. Secondly, the logic operators ∨
and ∧ were replaced with a fuzzy T-conorm ⊥ and a fuzzy T-norm �. Given

fuzzy memberships μ1, μ2 we propose the product T-norm μ1�μ2
df
= μ1 ·μ2 as

conjunction. As disjunction operator we suggest the Łukasiewicz T-conorm

μ1⊥μ2
df
= min(1, μ1 + μ2). This leads to the fuzzy rule membership function:

μrF (x)
df
= min

(
1, IF

i,i1
(xi) + min

(
1, . . . min

(
1, IF

i,ik−1
(xi) + IF

i,ik
(xi)

)))

· . . . ·

min

(
1, IF

j,j1
(xj) + min

(
1, . . . min

(
1, IF

j,j�−1
(xj) + IF

j,j�
(xj)

)))
,

where {i1, . . . , ik} ⊆ {1, . . . |IF
i |} are indices of occurring fuzzy intervals and

|IF
i | is the number of fuzzy intervals for Ai.
The fuzzification of the — at this point still conventional — interval IF has

the purpose of softening the decision boundary of the rule in which IF occurs
as a condition in the antecedent part. However, to be precise, there might
be more than one rule involving IF . This makes the fuzzification process
more difficult since multiple regions of the data space are involved at once.
Consequently, the fuzzification process should be conducted in a careful way
that does not harm the role of IF in any of the rules in which it occurs.

To soften the boundaries of the conventional fuzzy intervals, the existing
core and support boundaries have to be manipulated. This process is shown
in Figure 4.9 and consists of two steps. It starts with the interval partitioning
(a) and tries to shrink the interval core of interval IF

i in a data-driven way
(b). This leads to soft boundaries but dead spots at the position of the
original split. To reestablish the full attribute coverage, the support bounds
of IF

i are set using the core location of its neighbor intervals IF
i−1 and IF

i+1

(c).
The critical part of that procedure is the data-driven step (b) that shrinks

the rule cores. The idea behind shrinking IF is to find the most essential
part of that fuzzy interval that should be fully covered. For that purpose
HELLFIRE tries to find a subinterval IF

sub ⊆ IF that has the maximum m-
measured purity for m = 2 . To deal with multiple occurrences of IF in
several rules, the purity will be averaged over those rules. Note that one

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 93

IF
1 IF

2 IF
3

0

1
(a)

IF
1 IF

2 IF
3

0

1
(b)

IF
1 IF

2 IF
3

0

1
(c)

Ai

Figure 4.9.: A simplified sketch of the interval fuzzification strategy.

could also conceive other aggregation techniques. The set of subintervals for
attribute Ai that should be considered is determined by all valid combinations
of examples xu, xv covered by IF

i :

{IF
i,sub} df

=
{

[xi,u, xi,v]
∣∣∣ (xu, λxu

), (xv, λxv
) ∈ D∧

IF
i (xi,u) = IF

i (xi,v) = 1∧
xi,u ≤ xi,v

}

Note that the simplified sketch in Figure 4.9 leaves the decision boundaries
at the very same position throughout the process which, here, can be ex-
plained by the symmetry of the core shrinkage of adjacent fuzzy intervals. In
practice this will not necessarily be the case since the shrinking process only
incorporates local data of the currently considered interval. Consequently,
the decision boundary could be shifted, cf. Figure 4.10a: Here, the original
decision boundaries can still be found where the memberships are zero and
where the skewed decision boundaries are at the crossings of the dashed lines.
A very simple but effective solution is to mirror one core point along the old
decision boundary. We propose to mirror the one that is farther away from

94 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

IF
1 IF

2 IF
3

0

1
(a)

IF
1 IF

2 IF
3

0

1
(b)

Figure 4.10.: (a) Different shrinkage of the cores lead to shifted decision bound-
aries. (b) Mirrored shrinkage resolves the shift and keeps the deci-
sion boundary in place.

the split si leading to smaller cores, cf. Figure 4.10b:

ci
df
= si −max (δi,i+1, δi+1,i)

bi+1
df
= si + max (δi,i+1, δi+1,i)

The exact shifting distances δi,i+1, δi+1,i for the intervals IF
i and IF

i+1 is
given by:

δi,i+1
df
= min

(
di − ci ,

1

2
(ci+1 − bi+1) + bi+1 − ai+1

)

δi+1,i
df
= min

(
bi+1 − ai+1 ,

1

2
(ci − bi) + di − ci

)

Note that this definition takes care of situations involving swapped core
boundaries bi > ci which might occur if the upper and lower core shifts of an
interval would be larger than its initial width.

When considering two adjacent fuzzy intervals IF
j = [aj , bj, cj , dj] and

IF
j+1 = [cj , dj , cj+1, dj+1] the reason for applying the Łukasiewicz T-conorm

becomes clear: For every value v ∈ [bj , cj+1], IF
j (v)+IF

j+1(v) = 1 holds, which
can be easily proven by using the symmetry characteristics mentioned above.
From this follows that the Łukasiewicz T-conorm keeps the disjunction of
adjacent fuzzy intervals convex.

The order in which the intervals are dealt with plays a role since it affects
the coverage of other intervals and therewith their fuzzification. In order to
cope with this situation, we propose determining the examples that are cov-

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 95

ered by the respective intervals before starting shrinking. Then, the ordering
has no effect.

4.2.6. Rule Weighting

HELLFIRE uses rule weights to cope with rules of different certainty. It was
shown that those weights improve classification accuracy and also lead to
more flexible boundaries [IN01, IY05]. The rule weight or certainty factor
CF(rF) is determined by the performance of the rule on the training set. The
assumption is that rules that worked very well on the training set D should
also perform in the same manner on the test set. To avoid an overfitting effect
caused by this idea, the m-measure with m = 2 is applied to determine the
confidence factor. It prefers larger over smaller coverage when the accuracy
is the same [PFTV92]:

CF(rF) = CF(〈rA |λj〉) df
=

2 |D(j)|
|D| +

∑
(x,λj)∈D(j) μrF (x)

2 +
∑

(x,λ)∈D μrF (x)
, (4.3)

where D(j) ⊆ D denotes the set of examples belonging to class j.
The rule weight must be calculated twice for every rule, cf. Algorithm 5,

Line 17 and 21. The first time before selecting the rules with the set cover
algorithm and the second time after fuzzification. The former procedure
incorporates the rule confidence as a weight for the positive coverage that is
used to determine the next rule in the set covering part. The second time the
rule weight has to be calculated is after the fuzzification process to adjust for
the changed coverage of the fuzzified rules.

4.2.7. Handling of Missing Values

In practice, the convenience of a complete data set without any missing at-
tribute values is rarely encountered. Consequently, a classifier should only be
able to treat missing values and to learn from the available example values.
The decision tree-like learning approach of HELLFIRE is able to deal with
missing values. There are two situations for which the treatment of missing
values is essential: (A) during the calculation of the averaged entropies, since
this is sensitive to missing values. Here HELLFIRE assumes that an example
(x, λ) which has a missing value xi for the attribute Ai under investigation

96 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

is considered for the entropy of both sides of the split with half of its initial
weight, (B) during the split procedure, since an interval having a missing
value for the split attribute must not be put to either D≤ or D>. Instead
it is added to both sides with half of its initial weight. The benefit of that
approach is that a false assignment of (x, λ) to either side is avoided.

4.2.8. Classification with Rule Stretching

In order to classify an unseen instance x, all rules in RSF are involved in a
bound ballot, in which every rule rF has a specific voting weight according
to its certainty factor CF(rF) from (4.3) and the coverage degree μrF (x).
For combining multiple rules of the same class in this ballot the Łukasiewicz

T-conorm ⊥(rF
1 , rF

2)
df
= min(1, μrF

1
·CF(rF

1) + μrF
2
·CF(rF

2)) is selected. This
leads to a possibility distribution

sj = ⊥(rF (j)
1 , . . . , r

F (j)
�) ,

where rF (j) denotes a fuzzy rule of class j. HELLFIRE will predict the class

λ∗ df
= argmax

λj ∈L

sj

having maximal possibility.
It may occur that x is not covered by any rule at all. In such cases we apply

the novel rule stretching procedure that was already explained for FURIA,
cf. Section 3.2.5.

4.2.9. Complexity Analysis

A very important point when designing new classifiers is to keep the effi-
ciency in mind. In order to analyze HELLFIRE in such terms we conduct a
complexity analysis. To this end, let n be the number of training examples,
k the number of attributes and d the depth of the induced tree-like structure
— or in other terms: the number of splits made.

The training phase for building the model searches for the best coordinated
split. For this purpose, the entropy of subsets of D must be calculated. Since
the overall number of examples across those subsets is at most n for every
single structure layer, the overall effort therefore is O(d · k · n). To calculate

4.2. High-End Learning of Linguistic Fuzzy Interval Rule Expertise 97

the split points, the data must be sorted to find the middle position between
two adjacent examples, resulting in a complexity of O(d · n log n).

The pruning procedure tries to remove splits from every rule as long as the
quality does not decrease. Since the pruning restarts if a condition is removed,
there might be up to d2 weight calculations. Since the weight calculation must
determine the coverage of all splits for every example, this could lead up to
n · d checks. In total, the complexity of pruning is O(d3 · n · |RSS |).

The set covering is done in a greedy way that determines the coverage of
the available rules on the uncovered training data. In the worst case, when
all rules have to be selected, there will be a quadratic number of sweeps over
the training data. Consequently, the complexity is given by O(|RSI |2 · n).

The fuzzification process essentially consists of finding a subinterval with
a maximum m-measure for m = 2. Since all numerical attributes are fully
covered with disjunct fuzzy sets, every example must be considered only once
per attribute. This can be effectively done with a simple sweep algorithm if
the underlying data is sorted. Consequently, the complexity of fuzzifying all
intervals boils down to O(d · n log n).

The rule weight calculation is comparable to the performance measure
during pruning. Due to the rule stretching procedure, the rule weights are
precalculated for every rule stump, in comparison to the pruning this is not
quadratically in the number of splits but linear. Consequently, the complexity
is O(d2 · n · |RSS|).

The overall complexity of HELLFIRE for building the model is

O(d · k · n) + O(d · n log n) + O(d3 · n · |RSS |) +

O(|RSI |2 · n) + O(d · n log n) + O(d2 · n · |RSS |)
= O(d3 · n · |RSS|+ d · n log n + |RSI |2 · n)

under the assumption that k < d2 · |RSS |.

To classify an unseen instance, all intervals of all rules have to be checked.
Since the number of intervals per attribute is the same as the number of splits
in terms of Landau-notation, it can be expressed as O(d× |RSF |).

98 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

4.3. Comparing HELLFIRE with Other
Discretization Techniques

The realm of discretization deals with the problem of partitioning numeric
attributes into intervals. The reasoning behind this procedure is that the
number of continuous values is typically much larger than the one of dis-
crete values. Actually, the latter is an interval in a continuous spectrum. A
discretized attribute can be considered as a generalization within the realm
of classification and, thus, less sensitive to overfitting than a single value8

[LHTD02].
Liu et al. suggested a hierarchical framework in order to structure the

different types of discretization [LHTD02]: They distinguish whether the
discretization is: (A) supervised or unsupervised, (B) dynamic or static, (C)
local or global, (D) top-down (splitting) or bottom-up (merging), (E) direct
or incremental, (F) univariate or multivariate. The authors proposed to
structure the techniques as shown in Figure 4.11.

This figure shows that the first characterization for a discretization algo-
rithm is whether it uses splitting or merging and whether it is supervised
or not. For the supervised splitting approaches the authors see four differ-
ent techniques for obtaining the split values: entropy-based, binning, de-
pendency and accuracy. Without going into detail, we will focus on the
entropy-based techniques since HELLFIRE belongs to that category. Apart
from HELLFIRE there are other techniques within this group which we will
introduce shortly: (A) ID3 / C4.5, the decision tree discretization methods
from Quinlan [Qui86, QCJ93], (B) D2, a recursive partitioning algorithm
from Catlett [Cat91], (C) MDLP, an algorithm based on minimum descrip-
tion length from Fayyad and Irani [FI93].

Before digging deeper, we explain the remaining dichotomizations: (A)
The aspect of local vs. global dichotomy describes whether the discretization
considers the whole data space or only a local subset, while finding the split
points. (B) The aspect of direct vs. incremental dichotomy describes whether
all split points are found at once or whether one split is made after the other.
(C) The aspect of static vs. dynamic describes whether the discretization is
finished before building the model or whether the discretization is conducted
while building the model.

8A single value v might be more prone to overfitting when it is used as a selector A = v

in comparison to an interval I = [v − ε, v + ε] for ε > 0 and a selector A ∈ I.

4.3. Comparing HELLFIRE with Other Discretization Techniques 99

Discretization

Merging

Supervised Unsupervised

Splitting

Unsupervised Supervised

Entropy

e.g. ID3, C4.5, D2, MDLP and HELLFIRE

Binning Dependency Accuracy

Figure 4.11.: Discretization framework (shortened) according to Liu et al.
[LHTD02].

An overview of the entropy-based supervised splitting discretization algo-
rithms and also HELLFIRE can be found in Table 4.1.

Note that HELLFIRE is somehow similar to ID3 since it also splits incre-
mentally in a dynamic way, while building the model. The difference between
HELLFIRE and ID3 is that ID3 is a pure decision tree approach which con-
siders subtrees independently. This is the reason why ID3 can be considered
as a local approach. By contrast, HELLFIRE uses a coordinated split crite-
rion, which considers the whole data space at once. This makes HELLFIRE
a global approach — on the one hand. However, the removal of adequately
covered areas of the data space concentrates the coordinated split search on
potentially disjunct regions. This makes HELLFIRE a local approach — on
the other hand.

The literature on supervised discretization techniques is vast and a com-
prehensive survey is beyond the scope of this analysis. Nevertheless, to the
best of the authors knowledge, no discretization method doing anything com-
parable to the coordinated splitting of HELLFIRE has been proposed yet.

100 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Table 4.1.: Categorization of entropy-based supervised splitting discretization al-
gorithms.

Method Global / Local Direct / Incremental Static / Dynamic

ID3/C4.5 Local Incremental Dynamic
D2 Local Incremental Static
MDLP Local Incremental Static
HELLFIRE Global → Local Incremental Dynamic

4.4. Experiments

To analyze the performance of HELLFIRE, we conduct several experimental
studies. We implemented the HELLFIRE algorithm from scratch within the
WEKA suite. As competitors we used the rule-based classifiers RIPPER, CHI
and SLAVE, cf. Section 2.3.3, Section 2.5.3.2 and Section 2.5.3.3. The testbed
for this comparison were the 45 binary- and multi-class data sets, cf. Table 2.1.
The experimental settings followed the setup proposed in Section 2.5.5.

4.4.1. Classification Performance Analysis

In the first experiment, we compared HELLFIRE to other classifiers with
respect to classification accuracy. Table 4.2 summarizes the results in terms
of mean classification accuracies9.

The results of this test suggest that HELLFIRE is able to deliver good
predictions in terms of classification accuracy. It is competitive on most data
sets, cf. Table 4.2. To analyze the differences between the classifiers more
closely, we followed the statistical procedures introduced in Section 2.5.6 and
conducted the Friedman Test, cf. Table 4.2 for the classifier ranks. The
corrected Friedman statistic for large N and k according to (2.5) is 12.31,
while the critical value for the significance level α = 0.01 is only 3.94. Thus,
the null-hypothesis can quite safely be rejected, which means that there are
significant differences in the classifiers’ performance.

Given the result of the Friedman Test, we conduct the Bonferroni-Dunn
Test as a post-hoc test to compare the competitors to the control classifier
HELLFIRE [Dun61]. The critical distance according to (2.7) between two
classifier ranks is CDα = 0.58. The results of this test are summarized in

9The classifier HELLFIREI , which also appears in the table, will be analyzed in Sec-
tion 4.4.3.

4.4. Experiments 101

Table 4.2.: Average classification accuracies and ranks for HELLFIRE and its
competitors.

Data set HELLFIRE RIPPER CHI SLAVE HELLFIREI

acd-authorship 91.40(3) 93.05(1) 71.60(4) 91.87(2) 90.35
acd-bankruptcy 82.15(1) 81.97(2) 74.40(4) 77.80(3) 81.97
acd-cyyoung8092 80.28(1) 80.04(2) 70.72(4) 79.32(3) 80.10
acd-cyyoung9302 81.87(3) 82.01(2) 80.27(4) 83.90(1) 81.00
acd-esr 82.62(1) 82.38(2) 79.55(3) 77.72(4) 80.59
acd-halloffame 91.51(4) 92.87(1) 92.18(3) 92.68(2) 91.37
acd-lawsuit 96.94(2) 97.54(1) 94.93(3) 94.81(4) 96.25
acd-votesurvey 35.47(2) 34.40(3) 40.19(1) 29.51(4) 35.02
biomed 86.69(2) 87.40(1) 80.64(4) 84.74(3) 86.16
cars 71.84(2) 75.93(1) 68.97(4) 70.68(3) 74.31
collins 93.26(1) 92.89(2) 42.63(4) 50.87(3) 93.11
ecoli 79.67(3) 80.57(2) 77.43(4) 81.03(1) 79.33
eucalyptus 55.04(3) 58.69(1) 54.09(4) 58.16(2) 55.36
glass 64.04(1) 63.18(2) 61.39(4) 61.83(3) 65.53
haberman 73.00(3) 72.16(4) 73.08(2) 73.31(1) 72.82
heart-statlog 79.63(1) 78.44(2) 68.66(4) 78.44(3) 79.24
ionosphere 88.39(3) 88.64(2) 66.40(4) 89.83(1) 88.13
iris 94.82(2) 93.45(3) 92.27(4) 94.92(1) 94.82
liver-disorders 63.81(2) 65.93(1) 58.75(4) 59.77(3) 62.69
metStatCoord. 85.18(2) 92.04(1) 46.79(4) 58.77(3) 84.58
metStatRainfall 48.28(2) 60.66(1) 24.51(4) 29.35(3) 47.10
metStatRST 38.55(2) 36.08(3) 25.24(4) 42.02(1) 37.93
metStatSunshine 41.36(2) 44.48(1) 37.93(3) 28.83(4) 41.43
metStatTemp 47.72(1) 47.45(2) 30.63(3) 22.10(4) 47.86
mfeat-factors 83.30(4) 87.05(2) 89.19(1) 86.83(3) 79.34
mfeat-fourier 72.86(2) 71.37(3) 69.27(4) 73.49(1) 71.01
mfeat-karhunen 76.57(4) 79.13(2) 82.55(1) 78.37(3) 70.96
mfeat-morpholog. 70.95(1) 70.74(2) 57.93(4) 67.08(3) 70.26
mfeat-zernike 63.27(4) 67.58(3) 72.37(1) 68.26(2) 59.08
optdigits 82.69(3) 89.68(2) 45.90(4) 93.45(1) 79.35
page-blocks 93.08(3) 96.79(1) 91.96(4) 93.58(2) 92.85
pasture-prod. 71.74(1) 68.46(2) 44.23(4) 53.63(3) 71.99
pendigits 88.25(3) 95.54(2) 97.45(1) 87.26(4) 86.77
pima diabetes 72.92(3) 74.56(1) 72.55(4) 73.65(2) 72.49
prnn-synth 83.81(2) 82.50(3) 84.14(1) 81.51(4) 82.44
schizo- 70.52(2) 75.33(1) 56.08(4) 56.29(3) 72.20
segment 90.40(2) 94.53(1) 83.65(4) 88.87(3) 91.70
sonar 72.35(3) 72.41(2) 74.61(1) 68.50(4) 72.14
squash-unstored 76.40(1) 71.74(2) 70.56(3) 65.56(4) 75.84
synthetic control 82.49(3) 82.85(2) 68.33(4) 89.23(1) 86.40
vehicle 66.99(2) 67.80(1) 61.99(4) 64.08(3) 67.38
vowel 47.55(4) 64.71(1) 59.49(3) 63.84(2) 48.89
waveform 77.31(2) 78.72(1) 72.38(4) 75.34(3) 73.34
wine 91.88(3) 90.02(4) 92.77(1) 92.46(2) 91.40
w.-breast-cancer 94.51(3) 95.58(1) 90.20(4) 95.49(2) 93.78

average rank 2.31 1.82 3.27 2.6

102 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

1234

Avg. Rank

RIPPER

HELLFIRE

CHI

SLAVE

Figure 4.12.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
HELLFIRE is significantly better than CHI in terms of accuracy.
Significance level α = 0.1.

Figure 4.12: HELLFIRE is better than CHI at the significance level α = 0.1.
In the comparison to SLAVE and RIPPER there are no significant differences.

From a qualitative point of view the results are satisfying: (A) HELLFIRE
is not much worse than RIPPER. This is astonishing since RIPPER is more
flexible in choosing the rule boundaries. HELLFIRE could achieve RIPPER’s
flexibility only with doing more splits in the initial learning phase, leading
to a large number of fuzzy sets which is bad for the interpretability. As will
be shown below this is not the case. (B) HELLFIRE is a little better than
SLAVE which uses a genetic search that is much slower than the decision
tree-like learning.

4.4.2. Ranking Performance Analysis

The second analysis of the discriminative power is conducted by measuring
the area under the ROC curve (AUC). We used the same competitors, the
same settings and the same choice of data sets as in the test before. Table 4.3
summarizes the results in terms of mean AUC9.

The results from the AUC analysis are quite different from the ones of
the accuracy analysis. Now HELLFIRE ranks at the very first position and
RIPPER descends to the last place. Besides, CHI overtakes SLAVE and
scores second in this test. Cf. Section 3.3.2 for an explanation this kind of
observation.

To evaluate the performances in more detail, we conduct the Friedman
Test, cf. Table 4.3 for the classifier ranks. The corrected Friedman statistic
for large N and k according to (2.5) is 6.84, while the critical value for the
significance level α = 0.01 is only 3.94. Thus, the null-hypothesis can be
rejected, which means that there are significant differences in the classifiers’

4.4. Experiments 103

Table 4.3.: Average AUC and ranks for HELLFIRE and its competitors.

Data set HELLFIRE RIPPER CHI SLAVE HELLFIREI

acd-authorship 0.98(1) 0.96(3) 0.90(4) 0.98(2) 0.95
acd-bankruptcy 0.88(1) 0.82(4) 0.87(2) 0.86(3) 0.82
acd-cyyoung8092 0.78(1) 0.71(3) 0.65(4) 0.77(2) 0.82
acd-cyyoung9302 0.77(2) 0.71(4) 0.75(3) 0.79(1) 0.72
acd-esr 0.67(1) 0.62(2) 0.60(3) 0.59(4) 0.72
acd-halloffame 0.78(4) 0.79(3) 0.87(2) 0.89(1) 0.70
acd-lawsuit 0.95(2) 0.92(3) 0.81(4) 0.96(1) 0.70
acd-votesurvey 0.54(2) 0.50(3) 0.55(1) 0.49(4) 0.62
biomed 0.91(2) 0.86(4) 0.93(1) 0.91(3) 0.62
cars 0.85(2) 0.82(3) 0.86(1) 0.81(4) 0.75
collins 0.99(1) 0.97(2) 0.88(3) 0.83(4) 0.93
ecoli 0.92(2) 0.89(4) 0.94(1) 0.91(3) 0.93
eucalyptus 0.81(2) 0.82(1) 0.79(3) 0.77(4) 0.53
glass 0.80(1) 0.76(4) 0.77(3) 0.79(2) 0.87
haberman 0.63(2) 0.60(3) 0.65(1) 0.60(4) 0.82
heart-statlog 0.84(1) 0.79(3) 0.76(4) 0.81(2) 0.97
ionosphere 0.90(2) 0.88(4) 0.89(3) 0.92(1) 0.78
iris 0.98(3) 0.96(4) 1.00(1) 0.98(2) 0.78
liver-disorders 0.66(1) 0.64(2) 0.57(4) 0.60(3) 0.60
metStatCoord. 0.96(2) 0.98(1) 0.78(4) 0.82(3) 0.60
metStatRainfall 0.82(2) 0.85(1) 0.76(3) 0.66(4) 0.83
metStatRST 0.71(1) 0.70(2) 0.59(3) 0.58(4) 0.83
metStatSunshine 0.77(2) 0.75(4) 0.80(1) 0.75(3) 0.88
metStatTemp 0.76(2) 0.77(1) 0.66(4) 0.68(3) 0.97
mfeat-factors 0.97(2) 0.95(4) 0.98(1) 0.97(3) 0.64
mfeat-fourier 0.95(1) 0.92(4) 0.92(2) 0.92(3) 0.92
mfeat-karhunen 0.96(2) 0.92(4) 0.98(1) 0.95(3) 0.89
mfeat-morpholog. 0.91(3) 0.94(1) 0.93(2) 0.89(4) 0.89
mfeat-zernike 0.92(2) 0.90(4) 0.95(1) 0.90(3) 0.93
optdigits 0.96(1) 0.96(3) 0.82(4) 0.96(2) 0.79
page-blocks 0.83(3) 0.93(1) 0.82(4) 0.83(2) 0.74
pasture-prod. 0.81(1) 0.79(2) 0.64(4) 0.70(3) 0.74
pendigits 0.98(3) 0.98(4) 1.00(1) 0.99(2) 0.85
pima diabetes 0.77(2) 0.71(4) 0.80(1) 0.76(3) 0.85
prnn-synth 0.89(3) 0.84(4) 0.90(1) 0.90(2) 0.76
schizo- 0.75(2) 0.78(1) 0.56(4) 0.59(3) 0.76
segment 0.98(1) 0.98(2) 0.97(3) 0.96(4) 0.97
sonar 0.78(2) 0.74(4) 0.82(1) 0.75(3) 0.74
squash-unstored 0.85(1) 0.77(2) 0.71(4) 0.77(3) 0.74
synthetic control 0.97(3) 0.93(4) 0.99(1) 0.99(2) 0.80
vehicle 0.86(1) 0.85(2) 0.85(3) 0.83(4) 0.94
vowel 0.85(4) 0.88(3) 0.91(1) 0.89(2) 0.83
waveform 0.92(1) 0.88(4) 0.91(3) 0.91(2) 0.76
wine 0.97(3) 0.93(4) 0.98(1) 0.97(2) 0.90
w.-breast-cancer 0.98(2) 0.96(4) 0.98(1) 0.97(3) 0.96

average rank 1.89 2.96 2.38 2.78

104 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

1234

Avg. Rank

HELLFIRE

CHI

RIPPER

SLAVE

Figure 4.13.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
HELLFIRE is significantly better than RIPPER and SLAVE in
terms of AUC. Significance level α = 0.1.

performance. The critical distance according to (2.7) between HELLFIRE as
control classifier and any competitor is CDα = 0.58 for a significance level of
α = 0.1.

The results of this test are summarized in Figure 4.13: HELLFIRE is sig-
nificantly better than SLAVE and RIPPER, while there is no such difference
in comparison to CHI at the significance level α = 0.1.

4.4.3. Fuzzification Analysis

The fuzzification strategy proposed for HELLFIRE builds upon a rather
simple principle that only concentrates on the interval cores. The ques-
tion is whether this approach improves the overall performance. In ana-
lyzing this question, we conduct a test using the rules RSI induced by just
omitting the fuzzification step denoted as HELLFIREI . The comparison of
HELLFIRE with HELLFIREI leaves no doubt: 33 wins versus 11 losses (1
tie) for HELLFIRE show that fuzzification has a very significant impact on
classification, cf. Table 4.2. A very similar picture is conveyed when con-
ducting the same comparison for the AUC measurements: HELLFIRE wins
30 data sets and loses 15 over HELLFIREI . According to the sign test,
cf. Section 2.5.6.1, under the assumption of equal performance we can reject
this null-hypothesis with an error probability of α = 0.02 for each analyses
individually.

4.4.3.1. Effect of Fuzzification

To investigate the improvements that are due to fuzzification, we will follow
the same approach we used for the FURIA algorithm, cf. Section 3.3.3. This
setup will be slightly different since HELLFIRE uses another fuzzification

4.4. Experiments 105

scheme for another type of rule. The fuzzification procedure of HELLFIRE
modifies the fuzzy interval core and support boundaries in such a way that
formerly adjacent but disjunct intervals will now overlap. The consequences
are that the rule weighing might lead to a shifting of the decision boundaries
and that the coverage of the fuzzified rules increases. To cope with this
situation, we will conduct tests using modified variants of HELLFIRE. We
hope to explain the consequences of fuzzification by examining its individual
effects with this sort of differential diagnosis. For this test we will focus on
classification accuracy only.

Setup

In analyzing the impact of fuzzification, we consider the discriminative power
of the overall rule model. To minimize the interference of other effects, we will
disable the rule stretching technique for this test. Since HELLFIRE is now al-
lowed to abstain from classifying for uncovered instances, we have to take this
into consideration and measure both classification accuracy and classification
error, i.e. the relative number of correctly and incorrectly classified instances.
To explain the effects due to fuzzification we have now four different variants
that have to be compared. These variants resemble all possibilities of the
dichotomies conventional vs. fuzzy and weighted vs. unweighted rules:

HELLFIRE The classifier as it was suggested (weighted and fuzzy).

HELLFIREI HELLFIRE weighted but without fuzzification.

HELLFIREU HELLFIRE with fuzzification but without weighting.

HELLFIREI,U HELLFIRE unweighted without fuzzification.

The complete results of this test can be found in Table A.6 and Table A.7.
A short overview can be found in Table 4.4. To cope with the large amount
of information, we will analyze those tables step by step:

The effect of rule weights on the fuzzified and on the conventional
variant of HELLFIRE

A frequently encountered opinion in the literature is that rule weights im-
prove classification accuracy [IN01, IY05, ACH03, JT08, FJ09]. The typical
reason given is that a larger rule weight resembles a better rule since it is

106 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Table 4.4.: Wins and losses in terms of classification accuracy and error on the
test data for variants of HELLFIRE.

Accuracy Error

HF. HF.I HF.U HF.I,U HF. HF.I HF.U HF.I,U

HELLFIRE - 35 42 44 27 42 41

HELLFIREI 10 - 32 42 18 - 37 42

HELLFIREU 3 12 - 40 3 7 - 33

HELLFIREI,U 1 1 4 - 4 1 11 -

often defined through a quality measure taking both purity and coverage into
consideration, e.g. Laplace-weighted purity.

When considering conventional classification rules, the rule weight serves
as a tie-breaker when multiple rules cover the query instance in a single-
winner scenario. When considering a voting scheme, the rule weight works
as a discounting effect on weaker rules. HELLFIRE determines the winning
class using a voting procedure that combines the coverage of different rules
from the same class using the Łukasiewicz T-conorm.

The results suggest that the weighted conventional variant HELLFIREI

outperforms the unweighted conventional variant HELLFIREI,U with 42 wins
and 1 loss in terms of both classification accuracy and classification error,
cf. Table 4.4.

For the fuzzy variant HELLFIRE, the rule weight has a secondary effect:
In the previous test with the conventional variants, adjacent intervals were
disjunct. But now adjacent intervals overlap due to fuzzification. The con-
sequence is that the effective decision boundaries are shifted according to
the rule weight: A stronger rule can push the decision boundary away from
its core and increase its area of influence into the territory of weaker rules.
Figure 4.14 depicts the membership degrees according to Example 3.2.2 (see
page 54). We see that for the fuzzy variants, there are only smooth and con-
tinuous changes. Besides, we find that in the unweighted case in Figure 4.14a,
the influence of the three HELLFIRE fuzzy rules is somehow balanced. Yet,
in the weighted case Figure 4.14b, the rule for the green class has a larger
rule weight that decreases the other rules’ territory. As we expected, the shift
of the rule boundaries cannot be found with the conventional variants even
if there is some imbalance in the rule weights, see Figure 4.14c.

The outcome displays that the weighted fuzzy variant HELLFIRE clearly
outperforms the unweighted fuzzy variant HELLFIREU with 42 wins and 3

4.4. Experiments 107

(a) HF., unweighted rules (b) HF., weighted rules (c) HF.I and HF.I,U,
weighted rules

Figure 4.14.: Visualization of the decision boundaries. The different colors re-
semble the (fuzzy) coverage to the classes. The line corresponds to
the decision boundary between the green and the remaining classes.

loss in terms of both classification accuracy and classification error, cf. Ta-
ble 4.4. But these results do not shed any light on whether the improvement
of using weighted rules is due to the discounting effect — which we also found
for the weighted conventional variant — or because of decision boundary shift.
Thus, we have to refine the analytical perspective:

The effect of fuzzification on the rule coverage

A characteristic of the fuzzification process is that it increases the width
of the intervals leading to gradual overlaps. Consequently, the number of
examples covered through a rule cannot shrink because of fuzzification. In
fact, the experimental results can confirm this assumption: For all but three
data sets, HELLFIRE covers more instances than HELLFIREI . The three
exceptions are all completely covered by both variants. See Table A.6 and
Table A.7 for more information.

This insight might be interesting, however it is not very helpful for the
investigation into fuzzification benefits. Even worse, this observation shows
that in order to avoid a Pareto-optimal situation, a variant has to outperform
another variant in terms of both accuracy and error.

The effect of fuzzification on the discriminative quality

From the first analysis we learned that the rule weight has a beneficial effect
on classification accuracy and classification error. But for the fuzzy case, we

108 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

could not separate the reason for the improvements due to some interference
with the gradual coverage degrees.

To find out whether there is any benefit that can be attributed to fuzzifi-
cation and fuzzification only, we must conduct further tests. We start with
comparing the weighted fuzzy variant HELLFIRE with the weighted conven-
tional variant HELLFIREI . The results in terms of accuracy are very clear:
HELLFIRE wins 35 and loses 10 data sets over HELLFIREI . In terms of
classification error there are only 27 wins over 18 losses. The null-hypothesis
of equal performance in terms of classification error can be rejected using a
sign test with an error probability of 0.12, cf. Section 2.5.6.1.

A reasonable assumption would be that the increased rule coverage would
lead to a larger number of both correctly and incorrectly covered instances,
explaining those improvements. But the results show that the absolute
number of incorrectly classified instances is smaller for the fuzzy version
HELLFIRE on 27 data sets. Furthermore, on all those data sets, HELLFIRE
has also a better classification accuracy than HELLFIREI , cf. Table A.6 and
Table A.7. Consequently, the aspect of fuzziness and not the increased cov-
erage must be responsible for the improvements.

Following this line of reasoning, we can again consider the two unweighted
variants for which the coverage examination is valid in exactly the same way.
When analyzing the difference between HELLFIREU and HELLFIREI,U we
might find the improvement of fuzzification caused neither by the shifting
of the decision boundaries nor by the discounting of weaker rules. In fact,
the results show that HELLFIREU wins 40 data sets with 1 loss in terms
of accuracy and wins 33 data sets with 11 losses in terms of classification
error over HELLFIREI,U. Again, we find that for every data set, for which
HELLFIREU is better in terms of classification error, it is also better in terms
of classification accuracy. Combining this outcome with the previous one, we
find that there are benefits from fuzzification and fuzzification only. These
improvements are neither due to increased coverage nor due to shifting rule
boundaries, nor due to discounting weaker rules.

Synthesis

From the preceding analysis, we learned that fuzzification has a significant
beneficial impact on classification accuracy and classification error. In this
kind of differential diagnosis we revealed that there were improvements that
were neither caused by the rule weights nor by the generalizing effect. From

4.4. Experiments 109

this we can conclude that the gradual coverage, which assigns instances being
nearer to the interval core higher membership degrees, must have a beneficial
effect.

4.4.3.2. Comparing HELLFIRE Fuzzification with a Generic Fuzzification

The fuzzification procedure of HELLFIRE is a data-driven process that tries
to find a reasonable degree of fuzzification for each fuzzy interval individu-
ally. Therefore, it considers the data covered by an interval as well as the
interval’s occurrence in potentially multiple rules. One might ask whether
this effort has any advantages over a non-data-driven fast generic fuzzifica-
tion procedure. Kuwajima et al. investigated different degrees of fuzzification
f ∈ [0, 1] to a grid-based rule model [KNI08]: A fuzzification degree of f = 0
resembled the conventional interval, while a degree of f = 1 is the maximal
possible fuzziness.

Starting with two adjacent conventional intervals Ii = (bi, ci] and Ii+1 =
(ci, ci+1] we would set

IF
i

df
= [bi, bi, ai+1, bi+1]

IF
i+1

df
= [ai+1, bi+1, ci+1, ci+1]

with

ai+1
df
= ci − f ·max (ci − bi, ci+1 − ci)

bi+1
df
= ci + f ·max (ci − bi, ci+1 − ci) .

See Figure 4.15 for an example. Note that the fuzziness is limited through
the fuzzy set normality criterion according to Definition 2. Note that in
Figure 4.15 the interval IF

i+1 is not fuzzified any more at the maximal degree
of f = 1 because of this normality demand. Besides, this kind of fuzzification
leaves the decision boundary at the position of the conventional split.

We conducted two tests to investigate whether the effort of the data-
driven fuzzification is justified. In the first test we concentrated on clas-
sification accuracy and in the second on AUC. We compared the original
HELLFIRE algorithm with generic fuzzification variants HELLFIREf , where
f ∈ {0, 0.2, . . . , 1} are the degrees of fuzzification we tested.

A win-loss overview of the accuracy tests are listed in Table 4.5 and the

110 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

IF
i IF

i+1
0

1
f = 1

IF
i IF

i+1
0

1
f = 0.5

IF
i IF

i+1
0

1
f = 0

Figure 4.15.: Different fuzzification degrees f for two adjacent fuzzy intervals.

Table 4.5.: Wins and losses in terms of classification accuracy for HELLFIRE with
different fuzzification degrees.

HF. HF.0 HF.0.2 HF.0.4 HF.0.6 HF.0.8 HF.1

HELLFIRE - 33 30 30 35 39 41
HELLFIRE0 12 - 14 20 27 30 34
HELLFIRE0.2 15 31 - 30 33 37 41
HELLFIRE0.4 15 25 15 - 39 41 41
HELLFIRE0.6 10 18 12 6 - 45 45
HELLFIRE0.8 6 15 8 4 0 - 43
HELLFIRE1 4 11 4 4 0 2 -

complete results can be found in Table A.8. We see that the original variant
of HELLFIRE is able to outperform all other generic variants with at least
30 wins over 15 losses.

At this point we are not conducting the multi-classifier evaluation using
the Friedman Test and some post-hoc test on purpose. The reason is that
we want to know whether there is one HELLFIREf variant that is able
to dominate the original HELLFIRE algorithm. Making this observation
would reject our claim that the data-driven fuzzification method is preferable
in comparison to one generic variant. For this study we are considering a
“domination plot” that plots the number of data sets where a classifier scored
under the top k ranks, see Figure 4.16. We find that HELLFIRE is able to
dominate the generic competitors in terms of 1st, 2nd and 3rd positions on
up to 37 data sets. Interestingly, the moderately fuzzified HELLFIRE0.4 and
HELLFIRE0.2 are the generic variants that work the best. Interestingly, too
much or too less fuzzification is not optimal. It is quite remarkable that

4.4. Experiments 111

Rank k1 2 3 4 5 6 7

n

5

10

15

20

25

30

35

40

45

HF.
HF.0

HF.0.2

HF.0.4

HF.0.6

HF.0.8

HF.1

Figure 4.16.: Domination plot: Number of data sets n a classifier ranked among
the top k ranks in terms of classification accuracy. (Note the linear
interpolation between the ranks for a better visualization.)

the variant HELLFIRE1, which is using the softest boundaries, is dominated
by all competitors. A potential explanation is that the effective decision
boundary shifting caused by the rule weights is more severe, the more fuzzy
the rules are, cf. Section 4.4.3.1. Moreover, the reduced coverage degree in
safely covered areas could also have a detrimental effect on the final voting
procedure.

We also conducted the same test for the ranking performance measure
AUC. Our expectation is that larger fuzzification degrees f improve the AUC
due to the increased score value spectrum according to the findings of Hüller-
meier and Vanderlooy [HV09]. We find this characteristic here because of
the smaller fuzzy interval core which always return a fuzzy membership of 1,
whereas the fuzzy support area that returns gradual coverage increases. A
win-loss overview of the AUC tests are listed in Table 4.6 and the complete
results can be found in Table A.9.

This table displays that HELLFIRE is unable to outperform the generic
variants in terms of ranking performance. It loses clearly against the ones
having a fuzzification degree of f > 0.6. The first impression is that the vari-
ants with a higher fuzzification outperform the ones with a lower one. What
is clear from this analysis is that a small degree of fuzzification deteriorates
the AUC performance, which can be found for the variants with f < 0.2.
But at a second glance it is seems that a degree of f = 0.8 is even better
than f = 1. From the literature we know that a larger spectrum of return

112 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Table 4.6.: Wins and losses in terms of AUC for HELLFIRE with different fuzzi-
fication degrees.

HF. HF.0 HF.0.2 HF.0.4 HF.0.6 HF.0.8 HF.1

HELLFIRE - 44 31 17 10 11 13
HELLFIRE0 1 - 2 2 3 4 5
HELLFIRE0.2 14 43 - 9 7 9 13
HELLFIRE0.4 28 43 36 - 10 14 20
HELLFIRE0.6 35 42 38 35 - 19 25
HELLFIRE0.8 34 41 36 31 26 - 29
HELLFIRE1 32 40 32 25 20 16 -

Rank k1 2 3 4 5 6 7

n

5

10

15

20

25

30

35

40

45

HF.

HF.0

HF.0.2

HF.0.4

HF.0.6

HF.0.8 HF.1

Figure 4.17.: Domination plot: Number of data sets n a classifier ranked among
the top k ranks in terms of AUC. (Note the linear interpolation
between the ranks for a better visualization.)

values improves the AUC, but the 29 wins and 16 losses of HELLFIRE0.8

over HELLFIRE1 suggest that there is some kind of saturation effect. This
impression is also supported when considering the domination plot, cf. Fig-
ure 4.17: HELLFIRE1 does not dominate the field as one could expect. The
saturation effect might be due to the fact that at some level the variety of
the scores is already sufficient to resolve the ties and that a further fuzzifi-
cation discount the very heart of the fuzzy intervals with the instances that
definitely belong to that interval.

From an overall point of view, the performance of the data-driven fuzzifi-
cation strategy of HELLFIRE is very convincing. It outperforms the generic
variants in terms of classification accuracy significantly. Since HELLFIRE

4.4. Experiments 113

was designed for classification tasks, this is a very convincing result. Un-
fortunately, the outcome of the fuzzification analysis concerning AUC per-
formance was not very surprising: For a well-ranking classifier, a generic
fuzzification degree of f ∈ [0.6, 1] achieves very good results. HELLFIRE is
here a midfielder: It dominates the conventional variant HELLFIRE0 and
HELLFIRE0.2. However, by comparison with the more fuzzy ones it is the
data-driven variant that is dominated most of the time. In general, it seems
that a concession has to be made: Either choosing a strong classification per-
formance with a smaller degree of fuzzification or choosing a strong ranking
performance with a larger degree of fuzzification.

4.4.4. Comparison between the Discretization Procedures of
HELLFIRE and MDLP

We already mentioned the MDLP discretization from Fayyad and Irani in
Section 4.3 as a representative from the group of entropy-based, supervised,
splitting approaches — the group to which HELLFIRE belongs as well [FI93].

The MDLP algorithm partitions each numeric attribute recursively in such
a way that the entropy is minimized. The splitting of a branch halts as soon
as the gain for the split is lower than a certain threshold value that is based
on minimum description length [FI93].

In order to compare HELLFIRE with MDLP a concession has to be made.
While HELLFIRE learns the discretization and the rules simultaneously,
MDLP only discretizes. Unfortunately, it is impossible to separate the rule
learning procedure from the discretization process of HELLFIRE and to com-
bine it with the discretization process of MDLP. Consequently, a comparison
can be made between the discretization procedures only. For this purpose we
will use the RIPPER rule learner in order to learn a rule-based model using
the discretized data from MDLP and HELLFIRE, respectively. As a measure
of discriminative performance we will evaluate classification accuracy and as
a measure of model complexity we consider the number of rules (including
RIPPER’s default rule).

The results of this comparison are presented in Table 4.7. In order to eval-
uate these results statistically we will use the sign test, cf. Section 2.5.6.1,
under the null-hypotheses of equal classifier performance and equal model
sizes. For classification accuracy the sign test is unable to reject the null-
hypothesis: The discretization of MDLP wins 23 data sets while the dis-
cretization of HELLFIRE (H-Dis) wins 22. However, when comparing the

114 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

model sizes, H-Dis learns a smaller model on 29 and a bigger model on only
14 data sets. The sign test rejects the null-hypothesis, indicating that the
models of H-Dis are significantly smaller than the ones of MDLP with an
error probability of α = 0.05.

In summary, the outcome of this experiment is quite satisfying: The dis-
cretization from HELLFIRE is very comparable to the one of MDLP in terms
of classification accuracy while requiring a much number of rules.

When comparing the discretization of HELLFIRE with the one of MDLP
it is interesting that both algorithms are doing feature selection: HELLFIRE
discretizes only the attributes which appear in the rule set. MDLP does in
a first step a discretization for all numeric attributes, but in a second step it
uses the MDL criterion to reject irrelevant splits. Consequently, discretiza-
tions from HELLFIRE and MDLP can concentrate on different subspaces
of the initial data space. This makes an experimental comparison of the
number of partitions per attribute difficult. However, we claim that the
one-dimensional evaluation of numeric attributes for MDLP may miss multi-
dimensional structures due to a loss of information. A deeper analysis of this
claim is beyond the scope of this thesis. However, we want to give a brief
example of what kind of problem we are referring to.

Example 4.4.1 (A comparison of discretizations from HELLFIRE
and MDLP)
This example shows the discretizations of HELLFIRE (H-Dis) and MDLP
for an artificial, two-dimensional data set, cf. Figure 4.18a. When projecting
the examples to attributes A1 and A2 respectively, there is no discretization
which is able to partition the data flawlessly. The solution that was proposed
by MDLP is shown in Figure 4.18b. It consists of two cuts, one for each
attribute. While this 2 × 2 grid is able to separate examples from classes

and , the remaining examples cannot be discerned. The solution of
HELLFIRE is not affected by this problem, cf. Figure 4.18c. It is able to find
an additional split for the second attribute at A2 = 3.5 after cutting the first
attribute at A1 = 3.5. The discretization of HELLFIRE partitions the data
perfectly.

4.4.5. Interpretability Analysis

Interpretability is a very important aspect for a linguistic fuzzy rule-based
classifier. Good interpretability is essential when it comes to humans exam-

4.4. Experiments 115

Table 4.7.: Comparison in terms of number of rules and classification accuracy
using RIPPER of discretizations obtained through HELLFIRE (H-
Dis) and MDLP.

Data set Number of rules Accuracy

H-Dis MDLP H-Dis MDLP

acd-authorship 7.54 11.67 91.40 92.50

acd-bankruptcy 2.27 2.07 81.31 81.97

acd-cyyoung8092 2.84 2.49 79.41 78.45
acd-cyyoung9302 2.39 2.18 82.05 79.83
acd-esr 1.87 1.26 80.05 80.09

acd-halloffame 2.82 6.25 91.94 92.72

acd-lawsuit 2.00 2.00 97.93 98.54

acd-votesurvey 2.61 1.04 35.55 37.18

biomed 4.42 4.61 87.58 88.20

cars 6.77 4.21 75.61 71.55
collins 14.88 15.00 93.50 97.02

ecoli 5.91 6.87 79.30 80.22

eucalyptus 9.97 11.58 56.78 59.31

glass 6.45 6.52 64.23 64.08
haberman 2.26 1.88 71.78 71.86

heart-statlog 3.83 3.98 79.82 80.69

ionosphere 5.43 6.08 88.28 89.15

iris 3.28 3.15 94.90 94.27
liver-disorders 3.78 1.32 63.25 57.58
metStatCoord. 29.62 110.65 89.38 87.52
metStatRainfall 41.56 84.99 49.35 51.86

metStatRST 9.59 3.55 34.58 27.66
metStatSunshine 9.46 10.51 37.76 35.15
metStatTemp 11.76 11.58 41.32 40.89
mfeat-factors 22.47 43.10 81.38 84.70

mfeat-fourier 23.25 55.27 71.56 68.18
mfeat-karhunen 27.04 67.34 73.40 74.18

mfeat-morpholog. 16.25 23.88 68.01 66.58
mfeat-zernike 22.37 56.81 57.89 63.62

optdigits 46.08 116.39 84.54 82.93
page-blocks 4.44 20.57 94.82 96.21

pasture-prod. 3.20 3.20 72.25 69.16
pendigits 70.90 202.23 93.49 90.87
pima diabetes 3.41 3.89 74.13 74.67

prnn-synth 3.72 3.19 82.34 83.94

schizo- 6.28 3.92 74.85 64.41
segment 16.64 37.27 93.44 91.83
sonar 3.91 4.08 72.66 71.38
squash-unstored 3.47 3.27 74.06 70.98
synthetic control 9.61 14.59 87.55 85.52
vehicle 9.19 12.14 65.85 63.83
vowel 39.28 55.78 50.56 64.12

waveform 11.56 44.71 75.25 75.85

wine 3.13 4.32 91.48 89.77
w.-breast-cancer 4.01 6.05 94.43 95.38

wins 29 14 22 23

116 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

A2

A1

0 1 2 3 4 5

0

1

2

3

4

5

(a) Data set

A2

A1

0 1 2 3 4 5

0

1

2

3

4

5

(b) MDLP solution

A2

A1

0 1 2 3 4 5

0

1

2

3

4

5

(c) H-Dis solution

Figure 4.18.: Comparison of discretizations from MDLP and HELLFIRE (H-Dis).

ining the ruleset in an attempt to discover how the classification decisions are
derived. Unfortunately, often those aspects depend on the data set and lie
in the eye of the beholder. Nevertheless, there have been attempts to grasp
what can be considered good interpretability: Zhou and Gan listed several
criteria separated into low-level and high-level attributes that shall determine
how interpretable a fuzzy rule-based classifier is [ZG08].

4.4.5.1. Low-level Criteria

This part of the interpretability analysis deals with the low-level criteria that
concentrate on the fuzzy sets.

Distinguishability The aspect of distinguishability deals with the questions
of how much the fuzzy sets overlap and how clear the semantic meaning of
every fuzzy set is. The HELLFIRE algorithm excels in this regard. This is
due to the fact that the fuzzy sets were obtained from disjunct intervals and
fuzzified in such a way that there will be no fuzzy set cores overlapping. Even
more appealing is the fact that there is no point covered by more than two
fuzzy intervals per attribute at the same time. This can be explained by the
fuzzification process that first shrinks the interval core and then stretches the
support to the adjacent intervals’ cores.

Completeness of the Fuzzy Partitioning This criterion asks for a complete
coverage of an attribute such that every data point is covered by at least

4.4. Experiments 117

Fuzzy intervals
per num. att

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

n

10

100

1,000

10,000

100,000

Figure 4.19.: Distribution of fuzzy sets per interval for HELLFIRE.

one fuzzy set or linguistic representation respectively. The decision tree-like
learning process of HELLFIRE induces a set of disjunct intervals which covers
the area between all adjacent splits. Since all lower intervals enclose the split
towards the larger direction, there is no gap. Because the fuzzification process
does not reduce on the coverage, it is clear that HELLFIRE covers all numeric
attributes that occur in the ruleset completely. But note that not all intervals
of an attribute necessarily appear in the ruleset.

Number of Fuzzy Sets Another important factor for interpretability is the
number of fuzzy sets that are used per attribute. The recommendation of
Zhou and Gan defined this number with 7± 2 according to a “rule of thumb
in cognitive psychology”10 [ZG08].

The distribution of the number of fuzzy intervals per numeric attribute
over all data sets displays that among a total of 49,556 numeric attributes
only 846 contained more than 7 fuzzy intervals, cf. Figure 4.19. Even better,
HELLFIRE uses less than 4 fuzzy intervals per numeric attribute on 35 out
of the 45 data sets on average, cf. Table 4.8.

10Unfortunately, no reference is given, but it is likely that the authors refer to Miller’s
work concerning this topic [Mil56].

118 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Normalization The normalization criterion demands that every fuzzy set
should cover at least one point to a degree of one. Since HELLFIRE learns
fuzzy intervals, this condition clearly holds for every value v ∈ [b, c] ⊆ IF .

Complementarity The aspect of complementarity demands that the sum of
coverages for an instance is exactly one for every attribute. This is the case
— if the ruleset is complete — for the interval-based ruleset RSI since every
point is covered by exactly one interval to a degree of 1. And this condition is
also true for the fuzzy-intervals since there is no overlapping of cores and the
gradual overlapping between two adjacent fuzzy intervals IF

i = [ai, bi, ci, di]
and IF

i+1 = [ci, di, ci+1, di+1] is symmetric to their old interval boundary
s = 1

2 (ci + di), which leads to IF
i (v) + IF

i+1(v) = 1 for every v ∈ [ci, di].
If the ruleset is not complete, this condition does not hold. Then the sum

of coverages is smaller or equal 1.

4.4.5.2. High-level Criteria

The five criteria of high-level interpretability concentrate on individual rules
but also on the whole ruleset.

Rule Base Parsimony and Simplicity The demand for small but reasonable
performing models following Occam’s Razor is summarized by Zhou and Gan
under this point. Unfortunately, the authors do not give any recommendation
or threshold for this criterion. In fact, it is questionable whether this criterion
can be quantified since it is very problem dependent. But due to the fact
that every rule can be read separately in the unordered ruleset of HELLFIRE,
a motivated human expert should be able to grasp even the largest ruleset
with nearly 40 rules. Fortunately, most of the rulesets are much smaller,
cf. Table 4.8.

Readability of a Single Rule To keep the rules readable, the authors apply
the same characteristic that was already applied to the number of fuzzy sets
per attribute. The recommendation is that a rule should contain less than
7 ± 2 fuzzy intervals. The distribution of the number of fuzzy intervals per
rule over all data sets displays that among a total of 56,256 rules only 4,500
contained more than 7 fuzzy intervals, cf. Figure 4.20. Most of these rules
(nearly 4,000) were learned for metStatCoordinates, metStatRainfall, mfeat-
morphological, pendigits, metStatTemp and vowel. For a vast majority of

4.4. Experiments 119

Fuzzy intervals
per rule

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

n

10

100

1,000

10,000

100,000

Figure 4.20.: Distribution of fuzzy sets per interval for HELLFIRE.

data sets the number of intervals per rule is rather small. Table 4.8 shows
the average rule length for HELLFIRE.

Consistency A very intuitive criterion is the absence of inconsistent rules.
A rule is said to be inconsistent if another rule exists with the same an-
tecedent but with another class assignment. The decision tree-like learning
of HELLFIRE induces distinct rules for every path from the leaves to the
root. Consequently, every antecedent is unique. Only during pruning there
might be duplicate antecedents that could occur due to the removal of splits.
Since the removal of splits is only applied when there is no deterioration in
terms of the m-measure, it is highly unlikely that two or more rules end up
with the same antecedent. Even if that should nevertheless be the case, only
one rule would be selected in the set covering step since the remaining rule
would find no examples to cover.

Completeness The completeness criterion is very demanding. It asks for
the full coverage with a non-arbitrarily low membership value of the whole
data space by at least one rule. In fact, sometimes it is very difficult to learn
reasonable rules for areas where no example or just noise has been observed in
the training data. Learning a rule for such an area might need a tremendous
extrapolation effort that might not be justified by data. This situation be-
comes even more complicated as soon as the curse of dimensionality strikes.

120 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Unfortunately, this point was not addressed by Zhou and Gan. HELLFIRE
is not able to deliver a ruleset with full coverage in general.

Transparency of Rule Structure The final criterion deals with the clarity
in which the fuzzy rule-based system describes expert knowledge. According
to Zhou and Gan, every fuzzy rule-base fulfills this criterion trivially due
to plain class-assignment rule consequences. Thus, the classification rules of
HELLFIRE can be considered to have a transparent structure.

4.4.5.3. Interpretability Discussion

In the first part of the interpretability analysis, the focus was on the fuzzy
sets. Here we showed that all five criteria are reasonably fulfilled. There were
only two data sets for which HELLFIRE was not able to keep the number of
fuzzy intervals as small as demanded. From an overall point of view, the claim
that HELLFIRE induces models with a sound low-level interpretability can
be confirmed. The analysis of the high-level interpretability shows a less clear
picture. While the models introduced by HELLFIRE excel in terms of rule
size and consistency, they are not able to guarantee the parsimony and com-
pleteness criteria. While the ruleset parsimony and simplicity are somehow
subjective characteristics that depend strongly on the data set, completeness
is a much clearer demand. It comes down to question of how much interpola-
tion the human expert is willing to accept. In fact, it is questionable whether
such a model lacking data-backed evidence is desirable.

A weakness of HELLFIRE in terms of interpretability is the rule stretching
procedure: If an instance is not covered by any of the rules, then the rules are
stretched until they cover the instance, as it was explained in Section 4.2.8.
Even though the stretched rules are readable and interpretable, this approach
deteriorates the comprehensibility in such cases. Fortunately, for 38 out of
the 45 data sets, the relative number of uncovered instances is smaller than
1%. And for the remainder it is smaller than 5%, cf. Table 4.9. From this we
can conclude that the rule stretching is the rare exception and not the rule.

Generally, interpretability has to be considered on multiple layers. While it
is typically simpler to interpret a single rule, the consideration of the ruleset is
much more challenging. For a single rule the question is only whether it covers
the instance and if yes to which degree and with which confidence. However,
when multiple rules from different classes cover the instance, it becomes much
harder to follow the fuzzy reasoning. The fuzzy inference and the aggregation

4.4. Experiments 121

Table 4.8.: HELLFIRE model statistics.

Data set Number of rules Fuzzy intervals per
rule

Fuzzy intervals per
num. att.

acd-authorship 8.03 ±1.5 2.54 ±0.3 2.04 ±0.1
acd-bankruptcy 2.93 ±0.8 1.27 ±0.3 2.13 ±0.3
acd-cyyoung8092 4.49 ±1.0 1.77 ±0.4 2.16 ±0.2
acd-cyyoung9302 3.96 ±1.0 1.63 ±0.3 2.10 ±0.3
acd-esr 2.01 ±0.6 1.03 ±0.2 1.95 ±0.4
acd-halloffame 3.03 ±2.5 1.65 ±0.7 2.04 ±0.1
acd-lawsuit 2.49 ±0.5 1.43 ±0.1 2.00 ±0.0
acd-votesurvey 4.53 ±1.4 1.91 ±0.5 2.30 ±0.6
biomed 6.72 ±1.4 2.23 ±0.5 2.47 ±0.4
cars 9.97 ±3.1 3.34 ±0.6 2.87 ±0.3
collins 16.42 ±1.7 1.62 ±0.5 7.12 ±3.5
ecoli 7.44 ±2.0 3.04 ±0.5 2.22 ±0.2
eucalyptus 16.03 ±3.2 3.41 ±0.5 2.59 ±0.2
Glass 11.25 ±2.0 3.22 ±0.4 2.31 ±0.2
haberman 5.91 ±2.5 2.63 ±0.9 3.29 ±1.2
heart-statlog 6.31 ±1.5 1.94 ±0.4 2.02 ±0.1
ionosphere 7.65 ±1.7 2.06 ±0.4 2.04 ±0.1
iris 4.00 ±0.7 1.36 ±0.3 2.58 ±0.3
liver-disorders 8.34 ±2.1 2.79 ±0.6 2.52 ±0.3
metStatCoordinates 25.30 ±7.6 7.97 ±1.1 12.11 ±2.2
metStatRainfall 31.46 ±9.0 7.29 ±1.1 3.78 ±0.3
metStatRST 17.64 ±3.2 4.34 ±0.6 4.38 ±0.6
metStatSunshine 17.60 ±3.3 3.81 ±0.5 2.36 ±0.2
metStatTemp 23.90 ±4.9 4.74 ±0.7 2.93 ±0.4
mfeat-factors 22.13 ±2.6 3.74 ±0.2 2.00 ±0.0
mfeat-fourier 24.76 ±4.1 4.15 ±0.3 2.07 ±0.1
mfeat-karhunen 27.11 ±3.4 4.19 ±0.3 2.09 ±0.1
mfeat-morphological 18.47 ±3.7 5.32 ±1.1 4.38 ±0.7
mfeat-zernike 26.81 ±4.9 4.13 ±0.3 2.05 ±0.1
optdigits 24.92 ±3.1 4.01 ±0.3 2.04 ±0.1
page-blocks 3.43 ±2.5 2.34 ±0.7 2.36 ±0.4
pasture-production 3.44 ±0.5 1.59 ±0.2 2.05 ±0.2
pendigits 30.68 ±3.8 5.20 ±0.4 2.24 ±0.1
pima diabetes 5.83 ±2.2 2.91 ±0.7 2.46 ±0.3
prnn-synth 6.56 ±1.9 2.69 ±0.8 4.41 ±1.1
schizo- 10.74 ±2.9 2.58 ±0.7 3.82 ±0.8
segment 15.60 ±2.5 4.15 ±0.5 2.50 ±0.2
sonar 8.45 ±1.9 2.47 ±0.4 2.02 ±0.1
squash-unstored 4.39 ±0.6 1.72 ±0.2 2.13 ±0.2
synthetic control 14.69 ±2.0 3.25 ±0.2 2.04 ±0.1
vehicle 16.46 ±3.6 3.66 ±0.4 2.27 ±0.2
vowel 35.83 ±3.9 4.91 ±0.4 2.45 ±0.2
waveform 6.26 ±0.6 1.77 ±0.3 2.09 ±0.1
wine-weka.filters.unsupe 4.53 ±0.7 1.99 ±0.2 2.05 ±0.1
w.-breast-cancer 4.16 ±1.0 1.61 ±0.3 2.08 ±0.2

122 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Table 4.9.: Average rate of unclassified instances for HELLFIRE.

Data set Unclassified Data set Unclassified

acd-authorship 0.2064 metStatTemp 0.2409
acd-bankruptcy 0.0000 mfeat-factors 0.0250
acd-cyyoung8092 0.0313 mfeat-fourier 0.0191
acd-cyyoung9302 0.0313 mfeat-karhunen 0.0191
acd-esr 4.5000 mfeat-morpholog. 0.2059
acd-halloffame 3.7602 mfeat-zernike 0.0029
acd-lawsuit 0.8019 optdigits 0.1450
acd-votesurvey 0.2463 page-blocks 2.6570
biomed 0.4099 pasture-prod. 0.0000
cars 0.8974 pendigits 0.0211
collins 0.0826 pima diabetes 0.4748
ecoli 0.1762 prnn-synth 0.0940
eucalyptus 2.2702 schizo- 1.9104
glass 0.3166 segment 0.1019
haberman 0.8763 sonar 0.0851
heart-statlog 0.2827 squash-unstored 3.5041
ionosphere 0.7627 synthetic control 0.0392
iris 0.5882 vehicle 0.0452
liver-disorders 0.1707 vowel 0.0147
metStatCoord. 1.3554 waveform 0.4577
metStatRainfall 0.1518 wine 0.2282
metStatRST 0.6212 w.-breast-cancer 0.6690
metStatSunshine 0.1459

of coverage degrees and rule weights is a non-trivial process that must not be
underestimated. It is not unlikely that classification problems exist for which
a domain expert has problems interpreting the linguistic fuzzy rule-based
model. This, of course, holds true for HELLFIRE-models as well.

From an overall point of view, considering the model statistics, it seems
that HELLFIRE is able to achieve interpretable models in terms of low- and
high-level interpretability. However, we have to point out that interpretability
of linguistic fuzzy rule models is highly subjective and problem-dependent.

4.5. Exemplary Model

In the previous section, the interpretability aspect was handled on an ab-
stract, data set comprehensive level. Now, we will show a specific model
learned by HELLFIRE. Therefore, we choose the glass data set due to its
reasonable data set characteristics and model size. This data set contains
different kinds of glass, described by chemical and refractive characteristics.
The task is settled in the domain of crime scene investigation where the type

4.5. Exemplary Model 123

Table 4.10.: The rules induced by HELLFIRE for the glass data set. Note that
“Mx” denotes the xth smallest medium fuzzy interval. Note that the
intervals’ attributes are sorted according to the order of the data set.

Antecedent Conseq. CF

RI is (M1 or M2 or High) and Mg is High bwf 0.63
Mg is High and Al is High and Si is High and Fe is High bwf 0.54

Mg is High and Al is High bwf 0.57
Na is High and Mg is Low and K is High and Ba is Low bwnf 0.69
RI is (Low or M1 or M2) and Al is Low and Si is Low bwnf 0.81

RI is (M2 or High) and Na is Low and Mg is High bwnf 0.48
Mg is Low and Al is Low bwnf 0.53

Ba is High h 0.85
Mg is Low and Al is High and K is High and Ba is Low c 0.53
Na is High and Mg is Low and K is Low and Ba is Low t 0.74

RI is Low and Na is (Low or M) and Mg is High and Al is Low vwf 0.25
Na is M and Mg is High and Si is High and Ba is Low vwf 0.47

of glass found at car accident scenes is in need of identification. The data set
consists of 214 examples and 9 numeric attributes. The first attribute con-
tains the refractive index, while the remainder are of chemical nature. The
examples belong to six different classes: building windows float processed
(bwf), building windows non float processed (bwnf), vehicle windows float
processed (vwf), containers (c), tableware (t) and headlamps (h).

The rule-base for this data set consists of twelve linguistic rules, compare
Table 4.10. The antecedents consist of clause conjuncts where each of these
clauses is a disjunction of adjacent fuzzy intervals of distinct attributes. The
fuzzy intervals refer to the fuzzy partitioning shown in Figure 4.21. All
attributes except RI, Na, Ca are partitioned in only two fuzzy sets, namely
“Low” and “High”. Attribute Na was partitioned into three fuzzy sets “Low”,
“Medium” (M) and “High” and attribute RI into four “Low”, “Medium Low”
(M1), “Medium High” (M2) and “High”. The attribute Ca is not used in the
rule antecedents and, thus, it is not partitioned at all.

The data-driven fuzzy partitioning learned by HELLFIRE is far from
generic, which is easy to see for the attributes which are partitioned into
only two fuzzy sets: (A) The splits are at very different positions considering
the respective attribute’s range of values, often far from the mean value. (B)
The relative fuzzy set overlap varies tremendously.

124 HELLFIRE: Learning Linguistic Fuzzy Classification Rules

Low M1 M2 High
0

1

1.511 1.534

RI

Low M High
0

1

10.73 17.38

Na

Low High
0

1

0 4.49

Mg

Low High
0

1

0.29 3.5

Al

Low High
0

1

69.81 75.41

Si

Low High
0

1

0 6.21

K

0

1

5.43 16.19

Ca

Low High
0

1

0 3.15

Ba

Low High
0

1

0 0.51

Fe

Figure 4.21.: The attributes of the glass data set and the fuzzy intervals induced
by HELLFIRE. The numbers given denote the minimum and max-
imum attribute values.

4.6. Summary

In this paper, we proposed the novel linguistic fuzzy rule-based classifier
HELLFIRE. It displays strong classification performance in terms of classifi-
cation accuracy, while at the same time being interpretable and comprehen-

4.6. Summary 125

sible. The algorithm uses a three-step learning process with (A) inducing a
decision tree-like structure, (B) transforming it into interval-based rules and
(C) fuzzifying the intervals into linguistic fuzzy sets.

Future research should concentrate on the decision tree-like learning pro-
cess. Even though HELLFIRE uses working heuristics, the learning process
should be tuned in such a way that it becomes as sophisticated as today’s
state-of-the-art decision trees.

5FR3: Learning Fuzzy
Preference Structures using
Fuzzy Rules

In Chapter 3 the novel fuzzy rule-based classifier FURIA was introduced,
having the main purpose of solving conventional classification tasks. In this
chapter we will explain how FURIA’s fuzzy rules can be embedded in a more
complex algorithm, that is able to learn a fuzzy preference structure — a
potential starting point for various decision making procedures. Therefore,
we will introduce the novel FR3 algorithm which is short for Fuzzy Round
Robin RIPPER. As the name suggests, it is based on fuzzy RIPPER rules
applied in an all-pairs class decomposition scenario.

In Section 5.1 an introduction into this chapter will be given. Fuzzy
preference relations, preference structures will then be presented formally
in Section 5.2. After introducing the current state of the art approach in
Section 5.3, the novel FR3 algorithm will then be explained in Section 5.4.
Subsequently, in Section 5.5, a way of visualizing fuzzy preference structures
will be shown. A larger experimental analysis of FR3 will be conducted in
Section 5.6 before concluding this chapter in Section 5.7.

127

128 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

5.1. Introduction

One of the classical problems in decision theory addresses is to decide which
of two alternatives to prefer, e.g. strawberry flavor versus chocolate flavor
when it comes to comparing ice cream. For this purpose, the weak preference
relation is able to express that one alternative is at least as preferable as the
other one.

A more complex construction called preference structure is able to express
the pairwise relationship between alternatives in a more distinguished way.
It is able to express strict preference, indifference and incomparability. The
strict preference states that one alternative is strictly preferred over the other.
The indifference describes the preference for both alternatives and cannot be
attributed to only one of them. The incomparability between two alternatives
is expressed when neither strict preferences nor indifference can be found. A
fuzzy preference structure allows to express strict preference, indifference and
incomparability in a gradual way.

Hüllermeier and Brinker connected the idea of decision making to machine
learning [HB08]. The authors suggested reducing a problem of polychotomous
classification to a problem of decision making based on a fuzzy preference
structure.

When a binary classifier predicts a score in the unit interval, this can be
interpreted as a (weak) fuzzy preference. A fuzzy preference relation can be
obtained by decomposing a polychotomous classification problem into pair-
wise problems, for which the binary classifiers return fuzzy preferences. This
fuzzy preference relation may serve as starting point for a classification deci-
sion.

For making a classification prediction based on a fuzzy preference structure,
the All-vs-All decomposition scheme can still be used for obtaining pairwise
classifiers. However, these binary classifiers have to be modified for being
able to express strict fuzzy preference, fuzzy indifference and fuzzy incompa-
rability. Hüllermeier and Brinker proposed to model strict fuzzy preference
as degree of evidence for one class only, while considering fuzzy indifference
and fuzzy incomparability as two different types of uncertainty. The fuzzy
indifference between two alternatives in decision making is seen as conflicting
evidence in favor of both classes in classification. The fuzzy incomparability
is seen as a lack of evidence for both classes.

Following this transformation, a polychotomous classification problem be-
comes to a decision making problem based on a fuzzy preference structure.

5.1. Introduction 129

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 5.1.: Exemplary classification scenario: Observations from two classes
and and new query instances .

Moreover, this structure can also serve as foundation for other types of deci-
sion making (e.g. to abstain or to gather additional information).

A key feature of this approach is its ability to represent ignorance in a
reliable way. In fact, even though many machine learning methods are able
to reflect conflict in one way or the other, for example in terms of probability
distributions, the same is not true for ignorance. To illustrate the meaning
of conflict and ignorance in the context of classification, consider the simple
scenario shown in Figure 5.1: Given observations from two classes, and

, three new instances marked by a cross need to be classified. Obviously,
given the current observations, the upper left instance can quite safely be
classified as . The case of the lower left instance, however, involves a high
level of conflict, since both classes, and , appear plausible. The third
situation is an example of ignorance: The upper right instance is located in
a region of the instance space in which no observations have been made so
far. Consequently, there is neither evidence in favor of class nor in favor
of class .

130 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

5.2. Preference Relations and Structures in
Decision Making and Classification Learning

In the realm of decision making, when comparing two alternatives — for
example classes λi and λj — the notion of weak preference

R(λi, λj) ≡ λi � λj

means that “λi is not worse than λj” according to Fodor and Roubens [FR94].
Assuming that R(λi, λj) ∈ [0, 1] this relation is called fuzzy or valued weak
preference relation

R =

⎡
⎢⎢⎢⎣

1 R(λ1, λ2) · · · R(λ1, λm)
R(λ2, λ1) 1 · · · R(λ2, λm)

...
...

. . .
...

R(λm, λ1) R(λm, λ2) · · · 1

⎤
⎥⎥⎥⎦ .

Of course, the reflexivity R(λi, λi) = 1 holds. To express indifference
between λi and λj , it is reasonable to assume R(λi, λj) = R(λj , λi) = 1 since
either of them are not worse than the other.

A preference structure (P, I,J) offers a more sophisticated option to ex-
press the relationship between λi and λj :

• strict preference P (λi, λj) meaning λi is strictly preferred over λj ,

• indifference I(λi, λj) meaning that the alternatives are indifferent in
terms of preference,

• incomparability J (λi, λj) denoting the impossibility to compare the
alternatives.

When constraining the view on Boolean relations, we can describe the
preference structure in terms of the weak preference relation [FR94]:

strict preference λi � λj
df
= (λi � λj) ∧ (λi �� λj)

indifference λi ∼ λj
df
= (λi � λj) ∧ (λj � λi)

incomparability λi ‖ λj
df
= (λi �� λj) ∧ (λj �� λi)

5.2. Preference Relations and Structures 131

Following Fodor and Roubens, we allow a valued or fuzzy preference struc-
ture containing real values between 0 and 1 for P, I,J . For a more formal
introduction, let (�,⊥,¬) be a De Morgan triple, where � is a continuous
fuzzy T-norm , where ⊥ is a continuous fuzzy T-conorm and where ¬ is the
strict negation. Together (P, I,J) form a fuzzy preference structure on the
set of class labels L = {λ1, . . . , λm}, if the following conditions hold [Fod94]:

1. P,J are irreflexive

2. I is reflexive

3. P is �-asymmetric (∀i, j ∈ {1, . . . , m} : P(i, j)�P(j, i) = 0)

4. I,J are symmetric (∀i, j∈{1, . . . , m} :I(i, j)=I(j, i),J (i, j)=J (j, i))

5. P ∩� I = ∅, P ∩� J = ∅, I ∩� J = ∅

6. P ∪⊥ P t ∪⊥ I ∪⊥ J = L× L

When comparing more than two alternatives, a decomposition into all pairs
keeps this binary concept applicable to multi-class problems. Consequently,
this leads to the following matrices:

P =

⎡
⎢⎢⎣

0 P (λ1, λ2) · · · P (λ1, λm)
P (λ2, λ1) 0 · · · P (λ2, λm)

...
...

. . .
...

P (λm, λ1) P (λm, λ2) · · · 0

⎤
⎥⎥⎦

I =

⎡
⎢⎢⎣

1 I(λ1, λ2) · · · I(λ1, λm)
I(λ1, λ2) 1 · · · I(λ2, λm)

...
...

. . .
...

I(λ1, λm) I(λ2, λm) · · · 1

⎤
⎥⎥⎦

J =

⎡
⎢⎢⎣

0 J (λ1, λ2) · · · J (λ1, λm)
J (λ1, λ2) 0 · · · J (λ2, λm)

...
...

. . .
...

J (λ1, λm) J (λ2, λm) · · · 0

⎤
⎥⎥⎦

One standard way of introducing the fuzzy preference structure (P, I,J)

132 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

based on the weak preference relation was introduced in [Fod94]:

P (λi, λj) = � (R(λi, λj),¬(R(λj , λi)))

I(λi, λj) = � (R(λi, λj), R(λj , λi))

J (λi, λj) = � (¬(R(λi, λj)),¬(R(λj , λi)))

According to Hüllermeier and Brinker, a classification problem can be un-
derstood as a decision problem: Assume that two alternatives in a decision
making scenario can be seen as classes λi and λj in a binary classification sce-
nario, where only one class can be predicted. The weak preference R(λi, λj)
has now a special interpretation; it now describes that “λi is at least as likely
as λj” [HB08]. In that case the notion of strict preference remains the same,
but there is no indifference and no incomparability between λi and λj in
classification since one class and one class only has to be predicted. The
semantic equivalences would be the following ones:

indifference I ≡ conflict C

incomparability J ≡ ignorance I

When dealing with a classification problem, the fuzzy preference structure
(P, C, I) has the following meaning:

• strict preference P (λi, λj): the degree of evidence supporting λi but
not λj ,

• conflict I(λi, λj): the degree of evidence in favor of both classes that
cannot be assigned more specifically,

• ignorance J (λi, λj): the degree of missing evidence in favor of any of
the two classes.

The idea of relating a binary classification decision for a query instance
x to the learning of a fuzzy preference structure means that a single model
Mi,j involving classes λi and λj does not return a weak preference relation
R which would be similar to a reciprocal single score in the unit interval
within an ordinary classification scenario. Instead, the model Mi,j returns a
quadruple (P (λi, λj), P (λj , λi), C(λi, λj), I(λi, λj)) (as abbreviation quadru-
ple will be used below synonymously). The leap from modeling binary clas-
sification problems using fuzzy preference structures to the polychotomous

5.3. Learning Valued Preference Structures for Classification 133

case can be achieved by applying the pairwise decomposition technique: The
multi-class problem will be decomposed into m(m− 1)/2 pairwise problems,
cf. Section 2.2.2.

The set of all these quadruples form the starting point for various decision
making procedures, e.g. polychotomous classification decisions or abstention
decisions [HB08].

5.3. State-of-the-art: Learning Valued Preference
Structures for Solving Classification Problems

The approach of Hüllermeier and Brinker to learning a fuzzy preference struc-
ture for classification was to decompose a polychotomous classification algo-
rithm into pairwise problems and then to solve the pairwise problems through
an ensemble of Perceptrons [HB08, Ros58]. The variation in the ensemble
was achieved through permutations in the training data. The score distribu-
tion of this ensemble was used to induce the fuzzy preference structure. The
theoretical foundation for this procedure is that the ensemble Mi,j is a finite
sample of the version space M of the Perceptron for the given problem:

Mi,j = {M(1)
i,j , . . . ,M(K)

i,j } ⊆M

This ensemble returns a finite sample of the true score distribution that will
be used as the starting point for creating the fuzzy preference structure. It is
assumed that an ensemble memberM(k)

i,j delivers a score s
(k)
i,j ∈ [0, 1] that can

be interpreted as a weak fuzzy preference. A value near to one corresponds
to the support for λi, while a value near to zero denotes the support for λj .
Given those scores, the authors proposed the weak preference

R(λi, λj)
df
= min

k=1,...,K
s

(k)
i,j .

This definition is quite critical when the data contains noise or outliers. To
diminish such effects the authors proposed replacing the minimum operator
by the α-quantile of the distribution s

(k)
i,j . It is assumed that the models

in Mi,j are reciprocal and, thus, s
(k)
i,j = 1 − s

(k)
j,i holds. Consequently, the

weak preference R(λj , λi) is given by the (1− α)-quantile of the distribution

s
(k)
i,j . Given the weak preferences R(λi, λj) and R(λj , λi), the fuzzy preference

134 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 5.2.: Perceptron hyperplanes that were sampled from the version space
and classify the data correctly. The shaded area is the “region of
ignorance” [HB08].

structure is established in the following way:

P (λi, λj) = R(λi, λj) (1−R(λj , λi))
C(λi, λj) = 2 R(λi, λj) R(λj , λi)
I(λi, λj) = 1− (R(λi, λj) + R(λj , λi))

A graphical illustration of this approach is given in Figure 5.2. It shows
two classes that are linearly separable. Since a wealth of Perceptrons exists
that solve this problem flawlessly, creating an ensemble of those Perceptrons
corresponds to sampling the version space. A query instance lying in the
shaded area in the illustration exhibits some degree of uncertainty, due to
the fact that it is not fully clear to which class it belongs.

5.4. Fuzzy Round Robin RIPPER

Hüllermeier and Brinker mentioned that a rule-based system would be ideally
suited for obtaining a fuzzy preference structure [HB08]. The main reason for
this suitability is that, in contrast to standard discriminative classification
methods (such as linear discriminant functions), rule-based models are able
to represent conflict and, more importantly, ignorance in a natural way: A

5.4. Fuzzy Round Robin RIPPER 135

A2

A1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 5.3.: Exemplary classification scenario: Regions of conflict (green area)
and ignorance (area not covered by any rule) in case of a rule-based
model (rules indicated as rectangular lines).

situation of conflict occurs if an instance x is simultaneously covered by two
(or more) conflicting rules, while a situation of ignorance occurs if it is not
covered by any rule; see Figure 5.3.

In the present section we will describe how this idea can be realized: We
will present a novel rule-based algorithm that is able to learn fuzzy preference
structures: The Fuzzy Round Robin RIPPER (FR3) algorithm.

Since we already found that fuzzy rule learners overcome the unnatural
conventional step between full coverage and zero coverage, we prefer this
characteristic also for the learning of fuzzy preference structures: The gradual
rule coverage will allow a plausible representation of preference, conflict and
ignorance.

5.4.1. Pairwise Decomposition

The quadruple
(
P (λi, λj), P (λj , λi), C(λi, λj), I(λi, λj)

)
considers classes λi

and λj only. This makes it inapplicable to polychotomous classification prob-
lems without further effort. We follow the scheme of Hüllermeier and Brinker
who suggested applying the All-vs-All decomposition to create pairwise prob-
lems [HB08], cf. Section 2.2.2.

Thus, we will decompose the m-class classification problem into m(m−1)/2

136 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

binary problems involving classes λi, λj with 1 ≤ i < j ≤ m. We will learn
the quadruple using the classifier Mi,j , as we will explain below.

5.4.2. Fuzzy Rules for Learning Fuzzy Preference Structures

The fundamental idea behind learning the quadruple for two classes λi and λj

using classification rules was already mentioned. We will now go into detail
on how this can be realized in practice.

5.4.2.1. Starting Point: FURIA

The learning of the quadruple with classification rules will be based on the
FURIA algorithm. Consequently, several adjustments have to be made. A
direct use of the FURIA algorithm as a binary classifier Mi,j is not viable
for the following reasons: (A) The degree of ignorance is expressed through
the uncovered area. Consequently, the rule stretching technique cannot be
used. (B) FURIA calculates a score s ∈ [0, |RS|] to obtain a classification
decision which cannot be easily transformed into the quadruple. (C) The rule
learning procedure of FURIA builds well generalizing rules which extrapolate
extensively. This is problematic when decomposing the problem in a pairwise
manner.

Obviously, when dealing with a classification scenario involving classes λi

and λj , FURIA itself has no use for constructing a preference structure for
the given reasons. Thus, we will just use FURIA’s rule learning strategy to
learn two sets of fuzzy rules RSi,j and RSj,i, one for each class. Of course,
this will sideline (A) and (B), but it makes a novel way of calculating the
class scores necessary. We will go into detail below.

But first of all, we will deal with (C): We will limit the extrapolation by
restricting the rules in a fuzzy way.

Note that setting up RIPPER without any modifications would also lead to
a very similar set of failures: (A) RIPPER learns only rules for the minority
class and classifies the rest as default class. (B) There is no score calculation
in RIPPER since there is just the ordered list of rules. (C) RIPPER rules
are also very extrapolative.

5.4. Fuzzy Round Robin RIPPER 137

Figure 5.4.: The unbound rules in a pairwise model M
,

cover class acci-

dentally.

5.4.2.2. Limiting the Extrapolation

A key characteristic of fuzzy preference structures is that both indifference
and ignorance are represented in a reasonable way. Especially for the notion
of ignorance, a classifier has to be careful with its prediction. For a rule
based-classifier this means that areas not supported by proper evidence shall
not be covered by any rule. This demand is typically not supported by a
rule learner due to the learning scheme that only tries to separate the classes
from each other. Covering sparse areas is a generalization bias which is fatal
here. This topic becomes even more severe when considering the pairwise
decomposition scheme. This is because a ruleset RSi,j for class λi tries to
separate examples from this class from the ones of class λj . Since examples
from another class λk are not taken into consideration at this point, there is no
guarantee that RSi,j does not cover λk-examples accidentally, see Figure 5.4
for an illustrative example.

The consequence would be that instances which actually belong to λk

gather evidence for λi from RSi,j . The main risk of such malignant coverage is
due to the unbound support from intervals of the form A� ∈ [a, b,∞,∞) and
A� ∈ (−∞,−∞, c, d] that might cover huge areas of the data space where
no evidence in favor of their class was found. As this is not in agreement
with the “cautious” extrapolation strategy, these intervals are finally closed:
If b� = −∞ ∈ A� is considered, this core bound is set to

b� = min{x� | (x, λ) ∈ D(i), x = (x1, . . . , xk), μ(x) > 0} .

138 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

A

b c d

0

IF

1

Figure 5.5.: In case a fuzzy interval [a = −∞, b = −∞, c, d] is open to one side
(here the left one), the core bound b is determined by the last positive
example. (Note that a = −∞ is ignored for a clearer visualization.)

In this way, the core of the rule is restricted to the region in which positive
examples have indeed been observed, cf. Figure 5.5.

Moreover, the support bound a� is set to the minimal value in D�, the
domain of attribute A�. In practice we have to estimate min(D�) with the
known training data D. Consequently, to avoid any misses, we set a� beyond
min(D�) in a conservative fashion, as a rule of thumb by 50% of the width of
D�, which is max(D�) −min(D�). Applying this procedure lets the interval
support decrease as a linear function of the distance from the interval core,
cf. Figure 5.6. Analogous modifications are made in the case where c =
∞. See Figure 5.7 showing the previous example (but with bound rules):
The instances from the third class are still mistakenly covered, but now the
mistake is less severe.

5.4.2.3. Output of the Pairwise Models

Suppose that fuzzy rules ri
1, . . . , ri

k and rj
1, . . . , rj

� have been learned for classes
λi and λj respectively. For a new query instance x, the supports of these
classes are then given, respectively, by

si
df
= ⊥

s=1,...,k

(
μri

s
(x) · CF(ri

s)
)

sj
df
= ⊥

t=1,...,�

(
μ

r
j
t
(x) ·CF(rj

t)
)

,

5.4. Fuzzy Round Robin RIPPER 139

A

a b c d

0

IF

1

Figure 5.6.: The final fuzzy interval [a, b, c, d] with a support reaching beyond the
known data space. Note the position of a in this illustration is not
true to scale according to the 50% rule of thumb.

Figure 5.7.: The bound and fuzzified rules in a pairwise model M
,

cover class

accidentally, but only gradually.

where

CF(r) = CF(〈rA |λj〉) df
=

∑
(x,λj)∈D(j) μr(x)∑

(x,λ)∈D μr(x)

is a measure of the confidence or validity of a rule. For FR3 we choose the
max-operator as T-conorm ⊥.

From these two support degrees, we derive the quadruple as the output of

140 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

the fuzzy rule-based model Mi,j :

P (λi, λj) = si −min{si, sj}
P (λj , λi) = sj −min{si, sj}
C(λi, λj) = min{si, sj}
I(λi, λj) = 1−max{si, sj}

(5.1)

C(λi, λj) is the degree of conflict, namely the degree to which both classes
are supported. Likewise, I(λi, λj) is the degree of ignorance, namely the
degree to which none of the classes is supported. Finally, P (λi, λj) and
P (λj , λi) denote, respectively, the strict preference for λi and λj . Note that
at least one of these two degrees is zero and that P (λi, λj) + P (λj , λi) +
C(λi, λj) + I(λi, λj) ≡ 1. In passing, we also remark that (5.1) is actually a
standard decomposition scheme used in fuzzy preference modeling [FR94].

5.4.3. Making Classification Decisions Based on Fuzzy
Preference Structures

To obtain a classification decision from the quadruples an aggregation has
to be made. Let x be a query instance submitted to each model. As ex-
plained in Section 5.4.2.3, the output of modelMi,j is a quadrupleMi,j(x) =(
P (λi, λj), P (λj , λi), C(λi, λj), I(λi, λj)

)
.

These relations provide the basis for sophisticated classification and deci-
sion making policies. In the standard scenario where a single prediction is
sought, the following classification practice could be used:

λ∗ = arg max
λi∈L

∑
1≤i�=j≤m

P (λi, λj) +
1

2
·C(λi, λj) +

Ni

Ni + Nj

· I(λi, λj) , (5.2)

where Ni is the number of examples from class λi in the training data (and
hence an unbiased estimate of the class probability). This decision rule,
which proved to perform well in practice (cf. Section 5.6), evaluates each
candidate label in terms of the sum of strict preferences over all other labels,
distributes the corresponding degrees of conflict in a uniform way and the
degrees of ignorance in proportion to the size of the classes (in other words,
prior probabilities are used in the case of no further information).

Going beyond the conventional classification setting, a preference structure
(P, C, I) can be especially useful in generalized settings in which, for example,

5.5. Visualization of Fuzzy Preference Structures 141

λ1 λ2 λ3 score

λ3

λ2

λ1 0.67

0.19

0.14

Figure 5.8.: Graphical illustration of a preference structure predicted by FR3 for
a query instance on the iris data. The size of a box is proportional
to the degree of non-ignorance (1 minus ignorance). The size of the
white (black) area is proportional to the degree of preference in favor
of the row-class (column-class). The gray area shows the correspond-
ing degree of conflict. The rightmost column shows the final score
(5.2) for every class.

more than one class can be predicted in cases of conflict, or a classification
decision can be refused in cases of ignorance (cf. Section 5.6.5).

5.5. Visualization of Fuzzy Preference Structures

An FR3 prediction reduces complexity by providing information on two lev-
els of abstraction: On the “relational level”, the preference structure gives a
rough picture of the situation, including uncertainties and potential conflicts.
Information on this level becomes especially comprehensible when being pre-
sented in a graphical form, as shown in Figure 5.8. If the need arises, each
entry in the corresponding relations can then be “explained” by an underly-
ing pairwise model, which resembles the second level of abstraction. As an
advantage, note that each pairwise model itself will typically be much sim-
pler than a single polychotomous model, as it refers to only two instead of
all classes simultaneously.

142 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

5.6. Experiments

To analyze the performance of our FR3 approach, we conduct several exper-
imental studies. As a starting point, we used the RIPPER implementation
of WEKA (“JRip”), cf. Section 2.3.3, both for re-implementing Fürnkranz’s
R3 and our FR3.

5.6.1. Classification Performance Analysis

In a first study, we compared RIPPER, R3 and FR3 with respect to classifi-
cation accuracy. For RIPPER we used the WEKA default settings according
to Section 2.5.3.1. R3 was used with the weighted voting variant, i.e., the
vote of a pairwise classifiers is weighted in terms of rule purity; Fürnkranz
pointed out that this method outperformed binary (0/1) voting and Laplace
weighted voting [Für03]. Apart from that, the RIPPER-specific settings in
R3 were set to default values.

We also included the C4.5 decision tree learner, cf. Section 2.5.3.4. More-
over, we added two fuzzy rule learners from the KEEL suite [AFSG+09]: The
fuzzy grid-based CHI classifier and the genetic fuzzy rule learner SLAVE,
cf. Section 2.5.3.2 and 2.5.3.3.

The testbed for this comparison were the 30 multi-class data sets, cf. 2.1.
We did not use the binary data sets since FR3 is a multi-class classifier
only. The experimental settings followed the setup proposed in Section 2.5.5.
Table 5.1 summarizes the results in terms of mean classification accuracies.11

The overall picture conveyed by the results is clearly in favor of FR3, which
outperforms the other methods on most data sets. In order to evaluate the
performances, we conduct the Friedman Test, cf. Table 5.1 for the classifier
ranks. The corrected Friedman statistic for large N and k according to (2.5)
is 49.98, while the critical value for the significance level α = 0.01 is only
4.70. Thus, the null-hypothesis can quite safely be rejected, which means
that there are significant differences in the classifiers’ performance.

Given the result of the Friedman Test, we conduct the Bonferroni-Dunn
Test as a post-hoc test to compare the competitors to the control classifier
HELLFIRE [Dun61]. The critical distance according to (2.7) between two
classifier ranks is CDα = 1.12. The results of this test are summarized in
Figure 5.9: FR3 is better than the rest in terms of accuracy — except R3

11The classifier FR3c, which also appears in the table, will be analyzed in Section 5.6.3.

5.6. Experiments 143

Table 5.1.: Average classification accuracy and ranks for FR3 and its competitors.

Data set FR3 R3 RIPPER C4.5 CHI SLAVE FR3c

acd-authorship 95.17(1) 94.37(2) 93.05(4) 93.50(3) 71.60(6) 91.87(5) 94.66
acd-halloffame 93.13(2) 93.22(1) 92.87(4) 92.87(3) 91.73(6) 92.68(5) 93.06
acd-votesurvey 36.06(3) 35.58(4) 34.40(5) 38.75(2) 42.88(1) 29.51(6) 36.63
cars 81.48(2) 79.52(3) 75.93(4) 82.15(1) 67.66(6) 70.68(5) 80.93
collins 94.53(2) 92.87(3) 92.67(4) 96.10(1) 43.37(6) 50.87(5) 93.12
ecoli 82.91(1) 82.46(2) 80.57(5) 81.35(3) 78.26(6) 81.03(4) 82.04
eucalyptus 64.25(1) 63.72(2) 58.69(4) 59.98(3) 52.43(6) 58.16(5) 63.88
glass 72.98(1) 69.61(2) 63.18(4) 66.69(3) 61.70(6) 61.83(5) 71.13
iris 94.78(2) 94.25(3) 93.45(5) 94.25(3) 92.55(6) 94.92(1) 94.08
metStatCoord. 93.30(1) 92.85(3) 92.04(4) 92.87(2) 32.64(6) 58.77(5) 92.97
metStatRainfall 69.68(1) 68.13(2) 60.66(3) 59.47(4) 22.71(6) 29.35(5) 68.86
metStatRST 43.22(2) 44.13(1) 36.08(5) 38.60(4) 20.17(6) 42.02(3) 43.30
metStatSunshine 52.94(1) 51.17(2) 44.48(4) 46.78(3) 32.18(5) 28.83(6) 52.25
metStatTemp 57.38(1) 56.10(2) 47.45(4) 53.18(3) 24.07(5) 22.10(6) 57.23
mfeat-factors 93.35(1) 92.64(2) 87.05(5) 87.96(4) 89.19(3) 86.83(6) 93.06
mfeat-fourier 80.48(1) 79.26(2) 71.37(5) 74.42(3) 69.29(6) 73.49(4) 80.16
mfeat-karhunen 91.51(1) 89.70(2) 79.13(5) 80.20(4) 83.30(3) 78.37(6) 91.13
mfeat-morpholog. 72.31(1) 72.25(2) 70.74(4) 71.60(3) 41.63(6) 67.08(5) 72.09
mfeat-zernike 77.18(1) 76.13(2) 67.58(6) 69.11(4) 73.44(3) 68.26(5) 77.05
optdigits 96.22(1) 95.55(2) 89.68(4) 89.51(5) 45.90(6) 93.45(3) 96.01
page-blocks 97.04(2) 97.13(1) 96.79(4) 96.89(3) 92.41(6) 93.58(5) 96.92
pasture-prod. 71.28(2) 67.91(4) 68.46(3) 73.67(1) 44.53(6) 53.63(5) 67.47
pendigits 98.07(1) 97.48(3) 95.54(5) 95.92(4) 97.64(2) 87.26(6) 97.67
segment 96.97(1) 96.14(2) 94.53(4) 95.95(3) 85.32(6) 88.87(5) 96.52
squash-unstored 75.52(2) 74.92(3) 71.74(4) 76.08(1) 60.90(6) 65.56(5) 75.02
synthetic control 92.24(1) 90.78(2) 82.85(6) 90.00(3) 86.59(5) 89.23(4) 90.89
vehicle 72.78(1) 71.66(2) 67.80(4) 71.38(3) 61.05(6) 64.08(5) 72.63
vowel 84.03(1) 77.85(2) 64.71(4) 75.60(3) 47.93(6) 63.84(5) 81.58
waveform 79.79(2) 80.58(1) 78.72(3) 75.05(5) 74.98(6) 75.34(4) 78.56
wine 92.70(2) 92.63(3) 90.02(6) 91.22(5) 93.08(1) 92.46(4) 91.84

average rank 1.40 2.23 4.37 3.07 5.13 4.77

144 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

123456

Avg. Rank

FR3

R3

C4.5

CHI

SLAVE

RIPPER

Figure 5.9.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
FR3 is significantly better than the rest in terms of classification
accuracy — except R3. Significance level α = 0.1

— at the significance level α = 0.1. Although this test was unable to reject
the null-hypothesis of equal classifier performance between FR3 and R3, the
direct comparison is very clear: FR3 outperforms R3 with 26 wins and only
4 losses.

5.6.2. Ranking Performance Analysis

In this study, we compare FR3 to the algorithms from the analysis before.
The settings and data sets remain the same, while the focus is now on the
area under the curve, AUC. Table 5.2 summarizes the results in terms of
mean AUC.11

The overall picture conveyed by the results is clearly in favor of FR3, which
outperforms the other methods on most data sets. In order to evaluate the
performances, we conduct the Friedman Test, cf. Table 5.2 for the classifier
ranks. The corrected Friedman statistic for large N and k according to (2.5)
is 41.05, while the critical value for the significance level α = 0.01 is only
4.70. Thus, the null-hypothesis can quite safely be rejected, which means
that there are significant differences in the classifiers’ performance.

Given the result of the Friedman Test, we conduct the Bonferroni-Dunn
Test as a post-hoc test to compare the competitors to the control classifier
HELLFIRE [Dun61]. The critical distance according to (2.7) between two
classifier ranks is CDα = 1.12. The results of this test are summarized in
Figure 5.10: FR3 is better than the rest in terms of AUC — except R3 —
at the significance level α = 0.1. Although this test was unable to reject
the null-hypothesis of equal classifier performance between FR3 and R3, the

5.6. Experiments 145

Table 5.2.: Average AUC and ranks for FR3 and its competitors.

Data set FR3 R3 RIPPER C4.5 CHI SLAVE FR3c

acd-authorship 0.99(1) 0.99(2) 0.96(4) 0.96(5) 0.90(6) 0.98(3) 0.99
acd-halloffame 0.89(2) 0.90(1) 0.79(6) 0.81(5) 0.87(4) 0.89(3) 0.88
acd-votesurvey 0.54(3) 0.53(4) 0.50(5) 0.54(2) 0.55(1) 0.49(6) 0.55
cars 0.92(1) 0.91(2) 0.82(5) 0.90(3) 0.86(4) 0.81(6) 0.91
collins 1.00(1) 0.99(2) 0.97(4) 0.98(3) 0.88(5) 0.83(6) 0.99
ecoli 0.94(1) 0.94(2) 0.89(5) 0.89(6) 0.94(3) 0.91(4) 0.94
eucalyptus 0.89(1) 0.88(2) 0.82(4) 0.82(3) 0.79(5) 0.77(6) 0.89
glass 0.88(1) 0.86(2) 0.76(6) 0.79(4) 0.77(5) 0.79(3) 0.87
iris 0.99(2) 0.98(4) 0.96(6) 0.96(5) 1.00(1) 0.98(3) 0.98
metStatCoord. 1.00(1) 1.00(2) 0.98(3) 0.98(4) 0.78(6) 0.82(5) 1.00
metStatRainfall 0.95(1) 0.94(2) 0.85(3) 0.81(4) 0.76(5) 0.66(6) 0.95
metStatRST 0.82(1) 0.82(2) 0.70(4) 0.71(3) 0.59(5) 0.58(6) 0.82
metStatSunshine 0.88(1) 0.87(2) 0.75(5) 0.74(6) 0.80(3) 0.75(4) 0.88
metStatTemp 0.88(1) 0.88(2) 0.77(4) 0.77(3) 0.66(6) 0.68(5) 0.88
mfeat-factors 0.99(1) 0.99(2) 0.95(5) 0.94(6) 0.98(3) 0.97(4) 0.99
mfeat-fourier 0.97(1) 0.97(2) 0.92(5) 0.88(6) 0.92(3) 0.92(4) 0.97
mfeat-karhunen 0.99(1) 0.98(2) 0.92(5) 0.90(6) 0.98(3) 0.95(4) 0.99
mfeat-morpholog. 0.96(1) 0.96(2) 0.94(3) 0.92(5) 0.93(4) 0.89(6) 0.96
mfeat-zernike 0.96(1) 0.96(2) 0.90(5) 0.87(6) 0.95(3) 0.90(4) 0.96
optdigits 1.00(1) 1.00(2) 0.96(4) 0.95(5) 0.82(6) 0.96(3) 1.00
page-blocks 0.98(1) 0.98(2) 0.93(4) 0.93(3) 0.82(6) 0.83(5) 0.98
pasture-prod. 0.86(1) 0.85(2) 0.79(4) 0.83(3) 0.64(6) 0.71(5) 0.85
pendigits 1.00(2) 1.00(3) 0.98(5) 0.98(6) 1.00(1) 0.99(4) 1.00
segment 1.00(1) 0.99(2) 0.98(3) 0.98(4) 0.97(5) 0.96(6) 0.99
squash-unstored 0.83(1) 0.82(2) 0.77(4) 0.81(3) 0.71(6) 0.76(5) 0.82
synthetic control 0.99(1) 0.99(4) 0.93(6) 0.95(5) 0.99(2) 0.99(3) 0.99
vehicle 0.90(1) 0.90(2) 0.85(3) 0.85(5) 0.85(4) 0.83(6) 0.90
vowel 0.98(1) 0.97(2) 0.88(6) 0.91(4) 0.91(3) 0.89(5) 0.97
waveform 0.94(2) 0.94(1) 0.88(5) 0.83(6) 0.91(4) 0.91(3) 0.93
wine 0.98(2) 0.97(3) 0.93(6) 0.93(5) 0.98(1) 0.97(4) 0.98

average rank 1.23 2.20 4.57 4.47 3.97 4.57

146 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

123456

Avg. Rank

FR3

R3

CHI

SLAVE

RIPPER

C4.5

Figure 5.10.: Bonferroni-Dunn Test visualization according to Demšar [Dem06].
FR3 is significantly better than the rest in terms of AUC — except
R3. Significance level α = 0.1

direct comparison is very clear: FR3 outperforms R3 with 28 wins and only
2 losses.

5.6.3. Fuzzification Analysis

The previous results show that FR3 is a significant improvement in compar-
ison to RIPPER and R3. To explain this improvement, we conjecture that
the scores produced by fuzzy rules are superior to those produced by conven-
tional rules, which in turn is beneficial for the voting scheme that is used by
the round robin learner to determine a prediction.

To examine whether rule fuzzification is indeed the main factor, or whether
the improvements should perhaps be attributed to other modifications, we
conduct some additional experiments with a conventional (crisp) variant of
FR3, included in Table 5.1 and in Table 5.2 under the name FR3c. To
optimize an interval as originally produced by RIPPER, this variant conducts
a search process quite similar to the search for an optimal fuzzy interval
(cf. Section 3.2.3). Instead of a trapezoid, however, it is again only allowed
to use intervals, i.e. it simply attempts to optimize the original decision
boundary in terms of the rule’s purity. When comparing FR3c to R3, it
achieves 21 wins in terms of accuracy and 24 in terms of AUC, which is less
than the 26 and 28 wins achieved by FR3. The importance of the fuzzy rules
become even more obvious when comparing FR3c to FR3 itself. Here, the
latter has a higher classification rate for all except two data sets and a better
AUC for all but one data set.

From this analysis we conclude that the use of fuzzy rules is indeed essential
for the superb performance of FR3.

5.6. Experiments 147

5.6.4. Model Complexity Analysis

Since FR3 disables the pruning step in IREP, it learns more specialized rules.
Therefore, it is likely to produce models that are more complex — in terms
of the number of rules and their lengths — than those produced by R3.

Indeed, FR3 produces more specific rules than R3 for all but one data
set and also the average rule length (number of attributes in the antecedent
part) of FR3 (1.78) is slightly larger than the average length for R3 (1.53);
see Table 5.3 for detailed statistics. Likewise, FR3 uses more rules for all but
one data set and again the average number of rules is slightly higher for FR3
(3.00) than for R3 (2.31).

As demonstrated, the performance gain comes at the cost of slightly more
complex models, even though the average differences (less than one additional
rule and about 0.3 additional attributes per rule) are admissible.

5.6.5. Analysis of Conflict and Ignorance as Measures of
Uncertainty

The ability to represent uncertainty involved in a classification decision — in
terms of measures of conflict and ignorance — is arguably one of the main
advantages of FR3. To test whether FR3 does indeed provide a basis for
implementing classifier that are more “reliable”, we conduct another series of
experiments in a setting of classification with reject option. Roughly speak-
ing, the idea is that, if γ is a reliable index of classification uncertainty, then
the value of γ should correlate with the probability of making a correct de-
cision. Or, stated differently, when abstaining from the classification of all
instances, the γ-value of which exceeds a threshold t, classification accuracy
should improve on the remaining instances. The dependency between the
threshold t and classification accuracy is typically depicted in the form of
so-called accuracy-rejection curves.

In our experiments, we test two very simple uncertainty indexes (needless
to say, various other indexes are conceivable) directly related to the two types
of uncertainty reflected by FR3: γc is the degree of conflict between the top-
class as suggested by FR3 (in terms of the score (5.2)) and the second-best
class. Likewise, γi is the degree of ignorance between these two classes. Again,
each data set is randomly split, in proportion 2:1, for training and testing.
This is repeated 100 times and each instance (occurring in potentially many
of the 100 test sets) is associated with its average γ-index.

148 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

Table 5.3.: FR3 model statistics. The number of rules per rule set and the number
of attributes per rule.

rules per rule set conditions per rule

Data set FR3 R3 FR3 R3

analcatdata-authorship 2.51 2.20 1.76 1.54
analcatdata-halloffame 4.7 2.53 2.31 1.62
analcatdata-votesurvey 1.47 1.16 1.30 1.12
cars 4.28 3.14 1.86 1.64
collins 1.0 1.2 1.0 1.0
ecoli 1.45 1.20 1.34 1.12
eucalyptus 4.3 2.90 2.10 1.67
glass 1.64 1.37 1.46 1.23
iris 1.23 1.17 1.22 1.12
metStatCoordinates 1.51 1.40 1.36 1.29
metStatRainfall 4.35 3.37 2.37 2.1
metStatRST 1.68 1.40 1.35 1.22
metStatSunshine 1.59 1.35 1.42 1.23
metStatTemp 1.85 1.60 1.51 1.37
mfeat-factors 1.99 1.75 1.57 1.31
mfeat-fourier 2.69 2.14 1.93 1.54
mfeat-karhunen 2.91 2.56 1.87 1.63
mfeat-morphological 1.79 1.55 1.50 1.36
mfeat-zernike 3.30 2.63 2.9 1.70
optdigits 3.87 3.42 2.29 2.0
page-blocks 2.76 2.38 1.99 1.73
pasture-production 1.11 1.7 1.7 1.4
pendigits 3.77 3.41 2.31 2.7
segment 1.97 1.74 1.72 1.51
squash-unstored 1.33 1.20 1.19 1.10
synthetic control 1.45 1.52 1.36 1.15
vehicle 4.45 3.49 2.38 2.6
vowel 2.54 2.29 1.77 1.61
waveform 19.92 10.73 4.61 3.59
wine 1.58 1.47 1.39 1.18

average 3.00 2.31 1.78 1.53

5.7. Summary 149

t1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Acc

75

80

85

90

95

100

γc γi

Figure 5.11.: Accuracy-rejection curves for the data set waveform.

The monotonicity expected of the dependence between rejection threshold
t and classification accuracy is confirmed by the experimental results sum-
marized in Tables 5.4 and 5.5. Using γc, an improvement is obtained for
all data sets and γi leads to an improvement in all but one case. Typical
accuracy-rejection curves are shown in Figure 5.11 (the plateaus in these
curves are caused by the absence of instances with corresponding γ-values).
In summary, these experiments clearly show that both measures of uncer-
tainty derived by FR3, conflict and ignorance, are reliable indicators of the
uncertainty involved in a classification decision.

5.7. Summary

In this chapter we proposed the FR3 method that learns a fuzzy preference
structure using fuzzy rule-based models as a foundation. The idea was to de-
rive degrees of strict preference, conflict and ignorance from the coverage de-
grees of a rule-based model. Through pairwise decomposition, this approach
was able to learn a fuzzy preference structure for multi-class problems. It
was shown that the uncertainty distinction between conflict and ignorance
make sense because of the different semantic meaning. It was explained that
this approach can be used for various decision making techniques, e.g. for
a classification task or for an abstention decision. In the experiments we
found that the discriminative ability of FR3 is considerable in terms of both
accuracy and AUC.

150 FR3: Learning Fuzzy Preference Structures using Fuzzy Rules

Table 5.4.: Classification rates (acc) on the test set for different rejection thresh-
olds and the coverage (cov) in terms of the percentage of non-rejected
instances, for conflict (using γc) as rejection criteria. For statistical
reasons, results for less than 10 instances are not reported.

rejection threshold

1 0.6 0.2 0

Data set acc cov acc cov acc cov acc cov

acd-authorship 95.2 100.0 95.2 100.0 96.2 94.9 99.4 54.9
acd-halloffame 93.1 100.0 93.1 100.0 94.1 97.8 98.4 76.3
acd-votesurvey 36.8 100.0 36.8 100.0 36.8 100.0
cars 81.5 100.0 81.5 100.0 85.5 88.2 98.9 43.1
collins 94.5 100.0 94.5 100.0 97.2 94.6 99.3 75.0
ecoli 83.1 100.0 83.1 100.0 84.8 93.8 94.2 55.4
eucalyptus 64.5 100.0 64.5 100.0 66.2 91.6 89.5 21.7
glass 72.8 100.0 72.8 100.0 74.2 90.1 97.7 14.6
iris 94.4 100.0 94.4 100.0 94.6 98.6 99.7 80.3
metStatCoordinates 93.3 100.0 93.3 99.9 95.4 94.7 99.6 70.9
metStatRainfall 69.7 100.0 69.7 100.0 75.9 77.2 96.3 13.3
metStatRST 43.4 100.0 43.4 100.0 43.9 96.7 57.1 8.9
metStatSunshine 52.6 100.0 52.6 100.0 55.0 86.5 86.6 3.8
metStatTemp 57.3 100.0 57.3 100.0 59.2 94.2 84.5 21.8
mfeat-factors 93.3 100.0 93.3 99.9 95.1 94.5 99.6 58.3
mfeat-fourier 80.4 100.0 80.4 99.9 84.8 87.1 99.6 32.2
mfeat-karhunen 91.5 100.0 91.5 99.9 94.8 87.2 99.9 32.9
mfeat-morphological 72.2 100.0 72.2 99.9 73.4 95.5 91.6 46.2
mfeat-zernike 77.1 100.0 77.1 99.9 80.1 85.9 97.9 22.8
optdigits 96.2 100.0 96.3 99.9 98.1 93.8 99.9 62.7
page-blocks 97.1 100.0 97.1 100.0 97.7 98.5 99.4 88.3
pasture-production 71.6 100.0 71.6 100.0 72.3 91.7
pendigits 98.1 100.0 98.1 99.9 99.0 96.5 99.9 73.3
segment 96.9 100.0 96.9 100.0 98.1 96.5 99.8 76.7
squash-unstored 74.8 100.0 74.8 100.0 74.6 96.2 76.7 25.0
synthetic control 92.2 100.0 92.2 100.0 94.4 89.2 98.2 43.0
vehicle 72.6 100.0 72.6 100.0 74.2 91.8 95.1 24.9
vowel 84.0 100.0 84.0 100.0 88.7 83.7 98.9 13.7
waveform 79.8 100.0 79.8 100.0 85.4 77.9 99.3 14.6
wine 92.8 100.0 92.8 100.0 95.1 92.1 99.7 52.2

5.7. Summary 151

Table 5.5.: Classification rates (acc) on the test set for different rejection thresh-
olds and the coverage (cov) in terms of the percentage of non-rejected
instances, for ignorance (using γi) as rejection criteria. For statistical
reasons, results for less than 10 instances are not reported.

rejection threshold

1 0.6 0.2 0

Data set acc cov acc cov acc cov acc cov

acd-authorship 95.2 100.0 95.2 100.0 96.4 96.0 99.3 60.6
acd-halloffame 93.1 100.0 93.1 99.9 95.2 93.6
acd-votesurvey 36.8 100.0 35.5 87.5
cars 81.5 100.0 81.5 100.0 88.0 75.4
collins 94.5 100.0 94.5 100.0 97.2 94.6 99.7 70.6
ecoli 83.1 100.0 83.1 100.0 87.1 86.0
eucalyptus 64.5 100.0 64.7 98.6 81.0 40.4 99.8 10.1
glass 72.8 100.0 72.8 99.5 78.6 73.2
iris 94.4 100.0 94.4 100.0 95.2 97.3 99.8 28.6
metStatCoordinates 93.3 100.0 93.3 100.0 94.3 97.2 97.7 5.6
metStatRainfall 69.7 100.0 69.7 100.0 78.6 68.8
metStatRST 43.4 100.0 43.5 99.7 53.5 27.7
metStatSunshine 52.6 100.0 52.6 100.0 61.0 55.5
metStatTemp 57.3 100.0 57.4 99.9 70.1 57.5
mfeat-factors 93.3 100.0 93.3 100.0 94.8 95.9 99.7 23.0
mfeat-fourier 80.4 100.0 80.5 99.8 89.5 73.8 99.6 12.5
mfeat-karhunen 91.5 100.0 91.5 100.0 94.0 92.5 99.4 8.4
mfeat-morphological 72.2 100.0 73.8 93.9 86.0 61.9 100.10 6.
mfeat-zernike 77.1 100.0 80.2 91.7 90.1 71.9 99.2 6.0
optdigits 96.2 100.0 96.2 100.0 97.3 96.4 99.8 51.7
page-blocks 97.1 100.0 97.1 100.0 97.7 98.4
pasture-production 71.6 100.0 71.6 100.0 75.3 77.8
pendigits 98.1 100.0 98.1 100.0 98.5 98.3 99.8 49.2
segment 96.9 100.0 96.9 100.0 98.0 97.0 99.9 40.7
squash-unstored 74.8 100.0 76.0 94.2
synthetic control 92.2 100.0 92.2 100.0 94.1 90.8 98.9 24.8
vehicle 72.6 100.0 74.0 94.0 95.1 45.7 100.0 2.6
vowel 84.0 100.0 84.0 100.0 87.8 84.4 98.5 7.4
waveform 79.8 100.0 79.8 100.0 87.1 75.9 99.1 24.4
wine 92.8 100.0 92.8 100.0 93.2 97.2 99.5 20.8

6Comparison of FURIA,
HELLFIRE and FR3

In the previous three chapters novel techniques for learning and fuzzifying
classification rules were proposed. This chapter has the purpose of contrast-
ing FURIA, HELLFIRE and FR3 in order to better display their inherent
characteristics. We explain the differences and similarities in the following
sections.

6.1. Comparison of Motivations and Methods

6.1.1. Motivation

The purposes of the proposed classifiers are quite different. One the one hand
we have the rule-based classifiers FURIA and HELLFIRE and on the other
hand we have the preference learner FR3. While FURIA and HELLFIRE
were conceived for solving classification problems, FR3 is more powerful since
it is able to derive a fuzzy preference structure — instead of a mere class
prediction — for each query instance. This can be the starting point for
making classification decisions, but it may also help to tackle more complex
decision scenarios.

Another distinction can be found between FURIA and HELLFIRE: The
latter is a linguistic rule-based classifier, which is using rule conditions that
are based on linguistically labeled fuzzy grid cells. In contrast to that FURIA

153

154 Comparison of FURIA, HELLFIRE and FR3

uses rule-specific fuzzy sets which are not based on a global grid-partition.
While FURIA solves classification problems only, HELLFIRE claims to learn
linguistic models that are interpretable by domain experts.

6.1.2. Problem Decomposition Technique

As FURIA and HELLFIRE were designed for being fuzzy rule-based classi-
fiers, they decompose a classification problem in a 1-vs-All fashion, learning
one set of rules for every class. The purpose of FR3, however, was to obtain
fuzzy preference structures for query instances. In order to express the pair-
wise relationships, FR3 decomposes polychotomous classification problems
using All-vs-All decomposition, learning one set of rules for every ordered
pair of classes.

6.1.3. Rule Learning Strategy

A key distinction between FURIA and FR3 on the one side and HELLFIRE
on the other side is the rule learning strategy. The rules which are used by
the former are learned with a modified version of RIPPER [Coh95]. As a
contrast to that, HELLFIRE learns rules with its own, novel strategy that is
based on a coordinated splitting approach.

6.1.4. Fuzzy Partitioning

A major difference between the rules learned by FURIA and FR3 in contrast
to the ones learned by HELLFIRE is that rules of the latter form a Ruspini
fuzzy grid partition on the numeric attributes. Both FURIA and FR3 are
more flexible in that concern, meaning that both do not generate a global
fuzzy partition. Instead FURIA and FR3 create fuzzy sets for each rule
independently.

6.1.5. Fuzzification Technique

The fuzzification technique to obtain fuzzy rules is different for FURIA,
HELLFIRE and FR3. While HELLFIRE creates grid-based rules, are FURIA
and FR3 models based on more flexible RIPPER rules [Coh95]. The tech-
nique to soften the rule boundaries is the same for FURIA and FR3: They

6.1. Comparison of Motivations and Methods 155

are fuzzified by carefully and gradually extrapolating the rule coverage. How-
ever, FR3 limits the extrapolation of the rules in a fuzzy way whenever an
interval condition is unbound on one side, e.g. I = [b,∞] or I = [−∞, c].
The motivation behind that additional fuzzification is due to the pairwise
decomposition: Limiting the extrapolation helps avoiding accidental cover-
age of instance which do not belong to either of the classes of the current
pairwise model.

The fuzzification technique of HELLFIRE is different. This is due to the
fact that rules contain grid cells in the antecedent part. Basically, one grid cell
can occur in more than one rule. The consequence is that the focus shifts from
fuzzifying rule intervals to fuzzifying grid cells. A major difference between
the fuzzification of a condition from a RIPPER rule and a grid cell is that in
the former case this can be done for each rule independently. However, when
fuzzifying a grid cell, one has to take adjacent grid cells into consideration.
The process of fuzzifying grid cells is essentially to soften split points of a
numeric attribute discretization. While the fuzzification of a RIPPER rule
does not decrease the coverage within the original intervals, softening split
points of a discretization decreases the area of full coverage while increasing
the area of gradual coverage.

6.1.6. Handling of Uncovered Instances

For the rule-based classifiers in this work it might happen that a query in-
stance is not covered by any rule at all. In order to give a class prediction the
classifiers use different solutions. FURIA and HELLFIRE use rule stretch-
ing as fallback strategy. This means that all rules are generalized so that
the query instance can be covered. In a subsequent evaluation these gener-
alized rules are used for classification. For FR3 the lack of coverage within
a pairwise model is considered as ignorance. During score calculation this
(gradual) ignorance is distributed according to the class frequencies observed
in the training data.

6.1.7. Score Aggregation

All three classifiers use a kind of scoring systems for the classification of an
unknown instance: FURIA uses weighted voting to aggregate the coverage
degrees, while FR3 aggregates the quadruples from the pairwise models us-
ing a sum operation. In contrast to these approaches, HELLFIRE applies

156 Comparison of FURIA, HELLFIRE and FR3

the Łukasiewicz T-conorm upon the weighted coverage degrees. All three
classifiers predict the class that has the largest score.

6.2. Experimental Comparison

The comparison in the previous section displayed that FURIA, HELLFIRE
and FR3 are rule learning algorithms. However, when comparing the three
more closely, significant differences can be found. Now we compare FURIA,
HELLFIRE and FR3 experimentally and analyze the outcome with respect
to the classifiers’ characteristics.

This comparison will focus on discriminative power, which is arguably one
of the most important features of a (linguistic) fuzzy rule learning algorithm.
To this end, we will distinguish not only between classification accuracy and
AUC but also between binary and multi-class data sets. This is because of
the fact that FR3 is a polychotomous classifier only.

6.2.1. Binary Data Sets

The first experimental comparison of the introduced classifiers is concerned
with FURIA and HELLFIRE only. We will focus on the 15 two-class data
sets that were introduced in Section 2.1. The results for classification ac-
curacy and AUC of this comparison are shown in Table 6.1. FURIA wins
the direct comparison with 11 and 10 wins for classification accuracy and
AUC respectively. From a statistical point of view, a sign test rejects the
null-hypothesis of equal performance with an error probability of α = 0.1,
cf. Section 2.5.6.1, for classification accuracy only. However, the outcome of
AUC is not that much worse.

Interestingly, the winning algorithm differs on more than one data set.
However, for a two-class problem the AUC winner should also win the accu-
racy comparison — when tuning the decision threshold of the predicted class
distribution appropriately [LF03]. Note that — not only for this purpose —
a pseudo class distribution could be obtained by normalizing the class scores.
Yet this tuning was neither done for FURIA nor HELLFIRE.

6.2. Experimental Comparison 157

Table 6.1.: Average classification accuracy and AUC of FURIA and HELLFIRE.

Accuracy AUC

Data set FURIA HELLFIRE FURIA HELLFIRE

acd-bankruptcy 82.57 82.15 0.88 0.87
acd-cyyoung8092 80.02 80.28 0.78 0.74
acd-cyyoung9302 82.64 81.87 0.77 0.77
acd-esr 80.90 82.62 0.67 0.67
acd-lawsuit 98.00 96.94 0.95 0.95

biomed 88.31 86.69 0.91 0.90
haberman 72.72 73.00 0.63 0.62
heart-statlog 79.75 79.63 0.84 0.82
ionosphere 89.59 88.39 0.90 0.91

liver-disorders 67.15 63.81 0.66 0.68

pima diabetes 74.71 72.92 0.77 0.73
prnn-synth 83.57 83.81 0.89 0.85
schizo- 80.52 70.52 0.75 0.86

sonar 77.01 72.35 0.78 0.81

w.-breast-cancer 95.68 94.51 0.98 0.97

wins 11 4 10 5

6.2.2. Multi-class Data Sets

The second experimental comparison of the introduced classifiers is focused
on polychotomous problems: FURIA, HELLFIRE and FR3 are compared
on the 30 multi-class data sets, cf. Section 2.1. The results in terms of
classification accuracy and AUC can be found in Table 6.2.

To evaluate the performances we conduct the Friedman Test, cf. Table 6.2
for the classifier ranks. The corrected Friedman statistic for large N and k ac-
cording to (2.5) is 38.1 for accuracy and 37.5 for AUC, while the critical value
for the significance level α = 0.01 is only 4.99. Thus, the null-hypothesis of
equal performance can quite safely be rejected for both accuracy and AUC,
which means that there are significant differences in the classifiers’ perfor-
mance.

Given the results of the Friedman Tests, we conduct Nemenyi Tests as post-
hoc tests in order to compare the classifiers in a pairwise manner [Nem63].
The critical distance according to (2.6) between two classifier ranks is CDα =
0.53. The results of these tests are summarized in Figure 6.1 and Figure 6.2:
For classification accuracy, FR3 and FURIA are both significantly better
than HELLFIRE. For AUC, FR3 is significantly better than FURIA and
HELLFIRE.

158 Comparison of FURIA, HELLFIRE and FR3

Table 6.2.: Average classification accuracy, AUC and ranks of FURIA, HELLFIRE
and FR3.

Accuracy AUC

Data set FURIA HELLFIRE FR3 FURIA HELLFIRE FR3

acd-authorship 95.67(1) 91.40(3) 95.17(2) 0.98(2) 0.98(3) 0.99(1)
acd-halloffame 92.92(2) 91.51(3) 93.13(1) 0.83(2) 0.78(3) 0.89(1)
acd-votesurvey 36.92(1) 35.47(3) 36.06(2) 0.52(3) 0.54(1) 0.54(2)
cars 79.08(2) 71.84(3) 81.48(1) 0.88(2) 0.85(3) 0.92(1)
collins 96.35(1) 93.26(3) 94.53(2) 1.00(1) 0.99(3) 1.00(2)
ecoli 83.12(1) 79.67(3) 82.91(2) 0.91(3) 0.92(2) 0.94(1)
eucalyptus 60.62(2) 55.04(3) 64.25(1) 0.79(3) 0.81(2) 0.89(1)
glass 68.22(2) 64.04(3) 72.98(1) 0.81(2) 0.80(3) 0.88(1)
iris 94.76(3) 94.82(1) 94.78(2) 0.97(3) 0.98(2) 0.99(1)
metStatCoord. 93.02(2) 85.18(3) 93.30(1) 0.98(2) 0.96(3) 1.00(1)
metStatRainfall 64.51(2) 48.28(3) 69.68(1) 0.87(2) 0.82(3) 0.95(1)
metStatRST 33.56(3) 38.55(2) 43.22(1) 0.65(3) 0.71(2) 0.82(1)
metStatSunshine 49.05(2) 41.36(3) 52.94(1) 0.77(3) 0.77(2) 0.88(1)
metStatTemp 50.71(2) 47.72(3) 57.38(1) 0.76(3) 0.76(2) 0.88(1)
mfeat-factors 92.09(2) 83.30(3) 93.35(1) 0.98(2) 0.97(3) 0.99(1)
mfeat-fourier 76.69(2) 72.86(3) 80.48(1) 0.92(3) 0.95(2) 0.97(1)
mfeat-karhunen 86.47(2) 76.57(3) 91.51(1) 0.96(2) 0.96(3) 0.99(1)
mfeat-morpholog. 72.09(2) 70.95(3) 72.31(1) 0.88(3) 0.91(2) 0.96(1)
mfeat-zernike 73.67(2) 63.27(3) 77.18(1) 0.91(3) 0.92(2) 0.96(1)
optdigits 94.78(2) 82.69(3) 96.22(1) 0.99(2) 0.96(3) 1.00(1)
page-blocks 97.02(2) 93.08(3) 97.04(1) 0.95(2) 0.83(3) 0.98(1)
pasture-prod. 74.67(1) 71.74(2) 71.28(3) 0.86(2) 0.81(3) 0.86(1)
pendigits 97.77(2) 88.25(3) 98.07(1) 1.00(2) 0.98(3) 1.00(1)
segment 96.50(2) 90.40(3) 96.97(1) 0.99(2) 0.98(3) 1.00(1)
squash-unstored 76.44(1) 76.40(2) 75.52(3) 0.83(2) 0.85(1) 0.83(3)
synthetic control 89.75(2) 82.49(3) 92.24(1) 0.97(3) 0.97(2) 0.99(1)
vehicle 70.10(2) 66.99(3) 72.78(1) 0.85(3) 0.86(2) 0.90(1)
vowel 75.43(2) 47.55(3) 84.03(1) 0.93(2) 0.85(3) 0.98(1)
waveform 82.24(1) 77.31(3) 79.79(2) 0.91(3) 0.92(2) 0.94(1)
wine 93.25(1) 91.88(3) 92.70(2) 0.97(2) 0.97(3) 0.98(1)

average rank 1.8 2.83 1.37 2.46 2.4 1.13

6.2. Experimental Comparison 159

123

Avg. Rank

FR3HELLFIRE

FURIA

CD0.1

Figure 6.1.: Nemenyi Test visualization according to Demšar [Dem06]. FR3 and
FURIA are significantly better than HELLFIRE in terms of classifi-
cation accuracy. Significance level α = 0.1.

123

Avg. Rank

FR3HELLFIRE

FURIA

CD0.1

Figure 6.2.: Nemenyi Test visualization according to Demšar [Dem06]. FR3 is
significantly better than FURIA and HELLFIRE in terms of AUC.
Significance level α = 0.1.

6.2.3. Summary

The results from the previous analysis of FURIA, HELLFIRE and FR3 are
quite clear: For both classification accuracy and AUC is the best performance
delivered by FR3. It is superior to FURIA and HELLFIRE. For the latter two
we find that FURIA outperforms HELLFIRE, again in terms of classification
accuracy and AUC on both two-class and multi-class data sets.

The outcome of these experiments is in concordance with the model con-
straints for the three classifiers. When taking into consideration that the
pairwise models of FR3 have similarities with FURIA, it becomes clear that
FR3 profits from its All-vs-All decomposition. As Fürnkranz pointed out, this
decomposition obtains better results than 1-vs-All when applying the same
base learner [Für02, Für03]. Moreover, when comparing the constraints of
FURIA and HELLFIRE, the largest difference is the fact that HELLFIRE

160 Comparison of FURIA, HELLFIRE and FR3

uses a grid corset while FURIA does not. This grid limits the flexibility of
the rule boundaries and explains why FURIA is better.

6.3. Discussion

In this section we discussed the differences and similarities of the new classi-
fiers. We contrasted FURIA, HELLFIRE and FR3 along several criteria and
showed major differences. A concise overview can be found in Table 6.3, which
summarizes the most important aspects. Moreover, we compared the three
classifiers experimentally with focus on the discriminative power. The results
reflect the constraints of the classifiers perfectly: The most flexible classifier,
which is FR3 due to its pairwise decomposition and its non-grid-oriented
rules, shows the best performance. Contrary to that displays HELLFIRE
worse results, which are due to its grid-corset and the applied 1-vs-All de-
composition. FURIA as a 1-vs-All learner with non-grid-oriented rules scores
in between.

6.3. Discussion 161

Table 6.3.: Contrasting FURIA, HELLFIRE and FR3.

Algorithm FURIA HELLFIRE FR3

Type Conventional rule
learner with
fuzzified
boundaries

Linguistic fuzzy
rule learner

Algorithm for
learning fuzzy
preference
structures using
conventional rules
with fuzzified
boundaries

Problem
Decomposition
Technique

1-vs-All 1-vs-All All-vs-All

Rule learning
strategy

Separate-and-
conquer

Coordinated
splitting

Separate-and-
conquer

Ruspini grid
partition

No Yes No

Fuzzification
technique

Soft post-
generalization of
rule intervals

Softening grid
cells

Soft post-
generalization of
rule intervals +
limiting the
extrapolation

Handling of
Uncovered
Instances

Rule stretching Rule stretching Uncoverage ≡

Ignorance

Score
Aggregation

Weighted voting Łukasiewicz
T-conorm

Preference
Structure
transformation
into scores leading
to weighted voting

7Related Work

In the realm of conventional, fuzzy and linguistic rule-based classification a
wealth of work has been published so far. In order to deal with this abun-
dance, introducing related work will require distinguishing into conventional
and fuzzy techniques. Besides, we will also introduce other related techniques
and fields that have a significant relationship to our presented algorithms. We
will present various approaches and attempt to outline the motivation for the
algorithms introduced in this thesis.

7.1. Conventional Rule-Based Classifiers

The idea of using rule-based systems in machine learning is very old. The
initial thoughts about logical rules go back to the area of expert systems in
the 1960s. At that time human specialists defined logical inference rules as
a means of modeling knowledge. Automatic learning of these rules is subject
to various machine learning approaches which generalize data by IF-THEN-
rules. There have been different approaches conceived and, subsequently, we
introduce a selection of learning strategies that are used to learn classification
rules, especially.

7.1.1. Separate-and-Conquer Rule Learning

The perhaps most popular way to induce a set of rules is to learn them fol-
lowing the separate-and-conquer scheme that was introduced by Michalski

163

164 Related Work

with his AQ algorithm [Mic69]. We already introduced this concept in Sec-
tion 2.3.1 and mentioned some algorithms based on FOIL, which is a quite
popular representative for this field.

Boström proposed a variant of IREP which is called Unordered-IREP (U-
IREP) [Bos04]. It has some similarities to FURIA, in fact. As its name
suggests, U-IREP does not learn an ordered decision list, but instead a set
of independent rules for all classes, so that there is no use for the default
class anymore. Boström works on pruning and rule filtering criteria for the
original IREP algorithm from Fürnkranz and not on IREP* and RIPPER
from Cohen, which he mentioned as future work.

As a successor to RIPPER, Cohen introduced the SLIPPER rule learner
for two-class problems [CS99]. SLIPPER combines the idea of separate-
and-conquer learning with the idea of boosting. This is realized through
considering an individual rule as a weak learner, which can be boosted using
a generalized version of Freund and Schapire’s AdaBoost algorithm [FS99].

Another RIPPER variant was introduced by Dain et al. [DCB04], namely
the IREP++ algorithm which emphasizes the speed over the discriminative
power. Therefore, the authors used data structures, which reduced the num-
ber of resorting occurrences and they also removed the optimization step to
save time.

Another classical rule learning approach is the CN2 induction algorithm
from Clark and Niblett [CN89]. It is a combination of features from the
AQ family and the ID3 decision tree [Mic73, Qui86]. CN2 is a beam-search
algorithm that works in a general-to-specific direction. It uses Shannon’s
entropy to guide the search and a significance test as a stopping criterion to
handle noise effectively. CN2 learns a rule list with default class.

A very general take on separate-and-conquer rule learning was presented
by Theron and Cloete with the BEXA algorithm that learns an unordered
set of rules [TC93, TC96]. The key contribution of BEXA is the use of dis-
junctions in rule clauses. Its concept learning process starts with the most
general conjunction mgc, which is a rule that contains a conjunct for every
attribute. Internally, the conjunct consists of a disjunction of all selectors
on its attribute. Initially, the mgc covers all examples, but is successively
specialized by removing selectors from the disjunctions. The search is guided
using a Laplace weighted accuracy within a beam search scenario. To avoid
overfitting, it employs stopping criteria, e.g. the significance test from CN2
[CN89] and also pre- and post-pruning techniques. One of the main contri-

7.1. Conventional Rule-Based Classifiers 165

butions of Theron and Cloete is to subsume different covering algorithms as
special variants within the BEXA rule learning framework.

Recently, Janssen and Fürnkranz investigated the influence of the search
strategy and the search heuristics on the predictive quality of a rule learner
[JF09]. One of the key results of the authors is that the Laplace-weighted
purity (the authors use the term “precision”) search outperforms a search
guided by the purity alone for a hill-climbing strategy, whereas this difference
cannot be found for an extensive search. This was explained through the
decreased noise-sensitivity of the Laplace-weighting.

A comprehensive overview of separate-and-conquer learning in general can
be found in the work of Fürnkranz which also contains a large enumeration
of corresponding algorithms [Für99].

7.1.2. Decision Tree Rule Learning

Another popular way of learning a rule-based classification algorithm is to
apply decision tree learning techniques. A typical decision tree algorithm
partitions the data set in a divide-and-conquer scheme recursively. This leads
to a tree structure in which every inner node splits along an attribute. The
leaf nodes contain a class label. To classify an unseen example, the tree is
traversed from the root to a leaf. The path taken is the one that evaluates the
conditions in the inner nodes to true, given the instance’s attribute values.
To obtain classification rules, all those paths are converted into rules by
conjuncting the conditions of the inner nodes as antecedents and setting the
consequences to the most frequent classes of the respective leaf nodes.

Quinlan’s C4.5 algorithm, with its rule learner variant C4.5rules, is a well-
known representative for the field of decision tree learning [Qui93]. Rules
obtained using that strategy cover disjunct areas in the data space. A post-
pruning and post-processing technique removes conditions from the rules, as
long as this is not detrimental to predictive accuracy. The resulting rules are
no longer mutually exclusive.

Another C4.5 successor is PART that was introduced by Frank and Witten
[FW98]. PART uses the general separate-and-conquer learning approach as a
framework. To induce a single classification rule, it builds a C4.5 decision tree
from the current growing data. After adding the best rule from this tree to
the ruleset, the decision tree is discarded. Then, the covered data is removed
and another rule is learned with a new C4.5 decision tree. Since building a
complete C4.5 decision tree requires a lot of effort for generating a single rule,

166 Related Work

Frank and Witten proposed the generation of partial trees such that the best
rule is found faster. The motivation behind this whole approach is threefold:
(A) It is simple. (B) PART avoids the overfitting of typical separate-and-
conquer learning. (C) It has no need for any global optimization.

7.1.3. AUC-Optimizing Rule Learning

In the recent past, measuring the area under the ROC curve (AUC) has
become an alternative to measuring classification accuracy [Bra97, PF01b].
As it was explained in Section 2.5.4.2, there are some advantages of AUC
over classification accuracy, e.g. for measuring the performance on data sets
with skewed class distributions [PFK98].

An early empirical study on optimizing the AUC performance for rule-
based classifiers was conducted by Fawcett [Faw01]. He found that weighted
voting is significantly superior to other strategies, such as random selection,
first rule selection or voting, when the instance is covered by multiple rules.
Besides, Fawcett noted that — if appropriately used — classification rule
learners are also effective at predicting probabilities. He concluded this from
an AUC comparison of a rule learner to Naive Bayes.

A very interesting analysis on the relationship between rule learning and
the AUC can be found in the work of Fürnkranz and Flach [FF05]. They
showed that the ROC-space can also be considered as a PN-space, where
P and N resemble the absolute number of positive and negative examples
in the training data. Instead of plotting the true positive rate versus the
false positive, they proposed plotting P versus N . According to this point of
view, the ROC-space is a normalization of the PN-space to [0, 1]2. Adding a
new rule to the ruleset can be plotted as a linear segment in the PN-space.
The segment starts with the current ruleset at the coordinate of currently
covered positive and negative examples to the coordinate which resembles
the new ruleset. This new coordinate is simply calculated by adding the
newly covered positive and negative examples respectively. Since every new
rule cannot decrease the number of covered examples, this approach creates
a path through the PN-space from (0, 0) to (N, P). A separate-and-conquer
rule learner, which covers all positive and negative examples at the beginning,
would build that path from (N, P) to (0, 0) in opposite direction, where every
rule and its segment in PN-space is chosen through a greedy search heuristic.

Further research on AUC in rule learning can be found in the work of
Boström [Bos05, Bos07]. One of his findings was that unordered rulesets

7.1. Conventional Rule-Based Classifiers 167

outperform ordered rule lists in terms of AUC due to a more “fine-grained”
scale. This is in concordance with the observations made by Fawcett which
state that weighted voting is better than random selection or first rule selec-
tion, see above.

Two further AUC-optimizing rule-based classifiers were put forward by
Fawcett and also by Prati and Flach [Faw08, PF05].

7.1.4. Nearest Generalized Examples

An interesting combination of two different classification schemes was pro-
posed by Salzberg under the term Nearest Generalized Examples [Sal91]. The
proposal considers classification rules as generalizations of examples. This ap-
proach allows it to measure the distance from an instance to a rule within the
Euclidean space such that lazy instance-based algorithms — such as Nearest
Neighbor — can be applied [WD94].

A realization of this idea was proposed by Domingos with the RISE algo-
rithm [Dom96]. The idea of Domingos was to consider examples as maxi-
mally specific classification rules that serve as a starting point for the model
building. The learning process of RISE generalizes these specific rules and
increases their coverage. Domingos proposed a nearest neighbor search on
the learned rules to classify an unseen instance. Therefore, he introduced the
following distance measure between a rule r and an instance x for p ∈ N:

Δnum(r, x) =
∑

Ii∈rA

δp
num(i)

The component distance δnum(i) describes the distance between xi and
Ii = [b, c] on attribute Ai:

δnum(i) =

⎧⎨
⎩

0 if b ≤ xi ≤ c
xi−c

max(Di)−min(Di) if xi > c
b−xi

max(Di)−min(Di) if xi < b
,

where max(Di)−min(Di) is used for normalization according to the largest
and smallest value for attribute Ai according to the training data D. Note
that Domingos introduced the distance Δ(r, x) both for numerical and nom-
inal attributes. For the sake of simplicity, we will not introduce the nominal
measure since it does not affect the fuzzification analysis here.

168 Related Work

The classification decision of RISE is given by the class of the nearest
rule. Ties can occur quite frequently when an instance is fully covered by
multiple rules. They are solved by preferring the rule with the highest Laplace
accuracy.

7.2. Fuzzy Rule-Based Classifiers

To cope with the abundance of fuzzy rule-based classifiers, we will attempt
to cluster the algorithms according to the learning techniques applied. This
overview will not concern Takagi-Sugeno fuzzy rules, which have a function
of the input values as rule consequence. Instead, we will fully concentrate on
rule-based classifiers, where the rule consequences are plain class-assignments.

7.2.1. Grid-Oriented Approaches

A very intuitive and simple early approach (denoted as WM approach) for
learning linguistic fuzzy rules was proposed by Wang and Mendel [WM92].
Wang and Mendel suggested partitioning the attributes of the input space
with a fixed number of (e.g. triangular) fuzzy sets into a fuzzy grid. From
every example they derived a fuzzy classification rule that had the grid cell
which covered the example maximally as antecedent and the example’s class
label as a consequence. In order to avoid conflicting rules, the authors pro-
posed selecting the most frequent one, which also has the maximum support
from the training data. Furthermore, the rules can be weighted by a human
expert. As a generalization, Wang and Mendel mentioned melting neighbor-
ing rules in the grid to cover whole columns or rows. An important note is
that Wang and Mendel did not focus on classification learning here, but on
other learning tasks such as truck backer-upper control.

Chi et al. proposed setting up the initial fuzzy partition of the data space
by using self-organizing maps as a starting point for the WM rule generation
process [CWY95, CYP96].

Nakashima et al. expanded the WM approach in such a way that it copes
with weighted examples [NSYI07]. The novel aspect of this work is that the
fuzzy membership is multiplied with the example’s weight.

Another grid-based approach was proposed by Hong and Chen [HC00].
They suggested a three-step procedure for learning the fuzzy rule-base: (A)
finding the relevant attributes, (B) partitioning the relevant attributes into

7.2. Fuzzy Rule-Based Classifiers 169

a fuzzy grid, (C) learning the rules. For finding the relevant attributes, they
count the number of occurrences of every value and then select the attributes
with low entropy. The number of attributes chosen is set according to an
error threshold. For every attribute, the number of initial fuzzy sets is set
in accordance with a statistic argument. Afterwards, neighboring fuzzy sets
are merged. For learning the rules, the authors proposed the most frequent
class of a grid cell as fuzzy classification rule consequence. A four step proce-
dure for obtaining a grid-based linguistic fuzzy rule-base for classifying gene
expression data was suggested by Vinterbo et al. [VKOM05]. The procedure
consists of: (A) selecting relevant attributes using the Wilcoxon rank, (B)
partitioning those attributes using training data quantiles, (C) using the no-
tion of minimum discerning sets for inducing a rule-base and (D) filtering
redundant rules.

Carmona et al. proposed a post-processing technique for fuzzy rule-based
systems that deals with conflicting rules and rule extrapolation [CCZ04]. The
main concern of this approach is to solve the conflicts between rules that were
derived from examples from the same grid cell. This is done by introducing
exceptions to the ruleset. The authors argued that this strategy allows for
more general rules which are more interpretable. As a further step to increase
interpretability, the authors suggested techniques such as rule reduction, rule
merging and exception merging.

A typical difficulty of grid-based approaches is that the number of par-
titions must be defined a priori. One way of avoiding this problem is to
use multiple partitions parallely. Ishibuchi and Yamamoto introduced an ap-
proach that uses multiple homogeneous partitions in an evolutionary learning
scheme [IY02] (for more information on evolutionary fuzzy rule-based sys-
tems see below). The drawback of this approach is that it can increase the
hypothesis space tremendously when the number of partitions is enlarged.

7.2.2. Non-Grid-Oriented Approaches

A critical analysis of grid-oriented approaches was conducted by Alcalá et al.
[ACH01]. The authors discussed the trade-off between grid-oriented and
more flexible non-grid-oriented fuzzy rule-based models. Therefore, they dis-
tinguished two types of soft rules: (A) the linguistic rules with fuzzy sets
coming from a global grid and (B) the fuzzy rules with fuzzy sets that are
rule specific. While the former are typically used to increase interpretability,
the latter are used to improve accuracy.

170 Related Work

7.2.3. Fuzzy Propositional and Fuzzy First-Order Logic Rule
Learning

A fuzzy extension to Quinlan’s classical FOIL algorithm, cf. Section 2.3.2, was
proposed by Drobics et al. [DBK03]. The authors criticized the sharp decision
boundaries that are caused by the interval-like splitting of FOIL which is due
to the use of Boolean logic. The new algorithm FS-FOIL overcomes this
problem with the help of fuzzy logic. Furthermore, it uses a beam search
instead of a greedy one. The authors showed that FS-FOIL is capable of
doing classification both in theory and on practical examples. Further related
work of this domain be found in [PRS03, SP07].

An interesting take on first-order logic is the Label Semantics framework
of Qin and Lawry [QL08]. This framework is based on random-sets with the
idea that a value from a domain can be represented through multiple grad-
ually assigned labels. Semantically the authors switched from “membership
degree” to “appropriateness degree” and defined a fuzzy classification rule
through a multi-dimensional appropriateness degree. The learning itself is
conducted through the FOIL algorithm which is applied onto this new data
representation.

7.2.4. Fuzzy Set Covering

Several approaches to learning a fuzzy rule-based classifier based on a fuzzy
set covering approach were introduced by van Zyl and Cloete in terms of their
FUZZYBEXA framework [Cv06]. This framework is a fuzzy generalization
of the BEXA framework [TC93, TC96]. As a novelty, the fuzzy variant is
able to work on fuzzy sets with gradual set coverage.

One variant of the FUZZYBEXA framework is the FuzzConRI classifier
that is a fuzzy generalization of CN2 [vC04, CN89]. The novel version in-
troduces coverage degrees and replaces the conventional junction operators
through fuzzy T- and T-conorms. Examples are considered as belonging to
all linguistic terms to a certain degree. An α-cut is used to set a minimum
threshold on the membership degrees. van Zyl and Cloete showed that Fuz-
zConRI is sensitive to this threshold on some data sets. To obtain the fuzzy
sets for the numeric attributes, the authors put bell-shaped membership func-
tions on top of the cluster centroids that were learned through a clustering
procedure according to Surmann [Sur00].

7.2. Fuzzy Rule-Based Classifiers 171

A deeper investigation on the impact of different evaluation functions for
FuzzyBEXA was also conducted by the same authors [Cv04].

7.2.5. Hybrid Approaches

The perhaps most popular way to obtain a linguistic fuzzy rule-based clas-
sifier is to use a hybrid scheme that combines the fuzzy rules with another
learning structure. Many strategies have been proposed concerning how to
accomplish this. We will concentrate on the main approaches, but also men-
tion the ones encountered less frequently.

7.2.5.1. Evolutionary Algorithms

An extremely popular family of techniques for the learning of linguistic fuzzy
rule-based classifiers are the evolutionary algorithms, most prominently the
Genetic Fuzzy Systems. The strategy behind these is to apply a learning tech-
nique that is inspired by natural evolution [Gol89]. To enable a computer to
learn in this way, the solution is considered as a chromosome that has to be
encoded in an appropriate scheme. Furthermore, the genetic operators must
be defined. The genetic algorithm starts with a population of random chro-
mosomes. Through the application of the genetic operators, this population
is refined to better solve the given task. The idea behind this follows Dar-
win’s well-known “Survival of the Fittest” notion, which states that a better
solution shall be retained, while others can be removed from the population.
The creation of an appropriate fitness function for selecting the best indi-
viduals plays the most important role at this stage. In order to create new
solutions, a recombination of solutions is made, namely, either a crossover of
existing chromosomes or a mutation thereof. According to Cordón et al. the
fitness evaluation, the selection operator and the recombination are the three
elements found in every genetic fuzzy system [CGH+04].

In a very recent publication, García et al. discussed different techniques
and measures for analyzing the discriminative ability and the interpretabil-
ity of Genetics-Based Machine Learning algorithms [GFLH09]. This paper
resembles the work of Demšar due to the introduction and explanation of
various statistical methods, but also expounds the detail of how to grasp
the quality of a genetic machine learning algorithms. The authors proposed
measuring the discriminative power in terms of accuracy and Cohen’s Kappa

172 Related Work

[Coh60]. As a measure for interpretability, the authors suggested measuring
the number of rules and the rule length.

Cordón et al. distinguished three main genetic fuzzy systems: (A) the
Pittsburgh approach [Smi80], (B) the Michigan approach [HR78] and (C)
iterative rule learning [Ven93]. (A) considers the whole set of rules as a
single chromosome and the population as set of rulesets; (B) assumes that
a single rule is a chromosome and the population to be a set of rules, (C)
also considers the rule as a chromosome, but it learns them in an iterative
fashion.

According to Cordón et al., one can distinguish the following genetic algo-
rithm settings for classification learning:

1. tuning fuzzy memberships when rules are fixed

2. learning fuzzy rules using given fuzzy membership functions

3. 1. + 2. in an alternating order

4. memberships and rules simultaneously

5. rules, membership function, membership function shape, parameters,
operators, etc. simultaneously

Pittsburgh Genetic Fuzzy Rule Learning A combination of grid-oriented
fuzzy rule learning and a Pittsburgh-style genetic algorithm was proposed
by Ishibuchi and Yamamoto [IY04]. The authors proposed to induce a set
of candidate rules in a grid-based manner which is then used for extracting
a representative subset of rules. For this extraction, a multi-objective ge-
netic algorithm (MOGA) is designed that is able to find a non-dominated
set of rules with respect to three different objectives: (A) maximizing the
discriminative power, (B) minimizing the ruleset, (C) minimizing the rule
length. The authors suggested that such a ruleset cannot be found in gen-
eral. Instead, they wanted to have their algorithm return all Pareto-optimal
rulesets with respect to the three objectives. Then, the authors extended
MOGA to MOGLS (Multi-Objective Genetic Local Search) which combines
the global genetic algorithm with a local search that helps to converge to
solutions faster.

Bacardit and Krasnogor presented a combination of Pittsburgh-style learn-
ing and ensemble techniques [BK07]. They proposed building a voting en-
semble of genetically learned rulesets for obtaining a classification decision

7.2. Fuzzy Rule-Based Classifiers 173

according to the idea of Breiman [Bre96]. Apart from this, a hierarchical
approach for ordinal classification (meaning λi < λj for 1 ≤ i < j ≤ m) was
presented, which recursively splits the examples into lower {λ1, . . . , λi} and
upper classes {λi+1, . . . , λm}, keeping the number of examples in both halves
as balanced as possible. This is repeated until there are only binary problems
which then are solved using the ensemble of genetic rule learners proposal.

Michigan Genetic Rule Learning A Michigan style linguistic fuzzy rule
learner was proposed by Orriols-Puig et al. [OPCBM09]: Fuzzy-UCS. This
algorithm is a fuzzy variant of the interval-based UCS algorithm, which is a
variant of Wilson’s XCS rule learning, system [BMGG03, Wil95].

Fuzzy-UCS is capable of online learning, which means that it is able to
learn from a stream of examples. Apart from ordinary classification learning
the authors showed that Fuzzy-UCS is also capable of learning a model for a
problem involving nearly 500,000 examples and 23 classes.

Iterative Genetic Rule Learning A representative of iterative genetic rule
learning was proposed in Section 2.5.3.3: The SLAVE algorithm [GP99,
GP01].

A combination of iterative genetic rule learning and boosting was intro-
duced by Hoffmann and also by del Jesus et al. [Hof01, dHNS04]. These
approaches apply Kearns’ idea of boosting to the evolutionary rule learning
scheme [Kea88]. More specifically, both algorithms use the AdaBoost algo-
rithm proposed by Freund and Schapire [FS99]: After learning a single rule,
the boosting procedure reweighs the examples. This leads to a set of weighted
linguistic fuzzy rules.

Mansoori et al. pointed out that a typical drawback of existing iterative
genetic rule learners is the fact that the problem size grows with the number
of dimensions. To cope with this problem, they introduced the steady-state
SGERD evolutionary rule learner that limits the number of generations in
dependence of the problem dimensionality [MZK08].

Genetic Rule-Based Model Tuning A genetic post-processing technique
for fuzzy rule-based classification algorithms is the tuning of fuzzy rules,
parameters, membership functions, etc. The purpose of this tuning is to
improve the model in terms of accuracy or interpretability most often.

174 Related Work

A genetic tuning strategy was proposed by Alcalá et al. [ACH03]. The
proposed approach combines rule selection with rule weighting for improving
the cooperation between the rules.

Casillas et al. proposed a genetic tuning algorithm that optimizes the mem-
bership functions through non-linear scaling, parameter modification and lin-
guistic hedges [CCdH05].

Another way to improve classification accuracy of fuzzy rule-based systems
was proposed by Alcalá et al. [AAFH07]. The authors introduced a genetic
algorithm that optimizes the fuzzy membership functions through a lateral
shifting. In contrast to more general tuning approaches, the shifting strategy
keeps the search space smaller and preserves the interpretability aspects of
the fuzzy sets.

7.2.5.2. Neural Networks

A very common way to obtain a linguistic fuzzy rule-based classification
algorithm is through the use of a neural network.

Neuro-fuzzy methods encode a fuzzy system as a neural network and ap-
ply corresponding learning methods (like backpropagation) [MH00, NKK97].
Fuzzy rules are then extracted from a trained network.

The self-organizing neuro-fuzzy multilayered classifier SONeFMUC was
introduced by Mitrakis et al. in [MTP08]. Their approach combines fuzzy
neuron classifiers (FNC) layer wise. Every layer is constructed using a com-
bination of parent FNCs to enhance the predictive quality. The structure
of this network is developed while learning. Therefore, it considers only the
attributes with the largest amount of information. After learning, another
genetic algorithm is used to tune the created model for better discrimina-
tive power. To obtain classification decisions, this approach has to make
successive decisions and feature transformations.

A combination of Neuro-fuzzy learning and a flexible quasi-triangular norm
was proposed by Rutkowski and Cpałka [Rk05]. The H-function they pro-
posed can be used to blend T-norms and T-conorms through a parameter
setting. Both the model and this parameter are learned in the building
phase.

An approach to fuzzy neural network classification with support-vector-
based learning was made by Lin et al. [LYL+06]. The proposed support-
vector-based fuzzy neural network (SVFNN) learns the parameters for the
fuzzy neural network using a support vector approach.

7.2. Fuzzy Rule-Based Classifiers 175

7.2.5.3. Support Vector and Spectral Fuzzy Rule Learning

Chen and Wang proposed a strategy for learning a fuzzy rule-based classi-
fier by using a support vector approach [CW03]. The authors showed that,
according to some assumptions, it is possible to connect an additive fuzzy
rule-based classification system with the Mercer kernel to a positive definite
fuzzy classifier.

In a recent article, Evsukoff et al. proposed learning a fuzzy rule-based
classifier by using spectral analysis [EGdE09]. The rule learning is conducted
using a clustering approach, so that every cluster resembles a fuzzy classifi-
cation rule.

7.2.5.4. Simulated Annealing

An improvement to the approach of Wang and Mendel was made by Casillas
et al., who critized that the WM algorithm had a good local reasoning but no
global cooperation between the rules [CCH00]. The idea is to assign a grid
cell not the most frequent class among the covered examples, but another
one that better fits into the overall model. Therefore, the authors proposed
using simulated annealing as a heuristic within the search space. Simulated
annealing starts with an initial solution and explores a neighboring solution.
If the neighbor has a smaller mean square error (MSE), the neighbor solution
is chosen and the process repeated. To avoid local maxima, a worse neighbor
is accepted as a better solution with a probability that decreases with the
number of iterations.

7.2.6. Clustering-Based Techniques

Another way of inducing fuzzy membership functions that might be used for
classification is fuzzy clustering [HKKR99]. The idea is that every cluster
is represented through a fuzzy membership function that is used within the
fuzzy classification rules. One approach from that field was introduced by
Höppner and Klawonn who used a combination of fuzzy c-means clustering
and memberships based on the Voronoi Distance to find the fuzzy member-
ship functions [HK04].

176 Related Work

7.2.7. Divide-and-Conquer

A very early divide-and-conquer approach for obtaining a fuzzy decision tree
was introduced by Cios et al. as a fuzzy variant of Quinlan’s ID3 algorithm
[CTLL91, CS92, CL92]. The fuzzy ID3 algorithm applies the iterative tree
learning approach to pre-defined fuzzy sets by using an entropy measure.
Another fuzzy ID3 variant that assumes a human way of dealing with uncer-
tainties was proposed by Yuan and Shaw [YS95]. It starts with a partition
of the numerical attributes into triangular fuzzy sets by using a Kohonen
feature-map algorithm [Koh82]. The center points of the fuzzy sets are set to
the cluster centroid points. Then it induces the fuzzy decision tree that splits
according to the fuzzy ambiguity which measures a degree of unspecification.
The algorithm transforms the tree into rules which are further simplified by
deleting conditions as long as no decline in terms of truth (i.e. purity) can
be observed. An important parameter for this algorithm is the α-cut that is
used as a threshold to define the minimally allowed membership degree. The
classification is done according to the rule that covers the instance to the
largest degree. The fuzzy ID3 algorithm has been quite popular throughout
the last years [ISNM96, BX05, ZC06, HY08].

Chiang and Hsu introduced the fuzzy classification tree algorithm FCT
that — given ordinary classification data — predicts possibility distribu-
tions instead of single classes [CjH02]. The tree learner works without initial
fuzzy sets. It creates the fuzzy set, while splitting using a c-means clustering
approach. In the experiments the authors discovered that their approach
improves over the results from Yuan and Shaw [YS95]. According to the au-
thors, the lack of flexibility is due to the pre-partitioning of Yuan and Shaw’s
ID3 variant that is unable to adapt to local regions.

A quite general overview of fuzzy decision trees was written by Jarnikow
[Jan98]. Further research on fuzzy decision tree learning can be found in
[WCQY00, MJG05].

A different take on decision trees was made by Olaru and Wehenkel who
introduced the soft decision tree (SDT) which contains both conventional and
fuzzy learning aspects [OW03]. The idea is to learn a fuzzy decision tree which
is not based on linguistic fuzzy sets, but which uses fuzzy splitting. This is
conducted in two steps: (A) searching an optimal split-point according to a
squared error function and then (B) softening the split by basically replacing
the intervals with fuzzy intervals in a symmetric way. Olaru and Wehenkel
found improvements in terms of discriminative ability due to the softness of

7.2. Fuzzy Rule-Based Classifiers 177

the split. The SDT is built to solve binary problems, i.e. learning a tree for
one class only and using the score reciprocality to determine the prediction
for the other class. Consequently, a decomposition has to be conducted in
order to solve multi-class problems. Olaru and Wehenkel suggest 1-vs-All.

Other related approaches to fuzzification of decision tree splits can be found
in the literature [JJL97, SL99, PF01a, TEF08].

7.2.8. Conventional vs. Fuzzy Partitions

Ishibuchi et al. analyzed the difference between a grid partition and a fuzzy
partition [INN05, pp. 142-160]. The authors considered the case in which
the (fuzzy) partition is determined before the rule learning process. The
difference between the fuzzy and the conventional partition is that in the
fuzzy one the grid cells cover a larger area in the data space. According to
the authors, this is beneficial since one example can be used for the learning of
multiple rules, while in the conventional partition this is not possible. Further
positive effects can be expected for sparse areas of the data space in which
the increased coverage helps to induce rules for more grid cells. Besides,
the adjustment of the decision boundaries using rule weighing may also be
considered as a positive reason for fuzzy over conventional grid-partitioning.

A general examination of conventional interval fuzzification was given by
Kuwajima et al. [KNI08]. This article partly resembles the work of Ishibuchi
et al. [INN05, pp. 142-160], see above. Kuwajima et al. made an experimental
analysis of different degrees of interval fuzzification. The proverbial lessen to
learn from this work is that the interval fuzzification improves the accuracy
on the test data. Unfortunately, there is no guideline given concerning “how
fuzzy” an interval has to be for this improvement. Furthermore, the authors
made no attempts at explaining the beneficial effects of the fuzzification.

7.2.9. Rule Weights and Confidence Factors

An iterative weight learning strategy for linguistic fuzzy rules was proposed
by Nozaki et al. [NIT96]. The authors proposed the Reward and Punishment
(R&P) algorithm that increases the rule weight if a rule classifies an instance
correctly and decreases it in the other case.

A very interesting article about rule weights and the geometrical conse-
quences thereof was written by Ishibuchi and Nakashima [IN01]. The authors

178 Related Work

showed that unweighted grid-based fuzzy rules may create decision bound-
aries which are not parallel to the axes if there are cells in the grid for which
no fuzzy rule was learned. Furthermore, the authors found the same flex-
ibility also for complete grids if the rules are weighted. It was shown that
the decision areas of the fuzzy rules vary a lot if different rule weights are
assigned.

A proposal for two novel rule weighting heuristics was done by Ishibuchi
and Yamamoto [IY05]. The core aspect of the first new heuristic is to exploit
the difference in terms of fuzzy purity between the most frequent class and the
second most frequent class with the same antecedent. The second heuristic
calculates the difference in terms of purity between the most frequent class
and the sum of all other classes with the same antecedent.

Jahromi and Taheri proposed a strategy for assigning rule weights to lin-
guistic fuzzy classification rules for both single-winner and voting classifica-
tion schemes [JT08]. The suggested algorithm applies a hill-climbing search
for an optimal set of rule weights. The authors proposed a method that is
able to find an at least as good or even better neighbor solution for one single
rule weight assuming that the other rule weights remain steady. Transform-
ing a multi-class problem at that point into a two-class problem where the
class label of the current rule is positive and the remaining ones are negative
is essential. By using a threshold and assuming a scored predictions, the
authors are able to calculate the optimal rule weight. The search process
iterates over all rules until no improvements can be found. The drawback of
this strategy is that it is sensitive to the ordering of the rules.

More proposals on how to learn the weights for classification rules can be
found in the literature [ZM07, FJ09].

Nauck and Kruse suggested a noteworthy take on rule weights [NK98].
They explained that rule weights can be considered as a modification of the
fuzzy membership function. A consequence of this is that a weighted rule
would e.g. be non-normalized if it is transformed to an unweighted one. The
authors criticized that this would damage interpretability.

7.3. Dealing with Uncertainty

Issues of uncertainty and reliable classification have been addressed under
various perspectives in the machine learning literature and remain to be an
active area of research [KK02, VGS03]. Even though the focus is definitely on

7.4. Interpretability 179

probabilistic methods, alternative frameworks for modeling and representing
uncertainty have also been investigated [Den95, Hül03]. A distinction be-
tween different types uncertainty has been made, for example, in connection
with reject options for nearest neighbor classification [Hel70], where a dis-
tance reject (non-existence of neighbors close enough to the query) is distin-
guished from an ambiguity reject (existence of close neighbors from different
classes).

7.4. Interpretability

The interpretability of fuzzy rule systems was discussed by Mikut et al.
[MJG05]. The authors were in agreement with Zhou and Gan (cf. Sec-
tion 4.4.5) concerning most of the model characteristics necessary to be con-
sidered as interpretable [ZG08]. In contrast to Zhou and Gan, they did not
distinguish between low-level and high-level interpretability and also kept
the discussion rather concise. They preferred rules without certainty fac-
tors or weights. This demand is reasonable, but it typically conflicts with
the discriminative quality of the model since rule weights shift the decision
boundaries and improve classification accuracy often, as was mentioned be-
fore. Mikut et al. also proposed that fuzzy membership functions and the
classification reasoning should be intuitively comprehensible.

We already mentioned the work of García et al. which focused on statis-
tical evaluation of genetics-based machine learning algorithm [GFLH09]. As
a measure of interpretability the authors suggested the product of the num-
ber of rules and the total number of antecedents as complexity. The authors
highlighted that this interpretability analysis must be conducted carefully
since there are many traps to avoid, e.g. different rule types. The statisti-
cal analysis of interpretability might only be conducted under appropriate
circumstances.

A relevant criticism to the utility of linguistic rules and models can be found
in the survey of Hüllermeier [Hül05]. He argued that linguistic terms and also
the models are highly subjective mainly because of context-dependencies.
Moreover, he mentioned the problem that even if the rules are interpretable
this does not have to be the case for the overall model. A large number of
rules (∼ 40) with a reasonable number of antecedents (∼ 5− 7) might be too
hard to grasp.

180 Related Work

7.5. Discussion

In the following section we will discuss the novel algorithms in the context of
the related work. We show similarities, differences as well as the new ideas
emerging in comparison to existing approaches.

7.5.1. FURIA

We introduced related techniques from the realm of conventional rule learn-
ing. The existing approaches from this domain are very different in compari-
son to the techniques proposed in this thesis: In contrast to FURIA, the focus
of the other algorithms is not on soft coverage degrees. Consequently, there
is no discussion about the difference between the shape of the rules and the
effective rule boundaries that are obtained through the classification process.
The only classification algorithm that is somehow comparable to FURIA is
Domingos’ RISE.

When comparing RISE to FURIA, we will find some aspects that are sim-
ilar, but we will encounter very different characteristics. The following list
contrasts both approaches:

• When FURIA covers an instance within its rule core, it behaves similar
to RISE. FURIA assigns the maximum membership of μr = 1, while
RISE observes δnum = 0. The assigned values are reciprocal for this
point.

• When a RISE rule does not cover the query instance, it considers the
distances δnum > 0. But when FURIA does not cover the query instance
with a rule core two things might happen:

1. The instance might be covered within the fuzzy extension to a
degree larger zero. The farther away from the initial core, the
lower the membership value would be.

2. The instance might not be covered at all.

In the first case, the FURIA rule behaves in a comparable fashion to
the RISE rule. FURIA will find a gradual membership degree that
decreases with the distance to the rule core linearly. RISE would return
the distance directly. Since RISE considers the whole data space, it
normalizes the distance to the unit interval. Since FURIA returns a
membership function, its return value is also in the unit interval. Here,

7.5. Discussion 181

the values — although not necessarily reciprocal — are at least anti-
proportional. In the case that FURIA does not cover the instance we
see the first dissimilarity: In this case FURIA limits the influence of
the rule to a certain region to the data space.

• Both δnum and IF are monotonic continuous functions.

• RISE uses the p-norm to calculate distances in the data space. FURIA
uses a T-norm to combine membership values. The T-norm is not a
metric since it violates the triangular inequality.

• To classify an instance, FURIA applies a weighted voting scheme in
which the instance’s coverage degrees are taken into consideration.
RISE would apply a very similar scheme, if it would not only consider
the nearest-neighbor rule but the n-nearest-neighbor rules according to
their weight and their distance, where n is the overall number of rules.

From this analysis we can conclude that RISE looks similar to FURIA but
it is different nevertheless.

The realm of soft decision trees, e.g. the SDT algorithm from Olaru and
Wehenkel [OW03], seems to have some similarities with FURIA. Both ap-
proaches fuzzify a conventional splitting point according to some optimiza-
tion criterion to obtain soft boundaries. The difference is that the one is a
decision tree split, while the other one is a rule boundary split.

To the best of the author’s knowledge, there has been no effort made so far
to soften boundaries of conventional classification rules. Yet, as we learned
from this thesis, this is a direction that brings significant improvements to
this scientific field.

7.5.2. HELLFIRE

The motivation behind the HELLFIRE algorithm was the fact that there is
a gap between the linguistic grid-oriented and the non-grid-orierented fuzzy
learners. While the non-grid-oriented approaches are flexible in choosing
their boundaries, such as Olaru and Wehenkel’s SDT, the others have a very
strict grid corset. The consequence is that many grid-based algorithms do
not even try to learn good decision boundaries. Instead, they take the fuzzy
partition as fixed input. Often, this is done by merely dividing the attribute
into triangular fuzzy sets in a uniform fashion. The consequence is that the

182 Related Work

curse of dimensionality strikes hard and that the rules have a poor discrimi-
native power. The grid-based algorithms that try to find a good partitioning
also prove to be not very effective. They typically use some kind of ge-
netic algorithm that is unable to cope with the incredibly large search space
of even moderately sized problems. The consequence is that the predictive
performance is extremely poor — especially when considering how much ef-
fort in terms of computation time is invested. The approach of HELLFIRE
introduced a more efficient learning strategy to the field of linguistic fuzzy
rule-based classifiers. It combines aspects of well-known veteran decision tree
algorithms with a novel search strategy that assures linguistic interpretabil-
ity. The idea to learn the rules, while discretizing the data is completely new.
In addition, something like the coordinated splitting cannot yet be found in
the literature. And this is what separates HELLFIRE from locally acting
decision trees. For the supervised discretization of multiple dimensions, ex-
isting approaches use splitting or multi-splitting procedures that are unable
to grasp the true underlying structure in the data. The removal of adequately
covered areas in the learning approach of HELLFIRE assures that the focus
remains on the interesting spots only. The removed parts of the data space
can no longer distract further splitting.

7.5.3. FR3

The FR3 algorithm is based on FURIA and uses the majority of its tech-
niques. The novelty of FR3 is the capability to learn a fuzzy preference
structure using fuzzy classification rules that was briefly mentioned by Hüller-
meier and Brinker [HB08]. In this thesis we brought this idea to fruition and
showed its capabilities.

7.6. Summary

In this chapter we compared our three novel approaches to the ones existing
in the literature. We found similarities existing between both groups. But
from an overall point of view, we can confirm that the techniques introduced
can be seen as a significant advancement in this field.

8Conclusion and Outlook

In order to conclude this dissertation, we mention some final words which will
highlight the most interesting findings and developments from our research.
In a list of suggested future research, we will mention potential directions in
which we can go from here.

8.1. Conclusion

In this thesis we introduced new procedures for and insights about the inter-
face between conventional rule learning techniques and fuzzy logic. Three new
fuzzy rule-based classification algorithms were proposed: (A) We introduced
FURIA as a very powerful fuzzy rule learner which uses fuzzy rules that are
based on ordinary conventional classification rules. We showed that fuzzifi-
cation is beneficial for both accuracy and area under the ROC curve. We
also introduced a novel rule stretching method that outperforms the existing
technique in terms of memory and time consumption without deteriorating
discriminative power. (B) We demonstrated how FURIA rules can be used
to learn fuzzy preference structures which can be used as a starting point
for manifold decision making processes. For that purpose, we developed the
new FR3 classifier that is able to distinguish different kinds of uncertainty in
a very intuitive fashion. (C) We developed the novel HELLFIRE algorithm
that is learning interpretable and comprehensible linguistic fuzzy classifica-
tion rules.

183

184 Conclusion and Outlook

In extensive practical experiments we were able to show the qualities of the
new algorithms and in addition, were able to draw comparisons to established
— both conventional and fuzzy — classification algorithms. We found that
the suggested classifiers are quite strong in terms of discriminative power.
For FURIA we found that the improvement over RIPPER came at a very
reasonable price of slightly larger models and runtime. For FR3 we found that
conflict and ignorance are two semantically different kinds of uncertainty that
can be used for further decision making processes. And finally we found that
HELLFIRE constructs very interpretable and comprehensible models. All of
these outcomes show that the new algorithms are significant improvements
on state-of-the-art conventional, fuzzy and linguistic fuzzy rule learners.

8.2. Future Work

As is nearly always the case with research, there is still room for improvement.
The same holds true for the approaches and techniques proposed in this
thesis. We will now give some pointers of what scientific treasures might still
be out there to be excavated.

8.2.1. FURIA

The FURIA algorithm is the one for which not many special future plans
exist. There are two main aspects that need further attention: (A) The
examination whether appropriate data structures might improve the fuzzi-
fication strategy. Since efficiency is an important point to deal with large
amounts of data, this research direction is definitely important. (B) The
investigation whether there is some way to make the FURIA models linguis-
tically interpretable. Since FURIA’s discriminative ability is already quite
strong, improvements in this direction would enhance its use.

8.2.2. FR3

For the FR3 algorithm it would be interesting to analyze the decision making
possibilities that are available due to the discerning between conflict and
ignorance. While this research direction is highly application specific, there
are still decision making types which are somewhat general in nature, e.g.
whether or not to abstain.

8.2. Future Work 185

8.2.3. HELLFIRE

For HELLFIRE it would be interesting to find out whether the grid-based
approach is capable of achieving discriminative abilities that are comparable
to the ones of FURIA. Such an insight could determine whether the inter-
pretability of linguistic fuzzy rule-based classifiers comes at the price of a
worse classification performance. Furthermore, the implementation of better
stopping and pruning strategies for HELLFIRE is an area where new discov-
eries will certainly be made. This expectation would be in agreement with the
direction in which research of conventional decision trees and conventional
rule learners went.

8.2.4. General Directions

The following list of potential research directions is in no way exhaustive. It
is more of an effort to show in which direction future work could be heading.

8.2.4.1. Weighing Examples for Boosting

A very hot topic in recent years has been boosting, especially the AdaBoost
algorithm. The meta techniques originating from this field are very strong in
improving a weak learner’s discriminative ability. A preliminary characteris-
tic of such an algorithm is that it is capable of handling weighted examples.
In fact, all three algorithm FURIA, FR3 and HELLFIRE should be able
to cope with weighted examples. Nevertheless, a thorough analysis should
clarify whether the algorithms or perhaps the rules could be subjected to
boosting. Besides, weighed examples could also occur in a classification task.
This makes this direction an important one in order to allow the algorithms
to exploit all data information in a reasonable way.

8.2.4.2. Parallelization

For all three algorithms the advent of multi processor computers offers new
opportunities. The parallel execution might improve the building time of
the classifiers. For FR3 one strategy could be to parallelize the learning of
the pairwise problems that could result in a speed-up which is quadratic
in the number of classes. For FURIA the parallel learning of the 1-vs-All
rulesets could achieve a speed-up that is linear in the number of classes. For
HELLFIRE a parallelization of the split calculation for the different subsets

186 Conclusion and Outlook

would be a reasonable opportunity. Denoting the possible speed-up is here
harder, however. The first problem is that the broader the search becomes,
the more splits can be analyzed parallely. The second problem is that this
parallelization has to be synchronized for the split coordination. Without
going into detail, there should be plenty of parallelization opportunities that
could follow this work.

8.2.4.3. Streaming Data

The wide distribution of mini-computers or sensors has nowadays led to an
increase in data and especially data streams, e.g. real time stock trading
data, traffic lane car counting and measuring data, etc. In order to learn
the time-varying patterns early enough, there is a large need for machine
learning algorithms that are able to cope with data streams. This could also
be a direction for further investigation.

8.2.5. Outlook

The results which were found in this thesis are by no means the end of this
scientific path. In fact, it is really the beginning. There are still plenty of
opportunities to learn well-performing linguistic fuzzy rule-based classifiers
using lean but effective algorithms. Moreover, the combination of fuzzy logic
and conventional machine learning algorithms will be a fertile field for future
research.

ATables

187

188 Tables

Table A.1.: Average classification accuracy on the test data for variants of FURIA.

Data set prod min crisp w/o

analcatdata-authorship 92.809 92.809 92.557 91.228
analcatdata-bankruptcy 81.326 81.329 82.580 76.127
analcatdata-cyyoung8092 76.012 76.042 76.192 73.308
analcatdata-cyyoung9302 78.742 78.709 79.059 76.491
analcatdata-esr 80.091 80.091 80.918 75.971
analcatdata-halloffame 90.878 90.876 90.841 89.383
analcatdata-lawsuit 97.770 97.770 97.726 97.024
analcatdata-votesurvey 8.561 8.561 8.561 7.336
biomed 85.425 85.411 85.188 82.399
cars 74.605 74.591 74.518 72.339
collins 96.017 96.029 95.103 89.676
ecoli 80.590 80.581 79.963 76.893
eucalyptus 47.929 47.929 47.721 46.766
glass 60.661 60.647 59.691 54.498
haberman 67.246 67.246 67.323 66.939
heart-statlog 73.329 73.329 73.144 71.923
ionosphere 86.644 86.627 86.510 84.339
iris 94.000 94.000 93.333 91.745
liver-disorders 57.667 57.667 57.471 56.123
metStatCoordinates 92.189 92.183 91.981 90.287
metStatRainfall 56.119 56.118 55.691 51.634
metStatRST 22.540 22.540 22.232 20.241
metStatSunshine 41.363 41.370 41.128 36.623
metStatTemp 42.041 42.037 41.850 40.391
mfeat-factors 88.999 88.993 88.746 86.356
mfeat-fourier 70.696 70.693 70.278 66.624
mfeat-karhunen 82.403 82.404 81.678 77.450
mfeat-morphological 68.099 68.099 68.097 66.804
mfeat-zernike 68.084 68.093 67.572 63.879
optdigits 92.560 92.560 92.314 90.400
page-blocks 96.529 96.528 96.376 95.902
pasture-production 64.653 64.653 63.300 58.215
pendigits 97.073 97.070 96.701 95.021
pima diabetes 68.942 68.942 68.912 67.832
prnn-synth 81.045 81.045 80.999 79.500
schizo- 72.386 72.377 71.903 69.932
segment 95.536 95.538 95.132 93.694
sonar 70.210 70.195 69.631 66.048
squash-unstored 72.878 72.878 73.196 67.906
synthetic control 85.529 85.520 84.480 80.260
vehicle 62.848 62.845 62.626 61.075
vowel 71.108 71.082 67.912 61.323
waveform 75.343 75.343 75.349 70.524
wine 90.574 90.557 89.612 86.271
wisconsin-breast-cancer 94.257 94.257 94.144 93.643

189

Table A.2.: Average classification error on the test data for variants of FURIA.

Data set prod min crisp w/o

analcatdata-authorship 2.686 2.686 2.937 2.528
analcatdata-bankruptcy 16.785 16.781 15.530 12.460
analcatdata-cyyoung8092 17.398 17.367 17.218 15.792
analcatdata-cyyoung9302 14.828 14.861 14.511 13.197
analcatdata-esr 17.359 17.359 16.532 15.545
analcatdata-halloffame 5.720 5.722 5.757 5.160
analcatdata-lawsuit 1.939 1.939 1.984 1.750
analcatdata-votesurvey 18.969 18.969 18.969 16.911
biomed 9.424 9.438 9.662 8.172
cars 14.392 14.406 14.479 12.125
collins 2.970 2.958 3.884 0.124
ecoli 13.900 13.908 14.527 12.340
eucalyptus 23.425 23.425 23.633 21.919
glass 23.123 23.137 24.092 18.709
haberman 22.996 22.996 22.919 22.737
heart-statlog 16.254 16.254 16.440 15.654
ionosphere 8.511 8.528 8.645 7.456
iris 4.706 4.706 5.373 4.275
liver-disorders 25.181 25.181 25.377 24.302
metStatCoordinates 6.135 6.142 6.343 5.234
metStatRainfall 20.598 20.599 21.026 16.577
metStatRST 27.899 27.899 28.207 22.689
metStatSunshine 30.615 30.607 30.850 23.062
metStatTemp 25.784 25.788 25.975 22.897
mfeat-factors 4.866 4.872 5.119 4.138
mfeat-fourier 16.025 16.028 16.443 13.050
mfeat-karhunen 8.481 8.481 9.207 6.587
mfeat-morphological 22.510 22.510 22.512 21.504
mfeat-zernike 15.500 15.499 16.157 12.971
optdigits 3.394 3.394 3.640 2.844
page-blocks 2.651 2.652 2.804 2.323
pasture-production 15.125 15.125 16.478 12.536
pendigits 1.691 1.694 2.063 1.449
pima diabetes 20.779 20.779 20.810 20.086
prnn-synth 14.575 14.575 14.621 13.655
schizo- 13.297 13.305 13.780 12.191
segment 2.412 2.409 2.815 1.851
sonar 18.648 18.662 19.226 16.595
squash-unstored 20.369 20.369 20.051 17.383
synthetic control 6.912 6.922 7.961 5.858
vehicle 16.907 16.910 17.129 15.509
vowel 16.826 16.853 20.022 11.633
waveform 14.076 14.076 14.069 12.212
wine 4.358 4.375 5.320 3.105
wisconsin-breast-cancer 3.660 3.660 3.774 3.504

190 Tables

Table A.3.: Average classification accuracy on the training data for variants of
FURIA.

Data set prod min crisp w/o

analcatdata-authorship 99.580 99.580 99.580 99.537
analcatdata-bankruptcy 97.064 97.064 97.064 96.912
analcatdata-cyyoung8092 90.537 90.537 90.537 90.272
analcatdata-cyyoung9302 92.343 92.343 92.343 92.212
analcatdata-esr 88.247 88.247 88.247 88.059
analcatdata-halloffame 95.405 95.405 95.379 95.190
analcatdata-lawsuit 99.105 99.105 99.105 99.099
analcatdata-votesurvey 24.060 24.060 24.060 24.060
biomed 96.042 96.042 96.056 95.853
cars 87.738 87.738 87.653 87.484
collins 99.730 99.730 99.730 99.427
ecoli 90.764 90.764 90.782 90.503
eucalyptus 61.476 61.476 61.519 61.140
glass 81.522 81.522 81.543 80.814
haberman 72.389 72.389 72.409 72.250
heart-statlog 85.617 85.617 85.634 85.449
ionosphere 96.347 96.347 96.347 96.196
iris 97.869 97.869 97.939 97.768
liver-disorders 72.343 72.343 72.387 71.829
metStatCoordinates 96.766 96.767 96.763 96.459
metStatRainfall 73.551 73.552 73.612 72.427
metStatRST 36.896 36.896 36.918 36.508
metStatSunshine 69.692 69.695 69.717 69.118
metStatTemp 63.474 63.474 63.478 63.219
mfeat-factors 98.977 98.977 98.977 98.936
mfeat-fourier 89.992 89.992 90.008 89.557
mfeat-karhunen 97.185 97.186 97.189 96.932
mfeat-morphological 74.550 74.550 74.580 74.282
mfeat-zernike 82.136 82.137 82.166 81.691
optdigits 99.351 99.351 99.351 99.270
page-blocks 97.863 97.860 97.717 97.747
pasture-production 89.065 89.065 89.065 89.065
pendigits 99.642 99.642 99.643 99.531
pima diabetes 75.019 75.019 75.069 74.489
prnn-synth 87.121 87.121 87.260 86.891
schizo- 88.357 88.357 88.392 88.058
segment 98.831 98.832 98.837 98.648
sonar 95.696 95.696 95.696 95.507
squash-unstored 93.042 93.042 93.042 93.013
synthetic control 99.134 99.134 99.136 98.980
vehicle 74.770 74.770 74.795 74.422
vowel 93.583 93.584 93.607 92.874
waveform 91.319 91.320 91.332 90.222
wine 98.978 98.978 98.978 98.774
wisconsin-breast-cancer 98.298 98.298 98.283 98.236

191

Table A.4.: Average classification error on the training data for variants of
FURIA.

Data set prod min crisp w/o

analcatdata-authorship 0.005 0.005 0.005 0.005
analcatdata-bankruptcy 1.610 1.610 1.610 1.761
analcatdata-cyyoung8092 4.574 4.574 4.574 4.558
analcatdata-cyyoung9302 2.982 2.982 2.982 3.015
analcatdata-esr 5.066 5.066 5.066 5.066
analcatdata-halloffame 1.161 1.161 1.187 0.983
analcatdata-lawsuit 0.597 0.597 0.597 0.597
analcatdata-votesurvey 2.825 2.825 2.825 2.825
biomed 1.138 1.138 1.124 1.189
cars 3.786 3.786 3.872 3.577
collins 0.000 0.000 0.000 0.000
ecoli 4.424 4.424 4.406 4.450
eucalyptus 10.259 10.259 10.216 10.208
glass 4.538 4.538 4.517 4.517
haberman 17.357 17.357 17.337 17.272
heart-statlog 5.159 5.159 5.142 5.176
ionosphere 1.399 1.399 1.399 1.447
iris 1.242 1.242 1.172 1.273
liver-disorders 10.959 10.959 10.915 11.016
metStatCoordinates 1.891 1.890 1.894 1.924
metStatRainfall 4.297 4.296 4.236 4.334
metStatRST 11.508 11.508 11.485 11.499
metStatSunshine 4.617 4.613 4.592 4.674
metStatTemp 7.765 7.765 7.760 7.769
mfeat-factors 0.055 0.055 0.055 0.061
mfeat-fourier 1.210 1.210 1.194 1.233
mfeat-karhunen 0.291 0.290 0.286 0.317
mfeat-morphological 15.983 15.983 15.953 15.845
mfeat-zernike 4.178 4.177 4.154 4.198
optdigits 0.018 0.018 0.018 0.018
page-blocks 1.394 1.396 1.539 1.144
pasture-production 1.129 1.129 1.129 1.129
pendigits 0.037 0.037 0.037 0.042
pima diabetes 14.120 14.120 14.071 13.767
prnn-synth 7.997 7.997 7.857 8.021
schizo- 2.403 2.403 2.368 2.426
segment 0.225 0.224 0.219 0.230
sonar 0.794 0.794 0.794 0.816
squash-unstored 2.752 2.752 2.752 2.752
synthetic control 0.063 0.063 0.061 0.073
vehicle 5.751 5.751 5.726 5.769
vowel 0.805 0.804 0.781 0.853
waveform 0.332 0.332 0.320 0.342
wine 0.059 0.059 0.059 0.085
wisconsin-breast-cancer 0.427 0.427 0.442 0.436

192 Tables

Table A.5.: Average Classification accuracies and ranks. FURIA-MFC votes for
the most frequent class for uncovered instances.

Data set FURIA FURIA-EB FURIA-1NN FURIA-MFC

analcatdata-authorship 95.67 95.73 97.21 94.37
analcatdata-bankruptcy 82.57 82.51 82.62 82.10
analcatdata-cyyoung8092 80.02 79.81 79.93 79.94
analcatdata-cyyoung9302 82.64 82.65 82.07 82.55
analcatdata-esr 80.90 80.81 82.00 80.81
analcatdata-halloffame 92.92 92.88 92.94 92.87
analcatdata-lawsuit 98.00 97.97 97.93 97.94
analcatdata-votesurvey 36.92 33.81 33.26 36.16
biomed 88.31 88.64 89.08 88.59
cars 79.08 78.37 79.27 77.22
collins 96.35 96.57 96.26 96.02
ecoli 83.12 83.45 84.00 81.52
eucalyptus 60.62 60.06 59.83 59.18
glass 68.22 68.28 69.55 67.27
haberman 72.72 72.63 72.67 72.51
heart-statlog 79.75 79.55 79.45 78.89
ionosphere 89.59 89.38 90.02 89.23
iris 94.76 94.88 95.06 94.00
liver-disorders 67.15 67.16 68.08 67.00
metStatCoordinates 93.02 93.01 93.28 92.38
metStatRainfall 64.51 64.24 69.94 60.62
metStatRST 33.56 33.10 37.81 33.04
metStatSunshine 49.05 48.85 53.82 46.87
metStatTemp 50.71 50.09 56.40 46.62
mfeat-factors 92.09 92.33 94.21 89.29
mfeat-fourier 76.69 76.42 78.62 70.90
mfeat-karhunen 86.47 86.72 90.33 83.20
mfeat-morphological 72.09 72.03 72.16 68.17
mfeat-zernike 73.67 72.86 77.24 68.59
optdigits 94.78 94.82 96.26 93.01
page-blocks 97.02 97.00 97.05 97.00
pasture-production 74.67 75.87 75.33 74.02
pendigits 97.77 97.75 98.20 97.21
pima diabetes 74.71 74.79 74.71 74.37
prnn-synth 83.57 83.65 84.04 83.22
schizo- 80.52 81.77 81.27 81.76
segment 96.50 96.44 96.98 95.72
sonar 77.01 77.15 78.90 76.78
squash-unstored 76.44 76.22 76.74 76.19
synthetic control 89.75 89.81 92.46 85.91
vehicle 70.10 69.50 72.73 66.49
vowel 75.43 75.23 82.69 71.91
waveform 82.24 82.31 81.92 79.01
wine 93.25 93.68 94.80 93.26
wisconsin-breast-cancer 95.68 95.57 95.89 95.04

193

Table A.6.: Average classification accuracy on the test data for variants of
HELLFIRE.

Data set HELLFIRE HF.I HF.U HF.I.U

acd-authorship 91.286 89.713 89.292 84.770
acd-bankruptcy 82.147 81.973 82.025 81.679
acd-cyyoung8092 80.251 79.917 79.519 79.580
acd-cyyoung9302 81.867 80.934 81.131 80.618
acd-esr 78.968 76.941 76.941 76.941
acd-halloffame 90.004 89.680 90.042 89.539
acd-lawsuit 96.848 96.123 97.460 96.123
acd-votesurvey 35.346 34.834 35.795 34.749
biomed 86.479 85.816 84.559 81.859
cars 71.511 73.388 70.909 70.627
collins 93.212 92.977 92.759 92.194
ecoli 79.571 78.285 77.741 75.432
eucalyptus 54.984 55.007 53.224 52.012
glass 63.962 65.321 60.711 59.092
haberman 72.410 72.113 72.381 72.304
heart-statlog 79.455 79.020 75.551 74.571
ionosphere 87.925 87.516 87.065 85.107
iris 94.745 94.725 94.431 94.235
liver-disorders 63.697 62.452 60.165 55.877
metStatCoord. 84.900 83.906 81.424 79.527
metStatRainfall 48.260 46.690 43.700 39.353
metStatRST 38.476 37.701 36.160 34.994
metStatSunshine 41.321 41.129 39.439 38.634
metStatTemp 47.693 47.721 46.509 44.045
mfeat-factors 83.284 78.893 80.407 71.632
mfeat-fourier 72.857 70.571 70.694 65.782
mfeat-karhunen 76.559 70.551 74.832 60.596
mfeat-morpholog. 70.891 70.044 67.360 66.794
mfeat-zernike 63.268 58.599 61.688 52.247
optdigits 82.655 78.917 78.693 69.200
page-blocks 92.054 91.685 91.419 90.956
pasture-prod. 71.735 71.985 71.242 70.832
pendigits 88.248 86.342 86.495 78.644
pima diabetes 72.673 71.991 69.644 68.039
prnn-synth 83.766 82.386 79.814 77.757
schizo- 69.386 70.726 62.805 62.839
segment 90.383 91.374 88.520 88.528
sonar 72.281 71.853 70.440 68.688
squash-unstored 73.128 72.161 72.154 72.092
synthetic control 82.451 86.059 81.569 83.593
vehicle 66.968 67.127 63.172 61.746
vowel 47.539 48.684 46.121 45.371
waveform 77.125 73.045 72.135 60.623
wine 91.811 91.283 91.428 89.929
wisconsin-breast-cancer 94.123 93.244 92.058 88.957

194 Tables

Table A.7.: Average classification error on the test data for variants of
HELLFIRE.

Data set HELLFIRE HF.I HF.U HF.I.U

acd-authorship 8.507 9.034 10.502 13.978
acd-bankruptcy 17.853 18.027 17.975 18.321
acd-cyyoung8092 19.717 19.899 20.449 20.236
acd-cyyoung9302 18.102 18.935 18.838 19.250
acd-esr 16.532 18.559 18.559 18.559
acd-halloffame 6.236 6.119 6.198 6.260
acd-lawsuit 2.350 1.972 1.738 1.972
acd-votesurvey 64.408 64.795 63.959 64.879
biomed 13.111 13.336 15.031 17.293
cars 27.592 24.166 28.194 26.927
collins 6.705 6.735 7.158 7.517
ecoli 20.253 18.745 22.083 21.598
eucalyptus 42.745 41.771 44.506 44.766
glass 35.721 34.073 38.972 40.302
haberman 26.713 26.828 26.742 26.637
heart-statlog 20.263 20.610 24.167 25.059
ionosphere 11.312 11.461 12.172 13.870
iris 4.667 4.627 4.980 5.118
liver-disorders 36.133 37.147 39.665 43.722
metStatCoord. 13.744 12.812 17.221 17.190
metStatRainfall 51.588 50.361 56.148 57.698
metStatRST 60.903 60.723 63.219 63.429
metStatSunshine 58.533 57.058 60.415 59.553
metStatTemp 52.066 50.672 53.250 54.349
mfeat-factors 16.691 19.475 19.568 26.735
mfeat-fourier 27.124 27.804 29.287 32.593
mfeat-karhunen 23.422 27.609 25.149 37.565
mfeat-morpholog. 28.903 29.254 32.434 32.504
mfeat-zernike 36.729 39.331 38.309 45.682
optdigits 17.200 19.322 21.162 29.038
page-blocks 5.289 5.364 5.924 6.093
pasture-prod. 28.265 28.015 28.758 29.169
pendigits 11.731 11.928 13.484 19.626
pima diabetes 26.853 27.098 29.882 31.050
prnn-synth 16.140 17.472 20.092 22.102
schizo- 28.704 26.716 35.285 34.604
segment 9.515 7.447 11.378 10.293
sonar 27.634 27.722 29.475 30.887
squash-unstored 23.368 23.822 24.342 23.890
synthetic control 17.510 13.279 18.392 15.745
vehicle 32.986 32.031 36.783 37.412
vowel 52.446 50.443 53.865 53.756
waveform 22.417 26.210 27.407 38.632
wine 7.961 8.307 8.344 9.661
wisconsin-breast-cancer 5.208 5.590 7.273 9.877

195

Table A.8.: HELLFIRE fuzzification comparison in terms of accuracy. The
generic fuzzification ranges from 0 for crisp to 1 for maximally fuzzy.

Data set HF. HF.0 HF.0.2 HF.0.4 HF.0.6 HF.0.8 HF.1

acd-authorship 91.398 90.350 90.891 89.265 86.361 83.182 80.318
acd-bankruptcy 82.147 81.973 82.306 82.174 79.671 77.491 75.623
acd-cyyoung8092 80.283 80.101 80.703 80.796 80.637 80.571 80.028
acd-cyyoung9302 81.867 81.001 81.900 82.695 83.137 82.830 82.828
acd-esr 82.621 80.594 82.541 85.123 86.696 86.130 86.139
acd-halloffame 91.508 91.368 91.447 91.438 91.401 91.317 91.247
acd-lawsuit 96.937 96.245 97.493 96.346 95.678 95.031 94.251
acd-votesurvey 35.467 35.018 35.253 35.985 37.441 37.068 37.072
biomed 86.692 86.156 86.113 85.099 84.045 83.463 82.678
cars 71.844 74.307 71.476 70.208 69.354 68.356 67.075
collins 93.260 93.107 92.947 92.164 90.847 89.816 86.755
ecoli 79.668 79.335 80.034 79.858 79.109 77.442 74.888
eucalyptus 55.037 55.363 54.910 54.446 53.798 53.239 52.496
glass 64.045 65.527 63.144 59.645 56.223 53.198 50.513
haberman 72.998 72.816 73.219 73.257 73.257 73.066 73.027
heart-statlog 79.629 79.238 79.651 79.531 78.428 77.840 77.621
ionosphere 88.387 88.128 86.585 86.408 86.174 85.570 84.816
iris 94.824 94.824 94.902 94.686 94.588 92.824 90.765
liver-disorders 63.808 62.691 63.237 62.547 61.720 61.463 61.301
metStatCoord. 85.180 84.585 85.290 85.351 85.140 84.795 84.435
metStatRainfall 48.280 47.098 47.344 45.768 43.708 41.603 39.508
metStatRST 38.546 37.929 38.284 38.311 38.036 37.184 36.340
metStatSunshine 41.356 41.429 42.047 40.927 39.633 38.230 36.251
metStatTemp 47.723 47.857 45.538 41.576 38.255 35.723 33.594
mfeat-factors 83.296 79.335 82.141 82.996 82.546 80.803 78.247
mfeat-fourier 72.862 71.013 72.957 73.594 73.377 72.603 71.379
mfeat-karhunen 76.566 70.959 74.991 76.574 76.574 75.457 73.612
mfeat-morpholog. 70.954 70.259 70.938 70.734 70.277 69.715 68.352
mfeat-zernike 63.268 59.077 61.799 63.219 63.497 62.835 61.424
optdigits 82.690 79.351 79.851 79.727 79.672 79.641 79.446
page-blocks 93.081 92.852 91.362 91.126 90.785 90.700 90.642
pasture-prod. 71.735 71.985 71.658 70.767 70.286 69.632 69.388
pendigits 88.253 86.770 88.091 87.279 85.960 84.448 82.737
pima diabetes 72.922 72.493 72.749 73.060 72.773 72.524 72.022
prnn-synth 83.813 82.445 83.283 84.025 83.860 83.624 82.838
schizo- 70.518 72.204 69.907 68.093 66.616 65.242 64.499
segment 90.398 91.698 89.979 85.161 80.385 76.064 70.888
sonar 72.352 72.137 72.675 72.592 71.121 70.259 69.224
squash-unstored 76.397 75.838 75.436 74.815 74.373 73.817 72.573
synthetic control 82.485 86.402 86.196 83.809 79.956 75.044 70.098
vehicle 66.989 67.385 63.819 58.496 55.846 53.990 52.452
vowel 47.545 48.895 49.407 48.134 46.143 44.026 41.463
waveform 77.313 73.343 74.503 74.903 74.827 74.583 74.187
wine 91.876 91.398 92.321 91.827 91.295 88.155 83.690
w.-breast-cancer 94.506 93.778 94.392 94.418 94.683 94.636 94.456

196 Tables

Table A.9.: HELLFIRE fuzzification comparison in terms of AUC. The generic
fuzzification ranges from 0 for crisp to 1 for maximally fuzzy.

Data set HF. HF.0 HF.0.2 HF.0.4 HF.0.6 HF.0.8 HF.1

acd-authorship 0.979 0.951 0.979 0.985 0.985 0.983 0.980
acd-bankruptcy 0.880 0.824 0.911 0.924 0.921 0.920 0.917
acd-cyyoung8092 0.784 0.721 0.775 0.807 0.829 0.836 0.838
acd-cyyoung9302 0.769 0.700 0.776 0.804 0.833 0.843 0.854
acd-esr 0.669 0.625 0.713 0.713 0.711 0.706 0.691
acd-halloffame 0.779 0.748 0.766 0.778 0.787 0.797 0.803
acd-lawsuit 0.948 0.926 0.945 0.949 0.978 0.979 0.979
acd-votesurvey 0.543 0.526 0.534 0.537 0.544 0.545 0.549
biomed 0.906 0.867 0.912 0.912 0.913 0.914 0.912
cars 0.853 0.823 0.851 0.863 0.866 0.866 0.866
collins 0.989 0.972 0.990 0.994 0.995 0.995 0.994
ecoli 0.918 0.881 0.910 0.927 0.934 0.936 0.937
eucalyptus 0.815 0.780 0.806 0.822 0.829 0.832 0.833
glass 0.799 0.778 0.793 0.793 0.789 0.778 0.767
haberman 0.632 0.604 0.628 0.632 0.633 0.633 0.630
heart-statlog 0.839 0.831 0.839 0.844 0.858 0.858 0.858
ionosphere 0.899 0.879 0.889 0.887 0.892 0.891 0.884
iris 0.981 0.966 0.989 0.993 0.994 0.994 0.993
liver-disorders 0.657 0.637 0.656 0.649 0.643 0.643 0.643
metStatCoord. 0.965 0.947 0.961 0.968 0.972 0.974 0.975
metStatRainfall 0.822 0.765 0.817 0.830 0.833 0.832 0.829
metStatRST 0.712 0.672 0.709 0.725 0.731 0.735 0.736
metStatSunshine 0.768 0.699 0.764 0.788 0.797 0.799 0.798
metStatTemp 0.765 0.716 0.770 0.769 0.763 0.756 0.749
mfeat-factors 0.971 0.924 0.956 0.970 0.975 0.976 0.974
mfeat-fourier 0.947 0.889 0.925 0.943 0.950 0.952 0.950
mfeat-karhunen 0.958 0.894 0.938 0.956 0.962 0.964 0.963
mfeat-morpholog. 0.914 0.889 0.907 0.918 0.926 0.927 0.931
mfeat-zernike 0.923 0.842 0.891 0.917 0.927 0.930 0.930
optdigits 0.964 0.935 0.951 0.959 0.964 0.967 0.969
page-blocks 0.829 0.821 0.817 0.818 0.819 0.819 0.819
pasture-prod. 0.807 0.791 0.814 0.816 0.817 0.815 0.816
pendigits 0.985 0.960 0.978 0.983 0.984 0.984 0.981
pima diabetes 0.769 0.738 0.764 0.778 0.784 0.784 0.783
prnn-synth 0.889 0.852 0.887 0.905 0.915 0.917 0.919
schizo- 0.749 0.764 0.740 0.728 0.716 0.706 0.695
segment 0.984 0.972 0.986 0.983 0.977 0.968 0.958
sonar 0.785 0.742 0.789 0.798 0.793 0.784 0.778
squash-unstored 0.845 0.803 0.861 0.882 0.888 0.875 0.855
synthetic control 0.971 0.938 0.979 0.984 0.981 0.974 0.964
vehicle 0.856 0.833 0.852 0.835 0.821 0.808 0.798
vowel 0.851 0.759 0.826 0.856 0.869 0.873 0.870
waveform 0.919 0.897 0.905 0.909 0.909 0.907 0.905
wine 0.970 0.939 0.981 0.987 0.989 0.989 0.988
w.-breast-cancer 0.975 0.958 0.971 0.972 0.978 0.979 0.980

Acknowledgements

This thesis is the result of my research that I performed as a PhD student
in the Knowledge Engineering & Bioinformatics Lab of the University of
Marburg and as a visiting research fellow in the Decision Systems Group at
Harvard Medical School. During my scientific journey I have had the distinct
honor of becoming acquainted with many people whom I would like to thank
for their helpful advice and their friendship.

First of all, I would like to sincerely thank my thesis advisor Prof. Dr. Eyke
Hüllermeier for his insight concerning the work in this thesis and his gener-
ous support. I am continually grateful for the opportunity to research as a
member of his group for which he has always provided ready support and
discussion. I value the high scientific standards he constantly sets and the
excellent quality of his scientific mentorship.

My gratitude also belongs to Prof. Dr. Johannes Fürnkranz for supervising
this thesis and also for many fruitful discussions about separate-and-conquer
rule learning. I thank him for his invaluable advice and his friendly support
of this thesis.

I thank Ronilda Lacson, M.D., Ph.D., Lucila Ohno-Machado, M.D., Ph.D.
and Staal Vinterbo, Ph.D. for having me as a visiting research fellow in the
Decision Systems Group at Harvard Medical School. It was an enlightening
experience to research with Dr. Vinterbo and I appreciate his scientific genius
and esteem his support.

My deep gratitude belongs to the Konrad-Adenauer-Foundation which sup-
ported my research through a scholarship both financially and ideally. It has
been an honor to be a member of this group of brilliant minds. Moreover, I
thank the International Conference on Machine Learning 2009 for supporting
me financially.

197

198 Acknowledgements

I want to express my gratefulness to my colleagues at the Knowledge En-
gineering & Bioinformatics Lab for an enriching time both personally and
scientifically. I thank Weiwei Cheng for being a great office neighbor. I also
thank Krzysztof Dembczyński, Florian Finkernagel, Thomas Fober, Frederick
Kämpfer, Marc Koch, Marco Mernberger, Robin Senge, Dr. Stijn Vanderlooy
and Dr. Yu Yi for many constructive discussions and a general great time. I
also thank Mechthild Keßler for her support.

I wish to thank my colleagues at Harvard Medical School for the pleasant
atmosphere, most notably Kumiko Ohashi, Ph.D., Jihoon Kim and Richard
Lu, M.D.. I also thank Dr. Jan Pruszak and Thomas Rost for being great
fellows.

I acknowledge Alberto Fernández from the SCI2S Group of the University of
Granada for making the CHI and SLAVE program code available. Alberto
has been a great sparring partner for discussions about evolutionary fuzzy
rule learners.

My gratitude for proofreading this thesis and for giving me advice on using
proper English goes to Barbara Güldenring.

I thank my brother Dr. Markus Hühn for his great guidance behind the scenes
of Academia.

I also thank Susanne Kleinmann for heartily supporting me through all the
years of my dissertation.

Last but definitely not least, I wish to express my humble gratitude to my
parents Annemarie and Albert Hühn for their unlimited encouragement and
support.

Glossary

AUC Area under the ROC curve. A ranking performance measure.

Bias The assumptions made. Limiting the space of possibilities, which is
on the one hand restricting but on the other hand simplifying.

C4.5 A decision tree algorithm that recursively partitions the data until
the class distribution in the leaves is pure enough. C4.5 is fast and is
strong in terms of classification accuracy.

Classification accuracy A measure for the predictive quality. The rela-
tive number of correctly classified instances. Note that the relative
number of correctly, incorrectly and unclassified instances sums up
to 1.

Classification error A measure for the predictive quality. The relative
number of incorrectly classified instances. Note that the relative
number of correctly, incorrectly and unclassified instances sums up
to 1.

Classification problem The task of finding a generalizing pattern, which
assigns every instance a single class label according to some unknown
underlying distribution.

Conventional Denoting the fact only two degrees of truths are used: TRUE
and FALSE. In contrast to fuzzy.

Crisp see Conventional.

Curse of dimensionality The fact that the problem complexity grows with
the number of attributes exponentially.

Decision boundary The borderline between two area for which instances
become assigned to different classes respectively.

199

200 Glossary

Discretization A gapless partition of numeric values into discrete intervals.

Divide-and-conquer A learning strategy for decision trees. The data is
recursively split following a criterion that e.g. tries to reduce the
entropy of the split partitions. This process is stopped when the
class distribution in the leaves is pure enough. To avoid overfitting
pruning techniques can be applied.

FR3 Fuzzy Round Robin RIPPER. An algorithm for inducing a fuzzy
preference structure for decision making tasks. It is based on fuzzy
rules based on methods from FURIA and RIPPER.

FURIA Fuzzy Unordered Rule Induction Algorithm. A RIPPER-based
separate-and-conquer learner. It was modified in several ways and
uses a set of rules instead of a list. It uses rule stretching to classify
uncovered instance. It contains a data-driven fuzzification method
that softens the rule boundaries.

Fuzzification A method to soften conventional rule boundaries. A hard
threshold is replaced through a soft and gradual transition from the
covered to the uncovered area.

Fuzzy Denoting the fact all shades of truths are used. In contrast to con-
ventional or crisp.

Fuzzy logic A multi-valued logic which does not only distinguish between
TRUE and FALSE but between all gradual degrees of truths. More-
over, it uses so-called T-norms and T-conorms as generalizations of
the two-valued AND and OR operations. For the negation there are
also generalizations of the binary NOT operation.

Genetic fuzzy rule learner A rule learning algorithm that learns fuzzy
rules through a search strategy that is inspired by nature selection
and evolution.

HELLFIRE High-End Learning of Linguistic Fuzzy Interval Rule Exper-
tise. A linguistic fuzzy rule classifier which learns a data discretiza-
tion and classification rules simultaneously. The grid-based rules are
softened in a second data-driven fuzzification step.

Glossary 201

IREP Incremental Reduced Error Pruning. A rule pruning technique that
simplifies a rule directly after its learning. It is faster than its prede-
cessor REP and it is less vulnerable to local opima.

Machine learning The realm of learning generalizing patterns from data.

Noise Data points which are not following a given distribution, e.g. due to
false attribute values, wrong class labels, etc.

Occam’s Razor A rule of thumb that a simpler model generalizes better.
This rule is often used in the context of model overfitting in noisy
domains.

Overfitting Learning a model which reproduces the training data — in-
cluding noise — very precisely, but which generalizes on unseen data
poorly.

Pruning A strategy to avoid overfitting on noisy data through model sim-
plification.

REP Reduced Error Pruning. A post-pruning technique that simplifies a
ruleset through deleting rules or conditions.

RIPPER Repeated Incremental Pruning to Produce Error Reduction. A
separate-and-conquer rule learner using an ordered list of rules. It is
known for its small rulesets and its learning speeds.

ROC Receiver operating characteristic. A plot of the true-positive-rate vs.
the false-positive-rate according to a given ordering of the predictions,
typically the score or the (pseudo-) probability.

Separate-and-conquer A strategy to learn classification rules for a specific
class. The idea is to cover examples, remove those examples and
repeat this process until there are basically no examples left. To
avoid overfitting pruning techniques can be applied.

List of Tables

2.1. The data sets used in the experiments. 34

3.1. Average classification accuracies and ranks for FURIA and its
competitors. 58

3.2. Average AUC and ranks for FURIA and its competitors. . . . 60
3.3. Wins and losses in terms of classification accuracy and error

on the test data for variants of FURIA. 63
3.4. Wins and losses in terms of classification accuracy and error

on the training data for variants of FURIA. 63
3.5. FURIA model statistics. 68
3.6. Absolute rule weight calculation frequencies. 70
3.7. Average model building times in sec. for variants of FURIA. . 72

4.1. Categorization of entropy-based supervised splitting discretiza-
tion algorithms. 100

4.2. Average classification accuracies and ranks for HELLFIRE and
its competitors. 101

4.3. Average AUC and ranks for HELLFIRE and its competitors. 103
4.4. Wins and losses in terms of classification acc. and error on the

test data for variants of HELLFIRE. 106
4.5. Wins and losses in terms of classification acc. for HELLFIRE

with different fuzzification degrees. 110
4.6. Wins and losses in terms of AUC for HELLFIRE with different

fuzzification degrees. 112
4.7. Comparison in terms of number of rules and classification

accuracy using RIPPER of discretizations obtained through
HELLFIRE (H-Dis) and MDLP. 115

4.8. HELLFIRE model statistics. 121
4.9. Average rate of unclassified instances for HELLFIRE. 122
4.10. The rules induced by HELLFIRE for the glass data set. . . . 123

203

204 List of Tables

5.1. Average classification accuracy and ranks for FR3 and its com-
petitors. 143

5.2. Average AUC and ranks for FR3 and its competitors. 145
5.3. FR3 model statistics. 148
5.4. Classification rates (acc) on the test set for different rejection

thresholds. 150
5.5. Classification rates on the test set for different rejection thresh-

olds. 151

6.1. Average classification accuracy and AUC of FURIA and
HELLFIRE. 157

6.2. Average classification accuracy, AUC and ranks of FURIA,
HELLFIRE and FR3. 158

6.3. Contrasting FURIA, HELLFIRE and FR3. 161

A.1. Average classification accuracy on the test data for variants of
FURIA. 188

A.2. Average classification error on the test data for variants of
FURIA. 189

A.3. Average classification accuracy on the training data for vari-
ants of FURIA. 190

A.4. Average classification error on the training data for variants of
FURIA. 191

A.5. Average Classification accuracies and ranks. 192
A.6. Average classification accuracy on the test data for variants of

HELLFIRE. 193
A.7. Average classification error on the test data for variants of

HELLFIRE. 194
A.8. HELLFIRE fuzzification comparison in terms of accuracy. . . 195
A.9. HELLFIRE fuzzification comparison in terms of AUC. 196

List of Figures

2.1. Decision boundaries of different decomposition schemes. . . . 14
2.2. Membership representations for concepts of “tall people”. . . 25
2.3. A fuzzy interval IF . 26
2.4. An exemplary fuzzy partition with generic linguistic labels for

each fuzzy set. 30
2.5. A sample ROC curve. 38
2.6. Nemenyi Test visualization. 41
2.7. Bonferroni-Dunn Test visualization. 42

3.1. Examination of possible support bounds of a conventional in-
terval. 47

3.2. The fuzzified interval maximizing the fuzzy purity. 48
3.3. Trivially fuzzified interval. 49
3.4. Myopic failure of separate-and-conquer learning: Data. 50
3.5. Myopic failure of separate-and-conquer learning: Optimal con-

ventional solution. 51
3.6. Myopic failure of separate-and-conquer learning: FURIA so-

lution without fuzzification. 52
3.7. Myopic failure of separate-and-conquer learning: FURIA so-

lution with fuzzification. 52
3.8. Three-class problem generalized through three fuzzy rules. . . 55
3.9. Bonferroni-Dunn Test visualization. 59
3.10. Bonferroni-Dunn Test visualization. 61
3.11. Visualization of the decision boundaries. 66
3.12. Rule weight calculations vs. number of antecedents. 71

4.1. Attribute splitting. 77
4.2. A comparison between an ordinary decision tree and the dis-

cretization induced by HELLFIRE 79
4.3. Splitting three data sets in a coordinated way. 81

205

206 List of Figures

4.4. Splitting two data sets in a coordinated way. 82
4.5. Splitting three data sets in a coordinated way. 83
4.6. The learning process using coordinated splitting of HELLFIRE

for inducing the set of split-based rules RSS. 87
4.7. The transformation of a split-based into an interval-based rule-

set. 89
4.8. Describing the concept of puberty using discretization. 90
4.9. A simplified sketch of the interval fuzzification strategy. . . . 93
4.10. Shifted vs. unshifted decision boundaries. 94
4.11. Discretization framework. 99
4.12. Bonferroni-Dunn Test visualization. 102
4.13. Bonferroni-Dunn Test visualization. 104
4.14. Visualization of the decision boundaries. 107
4.15. Different fuzzification degrees for two adjacent fuzzy intervals. 110
4.16. Domination plot for classification accuracy. 111
4.17. Domination plot for AUC. 112
4.18. Comparison of discretizations from MDLP and HELLFIRE. . 116
4.19. Distribution of fuzzy sets per interval for HELLFIRE. 117
4.20. Distribution of fuzzy sets per interval for HELLFIRE. 119
4.21. The attributes of the glass data set and the fuzzy intervals

induced by HELLFIRE. 124

5.1. Exemplary classification scenario: Different query instance sit-
uations. 129

5.2. Perceptron hyperplanes. 134
5.3. Exemplary classification scenario: Rule-based model solution. 135
5.4. The unbound rules in a pairwise model. 137
5.5. Bounding a one-sided fuzzy interval. 138
5.6. Extrapolating a bound fuzzy interval. 139
5.7. Bound and fuzzified rules in a pairwise model. 139
5.8. Graphical illustration of a preference structure predicted. . . 141
5.9. Bonferroni-Dunn Test visualization. 144
5.10. Bonferroni-Dunn Test visualization. 146
5.11. Accuracy-rejection curves for the data set waveform. 149

6.1. Nemenyi Test visualization. 159
6.2. Nemenyi Test visualization. 159

Bibliography

[AAFH07] R. Alcalá, J. Alcalá-Fernandez, and F. Herrera. A proposal
for the genetic lateral tuning of linguistic fuzzy systems and its
interaction with rule selection. IEEE Transactions on Fuzzy
Systems, 15(4):616–635, 2007.

[ACH01] R. Alcalá, J. Casillas, and O. Cordón F. Herrera. Building
fuzzy graphs: Features and taxonomy of learning for non-grid-
oriented fuzzy rule-based systems. Journal of Intelligent &
Fuzzy Systems: Applications in Engineering and Technology,
11(3,4):99–119, 2001.

[ACH03] R. Alcalá, O. Cordón, and F. Herrera. Combining rule weight
learning and rule selection to obtain simpler and more accurate
linguistic fuzzy models. In J. Lawry, J.G. Shanahan, and A.L.
Ralescu, editors, Modelling with Words, volume 2873 of Lecture
Notes in Computer Science, pages 44–63. Springer, 2003.

[AFSG+09] J. Alcalá-Fernandez, L. Sánchez, S. García, M.J. del Jesus,
S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit,
V.M. Rivas, J.C. Fernández, and F. Herrera. KEEL: a software
tool to assess evolutionary algorithms for data mining problems.
Soft Computing, 13(3):307–318, 2009.

[AKA91] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning
algorithms. Machine Learning, 6(1):37–66, 1991.

[AN07] A. Asuncion and D.J. Newman. UCI machine learning repos-
itory. http://archive.ics.uci.edu/ml/index.html, 2007.
Obtained on 22th of August 2007.

[ASS01] E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass
to binary: a unifying approach for margin classifiers. Journal
of Machine Learning Research, 1:113–141, 2001.

207

208 Bibliography

[Bar07] D. Barker. Dataset: Pasture production. http://weka.

sourceforge.net/wiki/index.php/Datasets, 2007. Ob-
tained on 20th of October 2007.

[BF+84] L. Breiman, , J. Friedman, C.J. Stone, and R.A. Olshen. Classi-
fication and Regression Trees. Chapman & Hall/CRC, January
1984.

[BGV92] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, COLT, pages 144–
152, New York, NY, USA, 1992. ACM.

[BK07] J. Bacardit and N. Krasnogor. Empirical evaluation of ensem-
ble techniques for a pittsburgh learning classifier system. In
Jaume Bacardit, Ester Bernadó-Mansilla, Martin V. Butz, Tim
Kovacs, Xavier Llorà, and Keiki Takadama, editors, IWLCS,
volume 4998 of Lecture Notes in Computer Science, pages 255–
268. Springer, 2007.

[BMGG03] E. Bernadó-Mansilla and J.M. Garrell-Guiu. Accuracy-based
learning classifier systems: models, analysis and applications
to classification tasks. Evolutionary Computing, 11(3):209–238,
2003.

[Bos04] H. Boström. Pruning and exclusion criteria for unordered in-
cremental reduced error pruning. Proceedings of the Workshop
on Advances in Rule Learning, ECML, pages 17–29, 2004.

[Bos05] H. Boström. Maximizing the area under the roc curve using
incremental reduced error pruning. In Proceedings of the ICML
2005 Workshop on ROC Analysis in Machine Learning, 2005.

[Bos07] H. Boström. Maximizing the area under the ROC curve
with decision lists and rule sets. In C. Apte, B. Liu, and
S. Parthasarathy, editors, Proceedings of the Seventh SIAM
International Conference on Data Mining, pages 27–34, Min-
neapolis, MN, USA, 2007. Society for Industrial Mathematics.

[BP91] C.A. Brunk and M.J. Pazzani. An investigation of noise-tolerant
relational concept learning algorithms. In L. Birnbaum and

Bibliography 209

G. Collins, editors, Proceedings of the 8th International Work-
shop on Machine Learning, pages 389–393, Evanston, IL, USA,
1991. Morgan Kaufmann.

[Bra97] A. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition,
30(7):1145–1159, 1997.

[Bre96] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–
140, 1996.

[BT52] R.A. Bradley and M.E. Terry. The rank analysis of incomplete
block designs. i. the method of paired comparisons. Biometrika,
39:324–345, 1952.

[Bul07] B. Bulloch. Dataset: Eucalyptus soil conservation. http:

//weka.sourceforge.net/wiki/index.php/Datasets, 2007.
Obtained on 20th of October 2007.

[BX05] J.F. Baldwin and D. Xie. Simple fuzzy logic rules based on fuzzy
decision tree for classification and prediction problem, pages
175–184. Springer, London, UK, 2005.

[Cat91] J. Catlett. On changing continuous attributes into ordered dis-
crete attributes. In Y. Kodratoff, editor, Proceedings of the Eu-
ropean Working Session on Machine Learning, EWSL, pages
164–178, London, UK, 1991. Springer.

[CCdH05] J. Casillas, O. Cordón, M.J. del Jesus, and F. Herrera. Genetic
tuning of fuzzy rule deep structures preserving interpretability
and its interaction with fuzzy rule set reduction. IEEE Trans-
actions on Fuzzy Systems, 13(1):13–29, 2005.

[CCH00] O. Casillas, O. Cordón, and F. Herrera. Improving the Wang
and Mendel’s fuzzy rule learning method by inducing coopera-
tion among rules. In Proceedings of the 8th Information Process-
ing and Management of Uncertainty in Knowledge-Based Sys-
tems Conference, IPMU, volume 3, pages 1682–1688, Madrid,
Spain, 2000.

210 Bibliography

[CCZ04] P. Carmona, J.L. Castro, and J.M. Zurita. FRIwE: fuzzy rule
identification with exceptions. IEEE Transactions on Fuzzy
Systems, 12(1):140–151, 2004.

[CdH99] O. Cordón, M.J. del Jesus, and F. Herrera. A proposal on
reasoning methods in fuzzy rule-based classification systems.
International Journal of Approximative Reasoning, 20(1):21–
45, 1999.

[CGH+04] O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Mag-
dalena. Ten years of genetic fuzzy systems: current framework
and new trends. Fuzzy Sets and Systems, 141(1):5–31, 2004.

[CjH02] I-J. Chiang and J.Y. j. Hsu. Fuzzy classification trees for data
analysis. Fuzzy Sets and Systems, 130(1):87–99, 2002.

[CL92] K.J. Cios and N. Liu. A machine learning method for generation
of a neural network architecture: a continuous ID3 algorithm.
IEEE Transactions on Neural Networks, 2(3):280–291, 1992.

[CN89] P. Clark and T. Niblett. The CN2 induction algorithm. Machine
Learning, 3(4):261–283, 1989.

[Coh60] J. Cohen. A coefficient of agreement for nominal scales. Educa-
tional and Psychological Measurement, 20(1):37–46, April 1960.

[Coh93] W.W. Cohen. Efficient pruning methods for separate-and-
conquer rule learning systems. In R. Bajcsy, editor, Proceed-
ings of the 13th International Joint Conference on Artificial
Intelligence, pages 988–994, Chambéry, France, 1993. Morgan
Kaufmann.

[Coh95] W.W. Cohen. Fast effective rule induction. In Armand Priedi-
tis and Stuart Russell, editors, Proceedings of the 12th Interna-
tional Conference on Machine Learning, ICML, pages 115–123,
Tahoe City, CA, USA, July 9–12, 1995. Morgan Kaufmann.

[CS92] K.J. Cios and L.M. Sztandera. Continuous ID3 algorithm with
fuzzy entropy measures. In IEEE International Conference on
Fuzzy Systems, pages 469–476, San Diego, CA, USA, 1992.

Bibliography 211

[CS99] W.W. Cohen and Y. Singer. A simple and fast and and effective
rule learner. In Proceedings of the Sixteenth National Confer-
ence on Artificial Intelligence, AAAI, pages 335–342, Orlando,
FL, USA, 1999. American Association for Artificial Intelligence.

[CTLL91] K.J. Cios, R. Tjia, N. Liu, and R.A. Langenderfer. Study of
continuous ID3 and radial basis function algorithms for recog-
nition of defects in glass. In International Joint Conference on
Neural Networks, IJCNN, volume 1, pages 49–54, Seattle, 1991.

[Cut03] F. Cutzu. Polychotomous classification with pairwise classifiers:
A new voting principle. In Multiple Classifier Systems, pages
115–124, 2003.

[Cv04] I. Cloete and J. van Zyl. Evaluation function guided search for
fuzzy set covering. In Proceedings of the IEEE International
Conference on Fuzzy Systems, FUZZ-IEEE, volume 2, pages
1007–1012, Budapest, Hungary, 2004. IEEE Computer Society.

[Cv06] I. Cloete and J. van Zyl. Fuzzy rule induction in a set covering
framework. IEEE Transactions on Fuzzy Systems, 14(1):93–
110, 2006.

[CW03] Y. Chen and J.Z. Wang. Support vector learning for fuzzy
rule-based classification systems. IEEE Transactions on Fuzzy
Systems, 11(6):716–728, 2003.

[CWY95] Z. Chi, J. Wu, and H. Yan. Handwritten numeral recognition
using self-organizing maps and fuzzy rules. Pattern Recognition,
28(1):59–66, 1995.

[CYP96] Z. Chi, H. Yan, and T. Pham. Fuzzy Algorithms: With Ap-
plications to Image Processing and Pattern Recognition. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.

[DB95] T.G. Dietterich and G. Bakiri. Solving multiclass learning prob-
lems via error-correcting output codes. Journal of Artificial
Intelligence Research, 2:263–286, 1995.

212 Bibliography

[DBK03] M. Drobics, U. Bodenhofer, and E.P. Klement. FS-FOIL: an
inductive learning method for extracting interpretable fuzzy de-
scriptions. International Journal of Approximative Reasoning,
32(2–3):131–152, 2003.

[DCB04] O. Dain, R. Cunningham, and S. Boyer. IREP++, a faster rule
learning algorithm. In M.W. Berry, U. Dayal, C. Kamath, and
D.B. Skillicorn, editors, Proceedings of the Fourth SIAM Inter-
national Conference on Data Mining, SDM, Lake Buena Vista,
FL, USA, 2004. Society for Industrial & Applied Mathematics.

[Dem06] J. Demšar. Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Research, 7:1–30, 2006.

[Den95] T. Denœux. A k-nearest neighbor classification rule based on
Dempster-Shafer Theory. IEEE Transactions on Systems, Man,
and Cybernetics, 25(5):804–813, 1995.

[dHNS04] M.J. del Jesus, F. Hoffmann, L.J. Navascues, and L. Sánchez.
Induction of fuzzy-rule-based classifiers with evolutionary
boosting algorithms. IEEE Transactions on Fuzzy Systems,
12(3):296–308, 2004.

[Dom96] P. Domingos. Unifying instance-based and rule-based induction.
Machine Learning, 24(2):141–168, 1996.

[Dun61] O.J. Dunn. Multiple comparisons among means. Journal of the
American Statistical Association, 56:52–64, 1961.

[EB01] M. Eineborg and H. Boström. Classifying uncovered examples
by rule stretching. In C. Rouveirol and M. Sebag, editors, Pro-
ceedings of the 11th International Conference on Inductive Logic
Programming, ILP, pages 41–50, London, UK, 2001. Springer.

[EGdE09] A.G. Evsukoff, S. Galichet, B.S.L.P. de Lima, and N.F.F.
Ebecken. Design of interpretable fuzzy rule-based classifiers
using spectral analysis with structure and parameters optimiza-
tion. Fuzzy Sets and Systems, 160(7):857–881, 2009.

[ER99] T. Elomaa and J. Rousu. General and efficient multisplitting of
numerical attributes. Machine Learning, 36(3):201–244, 1999.

Bibliography 213

[Faw01] T. Fawcett. Using rule sets to maximize ROC performance. In
N. Cercone, T.Y. Lin, and X. Wu, editors, Proceedings of the
2001 IEEE International Conference on Data Mining, ICDM,
pages 131–138, Washington, DC, USA, 2001. IEEE Computer
Society.

[Faw08] T. Fawcett. PRIE: a system for generating rulelists to maxi-
mize roc performance. Data Mining and Knowledge Discovery,
17(2):207–224, 2008.

[Fei80] E.A. Feigenbaum. Expert Systems: Looking Back and Looking
Ahead. In GI — 10. Jahrestagung, pages 1–14, London, UK,
1980. Springer, Berlin, Germany.

[FF05] J. Fürnkranz and P.A. Flach. Roc ‘n’ rule learning—towards a
better understanding of covering algorithms. Machine Learning,
58(1):39–77, 2005.

[FGHd07] A. Fernández, S. García, F. Herrera, and M.J. del Jesus. An
analysis of the rule weights and fuzzy reasoning methods for
linguistic rule based classification systems applied to problems
with highly imbalanced data sets. In Applications of Fuzzy Sets
Theory, volume 4578 of Lecture Notes in Computer Science,
pages 170–178. Springer, Berlin / Heidelberg, Germany, 2007.

[FI93] U.M. Fayyad and K.B. Irani. Multi-interval discretization
of continuous-valued attributes for classification learning. In
R. Bajcsy, editor, Proceedings of the 13th International Joint
Conference on Artificial Intelligence, pages 1022–1027, Cham-
béry, France, 1993. Morgan Kaufmann.

[FJ09] S.M. Fakhrahmad and M.Z. Jahromi. A new rule-weight learn-
ing method based on gradient descent. In S.I. Ao, L. Gel-
man, D.W.L. Hukins, A. Hunter, and A.M. Korsunsky, edi-
tors, Proceedings of the World Congress on Engineering, WCE,
volume 1, London, UK, 2009. International Association of En-
gineers.

[Fod94] J. Fodor. Valued preference structures. European Journal of
Operational Research, 79:277–286, 1994.

214 Bibliography

[FR94] J. Fodor and M. Roubens. Fuzzy preference modelling and mul-
ticriteria decision support. Kluwer Academic Publishers, 1994.

[Fri37] M. Friedman. The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. Journal of the
American Statistical Association, 32(200):675–701, 1937.

[Fri40] M. Friedman. A comparison of alternative tests of significance
for the problem of m rankings. The Annals of Mathematical
Statistics, 11(1):86–92, 1940.

[Fri96] J.H. Friedman. Another approach to polychotomous classifi-
cation. Technical report, Department of Statistics, Stanford
University, 1996.

[FS99] Y. Freund and R.E. Schapire. A short introduction to boost-
ing. Japonese Society for Artificial Intelligence, 14(5):771–780,
1999.

[Für97] J. Fürnkranz. Pruning algorithms for rule learning. Machine
Learning, 27(2):139–171, 1997.

[Für99] J. Fürnkranz. Separate-and-Conquer rule learning. Artificial
Intelligence Review, 13(1):3–54, 1999.

[Für02] J. Fürnkranz. Round robin classification. Journal of Machine
Learning Research, 2:721–747, 2002.

[Für03] J. Fürnkranz. Round robin ensembles. Intelligent Data Analy-
sis, 7(5):385–403, 2003.

[FW94] J. Fürnkranz and G. Widmer. Incremental reduced error prun-
ing. In W.W. Cohen and H. Hirsh, editors, Proceedings of the
11th International Conference on Machine Learning, ICML,
pages 70–77, New Brunswick, NJ, USA, 1994. Morgan Kauf-
mann.

[FW98] E. Frank and I.H. Witten. Generating accurate rule sets without
global optimization. In J.W. Shavlik, editor, Proceedings of
the Fifteenth International Conference on Machine Learning,
ICML, pages 144–151, San Francisco, CA, USA, 1998. Morgan
Kaufmann.

Bibliography 215

[GFLH09] S. García, A. Fernández, J. Luengo, and F. Herrera. A study of
statistical techniques and performance measures for genetics-
based machine learning: accuracy and interpretability. Soft
Computing, 13(10):959–977, 2009.

[Gin21] C. Gini. Measurement of inequality of income. Economic Jour-
nal, 31:22–43, 1921.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, MA, USA,
1989.

[GP99] A. González and R. Perez. Slave: a genetic learning system
based on an iterative approach. IEEE Transactions on Fuzzy
Systems, 7(2):176–191, 1999.

[GP01] A. González and R. Perez. Selection of relevant features in a
fuzzy genetic learning algorithm. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, 31(3):417–425, 2001.

[HAP89] R.C. Holte, L.E. Acker, and B.W. Porter. Concept learning and
the problem of small disjuncts. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, pages
813–818, Detroit, MI, USA, 1989. Morgan Kaufmann.

[Har07] W. Harvey. Dataset: Squash harvest stored / unstored. http:

//weka.sourceforge.net/wiki/index.php/Datasets, 2007.
Obtained on 20th of October 2007.

[HB08] E. Hüllermeier and K. Brinker. Learning valued preference
structures for solving classification problems. Fuzzy Sets and
Systems, 159(18):2337–2352, 2008.

[HC00] T.P. Hong and J.B. Chen. Processing individual fuzzy at-
tributes for fuzzy rule induction. Fuzzy Sets and Systems,
112(1):127–140, 2000.

[Hel70] M.E. Hellman. The nearest neighbor classification rule with a
reject option. Transactions on Systems, Man, and Cybernetics,
SMC-6:179–185, 1970.

216 Bibliography

[HH08] J.C. Hühn and E. Hüllermeier. FR3: A fuzzy rule learner
for inducing reliable classifiers. In L. Magdalena, M. Ojeda-
Aciego, and J.L. Verdegay, editors, Proceedings of the 12th In-
ternational Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems, IPMU, pages
1543–1550, Torremolinos (Málaga), Spain, 2008.

[HH09a] J.C. Hühn and E. Hüllermeier. FR3: A fuzzy rule learner for
inducing reliable classifiers. IEEE Transactions on Fuzzy Sys-
tems, 17(1):138–149, 2009.

[HH09b] J.C. Hühn and E. Hüllermeier. FURIA: an algorithm for un-
ordered fuzzy rule induction. Data Mining and Knowledge Dis-
covery, 19(3):293–319, 2009.

[HH10] J.C. Hühn and E. Hüllermeier. An analysis of the FURIA al-
gorithm for fuzzy rule induction. In J. Koronacki, Z. Ras, S.T.
Wierzchon, and J. Kacprzyk, editors, Advances in Machine
Learning I: Dedicated to the memory of Professor Ryszard S.
Michalski, volume 262 of Studies in Computational Intelligence.
Springer, Berlin, Germany, 2010.

[HK04] F. Höppner and F. Klawonn. Learning fuzzy systems – an
objective-function approach. Mathware and Soft Computing
Journal, 11(5):143–162, 2004.

[HKKR99] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy
Cluster Analysis: Methods for Classification, Data Analysis and
Image Recognition. Wiley, 1999.

[HL05] J. Huang and C.X. Ling. Using AUC and accuracy in evaluat-
ing learning algorithms. IEEE Transactions on Knowledge and
Data Engineering, 17(3):299–310, 2005.

[HM82] J. A. Hanley and B. J. Mcneil. The meaning and use of the area
under a receiver operating characteristic (roc) curve. Radiology,
143(1):29–36, 1982.

[Hof01] F. Hoffmann. Boosting a genetic fuzzy classifier. In Proceedings
of the Joint 9th IFSA World Congress and 20th NAFIPS In-
ternational Conference of NAFIPS and IFSA, volume 3, pages

Bibliography 217

1564–1569, Vancouver, BC, Canada, 2001. IEEE Computer So-
ciety.

[HR78] J.H. Holland and J.S. Reitman. Cognitive systems based on
adaptive algorithms. In D.A. Waterman and F. Hayes-Roth, ed-
itors, Pattern-Directed Inference Systems, pages 313–329. Aca-
demic Press, New York, NY, USA, 1978.

[HT97] T. Hastie and R. Tibshirani. Classification by pairwise coupling.
In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, NIPS,
Denver, CO, USA, 1997. The MIT Press.

[Hül03] E. Hüllermeier. Possibilistic instance-based learning. Artificial
Intelligence, 148(1–2):335–383, 2003.

[Hül05] E. Hüllermeier. Fuzzy-methods in machine learning and data
mining: Status and prospects. Fuzzy Sets and Systems,
156(3):387–407, 2005.

[HV09] E. Hüllermeier and S. Vanderlooy. Why fuzzy decision trees are
good rankers. IEEE Transactions on Fuzzy Systems, 2009.

[HV10] E. Hüllermeier and S. Vanderlooy. Combining predictions in
pairwise classification: An optimal adaptive voting strategy and
its relation to weighted voting. Pattern Recognition, 43(1):128–
142, 2010.

[HVor] J.C. Hühn and S.A. Vinterbo. HELLFIRE: Learning inter-
pretable and effective fuzzy rule-based classification models.
Fuzzy Sets and Systems, 2009 – with editor.

[HY08] J. Hongxia and H. Yao. Classroom teaching quality evalua-
tion based on neuro-fuzzy ID3 algorithm. In B. Werner, editor,
Proceedings of the 2008 International Symposium on Compu-
tational Intelligence and Design, ISCID, pages 166–169, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[ID80] R.L. Iman and J.M. Davenport. Approximations of the critical
region of the Friedman statistic. Communications in Statistics,
9(6):571–595, 1980.

218 Bibliography

[IN01] H. Ishibuchi and T. Nakashima. Effect of rule weights in fuzzy
rule-based classification systems. IEEE Transactions on Fuzzy
Systems, 9(4):506–515, 2001.

[INN05] H. Ishibuchi, T. Nakashima, and M. Nii. Classification and
Modeling with Linguistic Information Granules. Advanced In-
formation Processing. Springer, Berlin / Heidelberg, Germany,
2005.

[ISNM96] H. Ichihashi, T. Shirai, K. Nagasaka, and T. Miyoshi. Neuro-
fuzzy ID3: a method of inducing fuzzy decision trees with linear
programming for maximizing entropy and an algebraic method
for incremental learning. Fuzzy Sets and Systems, 81(1):157–
167, 1996.

[IY02] H. Ishibuchi and T. Yamamoto. Fuzzy rule selection by data
mining criteria and genetic algorithms. In W. B. Langdon,
E. Cantú-Paz, K.E. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V.G. Honavar, G. Rudolph, I. Wegener,
L. Bull, M.A. Potter, A.C. Schultz, J.F.Miller, E. Burke, and
N. Jonoska, editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO, pages 399–406, San
Francisco, CA, USA, 2002. Morgan Kaufmann.

[IY04] H. Ishibuchi and T. Yamamoto. Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy Sets and Systems, 141(1):59–
88, 2004.

[IY05] H. Ishibuchi and T. Yamamoto. Rule weight specification in
fuzzy rule-based classification systems. IEEE Transactions on
Fuzzy Systems, 13(4):428–436, 2005.

[Jan98] C.Z. Janikow. Fuzzy decision trees: Issues and methods.
IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 28(1):1–14, 1998.

[JF09] F. Janssen and J. Fürnkranz. A re-evaluation of the over-
searching phenomenon in inductive rule learning. In SDM,
pages 329–340, Sparks, NV, USA, 2009. SIAM.

Bibliography 219

[JJL97] B. Jeng, Y.-M. Jeng, and T.-P. Liang. Film: a fuzzy inductive
learning method for automated knowledge acquisition. Decision
Support Systems, 21(2):61–73, 1997.

[JT08] M.Z. Jahromi and M. Taheri. A proposed method for learning
rule weights in fuzzy rule-based classification systems. Fuzzy
Sets and Systems, 159(4):449–459, 2008.

[Kea88] M. Kearns. Thoughts on hypothesis boosting. ML class project,
1988.

[KK02] M. Kukar and I. Kononenko. Reliable classifications with ma-
chine learning. In T. Elomaa, H. Mannila, and H. Toivonen,
editors, Proceedings of the European Conference on Machine
Learning, ECML, pages 219–231, Berlin / Heidelberg, Ger-
many, 2002. Springer.

[KNI08] I. Kuwajima, Y. Nojima, and H. Ishibuchi. Effects of construct-
ing fuzzy discretization from crisp discretization for rule-based
classifiers. Artificial Life and Robotics, 13(1):294–297, 2008.

[Koh82] T. Kohonen. Self-organized formation of topologically correct
feature maps. Biological Cybernetics, 43:59–69, 1982.

[LF03] N. Lachiche and P.A. Flach. Improving accuracy and cost
of two-class and multi-class probabilistic classifiers using roc
curves. In T. Fawcett and N. Mishra, editors, Proceedings of
the 20th International Conference on Machine Learning, ICML,
pages 416–423, Washington, DC, USA, 2003. AAAI Press.

[LHTD02] H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An
enabling technique. Data Mining and Knowledge Discovery,
6(4):393–423, 2002.

[LHZ03] C.X. Ling, J. Huang, and H. Zhang. AUC: A better measure
than accuracy in comparing learning algorithms. In Y. Xiang
and B. Chaib-draa, editors, Advances in Artificial Intelligence,
16th Conference of the Canadian Society for Computational
Studies of Intelligence, AI, Lecture Notes in Computer Science,
pages 329–341, Halifax, Canada, 2003. Springer.

220 Bibliography

[LYL+06] C. Lin, C. Yeh, S. Liang, J. Chung, and N. Kumar. Support-
vector-based fuzzy neural network for pattern classification.
IEEE Transactions on Fuzzy Systems, 14(1):31–41, 2006.

[MD08] T. Maszczyk and W. Duch. Comparison of Shannon, Renyi
and Tsallis entropy used in decision trees. In L. Rutkowski,
R. Tadeusiewicz, L.A. Zadeh, and J.M. Zurada, editors, Pro-
ceedings of the 9th International Conference on Artificial Intel-
ligence and Soft Computing, ICAISC, volume 5097 of Lecture
Notes in Computer Science, pages 643–651, Zakopane, Poland,
2008. Springer.

[MH00] S. Mitra and Y. Hayashi. Neuro-fuzzy rule generation: survey
in soft computing framework. IEEE Transactions on Neural
Networks, 11(3):748–768, 2000.

[Mic69] R.S. Michalski. On the quasi-minimal solution of the covering
problem. In Pro- Proceedings of the 5th International Sympo-
sium on Information Processing, FCIP, volume A3 (Switching
Curcuits), pages 125–128, Bled, Yugoslavia, 1969.

[Mic73] R.S. Michalski. AQVAL/1-Computer implementation of a
variable-valued logic system and the application to pattern
recognition. In K.S. Fu, editor, Proceedings of the First Inter-
national Joint Conference on Pattern Recognition, pages 3–17,
Washington, DC, USA, 1973. IEEE Computer Society.

[Mil56] G.A. Miller. The magical number seven, plus or minus two. The
Psychological Review, 63(2):81–97, 1956.

[Mit97] T.M. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

[MJG05] R. Mikut, J. Jäkel, and L. Gröll. Interpretability issues in
data-based learning of fuzzy systems. Fuzzy Sets and Systems,
150(2):179–197, 2005.

[MTP08] N.E. Mitrakis, J.B. Theocharis, and V. Petridis. A multilayered
neuro-fuzzy classifier with self-organizing properties. Fuzzy Sets
and Systems, 159(23):3132–3159, 2008.

Bibliography 221

[MV07] M. Meyer and P. Vlachos. Statlib. http://lib.stat.cmu.

edu/, 2007.

[MW47] H.B. Mann and D.R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. Annals
of Mathematical Statistics, 18:50–60, 1947.

[MZK08] E.G. Mansoori, M.J. Zolghadri, and S.D. Katebi. SGERD: A
steady-state genetic algorithm for extracting fuzzy classifica-
tion rules from data. IEEE Transactions on Fuzzy Systems,
16(4):1061–1071, 2008.

[MZR08] S. Marcellin, D.A. Zighed, and G. Ritschard. Evaluating de-
cision trees grown with asymmetric entropies. In A. An,
S. Matwin, Z.W. Ras, and D. Slezak, editors, Proceedings of
the 17th International Symposium on Foundations of Intelligent
Systems, ISMIS 2008, volume 4994 of Lecture Notes in Com-
puter Science, pages 58–67, Toronto, Canada, 2008. Springer.

[Nem63] P. Nemenyi. Distribution-free multiple comparisons. PhD thesis,
Princeton University, 1963.

[New39] D. Newman. The distribution of range in samples from a normal
population, expressed in terms of an independent estimate of
standard deviation. Biometrika, 31:20–30, 1939.

[NIT96] K. Nozaki, H. Ishibuchi, and H. Tanaka. Adaptive fuzzy rule-
based classification systems. IEEE Transactions on Fuzzy Sys-
tems, 4(3):238–250, 1996.

[NK98] D. Nauck and R. Kruse. How the learning of rule weights affects
the interpretability offuzzy systems. In Proceedings of the IEEE
International Conference on Fuzzy Systems, FUZZ-IEEE, vol-
ume 2, pages 1235 – 1240, Anchorage, AU, 1998. IEEE Com-
puter Society.

[NKK97] D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-
Fuzzy Systems. Wiley, Chichester, UK, 1997.

[NSYI07] T. Nakashima, G. Schaefer, Y. Yokota, and H. Ishibuchi. A
weighted fuzzy classifier and its application to image processing
tasks. Fuzzy Sets and Systems, 158(3):284–294, 2007.

222 Bibliography

[OBG06] K.M. Osei-Bryson and K. Giles. Splitting methods for deci-
sion tree induction: An exploration of the relative performance
of two entropy-based families. Information Systems Frontiers,
8(3):195–209, 2006.

[OPCBM09] A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla. Fuzzy-
UCS: A Michigan-style fuzzy-learning classifier system for su-
pervised learning. IEEE Transactions on Evolutionary Compu-
tation, 13(2):260–283, 2009.

[OW03] C. Olaru and L. Wehenkel. A complete fuzzy decision tree
technique. Fuzzy Sets and Systems, 138(2):221–254, 2003.

[PD03] F.J. Provost and P. Domingos. Tree induction for probability-
based ranking. Machine Learning, 52(3):199–215, 2003.

[PF97] F.J. Provost and T. Fawcett. Analysis and visualization of clas-
sifier performance: Comparison under imprecise class and cost
distributions. In D. Heckerman, H. Mannila, and D. Pregi-
bon, editors, Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, KDD, pages 43–48,
Newport Beach, CA, USA, 1997. AAAI Press.

[PF01a] Y. Peng and P. Flach. Soft discretization to enhance the
continuous decision tree induction. In C. Giraud-Carrier,
N. Lavrac, and S. Moyle, editors, Integrating Aspects of Data
Mining, Decision Support and Meta-Learning, pages 109–118.
ECML/PKDD’01 workshop notes, 2001.

[PF01b] F.J. Provost and T. Fawcett. Robust classification for imprecise
environments. Machine Learning, 42(3):203–231, 2001.

[PF05] R.C. Prati and P.A. Flach. ROCCER: An algorithm for rule
learning based on roc analysis. In L.P. Kaelbling and A. Saf-
fiotti, editors, International Joint Conference on Artificial In-
telligence, IJCAI, pages 823–828, Edinburgh, Scotland, UK,
2005. Professional Book Center.

[PF07] S.H. Park and J. Fürnkranz. Efficient pairwise classifica-
tion. In J.N. Kok, J. Koronacki, R.L. Mantaras, S. Matwin,
D. Mladenič, and A. Skowron, editors, Proceedings of the 18th

Bibliography 223

European Conference on Machine Learning, ECML, pages 658–
665, Warsaw, Poland, 2007. Springer.

[PFK98] F.J. Provost, T. Fawcett, and R. Kohavi. The case against ac-
curacy estimation for comparing induction algorithms. In J.W.
Shavlik, editor, Proceedings of the Fifteenth International Con-
ference on Machine Learning, ICML, pages 445–453, Madison,
WI, USA, 1998. Morgan Kaufmann.

[PFTV92] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetter-
ling. Numerical Recipes in FORTRAN: The Art of Scientific
Computing. Cambridge University Press, Cambridge, England,
2nd edition, 1992.

[PH90] G. Pagallo and D. Haussler. Boolean feature discovery in em-
pirical learning. Machine Learning, 5(1):71–99, 1990.

[PRS03] H. Prade, G. Richard, and M. Serrurier. Enriching relational
learning with fuzzy predicates. In N. Lavrac, D. Gamberger,
H. Blockeel, and L. Todorovski, editors, Proceedings of the
European Conference on Principles and Practice of Knowl-
edge Discovery in Databases, PKDD, pages 399–410, Cavtat-
Dubrovnik, Croatia, 2003. Springer.

[QCJ93] J.R. Quinlan and R.M. Cameron-Jones. FOIL: A midterm re-
port. In Proceedings of the 6th European Conference on Machine
Learning, ECML, pages 3–20, London, UK, 1993. Springer.

[QL08] Z. Qin and J. Lawry. LFOIL: Linguistic rule induction in the la-
bel semantics framework. Fuzzy Sets and Systems, 159(4):435–
448, 2008.

[Qui86] J.R. Quinlan. Induction of decision trees. Machine Learning,
1:81–106, 1986.

[Qui90] J.R. Quinlan. Learning logical definitions from relations. Ma-
chine Learning, 5(3):239–266, 1990.

[Qui93] J.R. Quinlan. C4.5: programs for machine learning. Morgan
Kaufmann, San Francisco, CA, USA, 1993.

224 Bibliography

[Qui95] J.R. Quinlan. MDL and categorial theories (continued). In
A. Prieditis and S.J. Russell, editors, Proceedings of the 12th
International Conference on Machine Learning, ICML, pages
464–470, Lake Tahoe, CA, USA, 1995. Morgan Kaufmann.

[QuM07] B. Quost, T. Denœux, and M.-H. Masson. Pairwise classifier
combination using belief functions. Pattern Recognition Letters,
28(5):644–653, 2007.

[Ris83] J. Rissanen. A universal prior for integers and estimation by
minimum description length. Annals of Statistics, 11(2):416–
431, 1983.

[RK04] R.M. Rifkin and A. Klautau. In defense of one-vs-all classifica-
tion. Journal of Machine Learning Research, 5:101–141, 2004.

[Rk05] L. Rutkowski and K. Cpałka. Designing and learning
of adjustable quasi-triangular norms with applications to
neuro-fuzzy systems. IEEE Transactions on Fuzzy Systems,
13(1):140–151, 2005.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for in-
formation storage and organization in the brain. Psychological
Review, 65(6):386–408, 1958.

[Sal91] S. Salzberg. A nearest hyperrectangle learning method. Ma-
chine Learning, 6(3):251–276, 1991.

[Sal97] S. Salzberg. On comparing classifiers: Pitfalls to avoid and a
recommended approach. Data Mining and Knowledge Discov-
ery, 1(3):317–328, 1997.

[Sha48] C.E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423, 623–656, 1948.

[She07] D. Sheskin. Handbook of Parametric and Nonparametric Sta-
tistical Procedures. Chapman & Hall/CRC, 4 edition, 2007.

[SJ06] D.A. Simovici and S. Jaroszewicz. Generalized conditional en-
tropy and a metric splitting criterion for decision trees. In
W.K. Ng, M. Kitsuregawa, J. Li, and K. Chang, editors, Pro-
ceedings of the 10th Pacific-Asia Conference on Advances in

Bibliography 225

Knowledge Discovery and Data Mining, PAKDD, volume 3918
of Lecture Notes in Computer Science, pages 35–44, Singapore,
2006. Springer.

[SL99] A. Suárez and J.F. Lutsko. Globally optimal fuzzy decision
trees for classification and regression. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(12):1297–1311,
1999.

[Smi80] F.S. Smith. A learning system based on genetic adaptive algo-
rithms. PhD thesis, Department of Computer Science, Univer-
sity of Pittsburgh, Pittsburgh, PA, USA, 1980.

[SP07] M. Serrurier and H. Prade. Introducing possibilistic logic in
ILP for dealing with exceptions. Artificial Intelligence, 171(16–
17):939–950, 2007.

[Sur00] H. Surmann. Learning a fuzzy rule based knowledge represen-
tation. In H. Bothe and R. Rojas, editors, Proceedings of the
Second ICSC Symposium on Neural Computation, pages 349–
355, Berlin / Heidelberg, Germany, 2000. Springer.

[TC93] H. Theron and I. Cloete. An empirical evaluation of beam
search and pruning in BEXA. In Fifth International Confer-
ence on Tools with Artificial Intelligence, ICTAI, pages 132–
139, Boston, MA, USA, 1993. IEEE Computer Society.

[TC96] H. Theron and I. Cloete. BEXA: A covering algorithm for
learning propositional concept descriptions. Machine Learning,
24(1):5–40, 1996.

[TEF08] M.G. Tsipouras, T.P. Exarchos, and D.I. Fotiadis. A method-
ology for automated fuzzy model generation. Fuzzy Sets and
Systems, 159(23):3201–3220, 2008.

[vC04] J. van Zyl and I. Cloete. Fuzzconri - a fuzzy conjunctive rule in-
ducer. Proceedings of the Workshop on Advances in Rule Learn-
ing, ECML, pages 17–29, 2004.

[Ven93] G. Venturini. SIA: A supervised inductive algorithm with
genetic search for learning attributes based concepts. In

226 Bibliography

P. Brazdil, editor, Proceedings of the European Conference on
Machine Learning, ECML, pages 280–296, London, UK, 1993.
Springer.

[VGS03] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning
in a Random World. Springer, 2003.

[VKOM05] S.A. Vinterbo, E.-Y. Kim, and L. Ohno-Machado. Small, fuzzy
and interpretable gene expression based classifiers. Bioinfor-
matics, 21(9):1964–1970, 2005.

[WCQY00] X. Wang, B. Chen, G. Qian, and F. Ye. On the optimization of
fuzzy decision trees. Fuzzy Sets and Systems, 112(1):117–125,
2000.

[WD94] D. Wettschereck and T.G. Dietterich. A hybrid nearest-
neighbor and nearest-hyperrectangle algorithm. In
F. Bergadano and L. de Raedt, editors, Proceedings of
the European Conference on Machine Learning, ECML, pages
323–335, Catania, Italy, 1994. Springer.

[WF05] I.H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, San Fran-
cisco, CA, USA, 2nd edition, 2005.

[Wil45] F. Wilcoxon. Individual comparisons by ranking methods. Bio-
metrics, 1(6):80–83, 1945.

[Wil95] S.W. Wilson. Classifier fitness based on accuracy. Evolutionary
Computing, 3(2):149–175, 1995.

[WLW04] T.-F. Wu, C.-H. Lin, and R.C. Weng. Probability estimates
for multi-class classification by pairwise coupling. Journal of
Machine Learning Research, 5:975–1005, 2004.

[WM92] L.X. Wang and J.M. Mendel. Generating fuzzy rules by learn-
ing from examples. IEEE Transactions on Systems, Man, and
Cybernetics, 22(6):1414–1427, 1992.

[YS95] Y. Yuan and M.J. Shaw. Induction of fuzzy decision trees. Fuzzy
Sets and Systems., 69(2):125–139, 1995.

Bibliography 227

[Zad65] L.A. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.

[ZBHH08] J. Zhang, J.W. Bala, A. Hadjarian, and B. Han. Learning
to rank cases with classification rules. Preference Learning
ECML/PKDD-08 Workshop, 2008.

[ZC06] J. Zhao and Z. Chang. Neuro-fuzzy decision tree by fuzzy ID3
algorithm and its application to anti-dumping early-warning
system. In International Conference on Information Acquisi-
tion, pages 1300–1304, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

[ZG08] S. Zhou and J.Q. Gan. Low-level interpretability and high-
level interpretability: a unified view of data-driven interpretable
fuzzy system modelling. Fuzzy Sets and Systems, 159(23):3091–
3131, 2008.

[ZM07] M.J. Zolghadri and E.G. Mansoori. Weighting fuzzy classifica-
tion rules using receiver operating characteristics (roc) analysis.
Information Sciences: an International Journal, 177(11):2296–
2307, 2007.

Erklärung

Ich versichere, dass ich meine Dissertation

Induction and Fuzzification
of Classification Rules

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen
als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe.

Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei
keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prü-
fungszwecken gedient.

Resume

02/2009 – 05/2009 Visiting Research Fellow

Decision Systems Group, Harvard Medical School /

Brigham and Women’s Hospital, Boston, MA, USA

Research advisor: Dr. Staal A. Vinterbo

04/2007 – 12/2009 Scholarship from the Konrad-Adenauer-Foundation

11/2006 – 12/2009 Doctoral studies:

Computer Sciences

Department of Mathematics and Computer Sciences

Philipps-Universität Marburg, Germany

Thesis advisor: Prof. Dr. Eyke Hüllermeier

10/2000 – 06/2006 Undergraduate/Graduate studies:

Computer Sciences and Business Adminstration

Department of Mathematics and Computer Sciences

Philipps-Universität Marburg, Germany

Degree: Diploma (roughly equivalent to M.Sc. C.S.)

08/1991 – 06/2000 High school:

Alfred-Wegener-Schule, Kirchhain, Germany

Degree: Abitur (university entrance qualification)

Index

0–9
1-vs-1 see All-vs-All
1-vs-All 11, 13–14, 38, 44, 45, 71,

177, 185
1-vs-Rest . 45

A
AdaBoost.164, 173, 185
All-vs-All 11–14, 131, 133,

135–141, 185
AQ. .164
Area under the ROC curve. . . .see

AUC
AUC . 36–38,

58, 62, 102, 104, 110–112,
144–146, 166–167

B
BEXA 164–165, 170
Black box . 30

C
C4.535, 57, 62, 98, 142, 165
CHI . 32, 33–35, 57, 67, 100, 102,

104, 142, 168
Classification 9–11

accuracy.21, 36, 54,
57–58, 62, 64–66, 69, 83,
91, 95, 100–102, 105–110,
142–144, 146, 147

error . 36, 62, 64–66, 105–109
rate see Classification

accuracy
rule15, 17, 44, 76, 77, 84, 88,

106, 136, 165, 167
CN2 . 164, 170
Cohen’s Kappa 171
Concession split 81–82
Confidence factor.see Rule weight
Conflict. . .128–129, 132, 134, 135,

140–141, 147–149

D
De Morgan triplet 28
Decision tree76–79, 81, 84–86, 98,

99, 165–166, 181, 182

E
ECOC . 14
Error Correcting Output Codessee

ECOC
Evolutionary Algorithm. .171–174

F
FCT . 176
FOIL 17–19, 43, 45, 164, 170
FR3127–149, 182, 184–185
FS-FOIL . 170

233

234 Index

FURIA . 43–
73, 75–76, 104, 127, 136,
164, 180–182, 184–185

FuzzConRi 170
Fuzzification 45, 46–52, 54,

61–67, 69, 71, 73, 75, 76,
90, 91–95, 97, 104–113,
117, 137–138, 146, 167,
177, 184

Fuzzy
-UCS . 173
classification rule 29, 88, 120,

172
decision tree 176–177
first-order logic 170
ID3 . 176

intersection 28
interval.25–26, 46,

49, 56, 62, 64, 65, 91–94,
109, 111, 112, 117, 119,
120, 123, 146

logic 23–28, 186
membership function .23–25,

64, 92, 172, 175, 178, 179
negation 27, 131
operator 26–28, 172
partition . . 26, 30, 88, 92, 98,

123, 168, 176, 177, 181
completeness 26

preference structure 127–134,
141, 182

propositional Logic 170
reasoning methods 31
Round Robin RIPPER . . . see

FR3
rule . . see Fuzzy classification

rule

rule-based classification. . . .2,
22–32, 38, 168–178

Ruspini partition 26, 31
set 23–26, 109, 116–118, 120,

123
continuity 25
convexity 25
normalization.25

set covering 170–171
T-conorm . 27, 30, 92, 94, 96,

106, 131, 139, 174
T-norm . . . 27, 30, 53, 55, 63,

65–66, 92, 131, 174
union . 28
Unordered Rule Induction Al-

gorithm.see
FURIA

FUZZYBEXA. 170

G
Genetic fuzzy system 171
Gini Index . 78
Grid partition see Fuzzy partition

H
HELLFIRE75–124, 181–182, 185

I
ID3 98, 99, 164
Ignorance .128–129, 132, 134, 135,

140–141, 147–149
Incomparability 130, 132
Incremental Reduced Error Prun-

ing see
IREP

Indifferentiability 130, 132
Information Gain18, 49
Interval fuzzification see

Fuzzification

Index 235

IREP. . .19, 20, 21, 43, 44, 71, 73,
147, 164

IREP* 21, 45–46, 67, 164
IREP++ . 164
Iterative genetic rule learning.173

K
KEEL . 32, 35

L
Language bias 16
Learning bias 16–17
Linguistic fuzzy classification ru-

le . . 29–31, 77, 116–122,
see also Fuzzy classifica-
tion rule

M
MDL 19, 21, 46, 98
Michigan genetic fuzzy rule learn-

ing 173
Minimum Description Length . see

MDL
MOGA. .172
MOGLS. .172
Multi-objective genetic algorithm

see MOGA
Multi-objective genetic local search

see MOGLS
Myopia50–52, 64

N
Nearest Neighbor167
Neural network174
Non-trivial fuzzification 48, 50

O
One-vs-All see 1-vs-All
One-vs-Rest see 1-vs-Rest

Overfitting 18, 31, 46, 166
Overfitting avoiding bias.17

P
Pairwise learning . . . see All-vs-All
PART . 165
Perceptron 133, 134
Pittsburgh genetic fuzzy rule le-

arning 172–173
Preference structure 128
Problem decomposition 11–14
Pruning . 19–20, 45–46, 67, 71, 82,

90–91, 97, 119, 147, 164,
165

R
R3 . 142, 147
Ranking performance . . . see AUC
Receiver Operating Characteristic

see ROC
Reduced Error Pruning . see REP
REP . 19, 43
RIPPER.20–21, 33,

43–46, 49, 50, 53, 67, 69–
73, 75–76, 100, 102, 104,
136, 142, 164

RISE.167–168, 180–181
ROC.36–38, 58, 102, 166
Round robin learning see

All-vs-All
Round Robin RIPPER see R3
Rule

Fuzzification see Fuzzification
stretching.44, 45, 55–57,

62, 67–69, 71, 73, 96–97,
105, 120, 136

weight 177–178
Rule-based classification 2, 15–21

236 Index

S
SDT . 176
Search bias 16–17
Separate-and-conquer15–21,

163–165
SGERD . 173
Shannon’s entropy 78
SLAVE . . 32, 35, 57, 67, 100, 102,

104, 142
SLIPPER . 164
Stopping criterion 20–21
Strict preference 130, 132, 140
Support Vector Machine . 174, 175

T
Takagi-Sugeno rule 168
Trivial fuzzification 48

U
U-IREP . 164

V
Valued Preference Structure . . see

Fuzzy Preference Structu-
re

W
Wang-Mendel classifier . . . 30, 168
Weak preference128, 130, 132, 133
WEKA 32–33, 57, 100, 142

X
XCS . 173

