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1.1 Introduction 
 

 

1.1.1 P-Stereogenic Ligands in Asymmetric Catalysis 

 

 

1.1.1.1 Chirality at Phosphorus Atoms 

 

 

Identical to a sp3 hybridized carbon, trivalent and tetravalent phosphorus compounds adopt a 

tetrahedral geometry. Depending on the substitution pattern this can result in the formation of 

a stereogenic center. In trivalent phosphorus species the free electron pair is counted as a 

substituent and, unlike the corresponding nitrogen compounds, their geometry is 

configurationally stable and does not undergo inversion under ambient conditions. The 

inversion barrier of phosphines is generally 125-145 kJ/mol.[1] For example, PH3 has an 

inversion barrier of 132 kJ/mol compared to 24 kJ/mol for NH3.
[2] 

 

H
N

H
H

H
N

H
H

H
P

H
H

H
P

H
H

24 kJ/mol 132 kJ/mol

Bond angle

NH3

PH3

PPh3

107.8°

93.5°

102°

 

Figure 1.1. Physical properties of phosphines. 

 

The increased energy requirement for the phosphorus inversion follows from the enhanced 

geometrical distortion necessary to form the trigonal planar transition state. Larger bonding 

angles need less distortion than smaller bonding angles. The bond angles in trivalent 

phosphorus compounds are smaller than those of trivalent nitrogen or tetravalent carbon 

species. This can be explained as a result of endothermic hybridization energy combined with 

VSEPR-theory.[3] Whereas the electron distribution favours a geometry with orthogonal 

orbitals (bonding angle of 90°), VSEPR-theory, based on electron-electron repulsion, predicts 

an alignment close to the geometry of a tetrahedron. The two effects oppose each other and 

the outcome is a compromise, as seen in the numbers of Figure 1.1. 
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1.1.1.2 Preparation of P-Stereogenic Phosphines 

 

 

Preparation of enantiomerically pure chiral phosphines dates back to the 1960’s when the 

groups of Horner and Mislow were studying the stereochemistry of substitution reactions on 

phosphorus compounds. In the beginning, the phosphines were prepared by electrochemical 

reduction of optically pure phosphonium compounds which had been resolved by fractional 

crystallization.[4a] Later, a synthesis was developed consisting of the resolution of menthyl 

phosphinates followed by addition of a Grignard-reagent and reduction of the resulting 

phosphine oxides (Scheme 1.1).[4b] Later, Knowles’ P-stereogenic diphosphine ligand 

DIPAMP was synthesized by oxidative coupling of two phosphines.[5] 

 

Twenty years passed before Jugé and Genêt described a new methodology that avoided chiral 

resolution. The synthetic route consisted of the diastereoselective formation of chiral 

oxazaphospholidines and the subsequent displacement by aryl or alkyl halides (Scheme 

1.1).[6a] The group of Corey also published a similar procedure using 

oxathiaphospholidines.[6b] 
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Scheme 1.1. Stereoselective syntheses of chiral phosphines. 

 

Despite these advances, the stereoselective preparation of acyclic chiral phosphines has 

remained a rather undeveloped area. Since they are mostly used as ligands in transition metal 

catalyzed reactions, the success of ligands with a chiral backbone instead of a chiral 
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phosphorus did not encourage reasearchers to develop new synthetic methodologies to 

overcome the tedious preparation of chiral phosphines. Only recently have new efforts, using 

catalysis, been seen.[7] By employing chiral Pd-,[8a] Pt-[8b] or Ru-catalysts[8c,d] enantioselective 

hydrophosphination and alkylation reactions have been achieved by several research groups. 

 

 

 

1.1.1.3 Transition Metal-Catalyzed Asymmetric Hydrogenation of 

Functionalized Olefines 

 

 

In 1965 Wilkinson found a practical rhodium-catalyst for homogeneous hydrogenation (Figure 

1.2).[9] Based on the finding that chiral trivalent phosphorus compounds can exist as stable, 

non-interconverting enantiomers by Mislow and Horner,[10] Knowles was able to demonstrate 

in 1968 the first asymmetric hydrogenation shortly before Horner.[11] The discovery of 

bidentate phosphines with chirality on the ligand backbone instead on the phosphorus as 

effective ligands by Kagan[12] and the development of an industrial scale asymmetric 

hydrogenation of L-DOPA at Monsanto[13] established this type of reaction in organic 

chemistry. 
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Figure 1.2. Early sytems in Rh-catalyzed hydrogenation. 
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Scheme 1.2. Rh-catalyzed hydrogenation in the L-DOPA synthesis at Monsanto. 



Chapter 1 
 

6 

 

 

Rh
P S

SP

Rh
P S

OP

H

H

Rh
P

OP

Rh
P

OP

H

H

S

Rh
P
P

Diene complex

Solvate complex

Catalyst-substrate
complex

Catalyst-substrate-dihydro
Complex

Monohydrido-alkyl
complex

Catalyst-product
complex

O

O

H

H

H2

P

P
= e.g. P P

MeO

MeO

Rh
P

HP
H

O

 

Scheme 1.3. Unsaturated pathway of the Rh-catalyzed hydrogenation 
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The mechanism of Rh-catalyzed asymmetric hydrogenation has been extensively studied.[14] 

Analyses of kinetic data[15] and characterization of reaction intermediates by NMR[16] or X-

ray crystallography[17] provided insight into the catalytic cycle depicted in Scheme 1.3. The 

cationic bisphosphine-rhodium complex exists in methanol as a bis-solvate species with a low 

affinity towards dihydrogen. In the presence of the substrate, bidentate complexation occurs 

to form the catalyst-substrate complex. Addition of dihydrogen is rate-limiting and the 

subsequent migratory insertion gives the monohydrido-alkyl complex. The intermediate 

catalyst-substrate-dihydrido complex is assumed but has never been observed. Reductive 

elimination and dissociation of the hydrogenation product regenerates the catalyst and closes 

the cycle (Scheme 1.3). 

 

For C2-symmetrical chiral diphosphine ligands the catalyst-substrate complex exists as two 

interconverting diastereoisomers (Scheme 1.4). The interconversion can take place 

intramolecularly or via the solvate complex, the latter being less important. Usually one 

diastereoisomeric catalyst-substrate complex is more abundant in the equilibrium but, at least 

in the catalytic cycle shown above, this major diastereoisomer does not lead to the preferred 

hydrogenation product. The minor diastereoisomer reacts faster with dihydrogen to give the 

monohydrido-alkyl complex and therefore determines the stereochemical outcome of the 

reaction.  

 

With the development of new bis-phosphine ligands the catalytic cycle was further 

investigated, and especially for electron rich phosphine donors, a slightly different pathway 

was found (Scheme 1.5).[18] Reversible formation of the catalyst-solvate-dihydro complex, 

whose diastereoisomers exist in equilibrium, is the first step. This dihydride reacts with the 

substrate to give the monohydrido-alkyl complex as the next detectable intermediate. The 

product is liberated after reductive elimination.  
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Scheme 1.5. Dihydride pathway fort he Rh-catalyzed hydrogenation. 

 

 

The distinction between the unsaturated and the dihydride pathway is blurred. At least in 

some cases, both mechanisms are operating, joining in a single pathway, since the catalyst-

substrate-dihydro complex is a common intermediate in both cycles. 

 

The catalytic cyle of bisphosphine-iridium-catalyzed hydrogenations of functionalized olefins 

is less well studied, presumably due to their, in most cases, weaker performance and thus 

lower synthetic importance. On the other hand, the slower reaction rates were used to study 

intermediate analogs of the rhodium cycles. In these experiments precatalyst-dihydride, 

catalyst-substrate and monohydrido-alkyl complexes of iridium-bisphosphine catalysts have 

been charaterized.[19] Therefore, the mechanism should be similar to the rhodium case but the 

complete catalytic cycle has not been determined. 

 

Although Ru-catalyzed homogeneous hydrogenation has been known since the 1960’s, its 

asymmetric variant was developed much later than for rhodium. Not until 1980 when Noyori 
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introduced the BINAP ligand, was ruthenium also proved to be able to generate a catalytic 

species with high activity and selectivity.[20] Detailed kinetic studies were carried out 

involving [(BINAP)Ru(OAc)2] in the reduction of methyl acetamidocinnamate[21a] and tiglic 

acid.[21b] The derived catalytic cycle is shown in Scheme 1.6.[21a] In contrast to the rhodium 

mechanism the cleavage of dihydrogen occurs heterolytically, forming a ruthenium-

monohydride complex. Coordination of the substrate followed by hydride transfer then gives 

a ruthenium-alkyl complex. Finally, exchange of the hydrogenation product with methanol 

closes the catalytic cycle. 
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1.1.2 Cyclic Phosphines 

 

 

1.1.2.1 Synthesis of Cyclic Phosphines 

 

 

Several different types of cyclic phosphines have been reported and various synthetic methods 

were developed for their synthesis.[22] Cyclic phosphines with ring sizes of 3,[23a] 4[23b] and 

5[23c] have been prepared by nucleophilic substitution on mesylated diols or cyclic sulfates 

(Scheme 1.7 A). Following a similar procedure, six-membered cyclic phosphines have been 

prepared with an additional endocyclic oxygen (B).[24] Enantiomerically pure styrene oxide 

has been opened with a nucleophilic phosphine species and converted to the corresponding 

phosphirane (C).[25] Tartaric acid has also been used as starting material for the synthesis of 

multiply substituted cyclic phosphines employing hydrophosphination as the key step (D).[26] 
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Scheme 1.7. Chiral cyclic phosphines from enantiomerically pure starting materials. 

 

Other possibilities are reactions of electrophilic phosphorus species with alkenes (Scheme 

1.8). Additions involving rearrangements[27] (McBride reaction, A) and formal 

cycloadditions[28] (McCormack reaction, B and C) have been carried out. 

 

 



Ferrocenephospholanes as Ligands in the Transition-Metal Catalyzed Asymmetric Hydrogenation 

 

11 

 

 

MenPCl2 AlCl3+
P

PhMen

PhPh
Me2NPCl2 AlCl3+ + P R

Ph

Ph

Me2NPCl2 AlCl3+ +
P
H

A:

B:

C:

 

Scheme 1.8. Cyclic phosphines by addition of phosphorus to C-C double bonds. 

 

The binaphthyl structure has also been incorporated to synthesize cyclic phosphines by 

deprotonation of benzylic methyl groups followed by reaction with a suitable phosphorus 

compound.[29] Further functionalization[30] or dimerization[31] provided more complex 

structures (Scheme 1.9). 
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Scheme 1.9. Binaphtyl-derived cyclic phosphines. 

 

 

 

 

 



Chapter 1 
 

12 

1.1.2.2 Phospholanes in Catalysis 

 

Among the cyclic phoshines phospholanes are the most common class in asymmetric 

catalysis. Phospholanes consist of a five-membered ring with an endocylic phosphorus. The 

parent structure is phosphole (Figure 1.3). 

P
H

Phosphole

P
R1

R2a
R3b R4b

R5a

R2b R5b

R4aR3a

Phospholanes  

Figure 1.3. Phospholanes. 

 

A variety of structures containing phospholanes have been synthesized and used in 

asymmetric hydrogenation reactions.[32] The first successful applications were reported by 

Burk using the bidentate phospholanes DuPhos and BPE (Figure 1.4).[23c, 33] These ligand 

types provide very selective catalysts for various substrate classes. Many different analogues 

have been reported with diverse bridging units or substitution patterns on the five-membered 

ring.[32] Later, Zhang synthesized phospholane ligands including stereogenic phosphorus 

atoms, such as TangPhos and DuanPhos, and successfully applied them in asymmetric 

hydrogenations.[34] 
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Figure 1.4. Successful phospholane ligands for asymmetric hydrogenations. 

 

Besides asymmetric hydrogenation reactions, phospholanes have also been applied as 

nucleophilic catalysts in kinetic resolutions by acyl transfer[35] and carbon-carbon bond 

forming reactions,[36] although with only moderate efficiency. 
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1.1.3 Ferrocene 

 

 

1.1.3.1 Structural Properties 

 

 

Discovered in 1951[37] ferrocene was first used as a structural mojety for ligand development 

by Hayashi in the 1970’s.[38] The unique geometry and the chemical stability proved to be 

very fruitful for catalyst design. 

The rather rigid structure allowed for the installation of donor atoms at defined distances for 

the control of ligand geometry. The gap between the two phosphorus atoms is larger in 1,2-

disubstituted ferrocenes than in 1,1’-disubstituted ferrocenes and the latter likewise exhibits a 

greater distance than 1,2-disubstituted benzenes (Figure 1.6). 

 

P
Fe

PP P

increasing P-P distance

P P

 

Figure 1.6. P-P distances with different ligand backbones. 

 

This tuning of the bite-angle allowed for the development of ligands for many applications.[39] 

Another important property of ferrocene is the generation of chirality upon multiple 

substitution of the cyclopentydienyl rings. In contrast to benzene, in which under the same 

circumstances a plane of symmetry still exists, the presence of a second aromatic ring breaks 

the symmetry in ferrocene giving rise to a plane of chirality. Schlögl proposed a nomenclature 

for ferrocenes having planar chirality (Figure 1.7).[40] 

 

P2

P1
Fe

Planar: S

 

Figure 1.7. Schlögl-definition of planar chirality on ferrocenes. 
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1.1.3.2. Ligands with a Ferrocenyl Backbone 

 

 

The most common strategy for the synthesis of ferrocenyl ligands is the metallation of 

ferrocene, or one of its derivatives, and subsequent reaction with an electrophile. This 

metallation reaction does not generally need harsh conditions. Butyllithium in a suitable 

solvent is usually sufficient and the use of ortho-directing groups allows for the selective 

establishment of a desired substitution pattern.[41] Ortho-directing groups developed in classic 

aromatic chemistry can also be easily applied to the ferrocene system and since multiple 

substitution on a ferrocene ring generates planar chirality, the ortho-directed metallation can 

be carried out in an enantioselective or diastereoselective fashion. A chiral directing group or 

an achiral functionality in combination with a chiral base can be used to induce selectivity. 

Although some good results have been achieved with the latter strategy,[42] the application of 

chiral ortho-directing groups is much more common. For example, amines,[43] acetals,[44] 

sulfoxides[45] or oxazolines[46] have all been employed (Figure 1.8). 
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Figure 1.8. Common chiral ortho-directing groups. 

 

Through these procedures, numerous phosphine ligands have been developed and 

successfully applied in asymmetric catalysis.[39]  
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Figure 1.9. Selection of ferrocenyl-phosphine ligands. 
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The first examples were ppfa and bppfa by Kumada and Hayashi.[47] In the following years 

the structural diversity of ferrocenyl ligands constantly grew, with the ligand families of 

Josiphos,[48] FERRIPHOS,[49] BoPhoz,[50] Walphos,[51] TRAP[52] and FerroTANE[53] 

representing only a selection of the diversity available. 

 

The most successful application of ferrocenyl ligands is the iridium-catalyzed hydrogenation 

of an imine in the industrial scale synthesis of the herbicide (S)-Metolachlor at Syngenta. The 

catalyst system containing a Josiphos derivative is extremely active and several tons per year 

are being produced using asymmetric catalysis (Scheme 1.10).[54] 

 

N
OMe

HN
OMe

Fe PPh2

PXyl2
Xyliphos =

[Ir(cod)Cl]2
Xyliphos, I2

80 bar H2, 50 °C

N
OMe

O
Cl

Cl
Cl

O

>99%, 80% ee
S/C > 1'000'000
TOF > 1'800'000 h-1

MEA imine
(S)-Metolachlor

 

Scheme 1.10. Industrial scale (S)-Metolachlor process. Xyl = 3,5-dimethylphenyl. 
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1.1.4 Objectives of this Work 

 

 

The aim of this project was the synthesis of P-stereogenic ferrocenephospholanes. According 

to a reported intermolecular hydrophosphination[55] the phospholane ring can be constructed 

by the intramolecular addition of a secondary phosphine to a vinyl group under basic 

conditions (Scheme 1.11). For this purpose, functionalized ferrocene derivatives had to be 

synthesized starting from Ugi’s amine and cyclization procedures were to be evaluated.  

 

Fe PPh2 Fe PPh2

PR2

R2PH, base

Fe PR R'

H
Fe

NMe2

FeR P

R'

conditions

Target structure 

Scheme 1.11. Proposed synthesis of ferrocenephospholanes. 

 

These synthetic procedures should result in monodentate and bidentate ligands for the 

complexation of transition metals whereupon their coordination mode was to be examined. 

The phosphines obtained were then to be tested in the transition metal catalyzed asymmetric 

hydrogenation of olefins using rhodium-, ruthenium- and iridium-complexes. 
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1.2. Synthesis of Ferrocenephospholanes 

 

 

1.2.1 Ugi’s Amine 

 

 

The first step to establish an optically active ferrocene derivative by multiple stereoselective 

substitutions of one cyclopentadienyl ring was the introduction of a ortho-directing group 

which is able to differentiate between diastereotopic ortho-positions. Among a number of 

possible solutions 1-(N,N-dimethylamino)ethylferrocene, Ugi’s amine (1), was chosen as the 

starting point of the synthesis. 1 is readily available from ferrocene within a few steps by 

literature methods (Scheme 1.12). The obtained racemate is then resolved by fractional 

crystallization as the corresponding tartrate.[1] 

 

Fe

1

NMe2

Fe

O

Fe

OH

Fe Fe

OAc
AcCl, AlCl3

CH2Cl2

Red-Al, C6H6 HOAc, C6H6

HNMe2, MeOH

Fe

(R)-1

NMe2

Fe

(S)-1

NMe2resolution with 
tartaric acid

+

 

Scheme 1.12. Synthesis and resolution of Ugi’s amine. 

 

 

1.2.2 Formation of a Simple Ferrocenephospholane 

 

 

Although the structure of Ugi’s amine is rather simple, the diastereoselectivities in metallation 

reactions with a suitable alkyllithium reagent are generally above 95:5.[2] Lithiation of (R)-1 

with sec-butyllithium in diethyl ether at 0 °C afforded the intermediate lithioferrocene 2 

which then was reacted with 1,2-dibromo-1,1,2,2-tetrafluoroethane to give the bromide 3 as a 

single diastereoisomer in good yield after crystallization (Scheme 1.13).[3] 
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    0 °C, 7 h

2) (CF2Br)2, 
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3(R)-1

Fe
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NMe2
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via

 

Scheme 1.13. ortho-Bromination of Ugi’s amine. 

 

After the introduction of planar chirality by 1,2-substitution, the ortho-directing group could 

be manipulated without loss of enantiomeric purity. The dimethylaminoethyl group was 

converted to an ethenyl group by reaction with acetic anhydride at elevated temperature. The 

resulting bromo-vinyl-ferrocene 4 was isolated as a dark red liquid in good yield. 

Interestingly, although the formation of 4 took place at 140 °C, this compound was found to 

be sensitive to heat after work up and purification, and could only be stored at –20 °C for a 

few weeks (Scheme 1.14).  

 

Fe

BrAc2O, 140 °C, 4 h, 89%

Fe

Br
NMe2

3 4  

Scheme 1.14. Elimination of the dimethylamino group. 

 

The bromide 4 could be lithiated with n-butyllithium in THF at –78 °C. The reaction of this 

metallated ferrocene with tert-butylphosphine dichloride followed by reduction with lithium 

aluminium hydride gave the secondary phosphine 5 as shown in Scheme 1.15. The reaction 

selectively gave the monoaddition product regardless of the order of addition. Despite a 

certain stability towards oxygen, 5 was generally not purified but quickly filtered through a 

plug of silica gel to remove any remaining salts and used directly in the next step. The raw 

material was analyzed by 1H- and 31P-NMR, and selective formation of 5 as the only 

ferrocene containing phosphine could be confirmed. 5 was obtained as a 1:1 diastereomeric 

mixture. This could be clearly observed in the NMR-spectra of 5, with the 1H-NMR showing 

two sets of signals for the phosphine protons at 4.19 ppm (d, 1JHP = 206 Hz) and 3.84 ppm (d, 
1JHP = 210 Hz). In the 31P-spectrum the resonances appear at –36.4 ppm and –46.6 ppm with 

the expected proton couplings. 
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Fe
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H

Fe

Br 1) n-BuLi, THF, –78 °C, 30 min

2) tert-BuPCl2, –78 °C, 30 min
3) LiAlH4, –78 °C � 0 °C

LDA, THF, rt, 18 h

4 5 6

65%

 

Scheme 1.15. Lithiation-chlorophosphinylation-reduction-hydrophosphination sequence. 

 

The hydrophosphination reaction of vinylferrocenes under basic conditions was known for 

intermolecular examples.[4] The intramolecular reaction did not procceed under these 

conditions. Organic bases such as DBU or TBD were not strong enough to induce the 

hydrophosphination at ambient or elevated temperature. Deprotonation with n-butyllithium in 

toluene, diethyl ether or THF with or without additives such as DBU, TBD or TMEDA gave 

either no conversion or a mixture of products. Finally, a solution of freshly prepared LDA in 

THF was found to convert the secondary phosphine 5 into the phospholane 6. In this 

stereospecific reaction 6 was formed as a single diastereoisomer and its structure was 

confirmed by X-ray crystallography (Figure 1.10).  

 

 

Figure 1.10. Solid state structure of 6. 

 

Insights into the pathway of this cyclization reaction can be gained from different 

observations. The base has to be strong enough to completely deprotonate the secondary 

phosphine but this deprotonation must not be irreversible. The type of substituent on the 

phosphorus atom is important. When tert-butyl was exchanged for phenyl the cyclization 

failed regardless of the conditions. 
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Scheme 1.16. Possible mechanism for the base induced hydrophosphination. 

 

With this in mind, a mechanism for the cyclization reaction can be proposed (Scheme 1.16). 

When the secondary phosphine 5 is deprotonated the stereogenic center at the phosphorus 

atom is lost. The bulky tert-butyl group then adopts a conformation that minimizes steric 

interactions and therefore at the same time positions the lone pairs to favor the cyclization. 

Presumably, substituents smaller than the tert-butyl group cannot enforce the desired 

conformation needed for the attack at the double bond. Keeping in mind that the vinyl group 

itself is rotating and its favored position is most likely not pointing towards the phosphorus 

atom, this preorientation of the lone pairs is expected to be crucial. The cyclization reaction 

may also be reversible with the final protonation driving the reaction towards the product. 

This would explain the failure of the reaction when using n-butyllithium as base. Apparently, 

the presence of one equivalent of di-iso-propylamine is sufficient to complete the reaction. 

 

 

1.2.3 Approaches to a Secondary Ferrocenephospholane 

 

 

The unique behaviour of the tert-butyl group was also demonstrated in the attempted 

synthesis of structures like 6 without alkyl substituted phosphorus atom. This secondary 

phospholane 7 would be an interesting phosphine building block as one could expect 

stereoselective functionalization reactions at the phosphorus atom. Either nucleophilic or 

electrophilic substitution reactions could be used to give a variety of new structural 

combinations (Scheme 1.17). 
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Scheme 1.17. Reactions involving a secondary phospholane. 

 

The substrate for the cyclization was the primary phosphine 8 which was synthesized by the 

reduction of a suitable precursor. A logical route would be the reduction of a phosphine 

dichloride with lithium aluminium hydride. This phosphine dichloride could be introduced by 

lithiation of 4 and reaction with phosphorus trichloride. However, this reagent would form 

highly toxic PH3 upon treatment with a hydride source and complete removal before the 

reduction would be crucial. To avoid the danger of generating PH3 the substrate for the 

reduction had to be purified before use. Therefore more stable phosphorus compounds than 

phosphine dichlorides were examined. The functional group of choice turned out to be a 

phosphonate. The syntheses of the ethyl and phenyl phosphonates were straightforward 

(Scheme 1.18). Lithiation of 4 and reaction with diethyl or diphenyl chlorophosphate gave the 

phosphonic acid esters 9 and 10 in good yields. These compounds could easily be purified by 

chromatography, excluding formation of PH3. 10 was used preferentially in the next step as it 

was isolated as a solid, in contrast to 9 which was found to be an oil. 

 

Fe

P

Fe

Br

O

OR
OR1) n-BuLi, THF, –78 °C, 30 min

2) (RO)2(O)PCl, 
    –78 °C � rt, 30 min

4 9,   R = Et, 79%
10, R = Ph, 85% 

Scheme 1.18. Introduction of a phosphonate ester. 

 

The reduction of 10 with lithium aluminium hydride turned out to not be perfectly selective. 

The formation of a second primary phosphine was observed in low amounts, possibly due to a 
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side reaction involving partial reduction of the vinyl group. This problem could be overcome 

by changing to di-iso-butylaluminium hydride as reducing agent. The reaction at –20 °C 

followed by work up with aqueous sodium hydroxide and filtration of the solids formed, 

selectively gave the primary phosphine 8. Unfortunately, 8 was slightly less stable than the 

secondary phosphine 5, therefore further purification was not possible and the crude product 

was used in the next step. Phosphine 8 showed a resonance in the 31P-NMR spectrum at –157 

ppm with triplet splitting of 201 Hz. The characteristic phosphine protons appear at 3.66 ppm 

and 3.76 ppm as a doublet of doublets with a proton coupling of 12.4 Hz. However, all 

attempts at cyclization of 8 failed, with only decomposition observed when the primary 

phosphine was subjected to basic conditions (Scheme 1.19). 
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Scheme 1.19. Reductive formation of a primary phosphine and attempted cyclization. 

 

This finding supported the picture of the necessity of preorganization of the substituents to be 

connected. With this in mind another approach was considered. If the vinyl group were to 

have less rotational freedom, the lack of preorientation of the phosphine group might be 

overcome. A straightforward way to constrain the possible conformations was to functionalize 

the position adjacent to the vinyl group with a bulky substituent. Trimethylsilyl was chosen 

and installed via the synthetic route outlined in Scheme 1.20. Lithiation of (R)-1 with sec-

butyllithium at 0 °C followed by addition of trimethylsilyl chloride gave the TMS-substituted 

diethylaminoethylferrocene 11. In a second application of butyllithium, the dimethylamino 

group again directs the deprotonation to the ortho-position. However, this deprotonation 

occurs against the inherent selectivity of the (N,N-dimethylamino)ethyl group and therefore 

requires harsher conditions. 
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Scheme 1.20. Synthetic pathway to a sterically restricted secondary phospholane. 

 

Lithiation of the second ortho-position took place upon treatment of 11 with tert-butyllithium 

in tert-butyl methyl ether at 0 °C and subsequent reaction with 1,2-dibromo-1,1,2,2-

tetrafluoroethane gave the trisubstituted ferrocene 12. Elimination of the amino group was 

again achieved in acetic anhydride at elevated temperature giving the vinylferrocene 13. 

Halogen lithium exchange with n-butyllithium in THF followed by addition of diethyl 

chlorophosphate resulted in the trisubstituted ferrocene 14. In contrast to the reduction of 10, 

reaction of this species with di-iso-butylaluminium hydride required elevated temperature. 

However, this time even di-iso-butylaluminium hydride was not perfectly selective and about 

10% of another primary phosphine compound was formed. The desired primary phosphine 15 

showed characteristic resonances at –150 ppm with a triplet splitting of 199 Hz in the 31P-

NMR and the two phosphine signals in the proton NMR at 3.88 ppm and 3.74 ppm as doublet 

of doublets with a proton-proton coupling constant of 12.4 Hz. Unfortunately, 15 was found 

to be comparable to 8 in terms of reactivity and only decomposition was observed when 

treated under basic conditions. 

 

A related addition of phosphorus to double bonds is depicted in Scheme 1.21. Under basic 

conditions phosphorus carbon bond formation has been reported for phosphinites and electron 

poor alkenes.[5]  

 



Chapter 1 
 

28 

EWG
MenO

P
O

Ph
H EWG

P
O

OMen
Ph

base
+

 

Scheme 1.21. Reported addition of phosphinites to alkenes. 

 

Compared to the primary phospine 8, the corresponding phosphinite should be more stable 

and the product would not be susceptible to oxidation. The resulting posphanic acid ester 

could then be reduced to the secondary phosphine 7 using silanes[6a] or lithium aluminium 

hydride.[6b] 

The synthesis of the ferrocene phosphinite 16 was straightforward. Lithiation of 4 under the 

aforementioned conditions followed by addition of diethyl chlorophosphite and hydrolysis 

gave 16 as a mixture of diastereoisomers. But 16 ,like the primary phosphine 8, did not form 

the phospholane 17 under basic conditions (Scheme 1.22). 
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Scheme 1.22. Synthesis of a ferrocenylphosphinite and attempted cyclization. 

 

Since it was possible that the vinyl group was not reactive enough, different halogen sources 

for activation of the double bond were examined as shown in Scheme 1.23. In this reaction, 

related to iodolactonisation, preliminary formation of a halonium ion would facilitate the 

addition of the phosphinite. 

 

Fe

P
O

H
OEt

16
Fe

P
OEt

O

Fe

P
OEt

O
Fe

P
OEt

O

Fe

P
O

H
OEt

Br Br

Br

I

I

I2, K2CO3,
THF, rt

1) LiTMP, 
    THF, 0 °C
2) I2, 
    THF, 0 °C

Br2, 
CH2Cl2, 0 °C

NBS, K2CO3
CH2Cl2, 0 °C

 

Scheme 1.23. Cyclization attempts by halogen assistance. 
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 General conditions for iodolactonisations – iodine and potassium carbonate – led to oxidation 

of the phosphinic acid. Preliminary deprotonation with LiTMP and subsequent treatment with 

iodine gave the same result. N-bromo-succinimide as a halonium source resulted in the 

formation of multiple unidentifiable products. A possible two-step process by bromination of 

the vinyl group and a later nucleophilic substitution was also attempted, but the reaction gave 

again a mixture of products.  

 

These reaction outcomes reflect a general property of ferrocene chemistry. Reductive 

conditions are generally well tolerated whereas reactions involving oxidations have to be 

carefully tuned. Strong oxidizing reagents can convert the iron(II)-center to iron(III) leading 

to a variety of side reactions. An oxidizing agent reported to tolerate the ferrocene system is 

manganese dioxide. It has been demonstrated by Malfait et al. to convert the 

diethylaminoethyl group to an acetyl group (Scheme 1.24).[7]  

 

Fe
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NMe2

Fe
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toluene, 110 °C

 

Scheme 1.24. Reported oxidation of the dimethylamino group. 

 

Once the acteyl group is installed, an intramolecular addition of the corresponding enolate to 

a phosphonic acid would form a five-membered phosphacycle. The synthesis of the 

phosphonate substituted diethylaminoethylferrocene 18 was accomplished in one step from 3 

by lithiation and addition of diethyl chlorophosphate. Unfortunately, the acetyl group was not 

formed under the reported conditions.[7] To exclude interference by the phosphonate 

substituent the same conditions were applied to the brominated ferrocene 3 yet the 

diethylaminoethyl group was not transformed either (Scheme 1.25). 
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Scheme 1.25. Oxidation reactions with manganese dioxide. 

 

A different approach for the formation of a carbon-phosphorus bond has been reported with 

the use of silanes. The introduction of silyl groups and the subsequent exchange to 

phosphines, while avoiding undesired by-products, was successfully applied in the synthesis 

of phosphino-oxazolines (Scheme 1.26).[8]  
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Scheme 1.26. Introduction of phosphines via silyl-exchange. 

 

To apply this methodology to the synthesis of a ferrocenephospholane, the silyl group and the 

phosphine chloride have to react intramolecularly. In the first step the silane was introduced 

by using a combination of triethylsilane and tri(pentafluorophenyl)borane to hydrosilate 4,[9] 

the reaction proceeded nicely and in good yield to give 19 (Scheme 1.27). However, the 

intramolecular cyclization reaction after the introduction of the dichlorophosphine group did 

not take place.  
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Scheme 1.27. Hydrosilation of 4. 

 

An alternative method would involve activation of the phosphate group towards a 

nucleophilic attack from the vinylic double bond by a Lewis acid (LA). This reaction would 

lead to a stabilized carbocation. Related carbocations have already been reported as 

intermediates in the synthesis of the Josiphos ligands.[10] After elimination of phenol the 

bicyclic ferrocene 20 would result (Scheme 1.28). 

 

Fe

P
O

Fe

P
O

OPh
Fe

P
O

LA

Fe

P
O

OPh

LA

OPhLA

-HOPh

-LAOPh
OPh OPh

OPh

10 20  

Scheme 1.28. Proposed Lewis acid catalyzed cyclization of phosphonates. 

 

Treatment of 10 with three equivalents of trifluoroborane etherate showed no reaction and 

when more reagent was used only decomposition of the starting material was observed. 

Similarly, aluminium trichloride gave a mixture of products. When titanium tetrachloride was 

added to the starting material an immediate colour change to dark green could be observed 

which turned back to orange upon hydrolysis. In addition, the TLC showed essentially one 

product, but the NMR spectra did not support the structure of 20. After additional NMR 

experiments the dimeric structure 21 was assigned to the product (Scheme 1.29). This 

structural assignment was supported by mass spectrometry. The outcome of this reaction can 

be rationalized by an activation of the double bond instead of the phosphonate by a proton or 

a titanium species. The electron deficient double bond is then attacked by the double bond of 

a second ferrocene, a proton is lost and, in the case of a titanium species, hydrolysis gives the 

dimer 21. Most likely the dimerization proceeds via protonation - by hydrogen chloride 



Chapter 1 
 

32 

formed from titanium tetrachloride and moisture - because no reaction occured when titanium 

tetra(iso-propanolate) was used as a Lewis acid. 
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Scheme 1.29. Dimerization product under acidic conditions. 

 

Finally, the reactivity of the phospholane 6 towards strong acids was investigated. The 

removal of the tert-butyl group under acidic conditions is known for the deprotection of tert-

butyl esters or tert-butoxycarbamates (boc) groups.[11] The same methodology should apply to 

phosphines. The free electron pair can be protonated by a strong base to form a phosphonium 

ion. The loss of the stable tert-butyl cation should be irreversible as the resulting secondary 

phosphine should be again protonated under the reaction conditions (Scheme 1.30). 

 

Fe

P

6

H+

Fe

P
H Fe

PH

7

+
H+

Fe

P
H

H

 

Scheme 1.30. Deprotection strategy. 

 

When the experiment was carried out with hydrogen chloride in iso-propanol/THF or 

trifluoroacetic acid only starting material could be isolated. Using tetrafluoroboronic acid in 

diethyl ether protonation seemed to occur, judged by the observation of a formed precipitate, 

but after work up only starting material was present. Dissolving 6 in concentrated sulphuric 

acid did not result in the formation of product 7 either, but rather gave some sulfonated 

ferrocene derivatives. 
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1.2.4 Functionalized Ferrocenephospholanes 

 

 

Having been unsuccessful in generating an unsubstituted phospholane, further possibilities for 

the functionalization of phospholane 6 were investigated. Reactions at the alpha carbon of 

borane-protected phosphines (BisP*)[12] and sulphur-protected phospholanes (TangPhos)[13] 

have been reported, leading to successful ligands for catalysis (Scheme 1.31). Usually, the 

combination of butyllithium and a diamine is able to produce the carbanion, which can then 

undergo subsequent reactions. In the case of phospholane 6, deprotonation should proceed 

diastereoselectively even without a chiral diamine, as the tert-butyl group is expected to direct 

the stereoselectivity. However, when the reported conditions were applied, no reaction was 

observed regardless of the base or electrophile used. 
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Scheme 1.31. Deprotonation in the �-position to phosphorus. 

 

In looking at deprotonation reactions employing unprotected 6 the question arose whether 

there is a preferential position for proton abstraction. When 6 was added to a solution of tert-

butyllithium and N,N,N’,N’-tetramethylethylenediamine (TMEDA) in tert-butyl methyl ether 

(TBME) at –78 °C and warmed to room temperature before reaction with Ph2PCl, formation 

of new species with an incorporated phosphine group was observed. This finding was 

followed by experiments to evaluate the selectivity of this reaction. For this purpose, 6 was 

treated with different bases and reacted with DMF to identify the sites of deprotonation. 

Scheme 1.32 shows the outcome of this investigation. Deprotonation occurred when a 



Chapter 1 
 

34 

combination of butyllithium and TMEDA in TBME was applied. Neither phenyllithium and 

TMEDA in TBME nor LiTMP in THF were able to deprotonate 6. A mixture of tert-

butyllithium and potassium tert-butoxide in THF gave a complex mixture of products. There 

was a difference in selectivity among the different organolithium compounds. sec-

Butyllithium gave three species of structure 23 in the ratio 100:44:30 as judged by 1H-NMR. 

The selectivities with n-butyllithium (100:18:13) and tert-butyllithium (100:10:16) were 

better but with tert-butyllithium double lithiation products (24) were also observed. It seemed 

deprotonation occured preferentially at the substituted cyclopentadienyl ring but with only 

low to moderate regioselectivity. Reaction at the unsubstituted cyclopentadienyl ring only 

took place with tert-butyllithium and then not exclusively. While the selectivities would be 

acceptable for a synthetic procedure, separation of the different regioisomers was not 

possible. 
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Scheme 1.32. Deprotonation products. 

 

To achieve selective structural variations of the ferrocenephospholane 6 without being able to 

change the substituent at the phosphorus atom, the cyclopentadienyl ring had to be further 

functionalized. A convienent method for the selective formation of multiple substituted 

ferrocenes was introduced by the group of Weissensteiner (Scheme 1.33).[14] Their approach 

also takes advantage of ortho-directing groups. In addition to the common functional groups 

such as amines, amides, acetals, ethers, esters or oxazolines which, in combination with 

alkyllithium reagents, allow for regioselective deprotonation, they found that a bromide 

substituent influences the acidity of the neighbouring hydrogen, enabling a lithium amide 

base to deprotonate. Lithium 2,2,6,6-tetramethylpiperidide was the base of choice and the 

resulting bromo-lithio-ferrocene was stable at –30 °C and could be reacted with suitable 

electrophiles. In the next step, the bromide was removed or converted into a desired 

functional group by lithiation and addition of the corresponding electrophile. 
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Scheme 1.33. ortho-Functionalization strategy by Weissensteiner. 

 

Following this idea, bromoferrocene 4 was subjected to the reaction conditions. An excess of 

freshly prepared lithium base in THF gave, after 3 h between –40 and –30 °C, the lithiated 

ferrocene 25. This species was stable under these conditions; at higher temperatures lithium 

bromide can be eliminated and the resulting very reactive arine-type product decomposes. 

This sensitivity towards temperature makes necessary the use of electrophiles reactive enough 

to undergo substitutions at low temperature. Different reagents were tested to examine the 

scope of this reaction and the possibilities of further manipulations (Scheme 1.34). 
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Scheme 1.34. Synthesis of trisubstituted ferrocenes. 

 

This study contained reagents that would lead to products in which the introduced substituent 

either could be further manipulated (26-28), would install a sterical change in the system (29) 

or would give a second phosphine group for the formation of bidentate bisphosphine ligands 

(30-33). 

Generally, the introduction of electron withdrawing substituents destabilized the ferrocene 

system and gave labile products. Bromo-chloroferrocene 26 was synthesized from the 

reaction of 25 with hexachloroethane but decomposed during the purification. In the case of 

bromo-formylferrocene 27, accessed from 25 and dimethyl formamide, purification was 

possible with some loss of material but the product decomposed even at –20 °C. When 25 was 

reacted with carbon dioxide the ferrocenic acid 28 was formed. This molecule was stable 

when handled under basic conditions and could be isolated in low yield as its 2,2,6,6-
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tetramethylpiperidinium salt. Attempts to exchange the piperidinium counterion failed. The 

dependence of stability upon the presence of a protonated or deprotonated carboxylate again 

shows the sensitivity of this ferrocene system towards electronic effects. 

After changing to substituents without electron withdrawing properties the reaction worked 

cleanly. The introduction of steric bulk by a tetramethylsilyl group was achieved in good 

yield by the reaction of 25 with tetramethylsilyl chloride. Ferrocene 29 was more stable than 

its unsubstituted counterpart 4 and could be stored at –20 °C without decomposition. 

Reactions of the bromo-lithioferrocene 25 with different phosphine chlorides again gave 

products in good yields. The phosphines 30-32 were stable towards oxygen and showed no 

decomposition upon longer storage at 4 °C. An exception was di(tert-butyl)phosphine 

chloride; the formation of 33 did not take place, probably for steric reasons, and only starting 

material was isolated. 

This ortho-functionalization was also possible starting from 3 and the trisubstituted ferrocene 

34 was isolated in good yield (Scheme 1.35). 
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Scheme 1.35. ortho-Functionalization-elimination sequence. 

 

Although the elimination of the dimethylamino group to give 29 procceded nicely, this 

synthetic pathway was not followed further. The elimination reaction was conveniently 

carried out as an early step avoiding possible side reactions due to the presence of functional 

groups such as phosphines. 

The tristubstituted ferrocenes (29-32) were metallated with n-butyllithium and after reaction 

with tert-butylphosphine dichloride, reduction with lithium aluminium hydride and filtration 

through a plug of silica the corresponding secondary phosphines were obtained (Scheme 

1.36). 

 



Ferrocenephospholanes as Ligands in the Transition-Metal Catalyzed Asymmetric Hydrogenation 

 

37 

Fe

Br
R

Fe

P
R

29:
30:
31:
32:

39:
40:
41:
42:

R = TMS,
R = PPh2,
R = P(oTol)2,
R = PCy2,

75%
70%
57%
50%

R = TMS
R = PPh2
R = P(oTol)2
R = PCy2

Fe

P

PR2
H

1) n-BuLi, THF, –78 °C, 30 min
2) tert-BuPCl2, –78 °C, 1 h

LDA, THF, 
rt or 60 °C

3) LiAlH4, –78 °C � rt, 3 h

35:
36:
37:
38:

R = TMS
R = PPh2
R = P(oTol)2
R = PCy2

18-40 h

 

Scheme 1.36. Cyclization of trisubstituted ferrocenes. 

 

In the case of diphenylphosphine substituted ferrocene 36 cyclization to the phospholane 40 

took place under the conditions applied to 5 (see Scheme 1.15 on page 23). For the 

tetramethylsilyl substituted ferrocene 35 and the phosphines 37 and 38 the cyclization had to 

be carried out at elevated temperature. Under these conditions the phospholanes 39, 41 and 42 

were formed after 14 h. The yields varied from 50% to 75%. Introduction of the phosphine 

chloride and the reduction were found to be quantitative as judged by 31P-NMR but the 

cyclization step was accompanied by a loss of material. 

Single crystals could be grown for compounds 40 and 42, the structures are shown in Figures 

1.11 and 1.12. 

 

The first attempt to synthesize phospholane 39 was performed at room temperature for 4 days 

with the addition of a second equivalent of LDA after 2 days. Under these unoptimized 

conditions, a mixture of products was obtained. After purification of the crude material the 

dimeric phospholane 43 was isolated in low yield. Its structure could be verified by X-ray 

analysis of a single crystal (Figure 1.13). The formation of this side-product was not observed 

in the later sytheses at higher temperature.  

 

How the dimerization took place is unknown. A possible pathway is the formation of a 

stabilized radical either from the anion or from the neutral compound. Recombination of two 

radicals would give the dimeric phospholane. 
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Figure 1.11. Crystal structure of 40. The second molecule in the unit cell is omitted for clarity. 

 

 

 

Figure 1.12. Crystal structure of 42. 

 

 

 

Figure 1.13. Crystal structure of 43. 
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1.2.5 Attempted Synthesis of a Ferrocene-Based P,N-Ligand with 

only Planar Chirality 

 

 

Recently, Knochel reported the synthesis of a pyridyl-phosphine ligand with a ferrocene 

backbone.[15] The corresponding iridium-complexes gave selective catalysts for the 

hydrogenation of imines (Figure 1.14).  
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Figure 1.14. Ferrocenyl P,N-ligand reported by Knochel. 

 

The synthesis of the ligand in Figure 1.14 included a diastereoselective ortho-lithiation 

directed by a chiral sulfoxide substituent to introduce the planar chirality. Starting from 4, the 

ortho-lithiation strategy shown in Scheme 1.37 would allow the construction of the same 

scaffold with an additional substituent on the cyclopentadienyl ring. Since significant 

influences on selectivity by additional ferrocene substitution has been reported,[16] the 

performance of the trisubstituted ferrocene scaffold was examined. 
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Scheme 1.37. ortho-Lithiation strategy for the formation of ferrocenyl P,N-ligands. 

 

To avoid functional group interference, the double bond in 4 was hydrogenated with 

palladium on charcoal to give bromoferrocene 44 (Scheme 1.38). 
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Scheme 1.38. Hydrogenation of the vinylic double bond. 
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 ortho-Phosphination and the introduction of a pyridine moiety gave two isomeric alcohols. 

Neither the alcohols nor the corresponding methyl ethers were separable by chromatography. 

Moreover, the iridium complex was unstable and decomposed during purification (Scheme 

1.39). 
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Scheme 1.39. Synthesis of a ferrocenyl P,N-iridium complex. 

 

Apparently, the ethyl group has a tremendous influence on the complex stability. To exclude 

this destabilizing steric interaction between the ethyl and the methoxy groups, the removal of 

the ether functionality was envisaged. The first synthesis started from the ferrocenyl aldehyde 

45. The reduction to give the alcohol 46 proceeded smoothly, but the introduction of a leaving 

group, allowing displacement by an ortho-metallated pyridine, led exclusively to 

decomposition products. To avoid interference by the phosphine, protection with borane was 

carried out (47), but this did not change the outcome of the reaction (Scheme 1.40). 
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Scheme 1.40. Attempted introduction of leaving groups. 
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 The second idea was to install the pyridine first and then use it as an ortho-directing group for 

the introduction of the phosphine (Scheme 1.41). Functional group transformation from the 

bromide 44 to the aldehyde 48 by lithiation and reaction with DMF as well as the subsequent 

reduction to the primary alcohol 49 worked nicely. Unfortunately, the next step, 

transformation of the alcohol into a leaving group, once again failed to proceed as desired. 

Reaction of 49 with tosyl chloride did not give the desired sulfonate but instead dimerization 

to the ether 50 was observed. 
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Scheme 1.41. Dimerization of ferrocenyl alcohols. 

 

It seems that the reactivity of the tosylate is high enough to undergo reaction spontaneously 

after its formation with the alcohol starting material. Due to the efficient stabilization of the 

intermediate benzylic cation, a SN1-type displacement is favoured in this system. 
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1.2.6 Conclusions 

 

 

The synthesis of ferrocenephospholane 6 has been developed. The key step, a 

stereoconvergent hydrophosphination, took place under basic conditions. This addition of a 

phosphide nucleophile to the vinylic double bond is in opposition to the general reported 

reactivity of these species. Usually, the benzylic position of ferrocene derivatives is supposed 

to stabilize positive charges, as in the final phosphination reaction during the synthesis of the 

josiphos ligands[10] or in the acid catalyzed dimerization of 10 (Scheme 2.16). Only tert-butyl-

substituted secondary phosphines underwent this intramolecular addition to the double bond. 

Attempts to cyclize with a phenyl-substituted secondary phosphine or a primary phosphine 

failed.  

Following an ortho-lithiation strategy, several substituents were introduced prior to 

cyclization. In particular, phosphine chlorides were proven to react very efficiently to give 

bidentate phosphine ligands (40, 41, 42) after formation of the phospholane in acceptable 

yields. 

Functionalization of the parent phospholane 6 after its formation was problematic and 

proceeded unselectively, if at all. 
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1.3 Rhodium Complexes and their Application in the 

Asymmetric Hydrogenation of Olefins 

 

1.3.1 Coordination Behaviour 

 

In advance of the first hydrogenation experiments the coordination mode of the 

ferrocenephospholanes was examined. For this purpose phospholanes 6, 39 and 40 were 

combined in an appropriate solvent with the two different rhodium sources used in the 

hydrogenation reactions, namely [Rh(nbd)2]BF4 and [Rh(nbd)Cl]2, and cis-[Pd(MeCN)2Cl2]. 

The solid state structures of the complexes 51, prepared from [Rh(nbd)Cl]2 and one 

equivalent of 6 in dichloromethane, as well as 52 and 53, prepared from cis-[Pd(MeCN)2Cl2] 

and two equivalents of 6 or 39 in dichloromethane, are shown in Figures 1.14, 1.15 and 1.16. 

51 exhibited the expected connectivity with a distorted, square planar rhodium center and one 

coordinated phospholane. 

 

Complexes 52 and 53 showed a trans-arrangement of the two phospholane ligands. The 

question arose whether this geometry simply reflects the thermodynamically favoured product 

or whether the cis compound cannot exist for steric reasons. In the case of [Rh(nbd)2]BF4 this 

would mean that 6 is not able to form a precatalyst consisting of two phospholanes ligands 

and one norbornadiene ligand at one rhodium center. NMR-experiments were performed to 

look at the formation of the precatalyst. With slightly more than a two fold excess of 6 

combined with [Rh(nbd)2]BF4 in deuterated methanol the resulting 31P-NMR spectrum 

showed two resonances at 38.1 ppm and –1.4 ppm. At 38.1 ppm a doublet splitting with 

154 Hz was observed, corresponding to a rhodium-bound phosphorus atom. The appearance 

of only one signal for the rhodium complex (apart from the signal of remaining ligand at  

–1.4 ppm) indicated the formation of a bis-phospholane rhodium complex. Later, the crystal 

structure of this complex (54) was solved, confirming that a cis-arrangement of the 

phosphines in the rhodium precatalyst is possible (Figure 1.17). 
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Figure 1.14. Crystal structure of 51. The second molecule in the unit cell is omitted for clarity. 

 

 

Figure 1.15. Crystal structure of 52. 

 

 

Figure 1.16. Crystal structure of 53. The second molecule in the unit cell is omitted for clarity. 
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Figure 1.17. Crystal structure of 54. The second molecule in the unit cell, the BF4-counterions and 

co-crystallized dichloromethane are omitted for clarity. 

 

When 40 was complexed with one equivalent of [Rh(nbd)Cl]2 or cis-[Pd(MeCN)2Cl2] in 

dichloromethane, the corresponding rhodium (55) and palladium complexes (56) were 

formed. Their crystal structures are depicted in Figure 1.18 and Figure 1.19. 

 

Figure 1.18. Crystal structure of 55. Co-crystallized hexane is omitted for clarity. 

 

Figure 1.19. Crystal structure of 56. The second molecule in the unit cell is omitted for clarity. 
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 Complex 55 incorporated, despite of its bidentate ligand, only one phosphorus atom in the 

coordination sphere of the rhodium atom. This is also the case in solution. The 31P-NMR 

showed a signal at 47.3 ppm as a doublet of doublets with a phosphorus-rhodium coupling 

constant of 172 Hz and a phosphorus-phosphorus coupling constant of 4.2 Hz in addition to a 

resonance at –21.7 ppm as a doublet with a phosphorus-phosphorus coupling constant of 4.2 

Hz. The ability of the ligand to act in a bidentate fashion was demonstrated by the structure of 

the palladium complex 56. The formation of 55 instead of a bidentate complex might be 

explained by the strongly coordinating chloride. Presumably, the distortion of the ligand upon 

chelation and the formation of an ion pair in dichloromethane are too energetically 

unfavored.1 Without an available crystal structure of the complex formed from [Rh(nbd)2]BF4 

and 55 in methanol, the existence of a chelated rhodium atom had to be confirmed by NMR. 

Indeed, the 31P-NMR experiments showed two resonances at 30.4 ppm and 16.9 ppm, both as 

doublets of doublets with a phosphorus-phosphorus coupling constant of 15.5 Hz and a 

rhodium-phosphorus coupling constant of 157 Hz and 150 Hz respectively. 

As observed before, the second phosphine group in 55 was not able to displace the chloride or 

one of the coordinating double bonds at the rhodium center. However, upon addition of 

dihydrogen one double bond of norbonadiene should be hydrogenated to create a free 

coordination site. This position could then be occupied by the available phosphine resulting in 

a catalytically active species in form of a chelated rhodium atom related to the species 

observed with the combination of [Rh(nbd)2]BF4 and 40 in methanol. To verify this 

assumption, complex 55 was stirred under dihydrogen atmosphere to remove the 

norbornadiene (Scheme 1.42). The reaction was monitored by NMR and aside from hydride 

signals - the strongest were a doublet of triplets at –20.2 ppm (JHRh = 26.9 Hz, JHP = 15.8 Hz) 

and a broad signal between –21.0 and –21.3 ppm - the appearance of 31P-resonances with the 

expected coupling pattern showed again the formation of chelated complexes. First, new 

resonances appeared at 62.8 ppm and 29.3 ppm with phosphorus-rhodium coupling constants 

of 116 Hz and 169 Hz. Upon longer reaction time two weaker signal pairs at 

40.0 ppm / 8.3 ppm and 37.4 ppm / 10.9 ppm could be seen. After 6 h the spectrum consisted 

of at least 5 sets of ligand signals. The nature of these hydride species is unknown. The 

observed phosphorus-proton coupling of 20 Hz indicates that all the observed hydrides are 

located cis to the phosphines, whereas roughly 190 Hz would be expected for a trans-

arrangement.[1] 

                                                 
1 In methanol this is not the case, see Section 1.5.2 for the discussion. 
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A noteworthy observation was made when the same conditions were applied to the related 

complex 57 formed from 40 and [Rh(cod)Cl]2. In this case, the 1,5-cyclooctadiene ligand 

impeded the activation of the precatalyst and the complex was inert towards dihydrogen. This 

finding emphasizes the generally neglected influence of the diene ligand on catalysis results. 

The inexistent reactivity of a diene-diphosphine-rhodium complex under the reaction 

conditions does not necessarily mean that the actual diphosphine-rhodium catalyst is inactive. 

Similar observations of the influence of the diene ligand on precatalyst activation have 

already been reported in the literature, although complete inactivity was not found.[2] 

Presumably, this is due to the fact that these experiments were carried out with a precatalyst 

having a non-coordinating counter ion. 

 

Fe

P
PPh2

Cl
Rh

Fe

P
PPh2

Cl
Rh

H2, CH2Cl2

H2, CH2Cl2

55

57

Formation of a chelated rhodium complex

No reaction

 

Scheme 1.42. Differences in precatalyst activation. 

 

The complexation experiments proved that there is formation of a chelated complex when the 

phospholane 40 is treated with the corresponding rhodium source. In the case of the chloride 

counterion, chelation occured upon removal of the diene ligand, whereas the tetrafluoroborate 

salt showed a chelated structure even for the precatalyst. The monodentate ligand 6 was also 

found to form a complex with two coordinating phosphines, in this case from two discrete 

ligands coordinated to the rhodium center. Based on these findings, the ligands 39, 40 and 41 

were assumed to behave in a similar manner, forming active catalysts bearing two 

coordinating phosphorus atoms. To avoid problems removing the cyclooctadiene ligand, 

norbornadiene-bound metal sources were chosen for formation of the precatalyst employed in 

the hydrogenation reactions. 
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1.3.2 Hydrogenations 

 

 

1.3.2.1 Substrate Screening 

 

 

To evaluate the potential of the phospholane-rhodium complexes in the asymmetric 

hydrogenation, several types of substrates were tested (Figure 1.43). 
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Figure 1.43. Substrates and the ligand used in the screening. 

 

The substrate set included several dehydroamino acid derivatives, such as the cinnamates 58 

and 59, the isomeric crotonates 60 and 61 and the acrylate 62. Furthermore, the unsaturated 

ester 63 and the �-ketoesters 64, 65 and 66 were examined. 

 

40 was chosen as the ligand for the initial screening with different metal sources. Several 

solvents, different catalyst loadings and various substrate concentrations as well as addition of 

base were tested. Reaction time, reaction temperature and hydrogen pressure for performance 

efficiency with the given substrates had been identified in preliminary experiments. The 

results of the hydrogenation reactions are shown in the following tables. 
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After a few selected hydrogenation experiments to determine the general reactivity, the 

screening was carried out on an automated system. This allowed the simultaneous 

hydrogenation of 96 combinations of substrate, catalyst and solvent. The precatalysts were 

generated in situ by combining a solution of the metal source in ethanol and a solution of the 

ligand in DCE. The solutions were stirred for 10 minutes then the solvent was removed under 

reduced pressure. Dissolving the precatalyst in the appropriate solvent and addition of the 

substrate was followed by shaking the reaction mixture under hydrogen atmosphere.  

The amount of results generated in a single run demand for an automated analytical system. 

Therefore the conversion and enantiomeric excess were determined by automatic integration 

which, especially at low conversion, could lead to relatively large errors. Therefore the best 

results were manually checked for their accuracy and these verifications generally supported 

the automated screening results. 

Not every possible combination was tested because of the substantial costs of a single run of 

96 parallel experiments. Therefore the run was optimized for the most promising experiments 

and most information output. 

 

 

 

Table 1.1. Hydrogenation of acetamido cinnamic acid (58). 

COOH

HN

O

58

COOH

HN

O

H2-58

*40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Rh(nbd)2]BF4 EtOH 25 0.083 40 12 (S) 

2c [Rh(nbd)2]BF4 EtOH 100 0.333 20 rac. 

3 [Rh(nbd)2]BF4 THF 25 0.083 100 26 (R) 

4c [Rh(nbd)2]BF4 THF/EtOH  100 0.333 100 rac. 

5d [Rh(nbd)Cl]2 DCE 25 0.083 30 86 (R) 

6c,d [Rh(nbd)Cl]2 DCE/EtOH 100 0.333 20 37 (R) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 and 25 °C for 2 h. 
bDetermined by chiral GC. cWith dabco as additive. dMetal source to ligand ratio of 1:2. 
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Full conversion in the hydrogenation of the cinnamic acid 58 was achieved with 

[Rh(nbd)2]BF4 (Table 1.1 entries 3 and 4). In THF the corresponding enantioselectivity was 

only moderate and in ethanol/THF with additional base only racemic product was obtained. 

The best selectivity of 86% ee gave [Rh(nbd)Cl]2 albeit with only 30% conversion (entry 5). 

 

 

Table 1.2. Hydrogenation of methyl acetamidocinnamate (59). 

COOMe

HN

O

59

COOMe

HN

O

H2-59

*40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Rh(nbd)2]BF4 EtOH 25 0.083 60 51 (R) 

2 [Rh(nbd)2]BF4 EtOH 100 0.333 20 46 (R) 

3 [Rh(nbd)2]BF4 THF 25 0.083 >99 77 (R) 

4 [Rh(nbd)2]BF4 THF 100 0.333 40 87 (R) 

5c [Rh(nbd)Cl]2 DCE 25 0.083 >99 90 (R) 

6c [Rh(nbd)Cl]2 DCE 100 0.333 40 85 (R) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 and 25 °C for 2 h. 
bDetermined by chiral GC. cMetal source to ligand ratio of 1:2. 
 

 

Compared to the free acid 58, the methyl cinnamic ester 59 showed generally higher 

conversions and enantioselectivities (Table 1.2). Full conversion was generated with 

[Rh(nbd)2]BF4 and [Rh(nbd)Cl]2 but only with 4 mol% catalyst loading in aprotic solvents 

(entries 3 and 5). The products were obtained with 77% ee and 90% ee respectively. A higher 

substrate concentration increased the selectivity in the case of [Rh(nbd)2]BF4 in THF (entry 

4), the opposite trend was observed in ethanol (entry 2) and with [Rh(nbd)Cl]2 (entry 6).  
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Table 1.3. Hydrogenation of ethyl Z-acetamidocrotonate (60). 

OEt

ONH

O

60

OEt

ONH

O

H2-60

*

40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Rh(nbd)2]BF4 EtOH 25 0.083 >99 26 (R) 

2 [Rh(nbd)2]BF4 EtOH 100 0.333 30 22 (R) 

3 [Rh(nbd)2]BF4 THF 25 0.083 >99 12 (R) 

4 [Rh(nbd)2]BF4 THF 100 0.333 20 rac. 

5c [Rh(nbd)Cl]2 DCE 25 0.083 40 58 (R) 

6c [Rh(nbd)Cl]2 DCE 100 0.333 5 64 (R) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 14 h with 2,2,2-
trifluoroethanol as additive. bDetermined by chiral GC. cMetal source to ligand ratio of 1:2. 
 

 

Hydrogenation of the isomeric crotonates 60 and 61 revealed generally higher activities for 

the E-configured enamide 61 independent of the conditions. Full conversion was observed 

with 4 mol% catalyst loading for both substrates in ethanol and THF with [Rh(nbd)2]BF4 as 

the metal source (Table 1.3 entries 1 and 3, Table 1.4 entries 1 and 3). In the case of 61 the 

combination of [Rh(nbd)Cl]2 in DCE gave almost full conversion (Table 1.4 entry 5) whereas 

60 was reduced much slower (Table 1.3 entry 5). The conversions dropped significantly when 

the catalyst loading was reduced to 1 mol%. The selectivities were almost independent of 

catalyst and substrate concentration. The best results were obtained with [Rh(nbd)Cl]2 in 

DCE. The E-isomer 61 was reduced with an ee of 72% and 95% conversion (Table 1.4 entry 

5). The Z-isomer 60 gave 58% ee accompanied by lower conversion (Table 1.3 entry 5). The 

reduction is stereospecific as illustrated by the opposite enantiomers predominantly generated 

when comparing the hydrogenation products of the two isomeric enamides.  
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Table 1.4. Hydrogenation of ethyl E-acetamidocrotonate (61). 

N
H

OEt

OO

61

N
H

OEt

OO

H2-61

*

40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Rh(nbd)2]BF4 EtOH 25 0.083 >99 15 (S) 

2 [Rh(nbd)2]BF4 EtOH 100 0.333 50 14 (S) 

3 [Rh(nbd)2]BF4 THF 25 0.083 >99 12 (S) 

4 [Rh(nbd)2]BF4 THF 100 0.333 40 9 (S) 

5c [Rh(nbd)Cl]2 DCE 25 0.083 95 72 (S) 

6c [Rh(nbd)Cl]2 DCE 100 0.333 40 60 (S) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 14 h. bDetermined 
by chiral GC. cMetal source to ligand ratio of 1:2. 
 

 

Table 1.5. Hydrogenation of methyl acetamidoacrylate (62). 

COOMe

HN

O

62

COOMe

HN

O

H2-62

*40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Rh(nbd)2]BF4 EtOH 25 0.083 >99 65 (S) 

2 [Rh(nbd)2]BF4 EtOH 100 0.333 >99 56 (S) 

3 [Rh(nbd)2]BF4 THF 25 0.083 >99 34 (S) 

4 [Rh(nbd)2]BF4 THF 100 0.333 >99 42 (S) 

5c [Rh(nbd)Cl]2 DCE 25 0.083 >99 10 (S) 

6c [Rh(nbd)Cl]2 DCE 100 0.333 70 10 (R) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 2 h. bDetermined 
by chiral GC. cMetal source to ligand ratio of 1:2. 
 

The acrylate 62 showed high activity with both metal sources in all solvents even at 1 mol% 

catalyst loading (Table 1.5). The concentration of the solution did not have a consistent 

influence. Whereas in ethanol the selectivity dropped at higher concentration (entry 1 vs. 

entry 2), the opposite result was observed in THF (entry 3 vs. entry 4). With [Rh(nbd)Cl]2 in 

DCE a inversion of selectivity was observed, although on a low level (entry 5 vs. entry 6). 

The best enantioselectivity was obtained with [Rh(nbd)2]BF4 in ethanol with an ee of 65% 

(entry 1). 
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Table 1.6. Hydrogenation of dimethyl itaconate (63). 

COOMe

COOMe

63

COOMe

COOMe

H2-63

40, conditions *

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Rh(nbd)2]BF4 EtOH 25 0.083 >99 44 (R) 

2 [Rh(nbd)2]BF4 EtOH 100 0.333 60 58 (R) 

3 [Rh(nbd)2]BF4 THF 25 0.083 >99 30 (R) 

4 [Rh(nbd)2]BF4 THF 100 0.333 40 57 (R) 

5c [Rh(nbd)Cl]2 DCE 25 0.083 95 10 (S) 

6c [Rh(nbd)Cl]2 DCE 100 0.333 20 11 (S) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 14 h. bDetermined 
by chiral GC. cMetal source to ligand ratio of 1:2. 
 

The itaconate 63 was hydrogenated with full conversion at a catalyst loading of 4 mol%. At a 

higher substrate to catalyst ratio incomplete reduction was observed (Table 1.6). [Rh(nbd)Cl]2 

in DCE showed very low selectivity compared to [Rh(nbd)2]BF4 in ethanol or THF. 

Additionally, the two different metal sources did not generate the same product configuration. 

The enantioselectivities were slightly higher when a more concentrated solution was used, 

with 58% ee being the best result (entry 2). 

 

Table 1.7. Hydrogenation of ethyl pyruvate (64). 

OEt

O

O

64

OEt

O

OH

H2-64

40, conditions
*

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Rh(nbd)Cl]2 Tol 25 0.083 5 28 

2d [Rh(nbd)Cl]2 Tol/THF 25 0.083 50 rac. 

3 [Rh(nbd)Cl]2 THF 25 0.083 5 11 

4d [Rh(nbd)Cl]2 THF 25 0.083 30 6 

5 [Rh(nbd)(TFA)]2 Tol 25 0.083 50 –11 

6d [Rh(nbd)(TFA)]2 Tol/THF 25 0.083 90 –20 

7e [Rh(nbd)2]BF4 EtOH 25 0.083 70 rac. 

8d,e [Rh(nbd)2]BF4 EtOH/THF 25 0.083 >99 –29 
aReaction was carried out with a metal source to ligand ratio of 1:2 under 20 bar H2 at 25 °C for 14 h. 
bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer. dWith dabco as additive. 
eMetal source to ligand ratio of 1:1. 
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 In the reduction of pyruvate 64, [Rh(nbd)TFA]2 and [Rh(nbd)2]BF4 showed acceptable 

reactivities whereas [Rh(nbd)Cl]2 performed poorly (Table 1.7). The addition of dabco 

enhanced conversion in all cases. Enantioselectivities were generally low and did not exceed 

30% ee. The best result was with [Rh(nbd)2]BF4 and dabco in ethanol/THF, which gave full 

conversion and 29% ee (entry 8). 

 

Table 1.8. Hydrogenation of methyl phenylglyoxylate (65). 

OMe

O

O

65

OMe

O

OH

H2-65

40, conditions
*

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Rh(nbd)Cl]2 Tol 25 0.083 0 - 

2d [Rh(nbd)Cl]2 Tol/THF 25 0.083 20 5 

3 [Rh(nbd)Cl]2 THF 25 0.083 5 rac. 

4d [Rh(nbd)Cl]2 THF 25 0.083 10 7 

5 [Rh(nbd)(TFA)]2 Tol 25 0.083 40 rac. 

6d [Rh(nbd)(TFA)]2 Tol/THF 25 0.083 >99 –17 

7e [Rh(nbd)2]BF4 EtOH 25 0.083 >99 rac. 

8d,e [Rh(nbd)2]BF4 EtOH/THF 25 0.083 80 rac. 
aReaction was carried out with a metal source to ligand ratio of 1:2 under 20 bar H2 at 25 °C for 14 h. 
bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer. dWith dabco as additive. 
eMetal source to ligand ratio of 1:1. 
 

Glyoxylate 65 showed the same reactivity towards the catalysts from different metal sources 

as pyruvate 64. Only the metal sources [Rh(nbd)TFA]2 and [Rh(nbd)2]BF4 led to reduction of 

the ketone in reasonable amounts. In the case of the trifluoroacetate, additional dabco was 

needed to achieve full conversion (Table 1.8, entry 6). In most cases racemic product was 

obtained, only [Rh(nbd)TFA]2 in toluene/THF with dabco showed a low selectivity of 

17% ee. 
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Table 1.9. Hydrogenation of ketopantolactone (66). 

O

O

O

66

O

OH

O

H2-66

40, conditions *

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Rh(nbd)Cl]2 Tol 25 0.083 10 37 

2d [Rh(nbd)Cl]2 THF/Tol 25 0.083 70 –6 

3 [Rh(nbd)Cl]2 THF 25 0.083 5 12 

4d [Rh(nbd)Cl]2 THF 25 0.083 10 rac. 

5 [Rh(nbd)(TFA)]2 Tol 25 0.083 90 –29 

6d [Rh(nbd)(TFA)]2 THF/Tol 25 0.083 >99 –6 

7e [Rh(nbd)2]BF4 EtOH 25 0.083 40 –11 

8d,e [Rh(nbd)2]BF4 EtOH/THF 25 0.083 90 12 
aReaction was carried out with a metal source to ligand ratio of 1:2 under 20 bar H2 at 25 °C for 14 h. 
bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer. dWith dabco as additive. 
eMetal source to ligand ratio of 1:1. 
 

Lactone 66 showed the same trends as the previous ketones in which [Rh(nbd)(TFA)]2 and 

[Rh(nbd)2]BF4 proved to be superior to [Rh(nbd)Cl]2 in terms of reactivity. Again, addition of 

dabco increased the conversion, albeit with erosion of the already low selectivities. The best 

combination was [Rh(nbd)TFA]2 as metal source in toluene with 90% conversion and 29% ee 

(Table 1.9 entry 5). 
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1.3.2.2 Ligand Screening 

 

 

Based on the initial hydrogenation experiments, it was decided to focus further screening on 

the reduction of olefins. The substrates and the ligands used, shown in Figure 1.44, include 

the bidentate ferrocenephospholanes 40-42, the dehydroamino acid derivatives 58-62 and the 

unsaturated diester 63. The results are reported in the following tables. 
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Figure 1.44. Substrates and ligands used in the screening. 
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Table 1.10. Hydrogenation of acetamido cinnamic acid (58). 

COOH

HN

O

58

COOH

HN

O

H2-58

*conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 EtOH 25 0.083 40 12 (S) 

2c EtOH 100 0.333 20 rac. 

3 THF 25 0.083 >99 26 (R) 

4c THF/EtOH 100 0.333 >99 rac. 

5d DCE 25 0.083 30 86 (R) 

6c,d 

Fe

P
PPh2

40  
DCE/EtOH 100 0.333 20 37 (R) 

7 EtOH 25 0.083 81 26 (R) 

8c EtOH 100 0.333 30 44 (R) 

9 THF 25 0.083 92 21 (R) 

10c THF/EtOH 100 0.333 44 17 (R) 

11d,e DCE 25 0.083 n.a. n.a. 

12c,d 

Fe

P
P(oTol)2

41  
DCE/EtOH 100 0.333 28 35 (R) 

13 EtOH 25 0.083 39 22 (S) 

14c EtOH 100 0.333 25 44 (S) 

15 THF 25 0.083 41 4 (S) 

16c THF/EtOH 100 0.333 32 38 (S) 

17d DCE 25 0.083 87 89 (R) 

18c,d 

Fe

P
PCy2

42  
DCE/EtOH 100 0.333 23 26 (S) 

aReaction was carried out with [Rh(nbd)2]BF4 as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. cWith dabco as additive. d[Rh(nbd)Cl]2 was used as metal 
source, metal source to ligand ratio of 1:2. eAnalysis failed. 
 

All ligands gave better conversions in the hydrogenation of acid 58 in aprotic solvents. The 

highest activities with phospholanes 40 and 41 were measured in THF; 42 in combination 

with DCE was also applicable. Enantioselectivities of 86% ee and 89% ee could be achieved 

in DCE with 40 (Table 1.10, entry 5) and 42 (entry 17) although only 42 gave good 

conversion. 

 

The methyl ester 59 showed higher activities and selectivities compared to the free acid 58 

but at a catalyst loading of 1 mol% the conversions dropped in all cases. THF and DCE were 

superior for the activities with ligands 40 and 42 whereas ethanol was better in combination 

with 41. Enantioselectivities were usually lower in ethanol, with ligands 40 and 42 generally 
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outperforming 41. The enantioselectivity showed a dependence on substrate concentration in 

THF and DCE. While a more concentrated solution raised the selectivity in THF, a more 

dilute reaction mixture was optimal in DCE. The best results were obtained with 40 and 42 in 

DCE, giving enantiomeric excesses of 90% (Table 1.11, entry 5) and 93% (entry 17). 

The monodentate ligands 6 and 39 showed no conversion in DCE, and in ethanol or THF the 

selectivities were rather poor. 

 

 

 

Table 1.11. Hydrogenation of methyl acetamidocinnamate (59). 

COOMe

HN

O

59

COOMe

HN

O

H2-59

*
conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 EtOH 25 0.083 60 51 (R) 

2 EtOH 100 0.333 20 46 (R) 

3 THF 25 0.083 >99 77 (R) 

4 THF 100 0.333 40 87 (R) 

5c DCE 25 0.083 >99 90 (R) 

6c 

Fe

P
PPh2

40  
DCE 100 0.333 40 85 (R) 

7 EtOH 25 0.083 99 11 (R) 

8 EtOH 100 0.333 43 31 (R) 

9 THF 25 0.083 34 26 (R) 

10 THF 100 0.333 19 55 (R) 

11c DCE 25 0.083 85 38 (R) 

12c 

Fe

P
P(oTol)2

41  
DCE 100 0.333 40 38 (R) 

13 EtOH 25 0.083 16 17 (R) 

14 EtOH 100 0.333 5 rac. 

15 THF 25 0.083 98 78 (R) 

16 THF 100 0.333 40 87 (R) 

17c DCE 25 0.083 >99 93 (R) 

18c 

Fe

P
PCy2

42  
DCE 100 0.333 10 72 (R) 

aReaction was carried out with [Rh(nbd)2]BF4 as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Rh(nbd)Cl]2 was used as metal source, metal source to 
ligand ratio of 1:2. 
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Table 1.12. Hydrogenation of ethyl Z-acetamidocrotonate (60). 

OEt

ONH

O

60

OEt

ONH

O

H2-60

*

conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 EtOH 25 0.083 >99 26 (R) 

2 EtOH 100 0.333 30 22 (R) 

3 THF 25 0.083 >99 12 (R) 

4 THF 100 0.333 20 rac. 

5c DCE 25 0.083 40 58 (R) 

6c 

Fe

P
PPh2

40  
DCE 100 0.333 5 64 (R) 

7 EtOH 25 0.083 >99 15 (R) 

8c EtOH 100 0.333 >99 18 (R) 

9 THF 25 0.083 >99 6 (S) 

10c THF 100 0.333 62 13 (S) 

11c DCE 25 0.083 52 53 (R) 

12c 

Fe

P
P(oTol)2

41  
DCE 100 0.333 43 63 (R) 

13 EtOH 25 0.083 >99 16 (R) 

14 EtOH 100 0.333 28 29 (R) 

15 THF 25 0.083 >99 7 (R) 

16 THF 100 0.333 30 18 (R) 

17c DCE 25 0.083 >99 44 (R) 

18c 

Fe

P
PCy2

42  
DCE 100 0.333 >99 n.d.d 

aReaction was carried out with [Rh(nbd)2]BF4 as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h with 2,2,2-trifluoroethanol as additive. bDetermined by chiral GC. c[Rh(nbd)Cl]2 was 
used as metal source, metal source to ligand ratio of 1:2. dSide products were observed. 
 

Hydrogenation of enamide 60 was achieved with full conversion with 4 mol% catalyst 

loading except for the experiments performed with 40 and 41 in DCE (Table 1.12). At a 

higher substrate to catalyst ratio only 41 in ethanol showed good activity (entry 8). In the case 

of 42 in DCE complete consumption of the starting material was observed but the reaction 

produced a mixture of products (entry 18). The enantioselectivities decreased going from 

DCE to ethanol to THF. The best result was obtained in DCE with 41 giving 63% ee and 43% 

conversion, at higher conversions the best enantiomeric excess (44%) was generated with 42 

in the same solvent (entry 17).  

The isomeric enamide 61 showed formation of side products in several experiments (Table 

1.13), presumably due to a systematical error during the screening. Looking at the evaluable 
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results, the activities were comparable to the Z-isomer 60 and the enantioselectivities 

appeared to be slightly higher. The E- and Z-isomer produced products of the opposite 

configuration. 72% ee was obtained with 40 in DCE (entry 5). Employing 42 in DCE, full 

conversion was achieved even at 1 mol% catalyst loading with a slightly lower enantiomeric 

excess (entry 18). 

 

 

Table 1.13. Hydrogenation of ethyl E-acetamidocrotonate (61). 

N
H

OEt

OO

61

N
H

OEt

OO

H2-61

*

conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 EtOH 25 0.083 >99 15 (S) 

2 EtOH 100 0.333 50 14 (S) 

3 THF 25 0.083 >99 12 (S) 

4 THF 100 0.333 40 9 (S) 

5c DCE 25 0.083 95 72 (S) 

6c 

Fe

P
PPh2

40  
DCE 100 0.333 40 60 (S) 

7 EtOH 25 0.083 >99 29 (S) 

8c EtOH 100 0.333 96 n.d.d 

9 THF 25 0.083 >99 36 (S) 

10c THF 100 0.333 94 n.d.d 

11c DCE 25 0.083 >99 n.d.d 

12c 

Fe

P
P(oTol)2

41  
DCE 100 0.333 >99 n.d.d 

13 EtOH 25 0.083 >99 20 (S) 

14 EtOH 100 0.333 95 n.d.d 

15 THF 25 0.083 >99 33 (S) 

16 THF 100 0.333 95 n.d.d 

17c DCE 25 0.083 >99 65 (S) 

18c 

Fe

P
PCy2

42  
DCE 100 0.333 >99 62 (S) 

aReaction was carried out with [Rh(nbd)2]BF4 as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Rh(nbd)Cl]2 was used as metal source, metal source to 
ligand ratio of 1:2. dSide products were observed. 
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Table 1.14. Hydrogenation of methyl acetamidoacrylate (62). 

 

COOMe

HN

O

62

COOMe

HN

O

H2-62

*conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 EtOH 25 0.083 >99 65 (S) 

2 EtOH 100 0.333 >99 56 (S) 

3 THF 25 0.083 >99 34 (S) 

4 THF 100 0.333 >99 42 (S) 

5c DCE 25 0.083 >99 10 (S) 

6c 

Fe

P
PPh2

40  
DCE 100 0.333 70 10 (R) 

7 EtOH 25 0.083 98 4 (R) 

8 EtOH 100 0.333 54 10 (R) 

9 THF 25 0.083 98 rac. 

10 THF 100 0.333 35 30 (R) 

11c DCE 25 0.083 53 29 (R) 

12c 

Fe

P
P(oTol)2

41  
DCE 100 0.333 21 59 (R) 

13 EtOH 25 0.083 95 23 (S) 

14 EtOH 100 0.333 91 21 (S) 

15 THF 25 0.083 97 37 (S) 

16 THF 100 0.333 77 37 (S) 

17c DCE 25 0.083 >99 17 (R) 

18c 

Fe

P
PCy2

42  
DCE 100 0.333 78 21 (R) 

aReaction was carried out with [Rh(nbd)2]BF4 as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Rh(nbd)Cl]2 was used as metal source, metal source to 
ligand ratio of 1:2. 
 

The best result in the hydrogenation of acrylate 62 was achieved with the diphenylphosphino 

substituted phospholane 40 giving full conversion and 65% ee (Table 1.14 entry 1). The 

complexes formed from 40 or 42 and [Rh(nbd)2]BF4 showed good activities in ethanol and 

THF, even at 1 mol% catalyst loading; the conversions in DCE were slightly lower. In ethanol 

or THF 40 and 42 gave similar selectivities, generally higher than those obtained with 41. 

Moreover, in these cases 41 showed the opposite enantioselectivity to the other diphosphines. 

In DCE the enantioselectivity was better with the ortho-tolyl substituted ligand 41 albeit with 

reduced activity. In some cases an influence of the substrate concentration on the selectivity 



Chapter 1 
 

64 

was observed. The largest effect was observed with 41 and [Rh(nbd)Cl]2 in DCE where an 

improvement in the enantiomeric excess from 29% to 59% was noted (entries 11 and 12). 

 

 

Table 1.15. Hydrogenation of dimethyl itaconate (63). 

COOMe

COOMe

63

COOMe

COOMe

H2-63

conditions *

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 EtOH 25 0.083 >99 44 (R) 

2 EtOH 100 0.333 60 58 (R) 

3 THF 25 0.083 >99 30 (R) 

4 THF 100 0.333 40 57 (R) 

5c DCE 25 0.083 95 10 (S) 

6c 

Fe

P
PPh2

40  
DCE 100 0.333 20 11 (S) 

7 EtOH 25 0.083 >99 15 (R) 

8 EtOH 100 0.333 >99 18 (R) 

9 THF 25 0.083 >99 14 (R) 

10 THF 100 0.333 93 21 (S) 

11c DCE 25 0.083 >99 6 (R) 

12c 

Fe

P
P(oTol)2

41  
DCE 100 0.333 50 rac. 

13 EtOH 25 0.083 >99 rac. 

14 EtOH 100 0.333 >99 38 (R) 

15 THF 25 0.083 >99 11 (S) 

16 THF 100 0.333 >99 rac. 

17c DCE 25 0.083 >99 21 (S) 

18c 

Fe

P
PCy2

42  
DCE 100 0.333 >99 21 (S) 

19d EtOH 100 0.333 >99 79 (S) 

20d Fe

P

6
 

THF 50 0.333 52 59 (S) 

21d 
Fe

P
TMS

39
 

EtOH 100 0.333 >99 rac. 

aReaction was carried out with [Rh(nbd)2]BF4 as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Rh(nbd)Cl]2 was used as metal source, metal source to 
ligand ratio of 1:2. dWith a metal source to ligand ratio of 1:2.  
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In ethanol or THF, itaconate 63 was hydrogenated with full conversion even at 1 mol% 

catalyst loading when ligands 41 and 42 were applied (Table 1.15). Phospholane 40 showed 

less activity under these conditions but outperformed the other diphosphines in terms of 

selectivity. Reactions in DCE with [Rh(nbd)Cl]2 gave the lowest selectivities and the activity 

was reduced compared to the other experiments. The best result for the diphosphine ligands 

was obtained with 40 in ethanol with 58% ee but incomplete conversion (entry 2). Again, a 

dependence on the substrate concentration was noted in some cases where the 

enantioselectivities increased from 44% ee to 58% ee (entry 1 vs. entry 2), from 30% ee to 

57% ee (entry 2 vs. entry 4) and from racemic product to 38% ee (entry 13 vs. entry 14). 

Experiments with the monodentate ligands 6 and 39 resulted, in the case of the trimethylsilyl 

substituted phospholane 39, in full conversion but racemic product. However, the 

unsubstituted phospholane 6 gave the best performance among the ligands tested. In ethanol 

the hydrogenation product was generated with 79% ee and full conversion. 
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1.3.3 Conclusions 

 

 

The hydrogenation catalysts generated from ferrocenephospholanes and different rhodium 

sources showed good activity with several functionalized olefins. The selectivities were only 

moderate with few examples reaching enantiomeric excesses around or above 90%. There did 

not seem to be a general favoured metal source or bidentate ligand in these reactions. The 

preferred conditions were dependent on the substrate. For the cinammic acid derivatives 58 

and 59 the combination of ligand 42 with [Rh(nbd)Cl]2 was superior (Tables 3.10 and 3.11), 

while in the case of the β-dehydroaminoacid esters 60 and 61 ligand 40 and [Rh(nbd)Cl]2 

gave the best results (Tables 3.12 and 3.13). The terminal olefins 62 and 63, on the other 

hand, performed better with [Rh(nbd)2]BF4 complexed with 40 (Tables 3.14 and 3.15). 

Interestingly, ligand 41, having a bis-(ortho-tolyl)phosphine group, usually resulted in the 

formation of less selective catalysts. 

The results showed that the ferrocenephospholane-rhodium system is generally inferior to 

established catalysts. Although selectivities up to 93% ee were observed in the reduction of 

59 with the tested phospholane system, these results cannot compete with literature values for 

the ester or the free acid. Different phospholanes,[3] C2-symmetric[4] and nonsymmetric[5] 

bisphosphine ligands as well as phosphine-phosphoramidite structures[6] are able to generate 

enantiomeric excesses above 99%. 

Several reports have been published in which substrates 60 and 61 were hydrogenated with 

enatioselectivities up to 99% ee. P-stereogenic bisphosphines[5b] and phospholanes[7] as well 

as DuPHOS analogues[8] proved to be useful systems. 

The overall performance of the ligands in the hydrogenation of 62 was only satisfying in 

terms of reactivity. The enantioselectivities up to 65% ee are outperformed by established 

diphosphine systems. For example, diphosphine ligands with a cyclophane backbone[9] or a 

small bite angle[10] as well as mannitol-derived ferrocenyl phospholanes[3e] have been reported 

to generate enantioselectivities above 99% ee. 

The enantioselectivities for the reduction of 63 with the ferrocenephospholanes tested are also 

far below the standard. With C2-symmetric bisphosphinoethanes,[11] DuPhos derivatives,[12] 

BoPhoz analogues[6] or mandyphos ligands[13] enantiomeric excesses above 99% have been 

achieved. 
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1.4 Iridium Complexes and their Application in the Asymmetric 

Hydrogenation of Olefines 

 

 

1.4.1 Hydrogenation with in situ Generated Complexes 

 

 

1.4.1.1 Substrate Screening 

 

 

Analogously to their rhodium counterparts, iridium complexes of the ferrocenephospholanes 

were tested in the hydrogenation of various substrates. The coordination behaviour of the 

iridium complexes was assumed to mirror the observed coordination behaviour of the 

rhodium compounds (see section 1.3.1). Therefore catalysis was performed without 

preliminary investigations of precatalyst formation. 
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Figure 1.45. Ligand and substrates used in the initial screening. 

 

Again, the dehydroamino acid derivatives 58 and 59, the isomeric crotonates 60 and 61, the 

acrylate 62, the unsaturated ester 63 and �-ketoesters 64, 65 and 66 were used as substrates. 

Ligand 40 in combination with [Ir(cod)(bzn)2]BF4 or [Ir(cod)Cl]2 in ethanol, DCE or THF 

was applied to evaluate the activities and selectivities in the hydrogenation reactions. 
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The screening was carried out on an automated system and the experimental procedures were 

identical with those applied for the rhodium catalyzed reactions (see Section 1.3.2.1). 

 

Table 1.16. Hydrogenation of acetamido cinnamic acid (58). 

COOH

HN

O

58

COOH

HN

O

H2-58

*40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Ir(cod)(bzn)2]BF4 EtOH 25 0.083 >99 21 

2c [Ir(cod)(bzn)2]BF4 EtOH 100 0.333 5 61 

3 [Ir(cod)(bzn)2]BF4 DCE 25 0.083 20 25 

4 [Ir(cod)(bzn)2]BF4 DCE 100 0.333 20 24 

5d [Ir(cod)Cl]2 THF 25 0.083 0 - 

6d [Ir(cod)Cl]2 THF 100 0.333 0 - 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 and 25 °C for 2 h. 
bDetermined by chiral GC cWith dabco as additive. dMetal source to ligand ratio of 1:2.  
 

Acid 58 was reduced with full conversion in ethanol with 4 mol% of [Ir(cod)(bzn)2]BF4 

(Table 1.16, entry 1). All other tested combinations resulted in low consumption of starting 

material. The selectivities were around 25% ee. The enantiomeric excess of 61% in entry 2 

has to be taken with some caution as a conversion of only 5% was measured.  

 

Table 1.17. Hydrogenation of methyl acetamidocinnamate (59). 

COOMe

HN

O

59

COOMe

HN

O

H2-59

*40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Ir(cod)(bzn)2]BF4 EtOH 25 0.083 90 44 

2 [Ir(cod)(bzn)2]BF4 EtOH 100 0.333 5 20 

3 [Ir(cod)(bzn)2]BF4 DCE 25 0.083 80 27 

4 [Ir(cod)(bzn)2]BF4 DCE 100 0.333 0 - 

5c [Ir(cod)Cl]2 THF 25 0.083 0 - 

6c [Ir(cod)Cl]2 THF 100 0.333 0 - 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 and 25 °C for 2 h. 
bDetermined by chiral GC cMetal source to ligand ratio of 1:2. 
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The methyl ester 59 showed a similar behaviour (Table 1.17). Only [Ir(cod)(bzn)2]BF4 at 

4 mol% catalyst loading gave acceptable conversions (entries 1 and 3). The enantioselectivity 

was slightly higher compared to the free acid, which was 44% ee in ethanol. 

 

Table 1.18. Hydrogenation of ethyl Z-acetamidocrotonate (60). 

OEt

ONH

O

60

OEt

ONH

O

H2-60

*

40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Ir(cod)(bzn)2]BF4 EtOH 25 0.083 5 8 

2 [Ir(cod)(bzn)2]BF4 EtOH 100 0.333 0 - 

3 [Ir(cod)(bzn)2]BF4 DCE 25 0.083 5 –15 

4 [Ir(cod)(bzn)2]BF4 DCE 100 0.333 0 - 

5d [Ir(cod)Cl]2 THF 25 0.083 5 37 

6d [Ir(cod)Cl]2 THF 100 0.333 0 - 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 14 h with 2,2,2-
trifluoroethanol as additive. bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting 
enantiomer. dMetal source to ligand ratio of 1:2. 
 

Table 1.19. Hydrogenation of ethyl E-acetamidocrotonate (61). 

N
H

OEt

OO

61

N
H

OEt

OO

H2-61

*

40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Ir(cod)(bzn)2]BF4 EtOH 25 0.083 20 n.d. 

2 [Ir(cod)(bzn)2]BF4 EtOH 100 0.333 10 –40 

3 [Ir(cod)(bzn)2]BF4 DCE 25 0.083 30 5 

4 [Ir(cod)(bzn)2]BF4 DCE 100 0.333 10 –13 

5d [Ir(cod)Cl]2 THF 25 0.083 20 –75 

6d [Ir(cod)Cl]2 THF 100 0.333 5 –34 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 14 h. bDetermined 
by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer. dMetal source to ligand ratio of 1:2. 
 

The dehydro-β-aminoacid derivatives 60 and 61 exhibited generally low activities regardless 

of the conditions applied. The Z-isomer was basically inactive and the conversions in the 

reaction of the E-isomer were only slightly better. The combination of [Ir(cod)Cl]2 in THF 

gave the reduced product in 75% ee with low conversion (20%) (Table 1.19, entry 5). 
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 The results of the hydrogenation of acrylate 62 followed the trends already observed (Table 

1.20). 4 mol% [Ir(cod)(bzn)2]BF4 in ethanol were needed to convert the starting material in 

substantial amounts. The enantiomeric excess of the products formed did not exceed 20%. 

 

Table 1.20. Hydrogenation of methyl acetamidoacrylate (62). 

COOMe

HN

O

62

COOMe

HN

O

H2-62

*40, conditions

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Ir(cod)(bzn)2]BF4 EtOH 25 0.083 90 20 (R) 

2 [Ir(cod)(bzn)2]BF4 EtOH 100 0.333 10 34 (R) 

3 [Ir(cod)(bzn)2]BF4 DCE 25 0.083 >99 12 (S) 

4 [Ir(cod)(bzn)2]BF4 DCE 100 0.333 30 rac. 

5c [Ir(cod)Cl]2 THF 25 0.083 0 - 

6c [Ir(cod)Cl]2 THF 100 0.333 0 - 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 2 h. bDetermined 
by chiral GC. cMetal source to ligand ratio of 1:2. 
 

Table 1.21. Hydrogenation of dimethyl itaconate (63). 

COOMe

COOMe

63

COOMe

COOMe

H2-63

40, conditions *

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1 [Ir(cod)(bzn)2]BF4 EtOH 25 0.083 80 5 (R) 

2 [Ir(cod)(bzn)2]BF4 EtOH 100 0.333 20 rac. 

3 [Ir(cod)(bzn)2]BF4 DCE 25 0.083 >99 14 (R) 

4 [Ir(cod)(bzn)2]BF4 DCE 100 0.333 70 19 (R) 

5c [Ir(cod)Cl]2 THF 25 0.083 5 9 (S) 

6c [Ir(cod)Cl]2 THF 100 0.333 5 11 (S) 
aReaction was carried out with a metal source to ligand ratio of 1:1 under 1 bar H2 at 25 °C for 14 h. bDetermined 
by chiral GC. cMetal source to ligand ratio of 1:2. 
 

The unsaturated ester 63 was hydrogenated with higher conversions than the previously 

described substrates (Table 1.21). Even at 1 mol% catalyst loading, 70% product formation 

was observed (entry 4). Again, [Ir(cod)Cl]2 did not give an active catalyst. Although 
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acceptable conversions with [Ir(cod)(bzn)2]BF4 as metal source were obtained the selectivity 

was very low. 

 

The hydrogenation of ketone 64 was achieved with the best selectivity using [Ir(cod)Cl]2 in 

ethanol (Table 1.22). At 4 mol% catalyst loading the product was obtained with 60% ee but 

low conversion (entry 2). Addition of dabco in THF resulted in complete consumption of the 

starting material accompanied by erosion and, interestingly, inversion of enantioselectivity 

(entry 4). 

 

Table 1.22. Hydrogenation of ethyl pyruvate (64). 

OEt

O

O

64

OEt

O

OH

H2-64

40, conditions
*

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Ir(cod)Cl]2 DCE 25 0.083 60 45 

2 [Ir(cod)Cl]2 EtOH 25 0.083 30 60 

3d [Ir(cod)Cl]2 DCE/THF 25 0.083 50 27 

4d [Ir(cod)Cl]2 EtOH/THF 25 0.083 >99 –39 
aReaction was carried out with a metal source to ligand ratio of 1:2 under 20 bar H2 at 25 °C for 14 h. 
bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer . dWith dabco as additive. 
 

Glyoxylate 65 gave generally low to moderate conversions combined with low 

enantioselectivities (Table 1.23). Similar to the hydrogenation of 64, the addition of dabco 

and THF reversed the selectivity of the reduction in ethanol, although on a low level (entry 4). 

 

Table 1.23. Hydrogenation of methyl phenylglyoxylate (65). 

OMe

O

O

65

OMe

O

OH

H2-65

40, conditions
*

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Ir(cod)Cl]2 DCE 25 0.083 20 15 

2 [Ir(cod)Cl]2 EtOH 25 0.083 30 6 

3d [Ir(cod)Cl]2 DCE/THF 25 0.083 60 12 

4d [Ir(cod)Cl]2 EtOH/THF 25 0.083 50 –10 
aReaction was carried out with a metal source to ligand ratio of 1:2 under 20 bar H2 at 25 °C for 14 h. 
bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer. dWith dabco as additive. 
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 Reduction of lactone 66 proceeded in DCE to give the product with 40% conversion and 71% 

ee (Table 1.24 entry 1). Addition of dabco and THF resulted in an increase of activity in 

ethanol and DCE, but also in loss of selectivity. At full conversion, the product was formed 

with 26% ee (entry 3). 

 

Table 1.24. Hydrogenation of ketopantolactone (66). 

O

O

O

66

O

OH

O

H2-66

40, conditions *

 

Entrya Metal source Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1 [Ir(cod)Cl]2 DCE 25 0.083 40 71 

2 [Ir(cod)Cl]2 EtOH 25 0.083 5 12 

3d [Ir(cod)Cl]2 DCE/THF 25 0.083 >99 26 

4d [Ir(cod)Cl]2 EtOH/THF 25 0.083 70 31 
aReaction was carried out with a metal source to ligand ratio of 1:2 under 20 bar H2 at 25 °C for 14 h. 
bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer . dWith dabco as additive. 
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1.4.1.2 Ligand Screening 

 

 

After the initial screening the evaluation of ligands 41 and 42 was focused on hydrogenation 

reactions involving olefins analogous to the experiments described in Chapter 3.2.2 (Figure 

1.46). In contrast to the initial screening, [Ir(cod)2]BArF was used instead of 

[Ir(cod)(bzn)2]BF4 as a metal source with a non-coordinating counterion. The results showed 

that the effect of the counterion was only marginal.2 

 

COOH

HN

COOMe

HN

OEt

ONH

O O

O

N
H

OEt

OO
COOMe

HN

O

COOMe

COOMe

58 59 60

61 62 63

Fe

P
PPh2 Fe

P
P(oTol)2 Fe

P
PCy2

40 41 42

 

Figure 1.46. Ligands and Substrates used in the screening. 

 

Full conversion in the hydrogenation of acid 58 was only achieved with ligands 40 and 42 in 

ethanol (Table 1.25 entries 1 and 13). The reactions in DCE applying 41 or 42 showed less 

activity but, on the other hand, the difference in conversion between 4 mol% and 1 mol% 

catalyst loading was much smaller. Enantioselectivities did not vary strongly, except in a few 

cases, where an increase in the enantiomeric excess was noted when a more concentrated 

solution or dabco as additive was used. The highest selectivity was observed when employing 

                                                 
2 For the effect of the counterion on the Ir-catalyzed hydrogenation of unfunctionalized olefines see Section 

3.1.2.2. 
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41 in combination with [Ir(cod)2]BArF and dabco in ethanol, giving 48% ee but with only 

19% conversion (entry 8). The enantiomeric excess of 61% in entry 2 has to be taken with 

caution due to the low conversion. 

 

Table 1.25. Hydrogenation of acetamido cinnamic acid (58). 

COOH

HN

O

58

COOH

HN

O

H2-58

*conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1c EtOH 25 0.083 >99 21 (R) 

2c,d EtOH 100 0.333 5 61 (R) 

3c DCE 25 0.083 20 25 (R) 

4c DCE 100 0.333 20 24 (R) 

5e THF 25 0.083 0 – 

6e 

Fe

P
PPh2

40  
THF 100 0.333 0 – 

7 EtOH 25 0.083 34 rac. 

8d EtOH 100 0.333 19 48 (S) 

9 DCE 25 0.083 71 36 (R) 

10 DCE 100 0.333 56 26 (R) 

11e THF 25 0.083 42 rac. 

12e 

Fe

P
P(oTol)2

41  
THF 100 0.333 38 16 (S) 

13 EtOH 25 0.083 99 15 (R) 

14d EtOH 100 0.333 19 23 (R) 

15 DCE 25 0.083 81 21 (R) 

16 DCE 100 0.333 67 28 (R) 

17e THF 25 0.083 29 8 (R) 

18e 

Fe

P
PCy2

42  
THF 100 0.333 41 28 (S) 

aReaction was carried out with [Ir(cod)2]BArF as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Ir(cod)(bzn)2]BF4 as metal source. dWith dabco as 
additive. e[Ir(cod)Cl]2 was used as metal source, metal source to ligand ratio of 1:2. 
 

 

The methyl ester 59 showed similar reactivities compared to the free acid 58 (Table 1.26). 

The ligands 40 and 42 were again superior regarding conversion compared to 41. The best 

solvent was ethanol followed by DCE. The influence of the catalyst loading was pronounced. 

With [Ir(cod)Cl]2 in THF only ligand 41 showed activity although accompanied by formation 

of racemic product (entry 11). The selectivities were only moderate and the best results were 
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obtained in ethanol, with ligand 40 giving 44% ee at 90% conversion (entry 1) and ligand 41 

giving 55% ee at 32% conversion (entry 7). 

 

Table 1.26. Hydrogenation of methyl acetamidocinnamate (59). 

COOMe

HN

O

59

COOMe

HN

O

H2-59

*conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1c EtOH 25 0.083 90 44 (R) 

2c EtOH 100 0.333 5 20 (R) 

3c DCE 25 0.083 80 27 (R) 

4c DCE 100 0.333 0 - 

5d THF 25 0.083 0 - 

6d 

Fe

P
PPh2

40  
THF 100 0.333 0 - 

7 EtOH 25 0.083 32 55 (R) 

8 EtOH 100 0.333 13 46 (R) 

9 DCE 25 0.083 31 24 (R) 

10 DCE 100 0.333 14 27 (R) 

11d THF 25 0.083 36 rac. 

12d 

Fe

P
P(oTol)2

41  
THF 100 0.333 26 rac. 

13 EtOH 25 0.083 >99 12 (R) 

14 EtOH 100 0.333 11 27 (R) 

15 DCE 25 0.083 62 12 (R) 

16 DCE 100 0.333 11 55 (R) 

17d THF 25 0.083 5 24 (R) 

18d 

Fe

P
PCy2

42  
THF 100 0.333 4 n.d. 

aReaction was carried out with [Ir(cod)2]BArF as metal source with a metal source to ligand ratio of 1:1 under 
1 bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Ir(cod)(bzn)2]BF4 as metal source. d[Ir(cod)Cl]2 was used 
as metal source, metal source to ligand ratio of 1:2. 
 

 

The reduction of the crotonates 60 and 61 was rather ineffective. The Z-isomer generally 

showed almost no conversion under the conditions applied (Table 1.27) and the E-isomer 

gave a mixture of products in most cases (Table 1.28). The sluggish reactions with ligands 41 

and 42 might be caused by the catalyst structure originating from the ligands themselves or by 

a systematic error during the reaction or analysis. An influence of the BArF counterion could 

be excluded since the reactions with [Ir(cod)Cl]2 were also affected. 61 was hydrogenated 
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with low conversions using ligand 40 and a maximum enantiomeric excess of 75% in 

combination with [Ir(cod)Cl]2 in THF (entry 5). 

 

 

Table 1.27. Hydrogenation of ethyl Z-acetamidocrotonate (60). 

OEt

ONH

O

60

OEt

ONH

O

H2-60

*

conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1d EtOH 25 0.083 5 8 

2d EtOH 100 0.333 0 - 

3d DCE 25 0.083 5 –15 

4d DCE 100 0.333 0 - 

5e THF 25 0.083 5 37 

6e 

Fe

P
PPh2

40  
THF 100 0.333 0 - 

7 EtOH 25 0.083 3 n.d. 

8 EtOH 100 0.333 2 n.d. 

9 DCE 25 0.083 2 n.d. 

10 DCE 100 0.333 1 n.d. 

11e THF 25 0.083 4 n.d. 

12e 

Fe

P
P(oTol)2

41  
THF 100 0.333 1 n.d. 

13 EtOH 25 0.083 4 n.d. 

14 EtOH 100 0.333 1 n.d. 

15 DCE 25 0.083 9 10 

16 DCE 100 0.333 4 n.d. 

17e THF 25 0.083 5 rac. 

18e 

Fe

P
PCy2

42  
THF 100 0.333 3 n.d. 

aReaction was carried out with [Ir(cod)2]BArF as metal source with a metal source to ligand ratio of 1:1 under 1 
bar H2 at 25 °C for 2 h with 2,2,2-trifluoroethanol as additive. bDetermined by chiral GC. cFirst eluting 
enantiomer minus second eluting enantiomer. d[Ir(cod)(bzn)2]BF4 was used as metal source. e[Ir(cod)Cl]2 was 
used as metal source, metal source to ligand ratio of 1:2. 
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 Table 1.28. Hydrogenation of ethyl E-acetamidocrotonate (61). 

N
H

OEt

OO

61

N
H

OEt

OO

H2-61

*

conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b,c 

1d EtOH 25 0.083 20 n.d. 

2d EtOH 100 0.333 10 –40 

3d DCE 25 0.083 30 5 

4d DCE 100 0.333 10 –13 

5e THF 25 0.083 20 –75 

6e 

Fe

P
PPh2

40  
THF 100 0.333 5 –34 

7 EtOH 25 0.083 97 n.d.f 

8 EtOH 100 0.333 94 n.d.f 

9 DCE 25 0.083 95 n.d.f 

10 DCE 100 0.333 93 n.d.f 

11e THF 25 0.083 96 n.d.f 

12e 

Fe

P
P(oTol)2

41  
THF 100 0.333 94 n.d.f 

13 EtOH 25 0.083 95 n.d.f 

14 EtOH 100 0.333 92 n.d.f 

15 DCE 25 0.083 95 n.d.f 

16 DCE 100 0.333 93 n.d.f 

17e THF 25 0.083 96 n.d.f 

18e 

Fe

P
PCy2

42  
THF 100 0.333 92 n.d.f 

aReaction was carried out with [Ir(cod)2]BArF as metal source with a metal source to ligand ratio of 1:1 under 1 
bar H2 at 25 °C for 2 h. bDetermined by chiral GC. cFirst eluting enantiomer minus second eluting enantiomer. 
d[Ir(cod)(bzn)2]BF4 was used as metal source. e[Ir(cod)Cl]2 was used as metal source, metal source to ligand ratio 
of 1:2. fSide products were observed.  
 

 

 

Acrylate 62 was hydrogenated with good conversions using phospholanes 40 and 42 in 

ethanol or DCE at 4 mol% catalyst loading (Table 1.29). The activity dropped with a higher 

substrate to catalyst ratio, with [Ir(cod)Cl]2 as metal source or when ligand 41 was tested. 

Among the active systems only 40 exhibits some stereoselectivity, resulting in 20% ee with 

almost full conversion (entry 1). 
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Table 1.29. Hydrogenation of methyl acetamidoacrylate (62). 

COOMe

HN

O

62

COOMe

HN

O

H2-62

*conditions

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1c EtOH 25 0.083 90 20 (R) 

2c EtOH 100 0.333 10 34 (R) 

3c DCE 25 0.083 >99 12 (S) 

4c DCE 100 0.333 30 rac. 

5d THF 25 0.083 0 - 

6d 

Fe

P
PPh2

40  
THF 100 0.333 0 - 

7 EtOH 25 0.083 13 38 (R) 

8 EtOH 100 0.333 6 14 (R) 

9 DCE 25 0.083 12 25 (R) 

10 DCE 100 0.333 3 n.d. 

11d THF 25 0.083 19 36 (R) 

12d 

Fe

P
P(oTol)2

41  
THF 100 0.333 6 55 (R) 

13 EtOH 25 0.083 85 6 (R) 

14 EtOH 100 0.333 21 5 (R) 

15 DCE 25 0.083 >99 rac. 

16 DCE 100 0.333 38 rac. 

17d THF 25 0.083 2 n.d. 

18d 

Fe

P
PCy2

42  
THF 100 0.333 1 n.d. 

aReaction was carried out with [Ir(cod)2]BArF as metal source with a metal source to ligand ratio of 1:1 under 1 
bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Ir(cod)(bzn)2]BF4 was used as metal source. d[Ir(cod)Cl]2 
was used as metal source, metal source to ligand ratio of 1:2. 
 

 

The reduction of dimethyl itaconate (63) proceeded in most cases with full conversion. The 

combinations in ethanol or DCE generally showed good activity (Table 1.30). Even at 

1 mol% catalyst loading the substrate was completely consumed, except for the examples 

with ligand 40. This variation could be caused by the different counterion influencing the 

reactivity. [Ir(cod)Cl]2 in combination with 41 and 42 in THF was found to be a active 

catalyst at 4 mol% catalyst loading. The selectivities were generally low and the best result 

was observed with ligand 41 in DCE, which gave 23% ee with full conversion (entry 10). 
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Table 1.30. Hydrogenation of dimethyl itaconate (63). 

COOMe

COOMe

63

COOMe

COOMe

H2-63

conditions *

 

Entrya Ligand Solvent s/c conc. [mol/l] conv. [%]b ee [%]b 

1c EtOH 25 0.083 80 5 (R) 

2c EtOH 100 0.333 20 rac. 

3c DCE 25 0.083 >99 14 (R) 

4c DCE 100 0.333 70 19 (R) 

5d THF 25 0.083 5 9 (S) 

6d 

Fe

P
PPh2

40  
THF 100 0.333 5 11 (S) 

7 EtOH 25 0.083 >99 rac. 

8 EtOH 100 0.333 68 rac. 

9 DCE 25 0.083 >99 10 (R) 

10 DCE 100 0.333 >99 23 (R) 

11d THF 25 0.083 >99 rac. 

12d 

Fe

P
P(oTol)2

41  
THF 100 0.333 14 n.d.e 

13 EtOH 25 0.083 >99 22 (S) 

14 EtOH 100 0.333 >99 8 (S) 

15 DCE 25 0.083 >99 10 (S) 

16 DCE 100 0.333 >99 6 (S) 

17d THF 25 0.083 87 rac. 

18d 

Fe

P
PCy2

42  
THF 100 0.333 7 n.d.e 

aReaction was carried out with [Ir(cod)2]BArF as metal source with a metal source to ligand ratio of 1:1 under 1 
bar H2 at 25 °C for 2 h. bDetermined by chiral GC. c[Ir(cod)(bzn)2]BF4 as metal source. d[Ir(cod)Cl]2 was used as 
metal source, metal source to ligand ratio of 1:2. eSide products were observed.  
 

 

 

 

 

 

 

 

 

 

 



Chapter 1 
 

82 

1.4.2 Hydrogenation with Isolated Complexes 

 

 

The use of isolated complexes instead of in situ formed precatalysts is sometimes preferred 

due to the more exact dosage or the precisely defined ligand to metal ratio. To investigate the 

application  and the behaviour of isolated precatalysts the iridium BArF complexes of the 

ferrocenephospholanes were prepared. Reaction of the ligands with [Ir(cod)Cl]2 in 

dichloromethane followed by anion exchange with NaBArF gave the complexes 67-71 after 

chromatography in moderate to good yields (Scheme 1.43). 

 

Fe

P
PR2 Fe

P

P
R2

Ir
BArF

Fe

P
R Fe

P P
FeIr

R

R

BArF

R = Ph
R = oTol
R = Cy

69:
70:
71:

67:
68:

R = H
R = TMS

6:   R = H
39: R = TMS

40: R = Ph
41: R = oTol
42: R = Cy

, 67%
, 48%

, 86%
, 81%
, 83%

1) 0.5 [Ir(cod)Cl]2, CH2Cl2

2) NaBArF

1) 0.25 [Ir(cod)Cl]2, CH2Cl2

2) NaBArF

 

Scheme 1.43. Preparation of ferrocenephospholane-iridium complexes. 

 

The 31P-NMR spectrum of both 67 and 68 showed only a single resonance, revealing the 

equivalence of the two coordinating phospholanes (at least in the NMR timescale) and 

therefore the C2-symmetry of these complexes in solution. The crystal structures of the 

nonsymmetric complexes are depicted in Figures 1.47, 1.48 and 1.49.3 

 

                                                 
3 For the discussion of the solid state structures see Section 1.5.1. 
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Figure 1.47. Cyrstal structure of 69. The BArF counterion and co-crystallized dichloromethane are 

omitted for clarity. 

 

 

Figure 1.48. Cyrstal structure of 70. The BArF counterion is omitted for clarity. 

 

 

Figure 1.49. Cyrstal structure of 71. The BArF counterion and co-crystallized hexane are omitted for 

clarity. 
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In addition to substrates used in the ligand screening of Chapter 4.1.2 itaconic acid (72), 

trans-2-methyl-3-phenyl-2-propenol (73) and ethyl trans-β-methylcinnamate (74) were tested 

(Figure 4.5). 

 

COOEt
OH

COOH

COOH

72 73 74  

Figure 1.50. Additionally tested substrates. 

 

In most cases, a higher hydrogen pressure was found to be beneficial for the conversion, 

therefore the reactions were carried out at 50 bar, except for itaconate 63 which was 

hydrogenated at 5 bar. Under these conditions, the catalyst loading could be reduced to 

0.5 mol% while still achieving comparable or increased conversions compared to the results 

reported above with the in situ generated precatalysts. In the cases where full conversion was 

observed together with a reasonable enantiomeric excess, the temperature influence was also 

investigated. For availability reasons, the solvents used were dichloromethane and methanol, 

instead of DCE and ethanol. 

 

 

Table 1.31. Hydrogenation of acetamido cinnamic acid (58). 

COOH

HN

O

58

COOH

HN

O

H2-58

*conditions

 

Entrya Complex conv. [%]b ee [%]c 

1 67 7 n.d. 

2 69 5 n.d. 

3d 40 + [Ir(cod)(bzn)2]BF4 5 61 (R) 

4 70 25 40 (S) 

5d 41 + [Ir(cod)2]BArF 19 48 (S) 

6 71 6 n.d. 

7d 42 + [Ir(cod)2]BArF 19 23 (R) 
aReaction was carried out in MeOH at 0.1 M substrate concentration with 0.5 mol% complex under 50 bar H2 at 
rt for 2 h. bDetermined by GC. cDetermined by chiral HPLC after derivatization with TMS-diazomethane. 
dReference taken from Table 4.10: Reaction in EtOH at 0.333 M substrate concentration with dabco and 1 mol% 
complex under 1 bar H2 at rt for 2h. 
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Preliminary experiments showed that the iridium complexes were not active catalysts for the 

hydrogenation of unfunctionalized olefins such as trans-�-methylstilbene. Although the 

successful hydrogenation of imines with bisphosphino iridium complexes has been 

reported,[1] the complexes formed from the ferrocenephospholanes did not convert this class 

of substrates  

 

In the reduction of acid 58 the use of isolated complexes did not improve the results of the 

ligand screening (Table 1.31). Generally, low conversions were obtained and in the case of 70 

the enantioselectivity was comparable with the reaction employing the in situ generated 

complex (entry 4 vs. entry 5) 

 

Table 1.32. Hydrogenation of methyl acetamidocinnamate (59). 

COOMe

HN

O

59

COOMe

HN

O

H2-59

*
conditions

 

Entrya Complex conv. [%]b ee [%]c 

1 67 >99 71 (S) 

2d 67 29 77 (S) 

3 68 >99 rac. 

4 69 53 15 (R) 

5e 40 + [Ir(cod)(bzn)2]BF4 0 - 

6 70 >99 7 (R) 

7e 41 + [Ir(cod)2]BArF 14 27 (R) 

8 71 25 18 (R) 

9e 42 + [Ir(cod)2]BArF 11 55 (R) 
aReaction was carried out in CH2Cl2 at 0.1 M substrate concentration with 0.5 mol% complex under 50 bar H2 at 
rt for 2 h. bDetermined by GC cDetermined by chiral HPLC. dReaction at 0 °C for 4 h. eReference taken from 
Table 4.11: Reaction in DCE at 0.333 M substrate concentration and 1 mol% complex under 1 bar H2 at rt for 2h. 
 

 

With the isolated iridium complexes the hydrogenation of methyl ester 59 proceeded with 

generally much higher conversions (Table 1.32). The best result, measured with complex 67 

incorporating the previously untested monodentate ligand 6, was 71% ee with full conversion 

(entry 1). Lowering the temperature resulted in a slightly increased selectivity accompanied 

by lower conversion (entry 2). The TMS-substituted phospholane 39 derived complex 68 was 

also active but completely unselective. Interestingly, the C2-symmetric complex 67 favors the 
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formation of the opposite product enantiomer as compared to the nonsymmetric complexes 

69-71. 

 

 

Table 1.33. Hydrogenation of methyl acetamidoacrylate (62). 

COOMe

HN

O

62

COOMe

HN

O

H2-62

*conditions

 

Entrya Complex conv. [%]b ee [%]b 

1 67 55 63 (R) 

2 68 >99 35 (R) 

3c 68 >99 44 (R) 

4 69 24 rac. 

5d 40 + [Ir(cod)(bzn)2]BF4 30 rac. 

6 70 79 5 (S) 

7d 41 + [Ir(cod)2]BArF 3 n.d 

8 71 9 13 (R) 

9d 42 + [Ir(cod)2]BArF 38 rac. 
aReaction was carried out in CH2Cl2 at 0.1 M substrate concentration with 0.5 mol% complex under 50 bar H2 at 
rt for 2 h. bDetermined by chiral GC. cReaction at 0 °C for 4 h. dReference taken from Table 4.14: Reaction in 
DCE at 0.333 M substrate concentration and 1 mol% complex under 1 bar H2 at rt for 2h. 
 

 

Acrylate 62 was reduced with maximum conversions when the purified iridium complexes 

were subjected to catalysis (Table 1.33). Complex 70 gave 79% conversion but almost 

racemic product (entry 6). Employing the C2-symmetric complexes, the selectivity increased 

and with 67 63% ee was achieved, albeit with lower activity (entry 1). Complex 68 was more 

active and gave full conversion even at 0 °C but the selectivities did not exceed 44% ee 

(entry 3). 
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Table 1.34. Hydrogenation of dimethyl itaconate (63). 

COOMe

COOMe

63

COOMe

COOMe

H2-63

conditions *

 

Entrya Complex conv. [%]b ee [%]b 

1 67 8 73 (R) 

2c 67 11 48 (R) 

3 68 >99 16 (S) 

4 69 >99 6 (S) 

5d 40 + [Ir(cod)(bzn)2]BF4 70 19 (S) 

6 70 >99 12 (S) 

7d 41 + [Ir(cod)2]BArF >99 23 (S) 

8 71 81 3 (S) 

9d 42 + [Ir(cod)2]BArF >99 6 (S) 
aReaction was carried out in CH2Cl2 at 0.1 M substrate concentration with 0.5 mol% complex under 5 bar H2 at rt 
for 2 h. bDetermined by chiral GC. cReaction under 50 bar H2. 

dReference taken from Table 4.15: Reaction in 
DCE at 0.333 M substrate concentration and 1 mol% complex under 1 bar H2 at rt for 2h. 
 

The reduction of dimethyl itaconate (63) was only weakly affected by changing the complex 

formation strategy (Table 1.34). Notably, complex 67 once again formed the most selective 

catalyst, but unfortunately the conversion was very low (entry 1) even at 50 bar hydrogen 

pressure (entry 2). Complexes 69, 70 and 71 were as active as the in situ prepared catalysts 

but the selectivities were slightly lower. 

 

Table 1.35. Hydrogenation of itaconic acid (72). 

COOH

COOH

72

COOH

COOH

H2-72

conditions *

 

Entrya Complex conv. [%]b ee [%]b 

1 67 >99 46 (R) 

2c 67 42 37 (R) 

3 69 20 5 (S) 

4 70 84 7 (S) 

5 71 34 5 (S) 
aReaction was carried out in MeOH at 0.1 M substrate concentration with 0.5 mol% complex under 50 bar H2 at 
rt for 2 h. bDetermined by chiral GC after derivatization with TMS-diazomethane. cReaction at 0 °C for 4 h. 
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Compared to its dimethyl ester, itaconic acid (72) showed higher activity with complex 67 but 

lower conversions with complexes 69-71 (Table 1.35). The selectivities were generally lower 

with, 46% ee being the best result (entry 1). 

 

Table 1.36. Hydrogenation of E-2-methyl-3-phenyl-2-propenol (73). 

conditionsOH

73

OH

H2-73

*

 

Entrya Complex conv. [%]b ee [%]c 

1 67 65d 26 (–) 

2 69 >99 27 (–) 

3e 69 69 32 (–) 

4 70 >99 20 (–) 

5 71 >99 11 (–) 
aReaction was carried out in CH2Cl2 at 0.1 M substrate concentration with 0.5 mol% complex under 50 bar H2 at 
rt for 2 h. bDetermined by GC. cDeterminded by chiral GC and HPLC. d50% side products were observed. 
eReaction under 5 bar H2. 
 

The allylic alcohol 73 was hydrogenated with good conversion under 50 bar hydrogen 

pressure with the complexes 69-71, whereas 67 gave a lot of side products (Table 1.36). Low 

selectivities were obtained with the best enantiomeric excess being 32% under 5 bar hydrogen 

pressure (entry 3). 

 

Table 1.37. Hydrogenation of ethyl E-2-methylcinnamate (74). 

COOEt

74

COOEt

H2-74

*conditions

 

Entrya Complex conv. [%]b ee [%]b 

1 67 8 19 (R) 

2 69  93 15 (R) 

3c 69 7 13 (R) 

4 70 >99 7 (R) 

5 71 >99 8 (R) 
aReaction was carried out in CH2Cl2 at 0.1 M substrate concentration with 0.5 mol% complex under 50 bar H2 at 
rt for 2 h. bDetermined by chiral GC. cReaction under 5 bar H2. 
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Only the complexes 69-71 at 50 bar hydrogen pressure were able to reduce the unsaturated 

ester 74 with high conversions (Table 1.37). The selectivities were generally low, independent 

of the complex applied. 

 

The experiments showed that the isolated complexes of the bidentate phospholane ligands 

lead to higher activity than the in situ formed precatalysts. In terms of enantioselectivity the 

two different procedures had no significant influence. Interestingly, the C2-symmetric 

complexes usually gave higher enantiomeric excesses than their asymmetric counterparts.  

 

Because of the high activity of the complexes, their deactivation behaviour was briefly 

investigated. To this end the hydrogenation of dimethyl itaconate with complex 69 was 

performed with different catalyst loadings and modes of substrate addition (Table 1.38). 

 

Table 1.38. Catalyst stability in the hydrogenation of dimethyl itaconate. 

COOMe

COOMe

63

COOMe

COOMe

H2-63

conditions *

 

Entrya s/c After 3 h After 6 h conv. [%]b ee [%]b 

1 100 Work up – 69 5 (S) 

2 100 Addition of a second equivalent 63 Work up 66 5 (S) 

3 50 Work up – 100 5 (S) 

4 50 Addition of a second equivalent 63 Work up 52 6 (S) 
aReaction was carried out in CH2Cl2 with complex 69 at 0.1 M substrate concentration under 1 bar H2 at rt. 
bDetermined by chiral GC. 
 

 

Entries 1 and 2 indicate that the active catalyst showed almost no deactivation during the 

hydrogenation reaction as long substrate was present. The ratio of substrate to hydrogenation 

product after 3 h reaction time remained the same after a second equivalent of substrate was 

added and the reaction was continued for another 3 h. When the substrate was consumed 

deactivation of the catalyst was observed. The second equivalent of substrate was not 

converted when added after complete consumption of the olefin (entry 4). 
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1.4.3 Hydrogenation of Unfunctionalized Olefines with a 

Ferrocenephospholane-Pyridine-Iridium Complex 

 

 

In an analogy to Crabtree’s catalyst [Ir(PCy3)Py(cod)]PF6, which has been described to 

efficiently hydrogenate unfunctionalized olefins,[2] the corresponding iridium phospholane 

complex 75 was prepared (Scheme 1.44). BArF was chosen as the counterion since it has been 

proven to increase the stability of Crabtree’s catalyst.[3] 

 

Ir
Fe

P
N

BArF

Fe

P

756

[Ir(Py)2(cod)]BArF,
CH2Cl2, rt, 66%

 

Scheme 1.44. Preparation of a P,N-iridium complex. 

 

 

Figure 1.51. Crystal structure of 75. A second molecule in the unit cell and the BArF counterions are 

omitted for clarity. 

 

Addition of one equivalent 6 to [Ir(Py)2(cod)]BArF
[3] gave the complex 75 in 66% yield. In 

analyzing the complex by NMR-spectroscopy it was not possible to detect all of the expected 

signals. The phosphorus absorption was hardly visible, in the 13C-NMR-spectrum several 

signals were missing, and in the proton spectrum the intensities did not fit. Carrying out the 

measurement at higher temperature improved the spectra. The phosphorus signal was still 

broad but clearly visible and the 1H-NMR-spectrum could be properly interpreted. However, 
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there were still peaks missing in the carbon spectrum. Despite these problems, all other 

analytical data supported the expected product and the structure was finally confirmed by X-

ray analysis (Figure 1.51). 

 

Attempts to synthesize derivatives with different aromatic nitrogen donors or with 

phospholane 39 failed. 

Complex 75 was then tested in the hydrogenation of olefins and the results are shown in Table 

1.39. 

 

Table 1.39. Hydrogenation of olefins using complex 75. 

Entrya Substrate conv. [%]b ee [%]c 

1 
 

>99 12 (R) 

2 
MeO  

90 5 (R) 

3 
MeO  

>99 rac. 

4 
MeO  

0 n.d. 

5 
MeO  

>99 11 (S) 

6 COOEt

 
95 15 (R) 

7 OH

 
>99 10 (–) 

8 N

 
>99 25 (S) 

aThe reactions were carried out in CH2Cl2 with 1 mol% 75 under 50 bar H2 at rt for 2 h. bDetermined by GC. 
cDetermined by chiral GC or chiral HPLC. 
 

Complex 75 showed good activity in the catalytic hydrogenation of trisubstituted double 

bonds, with or without an additional functional group. The selectivities were generally low 

and the tetrasubstituted olefin tested was not hydrogenated under these conditions (entry 4). 
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1.4.4 Conclusions 

 

 

The hydrogenation of various substrates with iridium complexes derived from the 

ferrocenephospholanes 6 and 39-42 proceeded efficiently with usually at least one 

combination of different metal sources and solvents. The isolated complexes 67-71 were 

superior to the in situ formed precatalysts in terms of activity. The enantioselectivities were 

generally low to moderate with 71% ee being the best result achieved in the reduction of 

methyl acetamidocinnamate with the isolated iridium complex 67. 

 

The results in the Ir-catalyzed hydrogenation of functionalized olefins were inferior to the 

selectivities achieved with rhodium as reported in Chapter 3. These findings are in agreement 

with the general trend reported in the literature where for the hydrogenation of the 

functionalized olefins tested herein, complexes derived from rhodium or ruthenium are 

usually the catalysts of choice. Therefore only a few reports have been published dealing with 

the iridium-catalyzed hydrogenation of these substrates and the basis for comparison of the 

results obtained is narrow. For example, with sugar-derived diphosphite ligands the 

hydrogenation of methyl acetamidoacrylate proceeded with 78% ee,[4] methyl 

acetamidocinnamate was reduced with 35% ee and itaconic acid gave a hydrogenation 

product of 54% ee.[5] Compared to these results, the iridium-ferrocenephospholane catalysts 

were of comparable activity and selectivity and actually superior in the case of methyl 

acetamidocinnamate (77% ee). 

 

The phospholane-pyridine-iridium complex 75, a chiral analogue of Crabtree’s catalyst, was 

synthesized and found to form an active but unselective catalyst for the hydrogenation of 

unfunctionalized trisubstituted olefins. 
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1.5 Properties of Ferrocenephospholane-Complexes 

 

 

1.5.1 X-Ray Observations 

 

 

As described in Chapter 3.1, a chelated Rh-complex was formed when 55 was exposed to a 

hydrogen atmosphere (Scheme 1.44). Additionally, the complex formed of 40 and 

[Rh(nbd)2]BF4 was also shown to have both phosphorus atoms coordinated to the metal 

center. 

 

 

Rh

Fe

P
PPh2

Cl
Rh

H2, CH2Cl2

55

Fe

P
P [Rh]

H2-55

Ph
Ph

Fe

P
P

[Rh(40)(nbd)]BF4

Ph
Ph

BF4

 

Scheme 1.44. Formation of chelate complexes with ligand 40. 

 

 

Looking at the crystal structure of 55 it is apparent that, in order to chelate the rhodium atom, 

the ligand has to undergo conformational change. Assuming that the picture in Figure 1.52 

represents the lowest energy arrangement, the binding vector of the phospholane lone pair 

does not directly allow the second phosphine to coordinate. Comparing 55 and the free ligand 

40, the conformation of the ferrocene moiety is essentially the same. The chelated complexes 

in Scheme 1.44 must therefore contain a certain conformational strain to bring both 

phosphorus atoms into binding distance with the metal center.  
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Figure 1.52. Crystal structure of 55. A second molecule in the unit cell is omitted for clarity. 

 

 

This conformational strain can qualitatively be seen in the solid state structures of the 

phospholane Ir-complexes introduced in Chapter 4.2. Comparing the bond angles of the free 

ligand and its iridium complex the geometrical change is apparent (Table 1.40 and Figure 

1.53). 
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Table 1.40. Selected bond angles and differences (Δ) in ferrocenephospholanes and their Ir-

complexes.[a] 

P

R2P tBu

αααα

ββββ
γγγγ

δδδδ

εεεε

 

 �[°] ββββ[°] γγγγ[°] �[°] εεεε[°] 

 

128.59(18) 124.79(16) 137.51(17) 113.54(16) 104.22(10) 

 

140.11(18) 112.92(15) 129.46(15) 117.31(17) 110.18(11) 

Δ +11.52(36) –11.87(31) –8.05(32) +3.77(33) +5.95(21) 

      

 

128.32(12) 124.82(13) 138.23(13) 113.28(12) 103.82(8) 

 

143.93(12) 111.29(10) 130.08(10) 116.81(13) 110.67(7) 

Δ +15.61(24) –13.53(23) –8.15(23) +3.53(25) +6.85(15) 

      
aExperimental error in parentheses. 
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 40 69 

 

 

                                                    

 42 71 

 

Figure 1.53. Representations of the substituted cyclopentadienyl ring of selected 

ferrocenephospholanes (left) and their complexes (right). 
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Upon complexation, several angles change. The greatest difference was observed by looking 

at the geometry of the bond between the cyclopentadienyl ring and the R2P-substituent 

(angles � and β). The introduction of the metal distorted the bond angles by 12-15 degrees. 

This also influenced the conformation of the aromatic five-membered ring, as seen in the 

bonding angle between the cyclopentadienyl-plane and the connected groups. In the iridium 

complexes, all substituents exhibit a bending in direction of the the second cyclopentadienyl 

ring. The free ligands show distinct differences, such as in 40 which has an almost perfect 

planarity and in 42 the dicylcohexylphosphino group was even tilted above the aromatic 

plane. 

 

The conformational change on the phospholane is less strong but still significant. The 

phosporus atom shows a shift towards the R2P-substituent of 8 degrees in both systems (γ). 

The equal value of γ and the smaller contribution to the overall distortion derive most likely 

from the rather rigid phospholane ring. The tert-butyl substituent is displaced towards the 

metal center (ε) and the phospholane ring is generally less planar than in the free ligand. The 

bond lengths remain mostly unchanged within experimental error, except for the bond 

between the phosphorus substituted carbon atoms on the cyclopentadienyl ring which 

shortens about 3% after coordination of the metal. All these observations showed that the 

ligand has to reduce its bite angle in order to chelate.  

Although the chelate complexes have been identified in the solid state by X-ray 

crystallography and in solution by NMR, the high degree of ligand distortion in the Ir-

complexes despite their rigidity has raised the question whether these complexes are labile 

regarding the binding mode.  
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1.5.2 Competition Experiments in Solution 

 

 

The stability of the phospholane iridium complexes was briefly evaluated by a low level 

single point DFT calculation (B3LYP/6-311++g(d,p), Gaussian G03) in which the 

conformation of the free phospholane ligand was compared with its Ir-complex. The energy 

difference turned out to be 178 kJ/mol for the phenyl derivative and 185 kJ/mol for the 

cyclohexyl analogue. If this energy difference is comparable with the dissociation energy of a 

phosphine-iridium bond the chelate complex might open under certain conditions. References 

for such energy values are very rare. Calculated phosphine ligand dissociation energies for 

[CpM(L)(PH3)]-type complexes add up to 121 kJ/mol (M = Rh, L = CO), 132 kJ/mol (M = 

Rh, L = PH3), 134 kJ/mol (M = Ir, L = CO) and 138 kJ/mol (M = Ir, L = PH3).
[1] Although 

these values correspond to a completely different system, they are situated in the vicinity of 

the calculated energy differences.  

 

 

1.5.2.1 Competition Expriments in Methanol 

 

 

To confirm the potential lability of the complexes formed, phospholane 40 was allowed to 

react consecutively with suitable rhodium and iridium compounds. The identification of the 

resulting complexes was performed by 31P-NMR spectroscopy. Upon complexation, the 

chemical shift of the coordinated phosphorus atom is displaced 40-50 ppm downfield and the 

the two metals can be distinguished by the metal-phosphorus coupling constant, which is 150-

170 Hz for rhodium and non-existent for iridium.  

Initial experiments showed the formation of chelate complexes with [M(cod)2]BArF in 

dichloromethane and [M(diene)Cl]2 in methanol (M = Rh, Ir). Due to the commercial 

availability of the chlorodimers the reactions were carried out in detail with these metal 

sources. 

The results of these experiments are summarized in Scheme 1.45 and Table 1.41. When either 

[Ir(cod)Cl]2 or [Rh(cod)Cl]2 were reacted with 40 in methanol the chelated complexes 76 or 

77 were formed. These individual solutions were then treated with one equivalent of the other 

metal source. Independent of the addition sequence the final reaction mixture consisted of five 

species. In addition to complex 76 all double-metallated ligand combinations were observed. 
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Notably, complex 77 was not observed in this mixture. According to the integrals in the 

phosphorus spectrum, complex 78 was present in about 50%, followed by 76 in roughly 20%. 

Finally, compounds 79, 80 and 81 showed almost equal intensities (~10% each). The 

proposed metal ligand combinations were also observed by ESI-MS. The recorded masses 

corresponded to the depicted complexes without chloride. Notably, all signals except for that 

of 80 were of weak and variable intensity. Due to the fact that in ESI-MS only charged 

species can be observed, complexes 76, 78, 79 and 81 are assumed to be neutral in solution 

and therefore difficult to detect. Complex 80 could exist as a charged species with a 

dissociated chloride. 

 

 

[Rh(cod)Cl]2[Ir(cod)Cl]2

d4-MeOH

[Ir(cod)Cl]2[Rh(cod)Cl]2

+

+

+

+
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Scheme 1.45. Observed complexes from [Ir(cod)Cl]2 and [Rh(cod)Cl]2 with 40 in methanol. 
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Table 1.41. 31P-NMR resonances of the compounds in Scheme 5.2. 

Compound �/ppm Coupling constants �/ppm Coupling constants 

  JPRh JPP  JPRh JPP 

76 10.7  10 Hz 28.9  10 Hz 

77 14.8 138 Hz 8 Hz 30.3 143 Hz 8 Hz 

78 23.2 144 Hz 5 Hz 39.7  5 Hz 

79 14.8  4 Hz 40.4  4 Hz 

80 22.9 140 Hz 5 Hz 48.4 141 Hz 5 Hz 

81 14.7  5 Hz 49.3 147 Hz 5 Hz 

40 –22.6  15 Hz –0.8  15 Hz 

 

 

The exchange reactions took place very rapidly within a few minutes and the spectrum did not 

change significantly after a longer reaction time, except for a lowering in the quality due to 

general decomposition.  

As a reference reaction, the same complexation experiments were carried out with 1,2-

bis(diphenylphosphino)ethane (dppe), a flexible diphosphine ligand. In contrast to the rigid 

ferrocenephospholane, the chelate complexes formed from dppe were stable in solution and 

did not undergo metal exchange reactions. 

The formation of the various metal combinations in Scheme 1.45 could be explained by 

reversible chelation and reversible binding of a second metal center (Scheme 1.46). The 

existence of several equilibria in the solution is an indication of the lability of the complexes. 

 

 

P P
[Ir]

P P
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Scheme 1.46. Assumed equilibria in methanol. 
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1.5.2.2 Competition Experiments in Dichloromethane 

 

 

When ligand 40 was combined with the dimeric metal sources in dichlormethane the 

corresponding monocoordinated complexes 82 and 57 were obtained. However, after addition 

of the second metal source they showed a distinctly different behaviour to the reactions in 

methanol. Whereas the solution of 82 remained mostly unchanged upon addition of 

[Rh(cod)Cl]2 (traces of 83 and 84 were detected) the opposite reaction path led to an almost 

complete exchange of the metal center with only traces of starting Rh-complex 57 left 

(Scheme 1.47). It seemed that complexation of the phospholane with iridium is 

thermodynamically favoured over rhodium.  
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Scheme 1.47. Exchange experiment with cod-complexes in dichloromethane. 

 

 

Only minor amounts of bimetallic species were detected in these experiments. However,  

since compounds with two different metal centers might have interesting properties, the 

selective formation of double metallated species in dichloromethane was investigated. The 

compounds were identified by 31P-NMR spectroscopy and again the choice of the diene 

ligand in the metal precursor proved to have a crucial influence on the results (Scheme 1.48). 
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Scheme 1.48. Formation of homobimetallic species in dichloromethane. 1 equivalent of metal was 

added. 

 

 

The reaction with the rhodium norbornadiene precursor 55 gave the bimetallic species 85 

quickly and quantitatively. In the case of the 1,5-cyclooctadiene-containing metal complexes 

the formation of the desired products 83 and 86 was incomplete. The ratio between the two 

species was established within minutes and remained unchanged after several hours. The 

ratios of 1:3 (83:57) and 1:2 (86:82) seemed to reflect the thermodynamic equilibrium 

distributions, which would imply the complexation to be reversible at least in the case of the 

1,5-cyclooctadiene complexes. The difference in complexation behaviour between 

norbornadiene and 1,5-cyclooctadiene was presumably due to sterics. 
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Scheme 1.49. Exchange experiments with cod- and nbd-complexes. 
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The most interesting experiments proved to be the combination of rhodium-norbornadiene 

and iridium-1,5-cyclooctadiene complexes (Scheme 1.49). In contrast to the reaction in 

Scheme 1.47, where a complete metal exchange was observed, the reaction of the 

monocoordinated Rh-norbornadiene complex 55 with [Ir(cod)Cl]2 gave 82 and 85 in equal 

amounts. The inverse reaction was carried out with a small excess of [Rh(nbd)Cl]2 to force 

the heterobimetallic species to form. But instead of the expected mixed complex, again the 

bis-rhodium complex 85 was formed. Besides the two complexes shown, the heterobimetallic 

species could be detected in minor amounts but disappeared upon longer reaction time. 

Presumably, this Rh-Ir-phospholane complex 87 was just an intermediate in the formation of 

the bis-rhodium compound 85. The final ratio of 3:2 was roughly consistent with the 

theoretically maximal possible amount of bis-rhodium complex to be formed. Complex 85 

generally seemed to be a favoured species since it was also observed in the maximal possible 

amount after addition of [Ir(cod)Cl]2. Additionally, 85 was almost inert towards the addition 

of [Ir(cod)Cl]2 (Scheme 1.50). Also like complex 80 in Scheme 1.45, it could exist as a 

bimetallic cation with a dissociated chloride. This overall positive charge would impede the 

association of any electrophilic metal species and explains its stability in solution. 
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Scheme 1.50. Stability of the bimetallic rhodium-nbd complex. 

 

 

Again, the reference experiment with dppe as ligand was carried out and did not show metal 

exchange or the formation of bimetallic complexes Moreover, this ligand even formed a 

chelate complex in dichloromethane. 
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Scheme 1.51. Proposed equilibria in dichloromethane. 

 

 

The products formed in the metal exchange experiments can be explained by two assumptions 

(Scheme 1.51). First, the complexation of a second metal center is favourable with the Rh-

norbonadiene complex 55 but unfavourable with 1,5-cyclooctadiene complexes 82 and 57. 

Second, the combination of rhodium-norbornadiene and iridium-1,5-cyclooctadiene forms a 

heterobimetallic species 88 from which either iridium or rhodium can dissociate to form the 

monocoordinated complex. With these assumptions, the formation of the products in Scheme 

1.49 was rationalized as follows. 
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Scheme 1.52. Addition of [Ir(cod)Cl]2 to 55. 88 was not detected. 

 

 

When [Ir(cod)Cl]2 is added to the monometallic rhodium complex 55 the heterobimetallic 

compound 88 forms, from which dissociation of rhodium or iridium is possible (Scheme 
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1.52). In the case of the dissociation of a rhodium center, the observed iridium complex 82 is 

formed and the expelled rhodium species itself reacts quickly with the starting material to 

form the stable homobimetallic complex 85. This reaction pathway is in accordance with the 

observed product ratio, since every rhodium atom would end up in the bimetallic complex 85, 

only half of the starting material can be converted to the iridium compound. 
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Scheme 1.53. Addtition of [Rh(nbd)Cl]2 to 82. 89 was not detected. 

 

 

In Scheme 1.53 the reaction sequence for the addition of [Rh(nbd)Cl]2 to the 

monocoordinated iridium complex is shown. The formation of the heterobimetallic compound 

86 again is the first step, followed by metal dissociation. The resulting monocoordinated 

rhodium complex 89 is trapped by another Rh-norbornadiene compound until all rhodium has 

been consumed. With equal amounts of rhodium and iridium a 1:1 mixture of both products 

would be expected. With the 1.25 equivalents of rhodium applied, the maximum possible 

ratio is calculated to be 62.5% of bimetallic complex 85 and 37.5% of starting material 82, 

which is in good agreement with the observed data (60:40).  

 

 

The spectroscopical data for the complexes observed in dichloromethane are summarized in 

Table 1.42. The individual compounds can be distinguished by the chemical shifts and the 

coupling constants. 
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Table 1.42. 31P-NMR resonances of the observed complexes in dichloromethane. 

Compound �/ppm Coupling constants �/ppm Coupling constants 

  JPRh JPP  JPRh JPP 

55 –18.1  4 Hz 50.9 172 Hz 4 Hz 

82 –16.3  5 Hz 39.7  5 Hz 

57 –16.9  5 Hz 48.6 152 Hz 5 Hz 

83 26.4 145 Hz 5 Hz 52.0 143 Hz 5 Hz 

84 26.7 141 Hz 5 Hz 43.2  5 Hz 

85 28.3 167 Hz  50.9 167 Hz  

86 18.4   43.9   

87 29.4 160 Hz 4 Hz 41.9  4 Hz 

 

 

Reactions shown in Scheme 1.47 and 1.49 involve the liberation of rhodium- or iridium-

species which do not end up in the final ferrocenephospholane products. The final nature of 

these species is unknown. Regeneration of [Rh(nbd)Cl]2 or [Ir(cod)Cl]2 is possible, as well as 

non-selective decomposition. 
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1.5.3 Conclusions 

 

 

The structure of the ferrocenephospholanes and their iridium complexes were compared and 

discussed. A structural distortion of the ligand upon complexation was identified and roughly 

quantified by a DFT calculation.  

 

The suspected lability of the chelate complexes was confirmed by metal exchange 

experiments. In methanol, chelation occurred with [Rh(cod)Cl]2 and [Ir(cod)Cl]2 which has 

not been seen in dichloromethane. The existence of several equilibria and the presence of 

bimetallic species could be observed in methanol. The formation of bimetallic 

ferrocenephospholane complexes in dichloromethane was dependent on the metal source 

employed. [Rh(nbd)Cl]2 was able to form the homobimetallic complex quantitatively, 

whereas with [Rh(cod)Cl]2 and [Ir(cod)Cl]2 the corresponding compounds were only partially 

generated. This might originate from the larger steric demand of the 1,5-cyclooctadiene ligand 

as compared to norbornadiene. Interestingly, this effect seemed only to be significant in 

dichloromethane, whereas in methanol the formation of bimetallic species is not impeded by 

the size of the 1,5-cyclooctadiene ligand. Heterobimetallic compounds could not be 

selectively synthesized, since the presence of the cod-containing iridium center disfavoured 

the coordination of an additional nbd-rhodium unit. Instead, the involved equilibria drove the 

reaction towards the formation of the homobimetallic compound consisting of two rhodium 

centers. 

 

The lability seen in the exchange experiments could influence the performance of these 

complexes as catalysts in hydrogenation reactions. With the possible dissociation of one 

phosphorus atom from the metal center during the catalytic cycle, the involvement of several 

catalytically active species cannot be excluded. 
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1.5.4 References 

 

 

[1] T. Ziegler, V. Tschinke, L. Fan, A. D. Becke, J. Am. Chem. Soc. 1989, 111, 9177-
9185. 

 

 

 



 

 

 

 

 

 

Chapter 2 
 

 

Phosphines with Additional Functional Group as 

Ligands in Catalysis 



 

 



Phosphines with Additional Functional Group as Ligands in Catalysis 

 

113 

2.1 Introduction 

 

 

Functionalizations of phosphine ligands are mainly pursued to change solubility properties[1] 

or to tune the reactivity of the corresponding catalytically active metal complexes. In the latter 

case, the additional functional groups generally have two ways to influence the performance 

of the catalyst. They can either change the conformation of the complex or interact with the 

substrate.[2] The concept of secondary interactions in catalysis is depicted in Scheme 2.1. A 

substrate, for example an olefin, with a functional group should be able to interact with a 

suitable substituent on the ligand of the complex. Besides the steric stereodifferentiation 

coming from the chirality of the ligand, this would allow for a second means of directing the 

coordination of the substrate (equation A). 

 

P [M] P [M]

Y

P [M]

Y

P [M] P [M]

X YX

P [M]

Y

X

B:

A: ***

***

 

Scheme 2.1. Catalyst-substrate complexes with (A) and without (B) secondary interactions. 

 

 

2.1.1 Secondary Phosphine Oxides 

 

 

2.1.1.1 Properties of Secondary Phospine Oxides 

 

 

In solution, secondary phosphine oxides (SPO) exist in equilibrium with their tautomeric 

hydroxy-forms, also called phosphinous acids (Scheme 2.2).[3] At room temperature the oxo-

tautomer predominates, but the equilibrium can be shifted towards the trivalent hydroxy-

tautomer by either the presence of electronegative substituents[4] or coordination of a 

transition metal.[5] 
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Scheme 2.2. Tautomeric forms of secondary phosphine oxides. 

 

Having two different substituents (R1 and R2), the phosphorus atom in the secondary 

phosphine oxide becomes a stereogenic center. The individual enantiomers are 

configurationally stable in solution,[6] and moreover they retain the chiral information upon 

coordination to a metal center.[7] 

Secondary phosphine oxides stand, in terms of oxidation state, in between the secondary 

phosphines and the phosphinic acids (Scheme 2.3). 

 

O
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O
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Scheme 2.3. Oxidation products from secondary phosphines. 

 

The oxidation of secondary phosphines proceedes with a variety of oxidants, including 

molecular oxygen; the cause of their notorious air-sensitivity. Secondary phosphine oxides 

can also undergo oxidation with many oxidation reagents to give phosphinic acids. However, 

the reaction with dioxygen is rather slow, making these compounds quite air stable. This 

property is also apparent in an early preparation of secondary phosphine oxides (Scheme 2.4). 

 

P
H

P HO2

iPrOH, 70 °C

O

 

Scheme 2.4. Early preparation of secondary phosphine oxides. 

 

The reaction of dioctylphosphine with oxygen gives the secondary phosphine oxide without 

the formation of the phosphinic acid.[8] 

When secondary phosphine oxides are heated above 180 °C they decompose within a few 

minutes to the corresponding phosphinic acids and phosphines, even under inert atmosphere 

(Scheme 2.5). This reaction is rather slow at room temperature but might also depend on the 

substitutents at the phosphorus atom.[9] 
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Scheme 2.5. Self-disproportionation of secondary phosphine oxides. 

 

 

2.1.1.2 Synthesis of Secondary Phosphine Oxides 

 

 

Besides the direct oxidation of secondary phosphines, which usually has the disadvantage of 

possible over-oxidation (Scheme 2.3), several methods for the selective synthesis of 

secondary phosphines have been developed. The hydrolysis of phosphine chlorides, 

aminophosphines or phosphinites is a general procedure for the formation of secondary 

phosphine oxides (Scheme 2.6).[6] 

 

R2P Cl

R2P NR'2

R2P OR'

R2P
O

H

H2O

 

Scheme 2.6. Synthesis of secondary phosphines by hydrolysis of suitable precursors. 

 

The addition of organometallic compounds to phosphite esters represents a further method for 

the formation of secondary phosphine oxides. The application of this reaction was used for 

the first synthesis of dimethylphosphine oxide (Scheme 2.7).[10] 

 

(MeO)2P
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H

3 MeMgX
Me2P

O

H

(MeO)2P
O

MgX
Me2P

O
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Scheme 2.7. Nucleophilic addition of a methyl Grignard reagent to dimethyl phosphite. 

 

The transformation requires three equivalents of methylmagnesium reagent, where one 

equivalent first reacts with the weakly acidic proton. Replacement of both alkoxy groups then 

leads to the secondary phosphine oxide. 
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As mentioned above, secondary phosphine oxides can occur as chiral molecules, therefore the 

isolation of the enantiomerically pure compounds has been a topic of research.[11] Aside from 

the separation of racemic material by HPLC on a chiral stationary phase,[12] the resolution into 

the enantiomers has also been achieved by crystallization.[13] Only recently have 

stereoselective syntheses been described.[14] In most cases, these synthetic methods involve 

the addition of nucleophiles to enantiomerically pure phosphinates.[14b-d] These phosphinates 

are commonly obtained in pure form by fractional crystallization of the diastereoisomeric 

menthyl derivatives. Two variations of this procedure are shown in Scheme 2.8. 
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Scheme 2.8. Preparation of enantiomerically pure menthyl phosphinates. 

 

The synthesis of menthyl phenylphosphinate (method A) starts from phenylphosphine 

dichloride.[15] Addition of enantiomerically pure menthol followed by hydrolysis gives the 

diastereomeric phosphinates which are separated by crystallization. A more general approach 

begins with the synthesis of menthyl phosphordichloridite (method B). Addition of one 

equivalent of organomagnesium reagent and subsequent hydrolysis again gives the 

phosphinates as a diastereoisomeric mixture, which are then separated by crystallization.[16]  

The diastereoisomerically pure phosphinates can then undergo diastereoselective reactions 

with organometallic compounds (Scheme 2.9).[14b-d] 
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Scheme 2.9. Stereoselective addition of organometallic compounds to menthyl phosphinates. 
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The addition of an organometallic reagent to menthyl phosphinates generates the alkylation or 

arylation product with inversion of configuration. In general, two equivalents of the 

organometallic species are needed, although the transformation employing one equivalent has 

been reported under certain conditions.[14d] The first equivalent deprotonates the weakly acidic 

proton leading to a metalated phosphinate which then undergoes the substitution reaction with 

the second equivalent of nucleophile expelling the menthol substituent. Tautomerization 

through hydrolysis gives the secondary phosphine oxide. The diastereoselectivities depend on 

the organometallic reagent employed but usually the products are obtained in 80-99% ee 

starting from diastereoisomerically pure phosphinates.[14b-d] In the cases of reduced selectivity, 

the loss of optical purity was attributed to partial isomerization of the phosphinate starting 

material under the reaction conditions. Traces of metal alkoxides, even the expelled 

mentholate, are able to isomerize the phosphinate by transesterification under unoptimized 

reaction conditions.[14c] 

 

 

2.1.1.3 Metal Complexes 

 

 

Secondary phosphine oxides readily undergo reactions with transition metals forming the 

corresponding coordination compound. Tetrakis(triphenylphosphine)platinum reacts with 

diphenylphosphine oxide to form a platinum hydride complex (Scheme 2.10).[17] 

 

P
H

O
[Pt(PPh3)4]

P
Pt

P O
H

OH

Ph3P

C6H6, rt
+ 2

– 3 PPh3

 

Scheme 2.10. Synthesis of a platinum complex. 

 

A similar reaction was reported with tris(bisacteylacetonate)nickel leading to a 2:1 complex 

(Scheme 2.11).[18] 
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Scheme 2.11. Synthesis of a nickel complex. 

 

A dimeric palladium complex with di(tert-butyl)phosphine oxide ligands has been prepared 

by deprotonation of the monomeric palladium complex synthesized from the secondary 

phosphine oxide and cyclooctadienedichloropalladium (Scheme 2.12).[19] 
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Scheme 2.12. Synthesis of a dimeric palladium complex. 

 

A complex with a bidentate ligand has also been described. Complexation of allylpalladium 

chloride dimer with an oxazoline-containing secondary phosphine oxide, followed by anion 

exchange with silver hexafluorophosphate gave the palladium complex shown in Scheme 

2.13.[20] Notably, the complex crystallizes as a neutral species, since the deprotonation of one 

secondary phosphine oxide balances out the positive charge on palladium. 
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Scheme 2.13. Synthesis of a bis-P,N-palladium complex. 

 

As general observations it can be noted that the secondary phosphine oxides bind to transition 

metals via the phosphorus center rather than via the oxygen atom. Moreover, they have the 

tendency to associate through hydrogen bonding, forming a chelate-like complex. 
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2.1.1.4 Application in Catalysis 

 

 

Due to their simple preparation, at least in the case of racemic or achiral compounds, and their 

stability towards moisture and air, secondary phosphine oxides have found applications in 

catalysis.[21] 

The first example was a platinum-catalyzed hydroformylation reported by van Leeuwen.[22] 

Complexes of secondary phosphine oxides with platinum have also been used to catalyze 

nitrile hydrolysis.[23] 

Secondary phosphine oxides in combination with palladium have been widely applied to 

cross-coupling reactions. Besides Suzuki-couplings with aryl chlorides,[19] Kumada,[24] 

Negishi,[19b] Stille[25] and Hiyama[26] cross-coupling reactions have been performed. In some 

cases the use of secondary phosphine oxide palladium complexes allowed the reactions to be 

carried out in water.[26b, 27] Moreover, Sonogashira[28] and Heck[25, 29] reactions as well as 

Buchwald-Hartwig aminations[29] were performed with catalysts consisting of secondary 

phosphine oxides. 
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Scheme 2.14. Examples of cross-coupling reactions employing SPO-Pd-complexes. 

 

Palladium complexes have also been reported to induce a formal [2+1] cycloaddition between 

alkenes and terminal alkynes (Scheme 2.15). With an enantiomerically pure secondary 
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phosphine oxide an asymmetric transformation was also possible, although only with 

selectivities up to 60% ee.[30] 
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Scheme 2.15. [2+1]-Cylcoaddition reaction between norbornadiene and a terminal alkyne.  

 

Asymmetric catalysis with chiral palladium-SPO complexes has also been achived in allylic 

substitution reactions with moderate enantiomeric excess.[7] 

The asymmetric hydrogenation of imines was described using an iridium-SPO catalyst.[9, 31] 

Up to 80% ee was achieved with enantiopure tert-butylphenylphosphine oxide as ligand 

(Scheme 2.16). However, the reaction needed 5 mol% catalyst loading and long reaction 

times to go to completion. 

 

N

MeO

HN

MeO

[Ir(cod)Cl]2, SPO, pyridine

25 bar H2, PhMe,
rt, 24 h 100%, 80% ee

O
P

H

tBu
Ph

SPO =
 

Scheme 2.16. SPO-Ir-catalyzed asymmetric hydrogenation of a ketimine. 

 

Rhodium-SPO-complexes have been successfully applied in the hydrogenation of various 

substrates. Ferrocene-derived bidentate ligands with a phosphine and a SPO moiety give very 

selective catalysts for the reduction of, for example, dimethyl itaconate (Scheme 2.17).[32] 
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Scheme 2.17. SPO-Rh-catalyzed asymmetric hydrogenation of dimethyl itaconate. 
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2.1.2 Miscellaneous Functionalized Phosphines 

 

 

The investigation of functionalized phosphine ligands has been pursued by many research 

groups and a number of substituents were introduced to study their influence by different 

secondary interactions.  

Landis and Ito reported the synthesis of crown-ether functionalized diphosphine ligands 

(Figure 2.1).[33] The crown-ethers were supposed to form electrostatic interactions with the 

substrate. Landis examined the complexation chemistry with rhodium and found similar 

behaviour to the unfunctionalized system.[33a,b] However, he did not report applications in 

asymmetric catalysis. Ito studied the application of his ligand in palladium-catalyzed 

allylation reactions but obtained only moderate results.[33c] 
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Figure 2.1. Crown-ether functionalized diphosphine ligands. 

 

The effect of incorporated Lewis-acids has also been investigated (Figure 2.2). Kagan and 

Jacobsen desribed the synthesis of a boron analogue of DIOP[34] but did not find an increase 

in enantioselectivity in the hydrogenation of dehydroamino acid derivatives.[34a] 

Landis also published the synthesis of a boron-containing diphosphine, but did not report 

application in catalysis.[35] 

Incoproration of titanium as a Lewis-acid in a diphosphine ligand was achieved by Börner, 

although the corresponding rhodium complex gave only poor results in the examined 

asymmetric hydroformylation of functionalized olefins.[36] 
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Figure 2.2. Lewis-acid functionalized diphosphine ligands. 
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Functionalization with hydroxyl groups, thus allowing for hydrogen bonding, was more 

successful in terms of catalyst performance (Figure 2.3).[2b] Hayashi employed a 

hydroxyethyl-substituted BPPFA ligand in the palladium-catalyzed asymmetric allylation and 

obtained better results than with the unfunctionalized analog.[37] 
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Figure 2.3. Hydroxy functionalized diphosphine ligands. 

 

The investigation of a DIOP ligand with unprotected alcohol groups in the rhodium-catalyzed 

asymmetric hydrogenation of unsaturated phosphonates by Börner showed a substantial 

increase in reactivity and selectivity as compared to the methyl ether derivative.[38] 

Finally, the tetrahydroxy-RoPHOS ligand of Zhang was successfully applied in the 

hydrogenation of cinnamic acid derivatives.[39] While the enhancement compared to the 

corresponding ligands with ether groups[2b,40] is not large, enantioselectivities of up to 99% ee 

were achieved. 

 

 

2.1.3 Objectives of this Work 

 

 

The aim of this project was the stereoselective synthesis of diphosphine ligands with one 

asymmetric phosphine unit (Scheme 2.18). The introduction of the stereogenic phosphorus 

atom should occur via a diastereoselective addition of an organometallic species to a chiral 

dichlorophosphine. This reaction forms a P-chiral chlorophosphine which is then converted to 

a phosphine by addition of a second organometallic reagent or to a secondary phosphine oxide 

by hydrolysis.  

 

[P*]

PPh2 PPh2

Br
[*PCl2]+ "chiral pool"

 

Scheme 2.18. Retrosynthetic analysis of P-chiral diphosphine ligands. 
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It was planned to evaluate different chiral chlorophosphines for their selectivity in this 

addition reaction. Therefore, synthetic procedures had to be developed to convert 

commercially available and enantiopure starting materials into chiral phosphine dichlorides 

without loss of optical purity. The performance of these ligands in the rhodium-catalyzed 

asymmetric hydrogenation of olefins were then to be evaluated. 
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2.2 Synthesis and Catalysis Experiments 

 

 

2.2.1 Secondary Phosphine Oxides 

 

 

2.2.1.1 SPO-Phosphine Ligands 

 

 

The synthesis of bidentate ligands containing a phosphine and a secondary phosphine oxide 

was recently achieved at Solvias AG. The original synthetic procedure is outlined in Scheme 

2.19. Lithiation of an ortho-brominated phosphinobenzene (90) and reaction with a suitable 

dichlorophosphine followed by hydrolysis gave the desired compounds 91. 

 

PR2

Br

1) n-BuLi, THF

2) R'PCl2

PR2

P
R'

O H

PR2

P
R'

Cl

H2O

90 91
 

Scheme 2.19. Synthesis of SPO-phosphine ligands. 

 

According to this procedure, several derivatives were prepared and the corresponding 

enantiomers separated by semipreparative chiral HPLC. Hydrogenation experiments using the 

enantiomerically pure ligands showed very high selectivities in the reduction of various 

substrates.[1] 

The above mentioned ligands form a five-membered chelate upon complexation of a metal 

center. Following the established synthetic route, ligands with an additional carbon atom were 

to be synthesized to examine the catalytic properties of the corresponding metal complexes 

with a six-membered chelate ring (Figure 2.4). 
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Figure 2.4. Five-membered versus six-membered chelate. 

 

 

The starting material, diphenyl-(ortho-tolyl)phoshine 92, was commercially available as well 

as easily synthesized by addition of 2-methylphenylmagnesium bromide to 

diphenylchlorophosphine (Scheme 2.20). 

 

 

PPh2

92

Br
1) Mg, THF,
    70 °C, 2 h

2) Ph2PCl, THF,
    –78 °C � rt, 99%

 

Scheme 2.20. Synthesis of (ortho-tolyl)diphenylphosphine. 

 

 

Metalation at the benzylic position of 92 was achieved following a literature procedure.[2] 

When n-butyllithium was added to a solution containing 92 and potassium tert-butoxide in 

pentane at –10 °C the formation of a red solid was observed upon warming up to room 

temperature (Scheme 2.21). Addition of phenyl dichlorophosphine at –78 °C followed by 

hydrolysis installed the SPO group. Unlike its counterpart, shown in Scheme 2.19, the 

phosphine-SPO 93 was not stable towards oxidation and was only isolated as the bis-oxide 

94. 

 



Phosphines with Additional Functional Group as Ligands in Catalysis 

 

127 

PPh2 PPh2

M

n-BuLi, KOtBu
1) PhPCl2, THF,
    –78 °C � rt PPh2

P
Ph

O H

PPh2

P
Ph

O H

O

work up

92 93

94

M = Li, K

2) H2Opentane
0 °C � rt

 

Scheme 2.21. Synthesis of a SPO-phosphine ligand. 

 

To prevent the tertiary phosphine from oxidation and thus allow separation by 

semipreparative chiral HPLC, a borane protecting was introduced (Scheme 2.22). 

 

PPh2

92

PPh2

95

BH3

BH3, THF

87%

 

Scheme 2.22. Borane protection of (ortho-tolyl)diphenylphosphine. 

 

Slightly modified reaction conditions were applied to metalate 95. The introduction of the 

phosphine chloride followed by hydrolysis produced a labile species that underwent 

spontaneous deprotection to form again the bis-oxide 94 (Scheme 2.23). 

 

1) n-BuLi, KOtBu,
    pentane/THF

2) PhPCl2, THF
3) H2O

PPh2

95

BH3

PPh2

P
Ph

O H

O

94  

Scheme 2.23. Synthesis of a SPO-phosphine ligand from a borane protected phosphine. 

 

The different stabilities towards oxidation are pronounced. A possible explanation for the low 

sensitivity of 91 could be the rotational restriction of the diphenylphosphino group. Recently, 

Buchwald and co-workers proposed an explanation of the resistance of their 

dialkylbiarylphosphines towards oxygen.[3] They attributed the relatively slow oxidation of 

their phosphines to the high rotation energy barrier of the dialkylphosphino group. Without 

this rotation the phosphorus atom is less accessible and moreover the oxidation reaction, 
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according to the proposed mechanism,[4] cannot be completed by reaction with a second 

phosphine (Scheme 2.24). 
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Scheme 2.24. Proposed oxidation mechanism for dialkylbiarylphosphines by Buchwald.[3] 

 

Ligands 91 might profit from the same effect. The phosphine-SPO 93 has, due to the 

additional methylene group, more conformational freedom, possibly allowing for an easier 

rotation. According to the mechanism shown in Scheme 2.24, this should facilitate the 

reaction with oxygen and the approach of a second phosphine. The involvement of the SPO-

functional group in the oxidation mechanism is also possible. 

 

 

2.2.1.2 Terpene-Derived Secondary Phosphine Oxides 

 

 

Since the ligands derived from diphenyl-(ortho-tolyl)phosphine were found to be sensitive to 

oxidation, the focus turned back on structures giving a five-membered chelate. The initial 

synthesis gave access to racemic secondary phosphine oxides which had to be separated by 

chiral HPLC. The use of a phosphine dichloride with a chiral substituent would allow for a 

diastereoselective formation of the intermediate phosphine chloride.[5] Indeed, the reaction of 

menthylphosphine dichloride with 90 proved to be very selective, and under optimized 

conditions the secondary phosphine oxide 96 was isolated with a diastereoisomeric ratio of 

about 10:1 (Scheme 2.25). Further purification could be achieved by recrystallization.[1] 
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P
H O

Ph2P
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Scheme 2.25. Diastereoselective synthesis of a secondary phosphine oxide. 

 

Menthylphosphine dichloride 97 can be synthesized from menthol (98) in two steps. The 

literature procedure for the halogenation of the alcohol employs zinc dichloride in 

concentrated hydrochloric acid.[6] The resulting menthylchloride 99 is then converted to the 

corresponding Grignard-reagent and reacted with phosphorus trichloride to give 97 (Scheme 

2.26). 

 

ZnCl2, conc HCl 1) Mg, Et2O

2) PCl3

9798 99

OH Cl PCl2

 

Scheme 2.26. Synthesis of menthylphosphine dichloride. 

 

The formation of 97 proceeds with high diastereoselectivity unaffected by the diastereomeric 

composition of 99. The origin of this selectivity has recently been discussed.[7] According to 

this publication the formation of the Grignard-reagent is unselective and generates the two 

possible diastereoisomers, menthylmagnesium chloride and neomenthylmagnesium chloride 

in equal amounts (Scheme 2.27). These two organomagnesium compounds differ immensely 

in reactivity and basically only menthylmagnesium chloride reacts with the phosphine halide. 

This statement is supported by the fact that reactions with equal amounts of Grignard-reagent 

and phosphine chloride give no yields appreciably above 50%.[8] 

 

Cl MgCl

MgCl

Mg

Cl

+or

slow reactionfast reaction

R2PCl R2PCl

 

Scheme 2.27. Properties of the menthyl Grignard-reagent. 
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The successful application of menthylphosphine dichloride in the synthesis of secondary 

phosphine oxides led to the examination of further alcohols from the chiral pool. Many 

terpenes are commercially available in enantiomerically pure form and the alcohols fenchol 

(100), borneol (101) and isopinocampheol (102) were synthetically evaluated (Figure 2.5). 

 

OH OH
OH

OH

OHOHOH

98 100 101 102

OH

 

Figure 2.5. Commercially available terpenyl alcohols. 

 

It turned out that for the terpenes tested, there is no general reaction to exchange the alcohol 

functionality for a halide. The reaction with zinc dichloride, which worked well for menthol, 

was not applicable to the other terpenes giving a mixture of unidentifiable products. 

The chlorination of 101 and 102 has been described but the procedure involves a reaction in 

carbon tetrachloride.[9] With the intention of an upscale upon a successful small scale 

synthesis, less problematic reagents were examined to find an alternative route. 

With thionyl chloride and N,N-dimethylformamide in dichloromethane the starting material 

was mostly consumed but no desired products could be isolated. Changing the solvent to 

diethyl ether or pyridine gave no improvement. 

Oxalyl chloride in combination with N,N-dimethylformamide in dichloromethane did not lead 

to the desired haloterpenes, but rather formed oxalylic esters (Scheme 2.28). 

 



Phosphines with Additional Functional Group as Ligands in Catalysis 

 

131 

100

101

102

Oxalyl chloride, DMF

CH2Cl2, 0 °C � rt

OH
O

O
OH

O

OH
O

O
OH

O

OH O

O
OH

O
 

Scheme 2.28. Reaction of terpenyl alcohols with oxalyl chloride. 

 

The combination of N,N-dimethylformamide and 2,4,6-trichloro[1,3,5]triazine (TCT)[10] 

showed a related reactivity and after work up the corresponding formate was isolated instead 

of the desired halide (Scheme 2.29). Apparently, the intermediate alkoxyiminium chloride did 

not serve as a leaving group, remaining stable until aqueous work up. 
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N

N

Cl Cl
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OH O H
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O H
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O Cl
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via

 

Scheme 2.29. Reaction of isopinocampheol with 2,4,6-trichloro[1,3,5]triazine and DMF. 

 

A procedure using trimethylsilyl chloride and lithium bromide in acetonitrile, reported for the 

conversion of norbornanol,[11] gave no conversion at all. 

The outcome of Appel-type reactions was dependent on the additives and the alcohols used. 

Whereas isopinocampheol 102 with triphenylphosphine in combination with N-

chlorosuccinimide, N-bromosuccinimide, carbon tetrabromide or bromine gave each time no 

desired product, the reaction of fenchol 100 with triphenylphosphine and bromine in 

dichloromethane with imidazole as additive led to fenchyl bromide 103 in moderate yield 

(Scheme 2.30). 
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100 103

PPh3, Br2, imidazole

CH2Cl2, 45 °C, 16 h, 54%
OH Br

 

Scheme 2.30. Appel-type bromination of fenchol. 

 

The reaction of borneol 101 and isopinocampheol 102 with 4-toluenesulfonic acid chloride 

and methylsulfonic acid chloride showed that only the latter reagent successfully generated 

the corresponding sulfonate ester. This compound showed only limited stability which 

indicated its reactivity. However, instead of undergoing substitution reactions with lithium 

halides in acetone or THF, only decomposition products were generated. 

The notorious lack of product formation in the case of 101 and 102 posed the question 

whether an SN2-type reaction, for example under Appel-conditions, is even possible. The two 

geminal methyl groups in 101 and 102 are in proximity of a potential backside attack 

(Figure 2.6). 

 

LG

LG

H

H

Nu
Nu

 

Figure 2.6. SN2-reactions on terpenes. 

 

Therefore, the chlorination with thionyl chloride was carried out without additional N,N-

dimethylformamide, since this reaction has been proposed to proceed via an intramolecular 

decomposition under certain conditions (Scheme 2.31).[12] 

 

O
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ROH, SOCl2, DMF
SN2
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Cl
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O
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Scheme 2.31. Chlorination of alcohols with thionyl chloride. 
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The intramolecular pathway should be less affected by the sterics than the SN2-reaction, but 

the reactions with thionyl chloride gave no desired products. The use of phosphoryl 

trichloride or phosphorus pentachloride did not change the results. Finally, a SN1-type 

reaction was carried out. Unfortunately, treatment of the alcohols 101 and 102 with 

concentrated hydrobromic acid led either to decomposition products or recovery of starting 

material. 

Since the functional group transformations in these alcohols were intractable, the focus turned 

to alternative synthetic routes. 

The synthesis of bornyl bromide 104 was reported starting from pinene.[13] Indeed; 104 could 

be generated when a solution of pinene in chloroform was aerated with hydrogen bromide. 

The mechanism proceeds via a diastereoselective 1,2-carbon shift (Scheme 2.32). After bulb-

to-bulb distillation the bromide 104 was isolated in acceptable yield. 

 

HBr, CHCl3

0 °C, 1 h, 68%

H Br

104
Br

Br

1,2-shift

 

Scheme 2.32. Rearrangement of pinene under acidic onditions. 

 

The final synthesis of the isopinocampheol derived bromide 105 was achieved by taking 

advantage of a reaction reported by Brown and co-workers.[14] Alkyl boranes derived from 9-

borabicyclo[3.3.1]nonane (9-BBN) gave the corresponding alkyl bromides after radical 

bromination. The starting material for the formation of 105 was commercially available 

Alpine-Borane® (106). Reaction with bromine under exclusion of light gave the bromide 105 

in moderate yield (Scheme 2.33). The reaction is assumed to proceed via a free radical chain 

reaction.  
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Scheme 2.33. Radical bromination of Alpine-Borane®. 

 

The high selectivity in the reaction of the 9-BBN derived alkylboranes presumably originates 

from the conformation of the hydrogen atoms that can be abstracted. Only the radical formed 

in the �-position of the alkyl chain can be stabilized by the empty orbital of the boron-atom, 

whereas the single electron of a radical on the bicylooctane moiety would occupy an 

orthogonal orbital without the possibility for stabilization. 

 

The next synthetic steps were the preparation of the Grignard-reagents, their conversion into 

phosphine dichlorides and the formation of the phosphine-SPO ligand. 

The preparation of menthylphosphine dichloride 97 in diethyl ether shown in Scheme 2.26 

has the synthetic advantage that, after the reaction of the menthyl-Grignard-reagent with 

phosphorus trichloride, the salts nicely precipitate and can easily be filtered off. 

Unfortunately, none of the bromides was reactive enough to form the metallated species under 

these conditions. Reaction of 104 with magnesium occurred in THF only at elevated 

temperature. However, the addition of this Grignard-reagent to phosphorus trichloride 

resulted in a poorly selective reaction and the salts formed did not precipitate. Purification of 

the product mixture was not possible due to the similar boiling points of the compounds 

formed. To avoid an unselective reaction, a less reactive phosphorus source was employed. 

Addition of four equivalents diethyl amine to phosphorus trichloride in hexane gave 

bis(diethylamino)phoshine chloride (107) in good yield (Scheme 2.34).  

 

PCl3 ClP(NEt2)2  107
HNEt2, hexane

–70 °C � rt, 86%  

Scheme 2.34. Synthesis of bis(diethylamino)chlorophosphine. 
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This reagent, in combination with bornyl magnesium bromide, cleanly generated the 

intermediate diaminophosphine, and upon treatment with four equivalents of HCl the 

phosphine dichloride 108 was isolated in moderate yield after distillation (Scheme 2.35). 

 

Mg, THF

65 °C, 3 h

1) ClP(NEt2)2, THF,
    –78 °C � rt

2) HCl, Et2O, 0 °C
50% overall

104 108

Br MgBr PCl2

 

Scheme 2.35. Formation of bornylphosphine dichloride. 

 

The phosphine building block for the formation of the bidentate ligand was prepared 

according to a literature procedure as shown in Scheme 2.36.[15] Metalation of 2-bromo-1-

iodobenzene with iso-propyl magnesium chloride at –30 °C in THF followed by reaction with 

diphenylphosphine chloride gave the phosphine 90 in acceptable yield. 

 

Br

I

1) iPrMgCl, THF,
    –35 °C, 1 h

2) Ph2PCl, 
    –35 °C � rt, 73%

Br

PPh2

90  

Scheme 2.36. Synthesis of (ortho-bromophenyl)diphenylphosphine. 

 

Lithiation of 90 with n-butyllithium in THF at low temperature followed by addition of 108 

and subsequent hydrolysis resulted in the formation of the secondary phosphine oxide 109 as 

a mixture of two diastereoisomers in almost equal amounts (Scheme 2.37). Separation of the 

diastereoisomers was achieved by chromatography and analysis by chiral HPLC showed an 

optical purity of 97% ee for both compounds (+)-109 and (–)-109. Further purification by 

crystallization was not possible. The reduced enantiopurity was a result of the purity of the 

pinene starting material rather than partial racemization during the synthesis. 

 

109

Br

PPh2

90

1) n-BuLi, THF,
    –78 °C, 1h

2) 108, THF
    –78 °C � rt
3) H2O, NEt3, 56%

P

Ph2P

H
O

 

Scheme 2.37. Synthesis of a bornyl-SPO-phosphine ligand. 
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 The formation of the Grignard-reagent from fenchyl bromide 103 was more problematic, 

since, even with magnesium powder at an elevated temperature and a longer reaction time, the 

formation of the metallated species could not be completed. As a consequence, the subsequent 

reaction with phosphorus trichloride gave a complex mixture of compounds and no isolatable 

product. Isopinocampheyl bromide 105 did not undergo reaction with magnesium at all. 

To circumvent the problematic formation of fenchylphosphine dichloride, the 

dichlorophosphine moiety was installed in reversed order (Scheme 2.38). 
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PPh2
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PPh2

PCl2
1) n-BuLi, Et2O,
    –78 °C, 1 h

2) PCl3, Et2O

110 112
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reflux, 6 h
(partial conversion)

111103

1) 111, THF

2) H2O, NEt3

Br MgBr

P

Ph2P

H
O

 

Scheme 2.38. Synthesis of a fenchyl-SPO-phosphine ligand. 

 

Lithiation of 90 in diethyl ether resulted in a fine white suspension which then was added to 

phosphorus trichloride to give the phosphine dichloride 110 after evaporation of the 

solvent.[19] This intermediate was not isolated, but rather directly treated with the fenchyl 

Grignard-reagent 111. Again, the yield was very low and the secondary phosphine oxide 112 

was isolated as an inseparable mixture of diastereoisomers.  

 

With the two ligands (+)-109 and (–)-109 in hand, their performance in the Rh-catalyzed 

hydrogenation was briefly investigated. Dimethyl itaconate (63) and methyl 

acetamidoacrylate (62) were tested (Table 2.1). 
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Table 2.1. Asymmetric hydrogenation of olefins catlyzed by Rh-SPO-phosphine complexes. 

COOMe

HN

O

COOMe

COOMe

62 63 96 109

P

Ph2P

H
O

P
H O

Ph2P

 

Entrya Ligand Substrate conv. [%]b ee [%]b 

1 (+)-109 63 >99 90 (R) 

2 (–)-109 63 >99 77 (S) 

3 (+)-109 62 >99 93 (S) 

4 (–)-109 62 >99 78 (R) 

5 96 62 >99 97 (S) 
aReaction was carried out in methanol with 0.5 mol% [Rh(nbd)2]BF4 in situ precomplexed with 1.1 equivalents 

of ligand under 1 bar H2 and 25 °C for 1 h. bDetermined by chiral GC. 

 

The results nicely showed that the configuration at the secondary phosphine oxide determines 

the outcome of the hydrogenation reaction. In this respect, (–)-109 represented the 

mismatched case for both substrates. The matched case complex was able to hydrogenate 

itaconate 63 with an enantiomeric excess of 90% (entry 1) and acrylate 62 with 93% ee 

(entry 3). Keeping in mind that the ligand itself was employed with an optical purity of 97% 

ee, the maximal possible selectivities would be slightly higher. The more selective catalyst 

was also more reactive. The measured turnover frequency (TOF) had, in the case of substrate 

63, values of 8000 h–1 ((–)-109) and 12000 h–1 ((+)-109). For the reduction of 62, values of 

1300 h–1 ((–)-109) and 2700 h–1 ((+)-109) were measured. Although these ligands were very 

active, they were outperformed by the menthol-derived ligand 96 which gave 97% ee with a 

TOF of 8000 h–1 in the hydrogenation of itaconate 62. 
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2.2.2 Hydroxyethyl-Functionalized Phosphines 

 

 

The addition of a carbon nucleophile to a chlorophosphine generates P-chiral phosphines, 

instead of secondary phosphine oxides obtained by hydrolysis. This reaction proceeds with 

good diastereoselectivity and ligands such as the one shown in Figure 2.7 have been 

investigated at Solvias AG.  

 

P

Ph2P  

Figure 2.7. Menthol-derived P-chiral bisphosphine. 

 

In a related project menthyl-derived bisphosphines with an additional functional group were 

studied (Scheme 2.39). It has been shown that internal hydroxy groups in chiral diphosphine 

ligands can have a beneficial influence on the enantioselectivity of the corresponding metal 

catalyst.[17] 

The combination of a secondary phosphine and formaldehyde generates a hydroxymethyl 

substituted phosphine.[18] This reaction is reversible and, although the 

hydroxymethylphosphine can be isolated under certain conditions, the definite formation of a 

single metal complex for catalysis is not possible. 

 

CH2O
P

Ph2P

OH

P
H

Ph2P  

Scheme 2.39. Reversible formation of a hydroxymethylphosphine. 

 

The installation of a functional group into the catalyst would allow for stereodiscrimination 

by secondary interactions like hydrogen bonding. To avoid reversibility, the carbon chain 

between this functional group and the phosphorus atom had to be extended. Employing a 

suitable nucleophilic building block – a similar reaction led to the ligand in Figure 2.7 – and 

subsequent synthetic transformations the formation of alcohols, esters or carboxylic acids 

seemed possible (Figure 2.8). 
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P

Ph2P

X
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Figure 2.8. P-chiral functionalized diphosphines. R = H, alkyl; X = H2, O. 

 

The first synthetic approach was the formation of phosphine chloride 113. This reaction 

proceeded with good stereoselectivity, as expected (Scheme 2.40). 
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Scheme 2.40. Reaction of a chlorophosphine with a Refomatzky-reagent. R = Et, tBu. 

 

The addition of the Reformatzky-reagent[19] did not lead to the desired ester 114, instead only 

the secondary phosphine oxide 96 was isolated. The 31P-NMR-spectrum of the reaction 

mixture after the addition of the zinc ester-enolate, showed a resonance at 118 ppm, 

suggesting that formation of the phosphinite 115 took place. This water sensitive compound 

was then hydrolyzed during work-up, forming 96 (Scheme 2.41). Ethyl and tert-butyl ester 

enolates gave the same result as well, which reflects the oxophilicity of the phosphorus.  

 

115 96

work up
P
O

Ph2P

OR

P
H O

Ph2P

 

Scheme 2.41. Hydrolysis of a phosphinite. R = Et, tBu. 

 

Reduction of the phosphine chloride 113 with lithium aluminium hydride gave the secondary 

phosphine 116. During this transformation epimerization occurred at the phosphorus atom and 

the product was obtained as a mixture of diastereoisomers. Deprotonation with n-butyllithium 

resulted in a red solution that turned yellow after addition of the bromoacetate. However, the 
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apparent conversion of the phosphine anion gave an unidentifiable product mixture (Scheme 

2.42). 
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Scheme 2.42. Alkylation of a secondary phosphine. R = Et, tBu. 

 

With a different electrophile the reaction worked better (Scheme 2.43). Addition of 2-

chloroethoxytrimethylsilane gave the protected alcohol 117. No diastereoselectivity was 

observed in the addition of the alkyl chain and the outcome was not affected by the base 

employed, such as LDA or n-butyllithium. Deprotection was achieved with 

tetrabutylammonium fluoride in THF and the hydroxy-functionalized phosphine 118 was 

isolated in 38% yield over four steps. 

 

117 118

(–)-118

116

2) ClCH2CH2OSiMe3,
    –78 °C � rt

1) n-BuLi, THF,
     –78 °C, 15 min NBu4F, THF

rt, 2 h

semipreperative
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Scheme 2.43. Formation of a P-chiral hydroxyethyl-functionalized bisphosphine. 

 

The reaction sequence was best carried out consecutively. Any attempts to purify the 

intermediates 116 and 117 resulted in lower overall yield. The two diastereoisomers then had 
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to be separated by semipreperative chiral HPLC. This procedure was problematic, since one 

diastereoisomer readily oxidized both during and after separation, and the recovery of (–)-118 

was not quantitative either. 

Finally, ligand (–)-118 was tested in the asymmetric hydrogenation in combination with 

[Rh(nbd)2]BF4. The results are presented in Table 2.2.  

 

Table 2.2. Rh-catalyzed asymmetric hydrogenation of olefins. 

COOMe

HN

O

COOMe

COOMe

62 63  

Entrya Substrate Reaction time conv. [%]b TOF [h–1] ee [%]b 

1 63 30 min 2 7 57 

2 62 25 min 12 57 89 
aReaction was carried out in methanol with 0.5 mol% [Rh(nbd)2]BF4 in situ precomplexed with 1.1 equivalent 

ligand (–)-118 under 5 bar H2 and 25 °C for 1 h. bDetermined by chiral GC. 

 

The catalyst formed showed only low activity, resulting in a turnover frequency of 7 h–1 in the 

reduction of dimethyl itaconate (63) and 57 h–1 in the case of methyl acetamidoacrylate (62). 

Aside from the low conversion, the enantioselectivities were moderate to acceptable, 

generating an enantiomeric excess of 57% for itaconate 63 and 89% ee for acrylate 62. 

Among several hydroxy-functionalized bisphosphine ligands the difference in activity, as 

compared to the non-functionalized derivatives, varies depending on the ligand structure.[17] 

The reaction rates usually either decrease or stay unaffected[20] and rate acceleration is less 

common. In most cases this inhibition effect is believed to originate from the additional 

coordination of the hydroxy group to the rhodium atom. In these cases, the oxygen atom has 

to dissociate before dihydrogen addition can occur, and therefore slows down the catalytic 

turnover (Scheme 2.44). 
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Scheme 2.44. Influence of the hydroxy group on catalyst reactivity (L,L’ = diolefin, MeOH, 

bidentate substrate).[17] 

 

Possibly, (–)-118 is able to form a stable complex, therefore decreasing the rate of the 

reaction.  

 

 

2.2.3 Conclusions 

 

 

The synthesis of phosphine-SPO ligands was investigated. The 1,3-substitution pattern was 

shown to suffer from sensitivity of the phosphine towards oxygen, whereas the related 1,2-

substituted compounds proved to be air-stable (Figure 2.9). 

 

PR2

P
R'

O H

PR2

P
R'

O H

air stable air sensitive  

Figure 2.9. SPO-phosphine ligands. 

 

A diastereoselective synthesis of secondary phosphine oxides was studied by employing a 

chiral phosphine dichloride. The preparation of menthylphosphine dichloride has been 

reported and proved to be a useful building block. Other terpenes were evaluated for their 

synthetic value in the diastereoselective preparation of secondary phosphine oxides. The 

straightforward functional group transformations in the case of menthol were not applicable to 
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the alcohols tested: fenchol, borneol and isopinocampheol. For each substrate a different 

synthetic procedure had to be used, and generally gave the corresponding bromides in only 

moderate yields. Furthermore, only bornyl bromide 104 could be transformed into the 

phosphine dichloride to access the secondary phosphine oxide 109 (Figure 2.10). 

 

109

P

Ph2P

H
O

 

Figure 2.10. Bornyl-SPO-phosphine ligand 

 

The results of the hydrogenation reactions showed that the bornyl-derived phosphine-SPO 

109 can compete with the menthol derivative in terms of enantioselectivity, and a clear 

matched/mismatched case was observed for the two diastereoisomers. However, the lower 

activity in combination with the more tedious synthesis makes this system less attractive than 

the corresponding ligand prepared from menthol. 

 

A hydroxyl-functionalized menthol-derived bisphosphine ligand was prepared in four 

consecutive steps (Figure 2.11). After purification by semipreperative chiral HPLC the 

performance of this ligand in the asymmetric hydrogenation was tested. The catalyst system 

exhibited low activity in the hydrogenation of dimethyl itaconate and methyl 

acetamidoacrylate, although the latter could be reduced with an enantiomeric excess of 89%. 

 

(–)-118

P

Ph2P

OH

 

Figure 2.11. Hydroxyethyl-functionalized bisphosphine ligand. 
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3.1 Introduction 

 

 

3.1.1 Historical Overview 

 

 

Unlike the Rh- and Ru-catalyzed asymmetric hydrogenation of olefins bearing a coordinating 

functional group, as described in Section 1.1, which was introduced in the 1970’s, the 

enantioselective reduction of unfunctionalized double bonds has been largely developed in the 

last ten years.[1] Although the enantioselective hydrogenation of unfunctionalized terminal 

olefins with chiral metallocenes had been first reported by Kagan in 1979,[2a] later by others,[2] 

internal double bonds remained a challenge. In 1998, Buchwald published a chiral titanocene 

complex (Figure 3.1), which was able to hydrogenate a variety of unfunctionalized olefins 

with good enantioselectivities.[3] However, these metallocenes had several drawbacks, such as 

tedious preparation, air-sensitivity and the high catalyst loading required.  

These disadvantages were overcome when Pfaltz introduced iridium-based catalysts for the 

hydrogenation of unfunctionalized olefins,[4] inspired by the work of Crabtree who had 

demonstrated the application of iridium complexes in the homogeneous hydrogenation of 

alkenes.[5]  

 

 

TiX X
NCy3P

Ir

PF6

O
O

X=

Buchwald Crabtree  

Figure 3.1. Complexes for the hydrogenation of unfunctionalized olefins. 

 

 

The asymmetric version of Crabtree’s catalyst, introduced by Pfaltz, contained a chiral 

oxazoline unit tethered to a phosphine (Scheme 3.1). These phosphino-oxazolines (PHOX) 

gave very good results in the hydrogenation of imines and unfunctionalized alkenes and were 

readily accessible since the stereogenic center is derived from commercially available chiral 

aminoalcohols. Today, several variants of the initial PHOX structure have been developed.[6] 
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The phosphinite-containing complexes SimplePHOX[7] and ThrePHOX[8] are two examples 

of these that have been successfully applied in the hydrogenation of unfunctionalized olefins. 
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Scheme 3.1. Hydrogenation of unfunctionalized olefins with phosphino-oxazoline-Ir complexes. 

 

 

The complex types depicted in Scheme 3.1 were able to convert trisubstituted double bonds of 

different substitution patterns, terminal olefins and imines into their hydrogenation products 

with a high level of asymmetric induction at low catalyst loading. Nevertheless, the 

limitations of these catalysts became apparent with other substrate classes. The lack of any 

aromatic group reduced the enantioselectivity substantially, conjugated alkenes were poor 

substrates, and tetrasubstituted olefins showed low reactivity and selectivity in many cases. 

Further investigations into Ir-based systems resulted in the discovery of complexes which 

could overcome these limitations. 

Iridium complexes of N-heterocylic carbenes, reported by Burgess, hydrogenate conjugated 

double bonds with high enantioselectivity (Scheme 3.2), but the reaction is still problematic 

depending on the substitution pattern.[9] 
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**
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Scheme 3.2. Asymmetric hydrogenation of conjugated dienes. 

 

 

Alkyl-substituted olefins were problematic substrates for a long time, since they lack any 

possibility of interaction with the catalyst except sterics. The development of 

tetrahydroquinoline-based phosphinite ligands by Pfaltz, which were also very selective with 

other substrates, gave catalysts exhibiting high enantioselectivity with these unfunctionalized 

compounds (Scheme 3.3).[10] Applying these kinds of complexes (E)-1-cyclohexyl-1-methyl-

propene was hydrogenated with 97% ee, and even double bonds in a simple alkyl-chain as in 

the vitamin E precursor γ-tocotrienyl acetate were reduced with high selectivity.[11] 
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Scheme 3.3. Asymmetric hydrogenation of purely alkyl-substituted double bonds. 
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The reduction of tetrasubstituted alkenes with good selectivity was recently achieved, using a 

modified PHOX-catalyst with a reduced chelate-ring size. Among other tetrasubstituted 

olefins, the model-substrate shown in Scheme 3.4 could be hydrogenated with 97% ee.[12] 

 

 

Ir

BArF

NCy2P

O

Ph1 bar H2,
CH2Cl2, rt

*
2 mol% cat

cat =97% ee

 

Scheme 3.4. Asymmetric hydrogenation of a tetrasubstituted olefin. 

 

 

Because of the high selectivity in the P,N-iridium-complex catalyzed asymmetric 

hydrogenation of unfunctionalized double bonds, this catalyst system has also been applied to 

alkenes with weakly coordinating functional groups (Scheme 3.5).[13] 
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Scheme 3.5. Asymmetric hydrogenation of olefins with weakly coordinating functional groups. 
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For example, vinyl phosphates could be hydrogenated with Ir-PHOX catalysts,[14] 

fluoroalkenes[15] and unsaturated silanes[16] were selectively reduced with thiazole-based 

complexes and enol phosphinates gave the reduced product with a phosphoramidite-

oxazoline-iridium complex.[17] 

 

 

3.1.2 Mechanism 

 

 

3.1.2.1 The Catalytic Cycle 

 

 

Unlike the Rh- and Ru-catalyzed asymmetric hydrogenation, the catalytic cycle of the 

iridium-catalyzed hydrogenation of unfunctionalized olfines is not yet fully 

understood.[1a,6b,13,18] The first investigation in this field was performed by Crabtree who 

could identify a iridium-dihydride complex as a product of the exposure of 

[Ir(pyridine)PCy3(cod)]PF6 to dihydrogen in the presence of 1,5-cyclooctadiene (Scheme 

3.6).[19] 

 

 

NCy3P
Ir

PF6 PF6

H
Ir
N

PCy3

H
H2, CH2Cl2, 0 °C

++

 

Scheme 3.6. Formation of a iridium-dihydride complex with Crabtree’s catalyst. 

 

 

Studies on chiral iridium-species were carried out with a PHOX-complex (Scheme 3.7).[20] In 

THF the iridium-PHOX complex forms at low temperature a stable dihydride upon exposure 

to dihydrogen. This intermediate, even stable at 0 °C, was characterized by NMR-

spectroscopy and the positions of the hydrides were confirmed to be both cis to the 

phosphorus atom as already described by Crabtree. At –40 °C the 1,5-cyclooctadiene ligand 

is still coordinated to the iridium-center, but upon raising the temperature under a hydrogen 

atmosphere the double bonds are hydrogenated and the formation of dihydride-solvate-

complexes was observed. Two isomers were identified in the reaction mixture and the 
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hydrides were assigned to occupy positions cis to the phosphine ligand and trans to the 

nitrogen-atom. 
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Scheme 3.7. Observed dihydride species with Ir-PHOX complexes. S = THF. 

 

The reaction had to be carried out in THF to obtain a clean reaction. In dichloromethane, the 

standard solvent for hydrogenation, the spectrum showed a complex mixture of hydrido 

complexes which could not be analyzed. Since the catalytic hydrogenation of 

unfunctionalized olefins does not proceed in coordinating solvents like THF, the prepared 

dihydride species could not be proven to be catalytically active. A computational study 

involving the iridium-PHOX complex shown in Scheme 3.7 and dichloromethane as solvent 

confirmed the observed dihydride species to be energetically favored over other possible 

isomers.[20] 

In order to gain insight into the full catalytic cycle, several groups have performed 

experimental and computational studies. Mechanistic pathways computed by Brandt and 

Andersson[21] and by Burgess and Hall[22] involve IrIII and IrV intermediates. Their proposed 

catalytic cycle is shown in Scheme 3.8 (right hand side). Experimental evidence for a 

mechanism through IrI and IrIII species (Scheme 3.8, left hand side) has been collected by 

mass spectrometry and NMR-spectroscopy. Chen used gas-phase MS to study the 

hydrogenation of styrene with an Ir-PHOX complex.[23] The observed mass signals 

corresponded to species expected to be involved in the catalytic cycle. The authors found the 
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elementary steps to be reversible under gas-phase conditions and concluded from deuteration 

experiments the absence of polyhydrides as postulated for the IrIII/IrV-cycle. para-Hydrogen 

induced polarization (PHIP) NMR-spectroscopy, carried out by Buriak, suggested that the 

hydrogen atoms are added pairwise, indicative of an IrI/IrIII-mechanism.[24] As noted by the 

authors, this experiment cannot exclude the non-pairwise hydrogen addition, operating as a 

parallel pathway. 

There is no evidence to rule out one of the two proposed catalytic cycles. In view of the 

possibility, that, upon change of the catalyst, the substrate or reaction conditions, the relative 

energies of the intermediates shift to favor a different mechanism, both catalytic cycles could 

operate, with the dihydride-solvate complex as the common intermediate. 

In the IrI/IrIII-catalytic cycle the dihydride-solvate complex exchanges a solvent molecule for 

an alkene to form an olefin-dihydride species. Addition of one hydride to the double bond 

accompanied by coordination of a solvent molecule gives an alkyl-hydride complex. 

Reductive elimination forms the alkane and an IrI-solvate complex. Addition of dihydrogen 

regenerates the dihydride-solvate complex thus closing the catalytic cycle. 

The IrIII/IrV-mechanism is assumed to proceed via addition of dihydrogen and an olefin to the 

dihydride-solvate complex to give a polyhydride-species. This undergoes formation of an IrV-

alkyl-trihydride complex followed by reductive elimination to liberate the hydrogenation 

product and reform the dihydride-solvate complex. 
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Scheme 3.8. Possible catalytic cycles for the Ir-catalyzed hydrogenation of unfunctionalized 

olefins.[13] S = solvent, Y = phosphine or carbene. 
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Models have been developed to predict the enantioselectivity of a given complex.[22, 25] In the 

examples described they are consistent with the observation that tetrasubstituted double 

bonds, trisubstituted alkenes with the two largest substituents in a cis-configuration and 

terminal olefins are all difficult substrates. Given that even these substrates can nowadays be 

hydrogenated with good enantioselectivity,[6b] the general applicability of this model for 

ligand design is questionable at best. 

 

 

3.1.2.2 The Counter-Ion Effect 

 

 

Initially, the iridium-catalyzed hydrogenation of unfunctionalized olefins required 4 mol% 

catalyst to obtain full conversion of the substrates.[4a] The comparable high catalyst loading 

was necessary due to deactivation of the catalyst during the hydrogenation reaction. A similar 

behaviour had also been observed by Crabtree before and he identified a trimeric iridium 

complex as the catalytically inactive deactivation product.[5b] NMR analysis also suggested 

the involvement of such hydride species in the deactivation of Ir-PHOX catalysts. In further 

studies this trimeric hydride-complex could be isolated and characterized by X-ray 

crystallography and NMR-spectroscopy (Scheme 3.9).[26] Attempts to regenerate an active 

catalyst from this complex failed. 
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Scheme 3.9. Formation of a trimeric iridium-hydride complex. 

 

 

The breakthrough to solve the problem of deactivation came by the introduction of a bulky, 

apolar and extremely weak coordinating counterion.[27] Iridium-PHOX catalysts with 

tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BArF) as the counterion exhibited high 

stability under the reaction conditions and were less sensitive towards moisture. A kinetic 

study with different counterions showed that tetrakis(perfluoro-tert-butoxy)aluminate and 



P-Chiral Phosphino-Oxazolines as Ligands in the Iridium-Catalyzed Asymmetric Hydrogenation 

 

155 

BArF were equally active while anions such as tetrafluoroborate and triflate gave only low 

conversion (Scheme 3.10).[28] 

 

 

(o-Tol)2P
Ir

cat  =

Al(OC(CF3)3)4 BArF B(C6F5)4 PF6 BF4 CF3SO4

decreasing reactivity

H2, CH2Cl2

catX

X =

* N

O

 

Scheme 3.10. Counterion-dependent hydrogenation performance. 

 

 

NMR-experiments involving pulse gradient spin-echo (PGSE) diffusion data and 19F 

heteronuclear Overhauser effect spectroscopy (HOESY) of the precatalyst have been carried 

out,[29] and the origin of this effect has been elucidated by kinetic studies.[28] 

 

Kinetic experiments showed a first order rate dependence on olefin concentration with the 

PF6-counterion and a rate order close to zero with the BArF salt. The slower reaction of the 

alkene with the PF6-containing catalyst may be explained by the specific interaction of the 

anion with the oxazoline unit blocking the approach of the olefin. The BArF-ion does not 

interfere with the alkene coordination, and therefore, the catalyst remains saturated with olefin 

even at low substrate concentration. Moreover, the slower reaction of the PF6-salt with the 

olefin could explain its higher tendency for deactivation.[6b] Assuming the deactivation is due 

to the formation of an inactive trimeric iridium-hydride complex, the important step during 

the catalytic cycle is the reaction of the Ir-hydride intermediate with the olefin. If this reaction 

is very fast, as is true for the BArF-salt, the hydrogenation dominates over the deactivation 

pathway. In the case of the PF6-counterion, the olefin reacts more slowly and the deactivation 

pathway becomes an important competing process. 
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3.2 Objectives of this Work 

 

 

As described in Section 2.2.1.1, the lithiated triarylphosphine 90 undergoes a highly 

stereoselective reaction with menthylphosphine dichloride (97). This addition reaction 

requires a sterically hindered nucleophile to proceed with good selectivity.[30] 

Phenyloxazolines are structurally similar to 90 since both contain, when lithiated, quite a 

large substituent in the position ortho to the nucleophilic carbon atom (Figure 3.2). 

 

Li N

O

Li
PPh2

R1R2
 

Figure 3.2. Structural similarities of lithiated 90 and lithiated phenyloxazolines. 

 

The reaction of phenyloxazolines with menthylphosphine dichloride would finally lead to 

PHOX-ligands with a stereogenic phosphorus atom. Ir-PHOX complexes with a chiral 

phosphorus atom have already been prepared and hydrogenation experiments have been 

carried out. The results showed that the stereogenic center at the oxazoline ring dominates the 

outcome of the reaction, whereas the configuration at the phosphorus atom plays a minor role 

but still leads to matched/mismatched effects (Scheme 3.11).[31] 

 

P
Ir

P
Ir

BArF BArF

*
50 bar H2, CH2Cl2

>99% ee with 85% ee with

N

O

N

O

 

Scheme 3.11. Previous results with P-stereogenic PHOX-complexes. 

 

However, the preparation of these ligands required the separation of the diastereoisomers by 

column chromatography or semipreparative chiral HPLC and therefore protection and 
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deprotection steps. A diastereoselective synthesis of P-stereogenic PHOX-ligands starting 

from a phosphine dichloride with a chiral menthyl substituent would avoid these separation 

steps and therefore simplify the preparation (Scheme 3.12). 

P
Ir

R3

BArF

Li N

O

R1R2

PCl2+ N

O

R2
R1

 

Scheme 3.12. Synthetic strategy for the formation of menthyl-containing PHOX-ligands. 
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3.2 Synthesis and Hydrogenation Experiments 

 

 

3.2.1 Preparation of P-Chiral Phosphino-Oxazoline-Iridium Complexes 

 

 

The synthesis started with the ortho-metalation of 2-phenyl-oxazolines 119 with  

sec-butyllithium and N,N,N,N-tetramethylethylenediamine in pentane. Addition of 

menthylphosphine dichloride (97), derived from (–)-menthol, followed by reaction with 

methylmagnesium or phenylmagnesium bromide gave the phosphino-oxazolines 120. The 

introduction of larger groups with the corresponding Grignard-reagent was not possible.  

iso-Propylmagnesium bromide was too sterically hindered and no reaction occurred with the 

intermediate menthyl-phenyloxazoline-phosphine chloride. Due to the air-senstitivity of these 

phosphines they were not purified but only filtered through a plug of aluminium oxide. The 
31P-NMR spectra of the phosphino-oxazolines basically showed only one signal in each case, 

indicating a stereoselective reaction. However, when the phosphino-oxazolines 120 were 

reacted with [Ir(cod)Cl]2 and NaBArF, the overall yields of the corresponding iridium-

complexes 121-128 only ranged between 25% and 50% (Scheme 3.13). An increased reaction 

time produced no improvement.  

Complexes 121 and 122 contain the stereogenic phosphorus atom as the only stereogenic 

center. The results of hydrogenation reactions with these catalysts should clearly indicate the 

influence of the phosphorus atom configuration towards the enantioselectivity of the iridium-

complex. 
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N

O

R1R2

1) s-BuLi, TMEDA, pentane,
     –78 °C � –40 °C, 2h

2) 97, –78 °C � –10 °C, 30 min
3) R3MgBr, –10 °C � rt, 1h

1) [Ir(cod)Cl]2, CH2Cl2,
    30 min, rt

2) NaBArF, 30 min, rt

121: R1 = R2 = R3 = Me, 53%
122: R1 = R2 = Me, R3 = Ph, 48%
123: R1 = iPr, R2 = H, R3 = Me, 50%
124: R1 = iPr, R2 = H, R3 = Ph, 53%
125: R1 = tBu, R2 = H, R3 = Me, 26%
126: R1 = tBu, R2 = H, R3 = Ph, 39%
127: R1 = Bn, R2 = H, R3 = Me, 33%
128: R1 = Bn, R2 = H, R3 = Ph, 25%

120

120

119

N

O

R1R2
P

R3

N

O

R1R2
P

R3

PCl2

97

P
R3

Ir

BArF

N

O

R2
R1

 

Scheme 3.13. Synthesis of iridium-phosphino-oxazoline complexes. 

 

The complexes were isolated as single diastereoisomers and the absolute configuration was 

assigned according to the four X-ray structures obtained (Figure 3.3, Figure 3.4, Figure 3.5 

and Figure 3.6). 

 

 

Figure 3.3. Crystal structure of 123. A second molecule in the unit cell, co-crystallized CH2Cl2 and 

the BArF-counterions are omitted for clarity. 
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Figure 3.4. Crystal structure of 124. A second molecule in the unit cell and the BArF-counterions are 

omitted for clarity. 

 

Figure 3.5. Crystal structure of 125. Three other molecules in the unit cell and the BArF-counterions 

are omitted for clarity 

 

 

Figure 3.6. Crystal structure of 126. A second molecule in the unit cell and the BArF-counterions are 

omitted for clarity. 
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In all cases, the menthyl group at the phosphorus atom and the substituent on the oxazoline 

ring show a syn-arrangement in the complex. The four solid state structures show similar 

geometries. The bite-angle is slightly larger in the complexes 124 and 126 (N-Ir-P: ~87.5°) as 

compared to the methyl derivatives 123 and 125 (N-Ir-P: ~85.5°). 

The synthesis of diastereoisomeric ligands which should exhibit a trans-positioning of these 

groups was supposed to combine the already used phenyloxazolines 119 with 

menthylphosphine dichloride (129), derived from the menthyl chloride (130) prepared from 

(+)-menthol. As expected, the synthesis of 129 proceeded without deviation from the 

preparation of 97. Unfortunately, the diastereoselectivity decreased tremendously in the next 

step and the phosphino-oxazolines were obtained as a 1:5 mixture of diastereoisomers. 

Neither the ligands nor the complexes could be purified by column chromatography or 

crystallization. An attempt to purify a borane protected phosphino-oxazoline by 

semipreparative chiral HPLC resulted in only a low amount of recovered compound. 

Moreover, the complexation following the deprotection step proceeded with very low yield 

and did not give a pure compound. 

PR2

Ir
N

O

R1

119 129

+ BArF
Cl2P

N

O

R1

 

Scheme 3.14. Attempted synthesis of iridium-phosphinoxazoline complexes. 

 

The diastereoselectivity of the addition reaction of menthylphosphine dichloride to 

phenyloxazolines with a stereogenic center shows a dependence on the combinations of the 

enantiomers employed, leading to a matched and mismatched case. Whereas the connection 

of the phosphine dichloride derived from (–)-menthol with oxazolines having  

(S)-configuration generates products of high diastereomeric purity, the employment of the 

enantiomeric phosphine dichloride results in a lower stereoselectivity. The high selectivity in 

the matched case is also an outcome of the inherent selectivity of the phosphine dichloride 

towards nucleophilic addition. When an achiral, bulky nucleophile, such as 1-

(diphenylphosphino)-2-lithiobenzene, is used, the same configuration at the phosphorus-atom 

is generated as seen in the matched case reaction with phenyloxazolines (Figure 3.15). 
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120

N

O

R1R2
P

R3P
PPh2

 

Figure 3.15. (–)-Menthyl-induced stereochemistry on the phosphorus atom. 

 

 

3.2.2 Asymmetric Hydrogenation 

 

 

The P-chiral phosphino-oxazoline-iridium complexes were employed in the asymmetric 

hydrogenation of various substrates (Figure 3.7). 

 

131
MeO

132
MeO

133
MeO

134
MeO

135

MeO
136

CO2Et

74

OH

73

N

137  

Figure 3.7. Substrates for the Ir-catalyzed asymmetric hydrogenation. 

 

The substrate set consisted of unfunctionalized trisubstituted olefins with either different 

substitution patterns (131, 132, 133) or an endocyclic double bond (136). A terminal olefin 

(134) and a tetrasubstituted alkene (135) were also tested. Additionally, an �,β-unsaturated 

ester (74), an allylic alcohol (73) and a ketimine (137) were hydrogenated. 
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Table 3.1. Hydrogenation of E-1,2-diphenylpropene (131). 

*

131 H2-131  

Entrya Precatalyst R conv. [%]b ee [%]c 

1 Me (121) 84 rac. 

2 
P

R

Ir

BArF

N

O

 Ph (122) 32 6 (S) 

3 Me (123) >99 78 (R) 

4 
P

R

Ir

BArF

N

O

 Ph (124) 93 83 (R) 

5 Me (125) >99 63 (R) 

6 
P

R

Ir

BArF

N

O

 Ph (126) 98 79 (R) 

7 Me (127) >99 46 (R) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) 98 70 (R) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by GC. cDetermined by chiral HPLC. 
 

In the reduction of the stilbene 131, the catalysts with a methyl-substituted phosphorus atom 

gave generally higher conversions than the phenyl-derivatives. The catalysts with a dimethyl-

substituted oxazoline ring were of significantly reduced activity (Table 3.1, entries 1 and 2). 

These iridium complexes also showed almost no selectivity. Catalysts with a chiral center on 

the oxazoline ring performed better. Up to 83% ee were achieved with the iso-propyl-

substituted complex 124 (entry 4). A phenyl substituent on the phosphorus atom generally led 

to higher enantioselectivities.  

 

 

 

 

 

 

 

 

 



P-Chiral Phosphino-Oxazolines as Ligands in the Iridium-Catalyzed Asymmetric Hydrogenation 

 

165 

Table 3.2. Hydrogenation of E-2-(4-methoxyphenyl)-2-butene (132). 

MeO MeO

*

132 H2-132  

Entrya Precatalyst R conv. [%]b ee [%]b 

1 Me (121) >99 rac. 

2 
P

R

Ir

BArF

N

O

 Ph (122) >99 rac. 

3 Me (123) >99 85 (R) 

4 
P

R

Ir

BArF

N

O

 Ph (124) >99 76 (R) 

5 Me (125) >99 85 (R) 

6 
P

R

Ir

BArF

N

O

 Ph (126) >99 80 (R) 

7 Me (127) >99 90 (R) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) >99 83 (R) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by chiral GC. 
 

The olefin 132 was hydrogenated with complete conversion by all catalysts tested (Table 3.2). 

As observed before, the complexes with a geminal dimethyl group on the oxazoline gave no 

selective catalysts. In the other cases, a methyl-substituent on the phosphorus atom led to 

better selectivity than a phenyl-substituent. With the phenylalanine-derived complex 127 90% 

ee were obtained (entry 7). 
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Table 3.3. Hydrogenation of Z-2-(4-methoxyphenyl)-2-butene (133). 

MeO MeO

*

133 H2-133  

Entrya Precatalyst R conv. [%]b ee [%]b 

1 Me (121) >99 8 (S) 

2 
P

R

Ir

BArF

N

O

 Ph (122) 96 rac. 

3 Me (123) >99 rac. 

4 
P

R

Ir

BArF

N

O

 Ph (124) 95 5 (S) 

5 Me (125) >99 9 (R) 

6 
P

R

Ir

BArF

N

O

 Ph (126) >99 12 (R) 

7 Me (127) >99 29 (S) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) >99 rac. 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by chiral GC. 
 

The Z-configured olefin 133 showed a distinctly different behaviour than its E-isomer 132 

(Table 3.3). Although the conversions were usually complete, the selectivities were very low. 

Interestingly, the complexes with a tert-butyl-substituted oxazoline (125, 126) favoured the 

same product configuration with both isomers 132 and 133 whereas complex 127 gave the 

opposite enantiomer. 
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Table 3.4. Hydrogenation of 2-(4-methoxyphenyl)-1-butene (134). 

MeO MeO

*

134 H2-134  

Entrya Precatalyst R conv. [%]b ee [%]b 

1 Me (121) >99 25 (S) 

2 
P

R

Ir

BArF

N

O

 Ph (122) >99 rac. 

3 Me (123) >99 74 (S). 

4 
P

R

Ir

BArF

N

O

 Ph (124) >99 63 (S) 

5 Me (125) >99 80 (S) 

6 
P

R

Ir

BArF

N

O

 Ph (126) >99 71 (S) 

7 Me (127) >99 87 (S) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) >99 84 (S) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 1 bar 
hydrogen pressure for 2 h. bDetermined by chiral GC. 
 

The hydrogenation of terminal olefin 134 was achieved at ambient pressure giving full 

conversion with all catalysts tested. The enantioselectivities of the dimethyloxazoline-derived 

catalysts were very low (Table 3.4 entries 1 and 2). On the other hand, up to 87% ee could be 

obtained with complex 127 (entry 7). A methyl-substituted phosphorus atom was beneficial 

for enantioselectivity. Reduction under 50 bar of hydrogen pressure gave only racemic 

product in every experiment. 
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Table 3.5. Hydrogenation of 2-(4-methoxyphenyl)-3-methyl-2-butene (135). 

MeO MeO

*

135 H2-135  

Entrya Precatalyst R conv. [%]b ee [%]b 

1 Me (121) 16 8 (+) 

2 
P

R

Ir

BArF

N

O

 Ph (122) <1 - 

3 Me (123) <1 - 

4 
P

R

Ir

BArF

N

O

 Ph (124) 4 9 (–) 

5 Me (125) <1 - 

6 
P

R

Ir

BArF

N

O

 Ph (126) <1 - 

7 Me (127) <1 - 

8 
P

R

Ir

BArF

N

O

 
Ph (128) <1 - 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by chiral GC. 
 

The tetrasubstituted olefin 135 showed only low reactivity towards the tested iridium 

complexes (Table 3.5). Only 121 and 124 gave measurable conversions accompanied by low 

selectivites. 

 

 

 

 

 

 

 

 

 

 

 

 

 



P-Chiral Phosphino-Oxazolines as Ligands in the Iridium-Catalyzed Asymmetric Hydrogenation 

 

169 

Table 3.6. Hydrogenation of 7-methoxy-4-methyl-1,2-dihydro-naphthalene (136). 

MeO MeO

*

136 H2-136  

Entrya Precatalyst R conv. [%]b ee [%]c 

1 Me (121) 60 13 (S) 

2 
P

R

Ir

BArF

N

O

 Ph (122) 64 11 (S) 

3 Me (123) 87 55 (S) 

4 
P

R

Ir

BArF

N

O

 Ph (124) 84 44 (S) 

5 Me (125) 73 39 (S) 

6 
P

R

Ir

BArF

N

O

 Ph (126) 86 60 (S) 

7 Me (127) 95 60 (S) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) 96 50 (S) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by GC. cDetermined by chiral HPLC. 
 

The hydrogenation results of the cyclic substrate 136 showed no clear trend (Table 3.6). On 

average, the conversions increase by changing the substitution on the oxazoline ring from 

dimethyl to iso-propyl, tert-butyl and benzyl. Comparing the substitution on the phosphorus 

atom with the same oxazoline group present, more active catalysts were also more selective 

but the preference of methyl or phenyl is different in each case. Again, the complexes with a 

dimethyl-substituted oxazoline exhibited significantly lower enantioselectivities (entries 1 and 

2). The best result was achieved with complex 127 giving the hydrogenation product in 60% 

ee with 95% conversion (entry 7). 
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Table 3.7. Hydrogenation of ethyl E-2-methylcinnamate (74). 

CO2Et CO2Et
*

74 H2-74  

Entrya Precatalyst R conv. [%]b ee [%]b 

1 Me (121) 84 72 (R) 

2 
P

R

Ir

BArF

N

O

 Ph (122) 47 20 (R) 

3 Me (123) >99 86 (R) 

4 
P

R

Ir

BArF

N

O

 Ph (124) 82 63 (R) 

5 Me (125) >99 91 (R) 

6 
P

R

Ir

BArF

N

O

 Ph (126) 47 54 (R) 

7 Me (127) >99 79 (R) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) >99 69 (R) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by chiral GC. 
 

The asymmetric hydrogenation of ester 74 gave generally higher conversions with a methyl-

substituted phosphorus atom, leading to full conversion except with complex 121 which still 

formed 84% of product (Table 3.7, entry 1). The more active catalysts also generated the 

saturated ester with higher enantioselectivities than the phenyl-derivatives. The best result 

was obtained with complex 125, which gave full conversion and an enantiomeric excess of 

91% (entry 5). Interestingly, the dimethyloxazoline-derived complex 121 gave not, as 

observed in the previous experiments, one of the least selective catalysts (entry 1). It 

outperformed all other phenyl-substituted complexes but was still inferior to the other 

methylphosphine-catalysts. 
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Table 3.8. Hydrogenation of ethyl E-2-methyl-3-phenylprop-2-enol (73). 

OH OH*

73 H2-73  

Entrya Precatalyst R conv. [%]b ee [%]c 

1 Me (121) >99d n.d. 

2e Me (121) 60f 22 (–) 

3 Ph (122) >99d n.d. 

4e 

P
R

Ir

BArF

N

O

 

Ph (122) 30f rac. 

5 Me (123) >99 87 (–) 

6 
P

R

Ir

BArF

N

O

 Ph (124) >99 80 (–) 

7 Me (125) >99g n.d. 

8e Me (125) 92 67 (–) 

9 Ph (126) >99g n.d. 

10e 

P
R

Ir

BArF

N

O

 

Ph (126) >99 75 (–) 

11 Me (127) >99 83 (–) 

12 
P

R

Ir

BArF

N

O

 
Ph (128) >99 80 (–) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by GC. cDetermined by chiral HPLC. dMore than 80% side products 
were observed. eTFE as solvent. fUp to 10% side products were observed. g60% side prodcucts were observed. 
 

In the hydrogenation of allylic alcohol 73, clean conversions under standard conditions were 

only observed with the iso-propyl- (123, 124) and benzyl-substituted (127, 128) oxazolines 

(Table 3.8). To suppress the formation of side products in the other cases, 2,2,2-

trifluoroethanol had to be used as solvent. 2,2,2-Trifluoroethanol as an additive was not 

sufficient. The conversions were usually complete except for the dimethyloxazoline-derived 

complexes. In most cases a methyl-substituted phosphorus atom was superior and the best 

selectivity was obtained with complex 123 with an enantiomeric excess of 87%.  
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Table 3.9. Hydrogenation of ethyl E-phenyl-(1-phenylethylidene)amine (137). 

N N
H

*

137 H2-137  

Entrya Precatalyst R conv. [%]b ee [%]c 

1 Me (121) >99 59 (R) 

2 
P

R

Ir

BArF

N

O

 Ph (122) >99 45 (R) 

3 Me (123) >99 71 (R) 

4 
P

R

Ir

BArF

N

O

 Ph (124) >99 77 (R) 

5 Me (125) >99 75 (R) 

6 
P

R

Ir

BArF

N

O

 Ph (126) >99 71 (R) 

7 Me (127) >99 55 (R) 

8 
P

R

Ir

BArF

N

O

 
Ph (128) >99 62 (R) 

aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst at room temperature under 50 bar 
hydrogen pressure for 2 h. bDetermined by GC. cDetermined by chiral HPLC. 
 

The imine 137 was a very reactive substrate giving full conversion with all catalysts tested 

(Table 3.9). Changing between a methyl- and a phenyl-substituted phosphorus atom had an 

effect on the enantioselectivity of the catalyst but the impact was different for each oxazoline. 

The best selectivity was given by complex 124, forming the amine product with 77% ee. As 

already seen in the reduction of the unsaturated ester 74, the dimethyloxazoline-derived 

complexes 121 and 122 were only slightly inferior compared to the general observations 

made in the hydrogenation reactions with the other substrates.  

Since the Ir-catalyzed reduction of imines has been proposed to proceed via different 

intermediates than the hydrogenation of unfunctionalized olefins,[1] the chirality on the 

phosphorus atom has a different influence. Whereas the configuration of the phosphine seems 

to play a minor role in the hydrogenation of olefins, the selectivity obtained in the imine-

reduction implies that the structures of the catalytic intermediates are substantially different. 

In this respect, the results of the hydrogenation of ester 74 (Table 3.7) also suggest alternative 

catalytic intermediates for the Ir-catalyzed reduction, because complex 121, poorly selective 

in the other cases, was able to achieve 72% ee. 
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3.2.3 Influence of Temperature in the Reduction of 2-(4-

Methoxyphenyl)-1-butene 
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Figure 3.8. Temperature dependent enantioselectivity in the hydrogenation of 134. 

 

 

Table 3.10. Hydrogenation of 134 at variable temperature. 

Entrya T [°C] Precatalyst ee [%]c Precatalyst ee [%]c 

1 –20 72 50 

2 0 86 77 

3 10 87 - 

4 25 87 63 

5c 40 72 63 

6c 60 

P
Ir

BArF

N

O

 

59 

P
Ph

Ir

BArF

N

O

 

55 
aReaction was carried out in a 0.1 M CH2Cl2 solution with 1 mol% precatalyst under 1 bar hydrogen pressure for 
2 h, giving full conversion in all cases. bDetermined by chiral GC. cClCH2CH2Cl as solvent. 
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Since the hydrogenation of the terminal olefin 134 with the types of catalysts tested in this 

work gave high enantioselectivities compared to other PHOX-ligands,[2] a brief look at 

variable conditions was taken. Changing the temperature in the hydrogenation at ambient 

pressure had a pronounced effect on the selectivity (Figure 3.8, Table 3.10). Due to the 

boiling point of dichloromethane, reactions above room temperature had to be carried out in 

1,2-dichloroethane. An experiment comparing these two reaction media at ambient 

temperature showed no solvent effect. Whereas up to 87% ee was obtained when the reaction 

was carried out with complex 127 at room temperature, lowering and increasing the 

temperature had a disadvantageous effect in the enantiomeric excess. The same trend was 

observed for complex 124 for which 77% ee were obtained at 0 °C and the selectivities were 

worse at –20 °C or room temperature. 

Similar observations involving olefin 134 have already been made with Ir-phosphino-oxazolin 

catalysts.[2] This behaviour seems to be a shared feature of the combination of substrate 134 

and the phosphino-oxazoline catalyst system. 

 

 

3.2.4 Conclusions 

 

 

For all substrates tested there exist catalysts which are able to form the hydrogenation 

products with enantiomeric excesses above 95%.[3] However, many of these iridium-based 

systems are structurally and electronically different from the tested phosphino-oxazoline-Ir-

complexes and thus difficult to compare with the catalysts described in this chapter. Therefore 

the following comparison will focus only on the complexes structurally related to the catalysts 

tested. 

The iridium complexes of menthol-derived P-chiral phosphino-oxazolines generally gave 

very active catalysts and in this respect reflect the behaviour of the established systems.[3] 

Compared to previously reported results in the hydrogenation of olefins with Ir-phosphino-

oxazoline complexes with[4] or without[5] a stereogenic phosphorus atom, the menthol derived 

ligands gave catalysts which were usually less enantioselective. However, in the case of the 

unsaturated ester 74 the selectivity was comparable, and the terminal olefin 134 was 

hydrogenated with higher enantiomeric excess (87% ee) than previously reported with 

phosphino-oxazoline-based complexes (76% ee).[2] 
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Interestingly, the best menthol-derived catalyst in the hydrogenation of stilbene 131 and the 

structurally related imine 137 had a phenyl substituent on the phosphorus atom, whereas the 

other substrates gave better results with catalysts bearing a methyl group. 

Iridium complexes 121 and 122, having the only stereogenic center at the phosphorus atom, 

usually induced low enantioselectivities with the unfunctionalized olefins. The comparatively 

high asymmetric induction in the hydrogenation of the ester 74 and the imine 137 might 

originate from different types of catalytic intermediates as those operating in the reduction of 

unfunctionalized olefins. 

Except for stilbene 131, the experiments that gave a reasonable enantiomeric excess showed 

that the complexes having only an asymmetric phosphorus atom favored the formation of the 

same enantiomer as the catalysts with an additional stereogenic center on the oxazoline ring. 

The general experience that the configuration on the oxazoline ring has a dominating effect in 

the enantioselective hydrogenation over the influence of the phosphorus center, suggests that 

the complexes 123-128 represent the matched combination of the stereogenic centers. A final 

proof of this theory is still missing since the selective sythesis of the diastereomeric 

complexes could not be achieved. 

The enantioselectivities in the reduction of the terminal olefin were shown to depend on the 

temperature applied. Reactions at low and high temperatures gave lower enantiomeric 

excesses than reactions at 0-25 °C. 
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4.1 Working Techniques and Reagents 

 

 

The synthetic procedures were performed in dried glassware under argon using Schlenk 

techniques. For the preparation of the hydrogenation experiments a glove box (MBraun 

Labmaster 130) was used. 

Commercially available reagents were purchased from Acros, Aldrich, Fluka, Strem or TCI 

and used as received. N,N,N,N-Tetramethylethylenediamine and diethyl amine were distilled 

from calcium hydride. 1-Bromo-2-(N,N-dimethylamino)ethylferrocene (3)[1] and 1-

diphenylphosphino-3-ethyl-2-formylferocene (45) were provided by Solvias AG. The chiral 

phenyl oxazolines 118 were prepared according literature procedures.[2] 

The solvents were distilled from calcium hydride (dichloromethane, triethylamine) or sodium 

(diethyl ether, pentane, tetrahydrofurane, toluene), collected from a purification column 

system (PureSolv, Innovative Technology Inc.), or purchased from Aldrich or Fluka in 

septum-sealed bottles over molecular sieves. 

Column chromatographic purifications were performed on Fluka silica gel 60 (Buchs, particle 

size 40-63 nm). The eluents were of technical grade and distilled prior to use.  

 

 

4.2 Analytical Methods 

 

 

NMR-Spectroscopy (NMR): NMR spectra were measured on a Bruker Avance 400 (400 

MHz) or a Bruker Avance 500 (500 MHz) spectrometer. The chemical shifts (�) are given in 

ppm. 1H and 13C spectra are referenced relative to tetramethylsilane (� = 0 ppm) using the 

solvent residual peaks (CDCl3 7.26 ppm, CD2Cl2 5.32 ppm, C6D6 7.15 ppm, CD3OD 3.31 

ppm) and the signals of the deuterated solvents (CDCl3 77.0 ppm, CD2Cl2 53.1ppm, C6D6 

128.02 ppm, CD3OD 49.05 ppm), respectively as internal standards. 31P spectra are calibrated 

relative to 85% phosphoric acid (� = 0 ppm) as external standard. The assignment of 1H and 
13C signals was realized with the help of DEPT and two-dimensional correlation experiments 

(COSY, HMQC, HMBC and NOESY). Multiplets are assigned as s (singlet), d (doublet), t 

(triplet), q (quartet), quin (quintet), sep (septet), m (multiplet) and br (broad). If possible, 

signals were assigned pro-(R) (CR, HR) and pro-(S) (CS, HS) in terms of stereochemistry. 
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Infrared Spectroscopy (IR): Infrared spectra were collected on a Perkin Elmer 1600 series 

FTIR spectrometer. The spectra of liquids and oils were measured as thin films between two 

sodium chloride plates, those of solid samples as potassium bromide discs. The absorption 

bands are given in wavenumbers (ν~  [cm-1]). The peak intensity is described by s (strong), m 

(medium) and w (weak). 

 

Mass Spectrometry (MS): Mass spectra were measured by Dr. H. Nadig (Department of 

Chemistry, University of Basel) on a VG70-250 spectrometer (electron-impact ionization 

(EI)) or on a MAR 312 spectrometer (fast atom bombardment (FAB)). FAB was performed 

with 3-nitrobenzyl alcohol (NBA) as matrix. 

ESI-MS spectra were measured by Mr. C. Ebner (Department of Chemistry, University of 

Basel) on a Finnigan MAT LCQ. 

The signals are given in mass-to-charge ratios (m/z) with the relative intensity in brackets. 

 

Elemental Analysis (EA): Elemental analyses were measured by Mr. W. Kirsch (Department 

of Chemistry, University of Basel) on a Leco CHN-900. The data are indicated in mass 

percent. 

 

Melting Points (m.p.): Melting points were determined on a Gallenkamp melting point 

apparatus and are uncorrected. 

 

Optical Rotations ([�] 20
D ): Optical rotations were measured on a Perkin Elmer Polarimeter 

341 in a cuvette (l = 1 dm) at 20 °C. The concentration (c) is given in g/100 mL. 

 

Gas Chromatography (GC): Gas chromatograms were collected on Carlo Erba HRGC 

Mega2 Series 800 (HRGS Mega 2) instruments. Achiral separations were performed on a 

Restek Rtx-1701 (30 m × 0.25 mm × 0.25 μm) and Macherey-Nagel Optima 5-Amin (30 m × 

0.25 mm × 0.5 μm) column. Chiral separations were achieved on Chiraldex γ–cyclodextrin 

TFA G-TA (30 m × 0.25 mm × 0.12 μm) and Brechbühler β–cyclodextrin DEtTButSil 

(SE54) (25 m × 0.25 mm × 0.25 μm) columns.  

 

High Performance Liquid Chromatography (HPLC): HPLC analyses were measured on 

Shimadzu systems with SLC-10A system controller, CTO-10AC column oven, LC10-AD 

pump system, DGU-14A degasser and SPD-M10A diode array- or UV/VIS detector. Chiral 
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columns Chiracel AD-H, OD-H or OJ (2.6×250 mm) from Daicel Chemical Industries were 

used. 

 

Semipreparative High Performance Liquid Chromatography (HPLC): Separations by 

semipreparative HPLC were performed on Shimadzu systems with SIL 10 Advp autosampler, 

CTO 10 Asvp column oven, LC 10 Atvp pump system, FCV 10 Alvp degasser and SPD M10 

Avp diode array detector. A Daicel Chiracel AD (2×25 cm) column was used in this case. 

 

Thin Layer Chromatography (TLC): TLC plates were obtained from Macherey-Nagel 

(Polygram SIL/UV254, 0.2 mm silica with fluorescence indicator). UV light (254 nm) or, 

when indicated, basic potassium permanganate solution were used for the visualization of the 

respective compounds. 

 

 

4.3 Experimental Procedures 

 

 

4.3.1 Preparation of Ferrocenephospholanes 

 

 

(S)-(�5-2,4-cyclopentadien-1-yl)(�5-1-bromo-2-ethenyl-

cyclopenta-2,4-dien-1-yl)iron (4) 

 

A degassed solution of (R,SP)-1-bromo-2-(N,N-

dimethylamino)ethylferrocene (3) (3.00 g, 8.93 mmol) in Ac2O 

(50 mL) was heated at 140 °C for 3.5 h. The solvent was 

evaporated under reduced pressure, the residue dissolved in 

Et2O (40 mL), extracted 3 times with sat. aq. NaHCO3 and dried over MgSO4. The solvent 

was evaporated under reduced pressure and the residue purified by column chromatography 

(SiO2, 10×5 cm, hexanes) to give the title compound 4 as a red liquid (2.30 g, 89%).  

 

C12H11BrFe (290.96 g/mol) 
1H-NMR (C6D6): �/ppm = 3.78 (t, 3JHH = 2.5 Hz, 1H, C(Br)CHCH), 3.93 (s, 5H, Cp-CH), 

4.16 (dd, 3JHH = 2.5 Hz, 4JHH = 1.5 Hz, 1H, C(Br)CCHCH), 4.27 (dd, 3JHH = 2.5 Hz, 4JHH = 

Fe

Br
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1.5 Hz, 1H, C(Br)CH), 5.07 (dd, 2JHH = 1.5 Hz, 3JHH = 10.6 Hz, 1H, CHCHEHZ), 5.38 (dd, 
2JHH = 1.5 Hz, 3JHH = 17.7 Hz, 1H, CHCHEHZ), 6.69 (dd, 3JHH = 10.6 Hz, 3JHH = 17.7 Hz, 1H, 

CHCH2). 
13C{1H}-NMR (C6D6): �/ppm = 63.5 (s, C(Br)CCH), 67.2 (s, C(Br)CHCH), 71.1 (s, 

C(Br)CH), 72.1 (s, Cp-CH), 79.9 (s, CBr), 82.1 (s, C(Br)C), 113.1 (s, CH2), 132.7 (s, 

CHCH2). 

IR (NaCl): ν~ /cm–1 = 3091(s), 3008(m), 2981(m), 2925(m), 2857(m), 2700(w), 2461(w), 

2251(w), 2189(w), 2111(w), 2054(w), 1963(w), 1894(w), 1778(m), 1722(m), 1629(s), 

1461(m), 1409(s), 1387(s), 1327(s), 1289(m), 1250(s), 1167(m), 1106(s), 1060(s), 1028(s), 

998(s), 953(s), 901(s), 820(s), 716(s), 648(s). 

MS (EI): m/z(%) = 293(14), 292(93), 291(17), 289(100), 208(34), 155(35), 154(41), 153(68), 

152(32), 128(12), 89(13), 56(15). 

[�] 20
D = +794 (c = 0.66, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C12H11BrFe: C: 49.53, H: 3.81; measured: C: 49.56, H: 3.88. 

Rf (SiO2, hexane): 0.31. 

 

 

 

(S,SP)-(�5-2,4-cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-

butyl-(1,2,3-trihydro-cyclopenta[b]phosphole-3a-yl]iron (6) 

 

Procedure 1: 

To a solution of 4 (302 mg, 1.04 mmol) in THF (5 mL) was 

added n-butyllithium (1.6 M in hexane, 0.70 mL, 1.12 mmol) at 

–78 °C. After 30 min this was added via cannula to a solution of 

tert-butylphosphine dichloride (190 mg, 1.19 mmol) in THF (5 mL). After additional 30 min 

LiAlH4 (2 M in THF, 1.00 mL, 2.00 mmol) was added and the reaction mixture was allowed 

to warm up to –10 °C. 2 M aq. NaOH was added until no more gas was formed. The 

suspension was filtered over a pad of silica eluting with ethyl acetate and the solvent was 

evaporated under reduced pressure. The residue was dissolved in THF (5 mL) and a solution 

of iPr2NH (0.20 mL, 1.42 mmol) and n-butyllithium (1.6 M in hexane, 0.85 mL, 1.36 mmol) 

in THF (5 mL) (prepared at 0 °C) was added. The reaction mixture was stirred at room 

temperature for 18 h and then extracted with sat. aq. NaCl. The organic layer was dried over 

MgSO4 and the solvent evaporated under reduced pressure. Purification by column 

Fe

P
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chromatography (SiO2, 15×4 cm, hexanes:EtOAc:NEt3 (300:1:3 � 100:1:1)) gave the title 

compound 6 (204 mg, 65%) as an orange oil which solidified on standing. 

 

Procedure 2: 

To a solution of 4 (950 mg, 3.26 mmol) in THF (20 mL) was added n-butyllithium (1.6 M in 

hexane, 2.30 mL, 3.68 mmol) at –78 °C. After 30 min a solution of tert-butylphosphine 

dichloride (575 mg, 3.62 mmol) in THF (10 mL) was added. After additional 30 min LiAlH4 

(1 M in THF, 5.00 mL, 5.00 mmol) was added and the reaction mixture was allowed to warm 

up to –30 °C. 2 M aq. NaOH was added until no more gas was formed. The suspension was 

filtered over a pad of silica eluting with ethyl acetate and the solvent was evaporated under 

reduced pressure. The residue was dissolved in THF (10 mL) and a solution of iPr2NH 

(0.60 mL, 4.25 mmol) and n-butyllithium (1.6 M in hexane, 2.60 mL, 4.16 mmol) in THF 

(5 mL) (prepared at 0 °C) was added. The reaction mixture was stirred at room temperature 

for 18 h and then extracted with sat. aq. NaCl. The organic layer was dried over MgSO4 and 

the solvent evaporated under reduced pressure. Purification by column chromatography (SiO2, 

15×4 cm, hexanes:EtOAc:NEt3 (300:1:3 to 100:1:1)) gave the title compound 6 (690 mg, 

70%) as an orange oil which solidified on standing. 

 

C16H21FeP (300.16 g/mol) 
1H-NMR (C6D6): �/ppm = 0.93 (d, 9H, 3JHP = 11.6 Hz, C(CH3)3), 1.95-2.01 (m, 1H, 

(CH3)3CPCHRHS), 2.32-2.50 (m, 3H, (CH3)3CPCHRHSCH2), 3.97 (s, 5H, Cp-CH), 4.04 (dd, 

1H, 3JHH = 2.4 Hz, 4JHH = 0.8 Hz, C(P)CCH, 4.10 (dd, 1H, 3JHH = 2.4 Hz, 3JHH = 2.2 Hz, 

C(P)CHCH), 4.19 (dd, 1H, 3JHH = 2.2 Hz, 4JHH = 0.8 Hz, C(P)CH). 
13C{1H}-NMR (C6D6): �/ppm = 26.7 (d, 1JCP = 18.1 Hz, PCH2), 27.4 (d, 2JCP = 5.2 Hz, 

PCH2CH2), 27.5 (d, 2JCP = 15.1 Hz, C(CH3)3), 31.1 (d, 1JCP = 18.1 Hz, C(CH3)3), 64.2 (s, 

C(P)CCH), 68.1 (d, 2JCP = 15.5 Hz, C(P)CH), 70.1 (d, JCP = 1.7 Hz, Cp-CH), 73.2 (d, 
3JCP = 1.7 Hz, C(P)CHCH), 83.1 (d, 2JCP = 12.9 Hz, C(P)C), 99.3 (d, 1JCP = 0.9 Hz, CP). 
31P{1H}-NMR (C6D6): �/ppm = –1.7 (s). 

IR (KBr): ν~ /cm–1 = 3087(m), 2935(s), 2855(s), 1761(w), 1694(w), 1641(m), 1464(s), 

1410(m), 1389(m), 1358(m), 1278(m), 1217(w), 1179(m), 1139(w), 1103(m), 1053(w), 

1004(m), 814(s), 692(w), 644(w), 505(m), 471(s). 

MS (FAB): m/z(%) = 300(26), 243(100), 177(7), 176(7), 151(6), 121(10). 

[�] 20
D = +70 (c = 0.27, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C16H21FeP: C: 64.02, H: 7.05; measured: C: 63.92, H: 6.82. 
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Rf (SiO2, hexanes:EtOAc:NEt3 (50:1:1)): 0.26. 

m.p.: 66-70 °C. 

 

 

 

(S)-(�5-2,4-cyclopentadien-1-yl)[�5-1-(diphenoxy-

phosphoryl)-2-ethenyl-cyclopenta-2,4-dien-1-yl]iron (10) 

 

To a solution of 4 (740 mg, 2.54 mmol) in THF (10 mL) was 

added n-butyllithium (1.6 M in hexane, 1.75 mL, 2.80 mmol) at 

–78 °C. After 30 min this was added via cannula to a solution of 

diphenyl phosphoryl chloride (0.60 mL, 1.19 mmol) in THF 

(10 mL) at –78 °C. After 30 min water (2 mL) was added and the reaction mixture was 

allowed to warm up to room temperature. The organic layer was extracted with sat. aq. 

NaHCO3 and sat. aq. NaCl, dried over MgSO4 and the solvent was evaporated under reduced 

pressure. Column chromatography (SiO2, 10×5 cm, hexanes:EtOAc (2:1)) gave the title 

compound 10 (957 mg, 85%) as an orange oil which crystallized upon treatment with hexane. 

 

C24H21FeO3P (444.24 g/mol) 
1H-NMR (CDCl3): �/ppm = 4.20 (s, 5H, Cp-CH), 4.48 (dt, 4JHP = 2.6 Hz, 3JHH = 2.6 Hz 1H, 

C(P)CHCH), 4.65-4.68 (m, 1H, C(P)CH), 4.76-4.80 (m, 1H, C(P)CCH), 5.16 (dd, 
2JHH = 1.4 Hz, 3JHH = 10.8 Hz, 1H, CHCHEHZ), 5.46 (dd, 2JHH = 1.4 Hz, 3JHH = 17.5 Hz, 1H, 

CHCHEHZ), 6.95 (dd, 3JHH = 10.8 Hz, 3JHH = 17.5 Hz, 1H, CHCH2), 7.10-7.35 (m, 10H, Ar-

CH). 
13C{1H}-NMR (CDCl3): �/ppm = 64.4 (d, 1JCP = 217.6 Hz, CP), 68.6 (d, 3JCP = 14.7 Hz, 

C(P)CCH), 71.2 (s, Cp-CH), 71.3 (d, 3JCP = 15.0 Hz, C(P)CHCH), 74.0 (d, 2JCP = 15.4 Hz, 

C(P)CH), 86.8 (d, 2JCP = 16.5 Hz, C(P)C), 113.8 (s, CHCH2), 120.6 (d, JCP = 4.6 Hz, Ar-CH), 

120.7 (d, JCP = 4.5 Hz, Ar-CH), 124.9 (s, Ar-CH), 129.5 (s, Ar-CH), 129.6 (s, Ar-CH), 132.4 

(s, CHCH2), 150.6 (d, 2JCP = 8.4 Hz, Ar-C), 150.7 (d, 2JCP = 7.6 Hz, Ar-C). 
31P{1H}-NMR (CDCl3): �/ppm = 16.6 (s). 

IR (KBr): ν~ /cm–1 = 3097(m), 3056(w), 1950(w), 1828(w), 1778(w), 1745(w), 1661(w), 

1622(w), 1589(m), 1486(s), 1406(m), 1261(s), 1211(s), 1184(s), 1078(m), 999(m), 930(s), 

822(m), 756(s), 690(m), 570(m)517(m), 486(m). 

MS (EI): m/z(%) = 444(100), 285(5), 165(6), 121(5). 
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[�] 20
D = +599 (c = 0.34, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C24H21FeO3P: C: 64.89, H: 4.76; measured: C: 64.81, H: 4.84. 

Rf (SiO2, hexanes:EtOAc (5:1)): 0.19. 

m.p.: 76-78 °C. 

 

 

 

(S,SP)-(�5-2,4-cyclopentadien-1-yl)[�5-2-(1-

dimethylaminoethyl)-1-trimethylsilyl-cyclopenta-2,4-dien-1-

yl]iron (11) 

 

To a solution of (R)-1 (1.00 g, 3.89 mmol) in Et2O (10 mL) was 

added sec-butyllithium (4.90 mL, 1.3 M in hexane/cyclohexane, 

6.37 mmol) at 0 °C. After 4 h the solution was cooled to –78 °C 

and trimethylsilyl chloride (0.70 mL, 5.46 mmol) was added and the reaction mixture was 

allowed to warm up to room temperature. After addition of water (2 mL), followed by 

extraction with sat. aq. NaHCO3 and sat aq. NaCl, the organic layer was dried over MgSO4 

and the solvent was removed under reduced pressure. Column chromatography (SiO2, 

10×5 cm, TBME:NEt3 (1000:5)) gave the title compound 11 (1.18 g, 91%) as a dark orange 

oil. 

 

C17H27FeNSi (329.33 g/mol) 
1H-NMR (C6D6): �/ppm = 0.36 (s, 9H, Si(CH3)3), 1.04 (d, 3JHH = 6.7 Hz, 3H, CHCH3), 1.99 

(s, 6H, N(CH3)2), 3.80 (q, 3JHH = 6.7 Hz, 1H, CHCH3), 3.96 (s, 5H, Cp-CH), 4.03-4.01 (m, 

1H, C(Si)CH), 4.10 (t, 3JHH = 2.3 Hz, 1H, C(Si)CHCH), 4.11-4.13 (m, 1H, C(Si)CCH). 
13C{1H}-NMR (C6D6): �/ppm = 0.3 (s, Si(CH3)3), 7.7 (s, CHCH3), 39.2 (s, N(CH3)2), 58.1 (s, 

CHCH3), 69.1 (s, Cp-CH), 69.1 (s, C(Si)CHCH), 70.1 (s, C(Si)CCH), 72.0 (s, CSi), 75.1 (s, 

C(Si)CH), 96.6 (s, C(Si)C). 

IR (NaCl): ν~ /cm–1 = 3093(w), 2965(m), 2817(w), 2775(w), 1451(w), 1402(w), 1361(w), 

1242(m), 1188(w), 1155(w), 1098(w), 1064(w), 1002(w), 931(w), 834(s), 755(w), 687(w). 

MS (EI): m/z(%) = 401(5), 357(6), 331(5), 330(17), 329(67), 315(9), 314(34), 287(6), 

286(24), 285(100), 284(16), 283(8), 271(5), 269(9), 258(13), 256(11), 243(8), 212(5), 121(7), 

73(15), 72(19). 

[�] 20
D = +17.9 (c = 0.65, CHCl3 / 0.75% EtOH). 
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EA: calulated for C17H27FeNSi: C: 62.00, H: 8.26, N: 4.25; measured: C: 62.12, H: 8.19, 

N: 4.04. 

Rf (SiO2, TBME:NEt3 (1000:5)): 0.59. 

 

 

 

(S,RP)-(�5-2,4-cyclopentadien-1-yl)[�5-1-bromo-2-(1-

dimethylaminoethyl)-3-trimethylsilyl-cyclopenta-2,4-dien-1-

yl]iron (12) 

 

To a solution of 11 (633 mg, 1.92 mmol) in TBME (20 mL) was 

added tert-butyllithium (1.95 mL, 1.5 M in pentane, 2.93 mmol) 

at –30 °C. The reaction was allowed to warm up to 0 °C and 

stirred for 1 h. After cooling to –78 °C 1,2-dibromo-1,1,2,2-tetrafluoroethane (0.35 ml, 2.94 

mmol) was added and the reaction mixture was allowed to warm to room temperature. The 

organic layer was extracted with water and sat. aq. NaCl and dried over MgSO4. The solvent 

was removed under reduced pressure and purification by column chromatography (SiO2, 

10×4 cm, hexanes:EtOAc:NEt3 (100:10:1)) gave the title compound 12 (415 mg, 53%) as an 

orange oil beside recovered starting material 11 (199 mg, 32%). 

 

C17H26BrFeNSi (408.23 g/mol) 
1H-NMR (C6D6): �/ppm = 0.26 (s, 9H, Si(CH3)3), 1.60 (d, 3JHH = 7.0  Hz, 3H, CHCH3), 2.08 

(s, 6H, N(CH3)2), 3.72 (q, 3JHH = 7.0 Hz, 1H, CHCH3), 3.78 (d, 3JHH = 2.4 Hz, 1H, C(Si)CH), 

4.00 (s, 5H, Cp-CH), 4.35 (d, 3JHH = 2.4 Hz, 1H, C(Br)CH). 
13C{1H}-NMR (C6D6): �/ppm = 0.4 (s, Si(CH3)3), 11.6 (s, CHCH3), 40.6 (s, N(CH3)2), 59.7 

(s, CHCH3), 71.6 (s, Cp-CH), 72.2 (s, CSi), 73.1 (s, C(Si)CH), 74.0 (s, C(Br)CH), 80.8 (s, 

BrC), 92.9 (s, C(Br)C). 

IR (NaCl): ν~ /cm–1 = 3096(w), 2955(s), 2899(m), 2856(m), 2819(m), 2776(m), 1770(w), 

1715(w), 1645(w), 1451(m), 1404(w), 1375(m), 1246(s), 1219(m), 1188(w), 1155(w), 

1107(m), 1063(m), 1002(w), 974(m), 935(w), 834(s), 756(m), 689(w). 

MS (EI): m/z(%) = 394(11), 392(11), 366(10), 365(64), 364(52), 363(68), 362(40), 339(15), 

338(85), 337(19), 336(91), 242(6), 213(13), 197(9), 153(13), 147(6), 145(17), 139(8), 

137(19), 135(22), 134(7), 133(18), 132(13), 131(20), 122(10), 121(94), 119(21), 109(7), 
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107(11), 105(16), 96(13), 93(7), 83(15), 73(91), 72(100), 71(13), 59(25), 57(7), 56(75), 

45(25), 44(17), 43(20), 42(22). 

[�] 20
D = +109 (c = 0.32, CHCl3 / 0.75% EtOH). 

EA: calculated for C17H26BrFeNSi: C: 50.02, H: 6.42, N: 3.43; measured: C: 50.40, H: 6.34, 

N: 3.36. 

Rf (SiO2, hexane:EtOAc:NEt3 (100:10:1)): 0.20. 

 

 

(RP)-(�5-2,4-cyclopentadien-1-yl)[�5-1-bromo-2-ethenyl-3-

trimethylsilyl-cyclopenta-2,4-dien-1-yl]iron (13) 

 

A degassed solution of 12 (522 mg, 1.28 mmol) in Ac2O 

(40 mL) was heated at 150 °C for 4 h. The solvent was 

evaporated under reduced pressure, the residue dissolved in 

Et2O (30 mL), extracted 3 times with sat. aq. NaHCO3 and dried 

over MgSO4. The solvent was evaporated under reduced pressure and the residue purified by 

column chromatography (SiO2, 10×5 cm, hexane) to give the title compound 13 (409 mg, 

88%) as an orange liquid. 

 

C15H19BrFeSi (363.15 g/mol) 
1H-NMR (C6D6): �/ppm = 0.21 (s, 9H, Si(CH3)3), 3.80 (s, 1H, C(Si)CH), 3.97 (s, 5H, Cp-

CH), 4.44 (s, 1H, C(Br)CH), 5.25 (d, 3JHH = 11.2 Hz, 1H, CHCHEHZ), 5.70 (d, 
3JHH = 17.7 Hz, 1H, CHCHEHZ), 6.63 (dd, 3JHH = 17.6 Hz, 3JHH = 11.3 Hz, 1H, CHCH2). 
13C{1H}-NMR (C6D6): �/ppm = 0.5 (s, Si(CH3)3), 69.5 (s, CSi), 72.1 (s, Cp-CH), 73.2 (s, 

C(Si)CH), 73.8 (s, C(Br)CH), 81.6 (s, CBr), 87.1 (s, C(Br)C), 117.1 (s, CHCH2), 133.4 (s, 

CHCH2). 

IR (NaCl): ν~ /cm–1 = 3096(w), 2956(m), 2898(w), 1629(w), 1408(w), 1375(w), 1250(m), 

1217(w), 1130(w), 1101(w), 980(w), 909(w), 835(s), 756(w), 690(w). 

MS (EI): m/z(%) = 366(7), 365(22), 364(98), 363(23), 362(100), 360(6), 349(11), 347(11), 

268(9), 211(6), 210(5), 209(10), 208(7), 197(19), 183(8), 181(5), 169(8), 154(5), 153(11), 

152(7), 147(7), 145(8), 132(5), 131(7), 121(5), 73(30), 45(6). 

[�] 20
D = +115.0 (c = 0.59, CHCl3 / 0.75% EtOH). 

EA: calculated for C15H19BrFeSi: C: 49.61, H: 5.27; measured: C: 48.96, H: 5.34. 

Rf (SiO2, hexanes): 0.50. 
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(RP)-(�5-2,4-cyclopentadien-1-yl)[�5-1-diethoxyphosphoryl-

2-ethenyl-3-trimethylsilyl-cyclopenta-2,4-dien-1-yl]iron (14) 

 

To a solution of 13 (452 mg, 1.23 mmol) in THF (10 mL) was 

added n-butyllithium (0.85 mL, 1.6 M in hexane, 1.36 mmol) at 

–78 °C and stirred for 30 min. This solution then was added at  

–78 °C via cannula to diethyl phosphoryl chloride (0.21 mL, 

1.46 mmol) in THF (10 mL). After 30 min water (2 mL) was added and the organic layer was 

extracted with sat. aq. NaHCO3 and sat. aq. NaCl and dried over MgSO4. The solvent was 

evaporated under reduced pressure and the crude product was purified by column 

chromatography (SiO2, 15×5 cm, hexanes:EtOAc (1:1 � 1:4)) to give the title compound 14 

(435 mg, 84%) as an orange oil. 

 

C19H29FeO3PSi (420.34 g/mol) 
1H-NMR (C6D6): �/ppm = 0.27 (s, 9H, Si(CH3)3), 1.03 (t, 3JHH = 7.1 Hz, 3H, OCH2CH3), 

1.09 (t, 3JHH = 7.1 Hz, 3H, OCH2CH3), 3.93-4.02 (m, 2H, OCH2CH3), 4.02-4.10 (m, 2H, 

OCH2CH3), 4.11 (t, J = 2.5 Hz, 1H, C(Si)CH), 4.26 (s, 5H, Cp-CH), 4.76 (t, J = 2.3 Hz, 1H, 

C(P)CH), 5.23 (dd, 3JHH = 11.2 Hz, 2JHH = 1.6 Hz, 1H, CHCHEHZ), 5.59 (dd, 3JHH = 17.7 Hz, 
2JHH = 1.6 Hz, 1H, CHCHEHZ), 7.20 (dd, 3JHH = 17.7 Hz, 3JHH = 11.2 Hz, 1H, CHCH2). 
13C{1H}-NMR (C6D6): �/ppm = 0.8 (s, Si(CH3)3), 16.4 (d, 3JCP = 6.5 Hz, OCH2CH3), 16.6 (d, 
3JCP = 6.1 Hz, OCH2CH3), 61.4 (d, 2JCP = 5.8 Hz, OCH2CH3), 61.5 (d, 2JCP = 6.0 Hz, 

OCH2CH3), 71.2 (d, 1JCP = 208.4 Hz, CP), 71.4 (s, Cp-CH), 74.3 (d, 3JCP = 10.3 Hz, CSi), 

76.5 (d, 2JCP = 14.3 Hz, C(P)CH), 77.1 (d, 3JCP = 14.8 Hz, C(Si)CH), 92.8 (d, 2JCP = 15.2 Hz, 

C(P)C), 116.9 (s, CHCH2), 134.6 (s, CHCH2). 
31P{1H}-NMR (C6D6): �/ppm = 21.9 (s). 

IR (KBr): ν~ /cm–1 = 3094(w), 2978(m), 2903(w), 1741(w), 1629(w), 1442(w), 1396(w), 

1249(s), 1217(m), 1162(w), 1133(w), 1104(w), 1054(s), 1031(s), 958(m), 838(s), 756(w), 

688(w). 

MS (EI): m/z(%) = 422(7), 421(26), 420(100), 418(6), 392(9), 347(5), 346(19), 283(5), 

121(6). 

[�] 20
D = –126.3 (c = 0.81, CHCl3 / 0.75% EtOH). 

EA: calculated for C19H29FeO3PSi: C: 54.29, H: 6.95; measured: C: 54.00, H: 7.10. 

Rf (SiO2, hexanes:EtOAc (1:4)): 0.54. 
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(S,RP)-(�5-2,4-cyclopentadien-1-yl)[�5-1-

(ethoxyphosphinoyl)-2-ethenyl-cyclopenta-2,4-dien-1-yl]iron 

(S,SP)-(�5-2,4-cyclopentadien-1-yl)[�5-1-

(ethoxyphosphinoyl)-2-ethenyl-cyclopenta-2,4-dien-1-yl]iron 

(16) 

 

To a solution of 4 (622 mg, 2.14 mmol) in THF (7 mL) was 

added n-butyllithium (1.6 M in hexane, 1.60 mL, 2.56 mmol) at –78 °C. After 30 min this was 

added to a solution of diethyl chlorophosphite (400 �L, 2.80 mmol) in THF (7 mL) at –78 °C. 

The reaction mixture was stirred for 1 h and then allowed to warm up to room temperature. 

The organic layer was extracted with sat. aq. NaHCO3 and dried over MgSO4. The crude 

product was purified by column chromatography (SiO2, 15×4 cm, hexanes:EtOAc (1:10 to 

0:1)) to give the title compound 16 as an orange oil as an almost 1:1 mixture of 

diastereoisomers (480 mg, 74%). If necessary the diastereoisomers can be separated by 

column chromatography (SiO2, 15×4 cm, hexanes:EtOAc (1:2 � 1:20)). 

 

C14H17FeO2P (304.11 g/mol) 

Diastereoisomer 1: 
1H-NMR (C6D6): �/ppm = 0.98 (t, 3JHH = 7.0 Hz, 3H, CH3), 3.75-3.90 (m, 2H, CH2CH3), 

4.01-4.08 (m, 1H, C(P)CHCH), 4.08 (s, 5H, Cp-CH), 4.17-4.21 (m, 1H, C(P)CH), 4.41-4.45 

(m, 1H, C(P)CCH), 5.18 (dd, 3JHH = 10.8 Hz, 2JHH = 1.6 Hz, 1H, CHCHEHZ), 5.51 (dd, 
3JHH = 17.5 = Hz, 2JHH = 1.6 Hz, 1H, CHCHEHZ), 7.33 (dd, 3JHH = 17.5 Hz, 3JHH = 10.8 Hz, 

1H, CHCH2), 7.54 (d, 1JHP = 559.8 Hz, 1H, PH). 
13C{1H}-NMR (C6D6): �/ppm = 16.4 (d, 3JCP = 6.3 Hz, CH3), 61.2 (d, 2JCP = 6.0 Hz, 

CH2CH3), 68.6 (d, 1JCP = 145.4 Hz, CP), 68.7 (d, 3JCP = 10.4 Hz, C(P)CCH), 71.2 (s, Cp-CH), 

71.6 (d, 3JCP = 2.9 Hz, C(P)CHCH), 71.8 (d, 2JCP = 1.6 Hz, C(P)CH), 88.5 (d, 2JCP = 12.0 Hz, 

C(P)C), 113.3 (s, CHCH2), 133.5 (s, CHCH2). 
31P{1H}-NMR (C6D6): �/ppm = 41.6 (d, 1JHP = 560 Hz). 

Diastereoisomer 2: 
1H-NMR (C6D6): �/ppm = 0.98 (t, 3JHH = 7.0 Hz, 3H, CH3), 3.73-3.92 (m, 2H, CH2CH3), 

4.05-4.09 (m, 1H, C(P)CHCH), 4.09 (s, 5H, Cp-CH), 4.34-4.38 (m, 1H, C(P)CCH), 4.68-4.72 

(m, 1H, C(P)CH), 5.02 (dd, 3JHH = 10.9 Hz, 2JHH = 1.4 Hz, 1H, CHCHEHZ), 5.36 (dd, 
3JHH = 17.4 = Hz, 2JHH = 1.4 Hz, 1H, CHCHEHZ), 6.77 (dd, 3JHH = 17.4 Hz, 3JHH = 10.9 Hz, 

1H, CHCH2), 7.67 (d, 1JHP = 559.7 Hz, 1H, PH). 
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13C{1H}-NMR (C6D6): �/ppm = 16.4 (d, 3JCP = 6.3 Hz, CH3), 61.2 (d, 2JCP = 5.9 Hz, 

CH2CH3), 68.3 (d, 1JCP = 145.4 Hz, CP), 69.5 (d, 3JCP = 11.2 Hz, C(P)CCH), 71.2 (s, Cp-CH), 

71.5 (d, 3JCP = 11.8 Hz, C(P)CHCH), 74.1 (d, 2JCP = 12.0 Hz, C(P)CH), 86.6 (d, 
2JCP = 15.3 Hz, C(P)C), 113.5 (s, CHCH2), 132.9 (s, CHCH2). 
31P{1H}-NMR (C6D6): �/ppm = 38.0 (d, 1JHP = 560 Hz). 

Diastereoisomeric mixture: 

IR (NaCl): ν~ /cm–1 = 3459(w), 3089(w), 2982(w), 2933(w), 2901(w), 1626(w), 1446(w), 

1397(w), 1290(w), 1250(w), 1221(m), 1172(w), 1042(m), 995(m), 944(m), 824(w), 763(w), 

725(w). 

MS (EI): m/z(%) = 305(17), 304(100), 302(6), 276(29), 275(6), 274(5), 213(10), 212(57), 

211(14), 210(18), 209(8), 193(5), 184(19), 147(10), 146(10), 145(9), 121(22), 119(8), 91(6), 

89(5), 56(10). 

[�] 20
D = +629 (c = 0.36, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C14H17FeO2P: C: 55.29, H: 5.63; measured: C: 52.46, H: 5.47 

(oxidizes at ambient temperature, calculated for C14H17FeO3P: C: 52.53, H: 5.35) 

Rf (SiO2, hexanes:EtOAc (1:4)): 0.38 (dia1), 0.30 (dia2). 

 

 

 

(S,SP)-(�5-2,4-Cyclopentadien-1-yl)[�5-1-

(diethoxyphosphoryl)-2-(1-dimethylaminoethyl)-cyclopenta-

2,4-dien-1-yl]iron (18) 

 

To a solution of 3 (301 mg, 896 μmol) in THF (8 mL) was 

added n-butyllithium (0.70 mL, 1.6 M in hexane, 1.12 mmol) at 

–78 °C and stirred for 15 min. Diethyl phosphoryl chloride 

(0.17 mL, 1.18 mol) was added and stirring was continued for 45 min. Water (1 mL) and sat. 

aq. NaHCO3 (4 mL) were added and the reaction mixture was allowed to warm up to room 

temperature. The organic layer was dried over MgSO4 and the solvent was removed under 

reduced pressure. Purification by column chromatography (SiO2, 10×4 cm, acteone:NEt3 

(100:1)) gave the title compound 18 (325 mg, 92%) as an orange oil. 
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C18H28FeNO3P (393.2 g/mol) 
1H-NMR (C6D6): �/ppm = 1.07-1.17 (m, 6H, OCH2CH3), 1.18 (d, 3JHH = 6.8 Hz, 3H, 

CHCH3), 2.15 (s, 6H, N(CH3)2), 3.99-4.02 (m, 1H, C(P)CHCH), 4.05-4.09 (m, 1H, 

C(P)CCH), 4.02-4.18 (m, 4H, OCH2CH3), 4.19 (s, 5H, Cp-CH), 4.44-4.47 (m, 1H, C(P)CH), 

4.53 (q, 3JHH = 6.8 Hz, 1H, CHCH3). 
13C{1H}-NMR (C6D6): �/ppm = 9.6 (s, CHCH3), 16.7 (d, 3JCP = 6.4 Hz, OCH2CH3), 39.9 (s, 

N(CH3)2), 55.7 (s, CHCH3), 60.5 (d, 2JCP = 6.0 Hz, OCH2CH3), 61.9 (d, 2JCP = 5.5 Hz, 

OCH2CH3), 67.6 (d, 1JCP = 211.7 Hz, CP), 69.3 (d, 3JCP = 13.3 Hz, C(P)CHCH), 70.0 (d, 
3JCP = 14.8 Hz, C(P)CCH), 70.9 (s, Cp-CH), 73.1 (d, 2JCP = 13.4 Hz, C(P)CH), 95.5 (d, 
2JCP = 17.5 Hz, C(P)C). 
31P{1H}-NMR (C6D6): �/ppm = 21.7 (s). 

IR (NaCl): ν~ /cm–1 = 3095(w), 2975(m), 2933(w), 2817(w), 2774(w), 1708(w), 1654(w), 

1451(w), 1395(w), 1366(w), 1249(m), 1171(w), 1098(w), 1034(s), 958(m), 816(w), 790(w), 

755(w). 

MS (EI): m/z(%) = 394(6), 393(27), 379(21), 378(100), 351(11), 350(56), 349(28), 348(9), 

322(12), 321(7), 320(8), 304(7), 303(7), 283(5), 275(5), 274(7), 227(7), 213(12), 212(6), 

209(14), 121(9), 72(10). 

[�] 20
D = –1.0 (c = 0.77, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C18H28FeNO3P: C: 54.98, H: 7.18, N: 3.56; measured: C: 54.18, 

H: 7.24, N: 3.27. 

Rf (SiO2, acteone:NEt3 (100:1)): 0.13. 

 

 

 

(S)-(�5-2,4-Cyclopentadien-1-yl)(�5-1-bromo-2-(2-

(triethylsilyl)ethyl)-cyclopenta-2,4-dien-1-yl)iron (19) 

 

To a solution of tris(pentafluorophenyl)borane (31 mg, 

60 μmol) and triethylsilane (230 μL, 1.45 mmol) in CH2Cl2 

(3 mL) was added a solution of 4 (350 mg, 1.20 mmol) in 

CH2Cl2 (4 mL) at room temperature. The reaction was stirred 

for 20 h and filtered over a pad of silica. The solvent was evaporated under reduced pressure 

and the crude product was purified by column chromatography (SiO2, 15×3 cm, hexanes) to 

give the title compound 19 (426 mg, 87%) as an orange liquid. 
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 C18H27BrFeSi (407.25 g/mol) 
1H-NMR (C6D6): �/ppm = 0.56 (q, 3JHH = 8.0 Hz, 6H, SiCH2CH3), 0.81 (td, 3JHH = 14.1 Hz, 
2JHH = 4.9 Hz, 1H, SiCHaHbCH2), 0.90 (td, 3JHH = 14.3 Hz, 2JHH = 4.7 Hz, 1H, SiCHaHbCH2), 

1.00 (t, 3JHH = 8.0 Hz, 9H, CH3), 2.46 (td, 3JHH = 14.1 Hz, 2JHH = 4.8 Hz, 1H, SiCH2CHaHb), 

2.59 (td, 3JHH = 14.4 Hz, 2JHH = 4.7 Hz, 1H, SiCH2CHaHb), 3.74 (s, 1H, C(Br)CHCH), 3.89 (s, 

1H, C(Br)CCH), 4.00 (s, 5H, Cp-CH), 4.27 (s, 1H, C(Br)CH). 
13C{1H}-NMR (C6D6): �/ppm = 3.6 (s, SiCH2CH3), 7.8 (s, CH3), 13.2 (s, SiCH2CH2), 23.2 (s, 

SiCH2CH2), 65.5 (s, C(Br)CHCH), 66.2 (s, C(Br)CCH), 69.9 (s, C(Br)CH), 71.3 (s, Cp-CH), 

80.1 (s, CBr), 90.9 (s, C(Br)C). 

IR (NaCl): ν~ /cm–1 = 3095(m), 2951(s), 2908(s), 2878(s), 1766(w), 1715(w), 1650(w), 

1460(m), 1414(m), 1380(w), 1305(w), 1237(m), 1177(w), 1103(m), 1059(w), 1006(m), 

957(m), 887(w), 818(m), 774(m), 731(s). 

MS (EI): m/z(%) = 410(6), 409(24), 408(98), 407(25), 406(100), 404(6), 299(5), 298(19), 

212(22), 210(6), 121(6), 119(6), 115(10), 87(19), 59(14). 

[�] 20
D = –5.0 (c = 0.88, CHCl3 / 0.75% EtOH). 

EA: calculated for C18H27BrFeSi: C: 53.09, H: 6.68; measured: C: 53.19, H:6.52. 

Rf (SiO2, hexanes): 0.59. 

 

 

 

 (S,SP)-(�5-2,4-Cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-

trihydroboranyl-1-tert-butyl-(1,2,3.trihydro-

cyclopenta[b]phosphole-3a-yl]iron (22) 

 

To a solution of 6 (90.0 mg, 300 μmol) in THF (3 mL) was 

added BH3 (0.50 mL, 1 M in THF, 500 μmol) at 0 °C. The 

solution was allowed to warm up to room temperature and the 

solvent was evaporated under reduced pressure. Column chromatography (SiO2, 10×3 cm, 

hexanes:EtOAc (10:1)) gave the title compound 22 (61.0 mg, 65%) as an orange solid. 

 

C16H24BFeP (314.0 g/mol) 
1H-NMR (C6D6): �/ppm = 0.87 (d, 3JPH = 13.3 Hz, 9H, C(CH3)3), 1.30-2.00 (m, 3H, BH3), 

1.93-2.02 (m, 1H, PCHRHSCH2), 2.02-2.12 (m, 1H, PCH2CHRHS), 2.22-2.33 (m, 1H, 
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PCH2CHRHS), 2.38-2.50 (m, 1H, PCHRHSCH2), 3.88-3.92 (m, 1H, C(P)CCH), 4.01-4.05 (m, 

1H, C(P)CHCH), 4.07-4.12 (m, 1H, C(P)CH), 4.19 (s, 5H, Cp-CH). 
13C{1H}-NMR (C6D6): �/ppm = 25.3 (d, 2JCP = 2.7 Hz, C(CH3)3), 25.6 (d, 2JCP = 7.0 Hz, 

PCH2CH2), 26.2 (d, 1JCP = 32.7 Hz, PCH2CH2), 30.7 (d, 1JCP = 27.1 Hz, C(CH3)3), 64.8 (d, 
3JCP = 6.5 Hz, C(P)CCH), 66.3 (d, 2JCP = 10.8 Hz, C(P)CH), 70.8 (s, Cp-CH), 74.3 (d, 
3JCP = 5.3 Hz, C(P)CHCH), 75.7 (d, 1JCP = 60.2 Hz, CP), 98.6 (d, 2JCP = 14.3 Hz, C(P)C). 
31P{1H}-NMR (C6D6): �/ppm = 58.7-59.8 (m). 

IR (KBr): ν~ /cm–1 = 3099(w), 2953(m), 2865(m), 2355(s), 2256(w), 1778(w), 1706(w), 

1650(w), 1460(m), 1402(m), 1364(m), 1284(w), 1228(w), 1193(w), 1147(m), 1106(m), 

1064(s), 1005(m), 938(w), 818(s), 763(w), 690(m), 640(w), 587(w), 551(w), 495(m), 462(w), 

440(w), 408(w). 

MS (EI): m/z(%) = 314(6), 301(6), 300(32), 244(16), 243(100), 242(7), 241(9). 

[�] 20
D = –79 (c = 0.37, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C16H24BFeP: C: 61.20, H: 7.70; measured: C: 60.74, H: 7.61. 

Rf (SiO2, Hex:EtOAc (10:1)): 0.19. 

m.p.: 154-158 °C. 

 

 

 

(R)-(�5-2,4-cyclopentadien-1-yl)(�5-2-bromo-1-

trimethylsilyl-3-ethenyl-cyclopenta-2,4-dien-1-yl)iron (29) 

 

To a solution of 2,2,6,6-tetramethylpiperidine (1.35 mL, 

8.01 mmol) in THF (9 mL) was added n-butyllithium (5.00 mL, 

1.6 M in hexane, 8.00 mmol) at 0 °C. After 30 min this solution 

was added dropwise to a solution of 4 (886 mg, 3.04 mmol) in 

THF (15 mL) at –50 °C. The solution was kept between –40 and –30 °C for 2 h and then 

cooled down to –78 °C. To the dark red solution was added dropwise trimethylsilyl chloride 

(0.50 mL, 3.90 mmol). The solution was stirred for 2 h, then water (2 mL) was added and the 

solution was allowed to warm up to room temperature. The reaction mixture was extracted 

three times with sat. aq. NH4Cl and dried over MgSO4. The solvent was evaporated under 

reduced pressure and the residue was purified by column chromatography (SiO2, 10×5 cm, 

hexanes) to give the title compound 29 (1.02 g, 92%) as a red oil which solidified at –20 °C. 
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C15H19BrFeSi (363.15 g/mol) 
1H-NMR (C6D6): �/ppm = 0.34 (s, 9H, Si(CH3)3), 3.91 (d, 3JHH = 2.7 Hz, 1H, C(Si)CH), 3.96 

(s, 5H, Cp-CH), 4.33 (d, 3JHH = 2.7 Hz, 1H, C(Si)CHCH), 5.10 (dd, 2JHH = 1.6 Hz, 
3JHH = 10.9 Hz, 1H, CHCHEHZ), 5.39 (dd, 2JHH = 1.6 Hz, 3JHH = 17.5 Hz, 1H, CHCHEHZ), 

6.75 (dd, 3JHH = 10.9 Hz, 3JHH = 17.5 Hz, 1H, CHCH2). 
13C{1H}-NMR (C6D6): �/ppm = 0.0 (s, Si(CH3)3), 65.8 (s, C(Si)CHCH), 72.1 (s, Cp-CH), 

72.8 (s, C(Si)CH), 73.0 (s, CSi), 85.3 (s, CCHCH2), 86.2 (s, CBr), 113.2 (s, CHCH2), 132.9 

(s, CHCH2). 

IR (NaCl): ν~ /cm–1 = 3090(m), 2956(s), 2898(m), 1703(w), 1628(m), 1459(w), 1406(m), 

1327(w), 1282(m), 1249(s), 1146(s), 1107(m), 1055(w), 980(s), 909(s), 835(s), 756(m), 

664(s). 

MS (EI): m/z(%) = 365(20), 364(98), 363(21), 362(100), 360(5), 283(6), 281(6), 267(7), 

225(5), 174(5), 147(29), 131(6), 121(12), 73(11). 

[�] 20
D = +778 (c = 0.49, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C15H19BrFeSi: C: 49.61, H: 5.27; measured: C: 49.63, H: 5.18. 

Rf (SiO2, hexanes): 0.50. 

 

 

 

(R)-(�5-2,4-cyclopentadien-1-yl)(�5-2-bromo-1-

diphenylphosphino-3-ethenyl-cyclopenta-2,4-dien-1-yl)iron 

(30) 

 

To a solution of 2,2,6,6-tetramethylpiperidine (1.35 mL, 

8.01 mmol) in THF (9 mL) was added n-butyllithium (5.00 mL, 

1.6 M in hexane, 8.00 mmol) at 0 °C. After 30 min this solution 

was added dropwise to a solution of 4 (1.00 g, 3.44 mmol) in THF (15 mL) at –50 °C. The 

solution was kept between –40 and –30 °C for 2 h and then cooled down to –78 °C. To the 

dark red solution was added dropwise diphenylphosphine chloride (0.80 mL, 4.47 mmol). The 

solution was stirred for 2 h, then water (2 mL) was added and the solution was allowed to 

warm up to room temperature. The reaction mixture was extracted three times with sat. aq. 

NH4Cl and dried over MgSO4. The solvent was evaporated under reduced pressure and the 

residue was purified by column chromatography (SiO2, 15×5 cm, hexanes:EtOAc:NEt3 
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(200:10:2)) and recrystallisation from hot hexane to give the title compound 30 (1.20 g, 74%) 

as an orange solid. 

 

C24H20BrFeP (475.14 g/mol) 
1H-NMR (C6D6): �/ppm = 3.72 (d, 3JHH = 2.7 Hz, 1H, C(P)CH); 3.97 (s, 5H, Cp-CH), 4.34 

(d, 3JHH = 2.7 Hz, 1H, C(P)CHCH), 5.08 (dd, 3JHH = 10.9 Hz, 2JHH = 1.5 Hz, 1H, CHCHEHZ), 

5.40 (dd, 3JHH = 17.6 Hz, 2JHH = 1,5 Hz, 1H, CHCHEHZ), 6.74 (dd, 3JHH = 10.9 Hz, 
3JHH = 17.6 Hz, 1H, CHCH2), 6.96-7.03 (m, 3H, Ph-CH), 7.03-7.09 (m, 3H, Ph’-CH) 7.29-

7.35 (m, 2H, Ph’-CH), 7.53-7.59 (m, 2H, Ph-CH). 
13C{1H}-NMR (C6D6): �/ppm = 65.2 (s, C(P)CHCH), 70.4 (d, 2JCP = 4.3 Hz, C(P)CH), 73.4 

(s, Cp-CH), 78.8 (d, 2JCP = 7.9 Hz, C(Br)), 85.2 (d, 3JCP = 2.8 Hz, CCHCH2), 87.5 (d, 
1JCP = 30.2 Hz, C(P)C), 113.6 (s, CHCH2), 128.2 (s, Ph-CH), 128.5 (d, JCP = 7.6 Hz, Ph’-CH), 

128.6 (d, JCP = 5.9 Hz, Ph-CH), 129.4 (d, JCP = 0.7 Hz, Ph’-CH), 132.6 (d, JCP = 18.4 Hz, Ph’-

CH), 132.7 (s, CHCH2), 135.6 (d, JCP = 21.7 Hz, Ph-CH), 137.7 (d, 1JCP = 11.4 Hz, Ph’-C), 

139.3 (d, 1JCP = 12.7 Hz, Ph-C). 
31P{1H}-NMR (C6D6): �/ppm = –22.4 (s). 

IR (KBr): ν~ /cm–1 = 3063(s), 3000(m), 1844(w), 1800(w), 1739(w), 1619(m), 1578(w), 

1474(m), 1428(s), 1290(s), 1152(s), 1099(s), 1002(m), 973(s), 918(s), 819(s), 736(s), 693(s), 

463(s). 

MS (EI): m/z(%) = 477(26), 476(96), 475(36), 473(100), 473(11), 394(10), 339(19), 273(12), 

196(11), 183(13), 165(17), 153(17), 152(11). 

[�] 20
D = +365 (c = 0.33, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C24H20BrFeP: C: 60.67, H: 4.24; measured: C: 60.73, H: 4.20. 

Rf (SiO2, hexanes:EtOAc:NEt3 (100:5:1)): 0.42. 

m.p.: 151-152 °C. 
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(R)-(�5-2,4-cyclopentadien-1-yl)(�5-2-bromo-1-di(ortho-

tolyl)phosphino-3-ethenyl-cyclopenta-2,4-dien-1-yl)iron (31) 

 

To a solution of 2,2,6,6-tetramethylpiperidine (2.00 mL, 

11.9 mmol) in THF (9 mL) was added n-butyllithium (7.40 mL, 

1.6 M in hexane, 11.8 mmol) at 0 °C. After 30 min this solution 

was added dropwise to a solution of 4 (1.42 g, 4.88 mmol) in 

THF (20 mL) at –50 °C. The solution was kept between –40 and –30 °C for 5 h and then 

cooled down to –78 °C. To the dark red solution was added dropwise a solution of  

di(o-tolyl)phosphine chloride (1.56 g, 6.72 mmol) in THF (5 mL). The solution was stirred for 

2 h, then water (2 mL) was added and the solution was allowed to warm up to room 

temperature. The reaction mixture was extracted three times with sat. aq. NH4Cl and dried 

over MgSO4. The solvent was evaporated under reduced pressure and the residue was purified 

by column chromatography (SiO2, 10×5 cm, hexanes:EtOAc:NEt3 (100:10:1)) to give the title 

compound 31 (2.44 g, 99%) as an orange solid. 

 

C26H24BrFeP (503.19 g/mol) 
1H-NMR (C6D6): �/ppm = 2.17 (d, 4JHP = 1.3 Hz, 3H, oTol’-CH3), 2.81 (s, 3H, oTol-CH3), 

3.91 (d, 3JHH = 2.7 Hz, 1H, C(P)CH) 3.96 (s, 5H, Cp-CH), 4.40 (d, 3JHH = 2.7 Hz, 1H, 

C(P)CHCH), 5.10 (dd, 3JHH = 10.9 Hz, 2JHH = 1.4 Hz, 1H, CHCHEHZ), 5.42 (dd, 
3JHH = 17.6 Hz, 2JHH = 1.4 Hz, 1H, CHCHEHZ), 6.77 (dd, 3JHH = 17.6 Hz, 3JHH = 10.9 Hz, 1H, 

CHCH2), 6.78-6.83 (m, 1H, oTol-CH) 6.84-6.89 (m, 1H, oTol’-CH), 6.89-6.95 (m, 1H, oTol’-

CH), 6.96-7.07 (m, 3H, oTol-CH, oTol’-CH), 7.16-7.20 (m, 1H, oTol’-CH), 7.26-7.31 (m, 

1H, oTol-CH). 
13C{1H}-NMR (C6D6): �/ppm = 20.9 (d, 3JCP = 20.3 Hz, oTol’-CH3), 22.0 (d, 3JCP = 24.8 Hz, 

oTol-CH3), 65.3 (d, 3JCP = 1.2 Hz, C(P)CHCH), 71.0 (d, 2JCP = 4.1 Hz, C(P)CH), 73.2 (d, 

JCP = 0.7 Hz, Cp-CH) 78.8 (d, 1JCP = 7.1 Hz, C(P)C(Br)), 85.2 (d, 3JCP = 2.8 Hz, CCHCH2), 

87.8 (d, 2JCP = 30.6 Hz, C(Br)), 113.6 (s, CHCH2), 126.1 (s, oTol’-CH), 126.2 (d, 

JCP = 1.8 Hz, oTol-CH), 128.3 (s, oTol’-CH), 129.6 (d, JCP = 1.2 Hz, oTol-CH), 130.2 (d, 

JCP = 5.8 Hz, oTol-CH), 130.4 (d, JCP = 3.9 Hz, oTol’-CH), 131.6 (d, JCP = 1.6 Hz, oTol’-

CH), 132.8 (s, CHCH2), 134.8 (d, JCP = 10.8 Hz, oTol-C), 136.7 (s, oTol-CH), 139.0 (d, 

JCP = 14.6 Hz, oTol’-C), 140.5 (d, JCP = 24.9 Hz, oTol’-C), 143.8 (d, JCP = 29.6 Hz, oTol-C). 
31P{1H}-NMR (C6D6): �/ppm = –41.5 (s). 
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IR (KBr): ν~ /cm–1 = 3054(w), 2967(w), 2921(w), 1917(w), 1794(w), 1772(w), 1739(m), 

1694(m), 1644(m), 1561(m), 1539(m), 1511(m), 1456(s), 1289(w), 1267(w), 1150(m), 

1100(m), 1000(m), 972(m), 900(w), 817(m), 750(s), 711(w), 672(m). 

MS (EI): m/z(%) = 505(28), 504(95), 503(31), 502(100), 500(6), 439(6), 437(7), 367(8), 

357(6), 302(17), 301(22), 290(6), 288(6), 287(9), 213(7), 212(10), 211.5(11), 211(17), 

210(13), 209(15), 208(6), 207(10), 197(6), 196(16), 183(19), 179(13), 178(16), 165(15), 

153(17), 152(11), 133(5), 121(9), 91(6). 

[�] 20
D = +410 (c = 0.43, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C26H24BrFeP: C: 62.06, H: 4.81; measured: C: 62.11, H: 4.85. 

Rf (SiO2, hexanes:EtOAc:NEt3 (100:5:1)): 0.23. 

m.p.: 173-175 °C. 

 

 

 

(R)-(�5-2,4-cyclopentadien-1-yl)(�5-2-bromo-1-

dicyclohexylphosphino-3-ethenyl-cyclopenta-2,4-dien-1-

yl)iron (32) 

 

To a solution of 2,2,6,6-tetramethylpiperidine (1.60 mL, 

9.50 mmol) in THF (5 mL) was added n-butyllithium (5.90 mL, 

1.6 M in hexane, 9.44 mmol) at 0 °C. After 30 min this was 

added dropwise to a solution of 4 (1.06 g, 3.64 mmol) in THF (15 mL) at –50 °C. The 

solution was kept between –40 and –30 °C for 3 h and then cooled down to –78 °C. To the 

dark red solution was added dropwise dicyclohexylphosphine chloride (1.05 mL, 4.76 mmol). 

The solution was stirred for 2 h, then water (2 mL) was added and the solution was allowed to 

warm up to room temperature. The reaction mixture was extracted three times with sat. aq. 

NH4Cl and dried over MgSO4. The solvent was evaporated under reduced pressure and the 

residue was purified by column chromatography (SiO2, 10×5 cm, hexanes:EtOAc:NEt3 

(100:20:1)) to give the title compound 32 (1.74 g, 98%) as a sticky orange oil. 

 

C24H32BrFeP (487.24 g/mol) 
1H-NMR (C6D6): �/ppm = 0.95-2.05 (m, 21H, Cy-CH, Cy-CH2), 2.29-2.37 (m, 1H, Cy-

CHH), 4.02 (s, 5H, Cp-CH), 4.03 (d, 3JHH = 2.8 Hz, 1H, C(P)CH), 4.41 (d, 3JHH = 2.7 Hz, 1H, 

C(P)CHCH), 5.09 (dd, 3JHH = 10.9 Hz, 2JHH = 1.5 Hz, 1H, CHCHEHZ), 5.40 (dd, 
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3JHH = 17.6 Hz, 2JHH = 1.5 Hz, 1H, CHCHEHZ), 6.79 (dd, 3JHH = 17.6 Hz, 3JHH = 10.9 Hz, 1H, 

CHCH2). 
13C{1H}-NMR (C6D6): �/ppm = 26.7 (d, JCP = 1 Hz, Cy-CH2) 26.8 (d, JCP = 1 Hz, Cy-CH2), 

27.7 (d, JCP = 8 Hz, Cy-CH2), 27.8 (d, JCP = 14 Hz, Cy-CH2), 27.9 (d, JCP = 11 Hz, Cy-CH2), 

28.0 (d, JCP = 13 Hz, Cy-CH2), 30.5 (d, JCP = 10 Hz, Cy-CH2), 30.7 (d, JCP = 9 Hz, Cy-CH2), 

31.5 (d, JCP = 16 Hz, Cy-CH2), 32.9 (d, JCP = 20 Hz, Cy-CH2), 34.2 (d, 1JCP = 13 Hz, Cy-CH), 

36.2 (d, 1JCP = 17 Hz, Cy-CH), 64.6 (d, 3JCP = 1 Hz, C(P)CHCH), 69.3 (d, 2JCP = 2 Hz, 

C(P)CH), 73.6 (s, Cp-CH), 80.0 (d, 2JCP = 24 Hz, CBr), 83.8 (d, 1JCP = 2 Hz, CP), 87.3 (d, 
3JCP = 26 Hz, CCHCH2), 113.2 (s, CHCH2), 133.2 (s, CHCH2). 
31P{1H}-NMR (C6D6): �/ppm = –13.5 (s). 

IR (KBr): ν~ /cm–1 = 3088(w), 2922(s), 2848(s), 1702(w), 1628(m), 1558(w), 1446(m), 

1408(w), 1290(m), 1152(w), 1107(w), 1000(m), 976(m), 898(m), 818(m9, 656(w). 

MS (EI): m/z(%) = 489(12), 488(44), 487(13), 486(46), 406(9), 405(7), 404(9), 403(5), 

324(15), 323(94), 322(16), 321(100), 243(9), 241(5), 239(5), 185(7), 183(6), 153(5), 121(7), 

55(5). 

[�] 20
D = +499 (c = 0.37, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C24H32BrFeP: C: 59.16, H: 6.62; measured: C: 59.88, H: 6.69. 

Rf (SiO2, hexanes:EtOAc:NEt3 (100:5:1)): 0.22. 

 

 

 

(S,RP)-(�5-2,4-cyclopentadien-1-yl)(�5-2-bromo-3-(1-

dimethylaminoethyl)-1-trimethylsilyl-cyclopenta-2,4-dien-1-

yl)iron (34) 

 

To a solution of 2,2,6,6-tetramethylpiperidine (0.50 mL, 

2.97 mmol) in THF (4 mL) was added n-butyllithium (1.80 mL, 

1.6 M in hexane, 2.88 mmol) at 0 °C. After 30 min this was 

added dropwise to a solution of 3 (336 mg, 1.00 mmol) in THF (4 mL) at –50 °C. The 

solution was kept between –40 and –30 °C for 3 h and then cooled down to –78 °C. To the 

dark red solution was added dropwise trimethylsilyl chloride (0.17 mL, 1.33 mmol). The 

solution was stirred for 2 h, then water (2 mL) was added and the solution was allowed to 

warm up to room temperature. The reaction mixture was extracted three times with sat. aq. 

NaHCO3 and dried over MgSO4. The solvent was evaporated under reduced pressure and the 

Fe

Br

SiMe3

NMe2

 



Experimental 

 

199 

residue was purified by column chromatography (SiO2, 10×4 cm, hexanes:acetone:NEt3 

(80:20:1)) to give the title compound 34 (353 mg, 87%) as an orange oil. 

 

C17H26BrFeNSi (408.23 g/mol) 
1H-NMR (C6D6): �/ppm = 0.38 (s, 9H, Si(CH3)3), 1.31 (d, 3JHH = 7.1 Hz, 3H, CHCH3), 2.13 

(s, 6H, N(CH3)2), 3.88 (d, 3JHH = 2.5 Hz, 1H, C(Si)CH), 3.89 (q, 3JHH = 7.1 Hz, 1H, CHCH3), 

3.95 (d, 3JHH = 2.5 Hz, 1H, C(Si)CHCH), 3.98 (s, 5H, Cp-CH). 
13C{1H}-NMR (C6D6): �/ppm = 0.01 (s, Si(CH3)3), 14.9 (s, CHCH3), 40.9 (s, N(CH3)2), 56.5 

(s, CHCH3), 67.7 (s, C(Si)CHCH), 71.3 (s, C(Si)CHCH), 71.4 (s, Cp-CH), 71.8 (s, CSi), 86.4 

(s, CBr), 91.5 (s, C(Br)CCH). 

IR (NaCl): ν~ /cm–1 = 3094(m), 2965(s), 2899(m), 2859(m), 2819(s), 2775(s), 1771(w), 

1707(w), 1635(w), 1453(m), 1406(w), 1368(m), 1250(s), 1196(w), 1147(m), 1102(m), 

1004(m), 976(m), 947(m), 905(w), 836(s), 756(m), 694(w), 632(m). 

MS (EI): m/z(%) = 409(89), 407(91), 394(36), 392(37), 365(98), 363(100), 338(33), 336(34), 

73(30), 72(38). 

[�] 20
D = +63 (c = 0.62, CHCl3 / 0.75% EtOH). 

EA: calculated for C17H26BrFeNSi: C: 50.02, H: 6.42, N: 3.43; measured: C: 50.43, H: 6.64, 

N: 3.67. 

Rf (SiO2, Hex:EtOAc:NEt3 (33:66:1)): 0.14. 

 

 

 

(R,SP)-(�5-2,4-cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-

butyl-6-trimethylsilyl-(1,2,3-trihydro-

cyclopenta[b]phosphole-3a-yl]iron (39) 

 

To a solution of 29 (476 mg, 1.31 mmol) in THF (10 mL) was 

added dropwise n-butyllithium (1.00 mL, 1.6 M in hexane, 

1.60 mmol) at –78 °C. After 30 min this was added via cannula 

at –78 °C to a solution of tert-butylphosphine dichloride (252 mg, 1.58 mmol) in THF 

(10 mL). After 1 h a solution of LiAlH4 (1.65 mL, 2 M in THF, 3.30 mmol) was added and the 

reaction mixture was allowed to warm up to room temperature during 3 h, then 2 M aq. NaOH 

was added until no more gas was formed. The suspension was filtered over a pad of silica 

eluting with ethyl acetate and the solvent was evaporated under reduced pressure. The residue 
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was dissolved in THF (10 mL) and a solution of iPr2NH (0.25 mL, 1.77 mmol) and  

n-butyllithium (1.10 mL, 1.6 M in hexane, 1.76 mmol) in THF (5 mL) (prepared at 0 °C) was 

added. The solution was heated at 70 °C for 15 h. It was extracted three times with sat. aq. 

NaCl and dried over MgSO4. The solvent was removed under reduced pressure and column 

chromatography (SiO2, 15×4 cm, hexanes:EtOAc:NEt3 (100:2:1)) gave the title compound 39 

(367 mg, 75%) as an orange oil. 

 

C19H29FePSi (372.34 g/mol) 
1H-NMR (C6D6): �/ppm = 0.41 (s, 9H, Si(CH3)3), 1.94 (d, 3JHP = 11.3 Hz, 9H, C(CH3)3), 

1.95-2.05 (m, 1H, PCHRHSCH2, 2.30-2.50 (m, 3H, PCHRHSCH2), 3.93 (s, 5H, Cp-CH), 4.11 

(d, 3JHH = 2.1 Hz, 1H, C(Si)CH), 4.26 (d, 3JHH = 2.2 Hz, 1H, C(Si)CHCH). 
13C{1H}-NMR (C6D6): �/ppm = 1.0 (d, 4JCP = 3.0 Hz, Si(CH3)3), 27.2 (d, 1JCP = 19.8 Hz, 

PCH2CH2), 27.2 (d, 2JCP = 1.1 Hz, PCH2CH2), 28.4 (d, 2JCP = 14.3 Hz, C(CH3)3), 31.9 (d, 
1JCP = 19.7 Hz, C(CH3)3), 67.6 (s, C(Si)CHCH), 70.7 (d, JCP = 0.9 Hz, Cp-CH), 72.0 (d, 
2JCP = 16.3 Hz, CSi), 79.2 (d, 3JCP = 2.2 Hz, C(Si)CH), 89.1 (d, 1JCP = 18.6 Hz, C(Si)C), 102.5 

(s, C(Si)CC). 
31P{1H}-NMR (C6D6): �/ppm = –0.6 (s). 

IR (NaCl): ν~ /cm–1 = 3090(m), 2950(s), 2897(s), 2859(s), 1742(w), 1650(w), 1462(m), 

1412(m), 1360(w), 1249(s), 1182(w), 1123(m), 1054(w), 1001(m), 940(w), 837(s), 755(m), 

693(m). 

MS (EI): m/z(%) = 372(10), 317(5), 316(20), 315(100), 313(5), 241(7), 73(13). 

[�] 20
D = +66 (c = 0.65, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C19H29FePSi: C: 61.29, H: 7.85; measured: C: 61.45, H: 7.80. 

Rf (SiO2, hexanes:EtOAc:NEt3 (100:2:1)): 0.27. 

 

 

(R,SP)-(�5-2,4-cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-

butyl-6-diphenylphosphino-(1,2,3-trihydro-

cyclopenta[b]phosphole-3a-yl]iron (40) 

 

To a solution of 30 (1.32 g, 2.78 mmol) in THF (20 mL) was 

added dropwise n-butyllithium (2.10 mL, 1.6 M in hexane, 

3.36 mmol) at –78 °C. After 30 min this was added via cannula 

to a solution of tert-butylphosphine dichloride (630 mg, 3.96 mmol) in THF (20 mL) at  
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–78 °C. After 1 h a solution of LiAlH4 (4.00 mL, 2 M in THF, 8.00 mmol) was added and the 

reaction mixture was allowed to warm up to –20 °C during 3 h, then 2 M aq. NaOH was added 

until no more gas was formed. The suspension was filtered over a pad of silica eluting with 

ethyl acetate and the solvent was evaporated under reduced pressure. The residue was 

dissolved in THF (20 mL) and a solution of iPr2NH (0.55 mL, 3.90 mmol) and n-butyllithium 

(2.40 mL, 1.6 M in hexane, 3.84 mmol) in THF (6 mL) (prepared at 0 °C) was added. After 

40 h at room temperature it was extracted three times with sat. aq. NaCl and dried over 

MgSO4. The solvent was removed under reduced pressure and purification by column 

chromatography (SiO2, 15×5 cm, hexanes:EtOAc:NEt3 (300:10:3)) and recrystalization from 

MeOH gave the title compound 40 (940 mg, 70%) as a yellow solid. 

 

C28H30FeP2 (484.33 g/mol) 
1H-NMR (C6D6): �/ppm = 0.89 (d, JHP = 11.6 Hz, 9H, C(CH3)3), 1.98-2.08 (m, 1H, 

PCHRHSCH2), 2.32-2.62 (m, 3H, PCHRHSCH2), 3.83 (s, 5H, Cp-CH), 4.14 (d, 3JHH = 2.3 Hz, 

1H, Ph2PCCH), 4.23 (d, 3JHH = 2.3 Hz, 1H, Ph2PCCHCH), 6.98 (t, JHH = 7.2 Hz, 1H, Ph-CH) 

7.01-7.08 (m, 5H, Ph-CH, Ph’-CH), 7.39 (t, JHH = 7.0 Hz, 2H, Ph-CH), 7.64-7.72 (m, 2H, 

Ph’-CH). 
13C{1H}-NMR (C6D6): �/ppm = 26.8 (d, JCP = 17.6 Hz, PCH2), 27.9 (d, JCP = 4.6 Hz, 

PCH2CH2), 28.1 (dd, JCP = 14.7 Hz. JCP = 2.0 Hz, C(CH3)3), 31.9 (d, JCP = 20.0 Hz, C(CH3)3), 

67.5 (s br, Ph2PCCHCH), 71.6 (d, JCP = 1.3 Hz, Cp-CH), 76.4 (dd, JCP = 5.1 Hz, JCP = 0.5 Hz, 

Ph2PCCH), 90.9 (dd, JCP = 36.8 Hz, JCP = 19.6 Hz, Ph2PC), 102.5 (d, JCP = 6.3 Hz, Ph2PCC), 

102.5 (d, JCP = 6.5 Hz, Ph2PCCC), 127.8 (s, Ph-CH), 128.2 (d, JCP = 8.2 Hz, Ph’-CH), 128.2 

(d, JCP = 5.7 Hz, Ph-CH), 129.1 (s, Ph’-CH), 132.8 (d, JCP = 17.8 Hz, Ph-CH), 135.8 (d, 

JCP = 22.1 Hz, Ph’-CH), 139.6 (d, JCP = 11.0 Hz, Ph’-C), 142.1 (d, JCP = 11.2 Hz, Ph-C). 
31P{1H}-NMR (C6D6): �/ppm = –22.3 (d, 3JPP = 14.0 Hz, PPh2), 0.1 (d, 3JPP = 14.0 Hz, 

PC(CH3)3),  

IR (KBr): ν~ /cm–1 = 3049(m), 2925(s), 2853(s), 1952(w), 1884(w), 1813(w), 1757(w), 

1706(w), 1649(w), 1582(w), 1462(m), 1431(m), 1358(m), 1279(w), 1227(w), 1180(w), 

1128(m), 1099(m), 998(m), 815(s), 743(s), 695(s), 578(w), 503(m). 

MS (EI): m/z(%) = 485(5), 484(17), 428(27), 427(100), 242(12), 241(12), 212(5), 183(6). 

[�] 20
D = –319 (c = 0.39, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C28H30FeP2: C: 69.44, H: 6.24; measured: C: 69.39, H: 6.38. 

Rf (SiO2, hexanes:EtOAc:NEt3 (100:10:1)): 0.5. 

m.p.: 168-170 °C. 
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(R,SP)-(�5-2,4-cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-

butyl-6-di(ortho-tolyl)phosphino-(1,2,3-trihydro-

cyclopenta[b]phosphole-3a-yl]iron (41) 

 

To a solution of 31 (1.00 g, 1.99 mmol) in THF (7 mL) was 

added dropwise n-butyllithium (1.60 mL, 1.6 M in hexane, 

2.56 mmol) at –78 °C. After 30 min this was added via cannula 

to a solution of tert-butylphosphine dichloride (400 mg, 2.52 mmol) in THF (10 mL) at  

–78 °C. After 1 h a solution of LiAlH4 (2.90 mL, 2 M in THF, 5.80 mmol) was added and the 

reaction mixture was allowed to warm up to 0 °C during 3 h, then 2 M aq. NaOH was added 

until no more gas was formed. The suspension was filtered over a pad of silica eluting with 

ethyl acetate and the solvent was evaporated under reduced pressure. The residue was 

dissolved in THF (10 mL) and a solution of iPr2NH (0.35 mL, 2.48 mmol) and n-butyllithium 

(1.50 mL, 1.6 M in hexane, 2.40 mmol) in THF (3 mL) (prepared at 0 °C) was added. The 

solution was heated at 60 °C for 10 h. It was extracted three times with sat. aq. NaCl and dried 

over MgSO4. The solvent was removed under reduced pressure and column chromatography 

(SiO2, 15×5 cm, hexanes:CH2Cl2:NEt3 (50:50:1)) gave the title compound 41 (579 mg, 57%) 

as a yellow foam. 

 

C30H34FeP2 (512.38 g/mol) 
1H-NMR (C6D6): �/ppm = 0.88 (d, JHP = 11.5 Hz, 9H, C(CH3)3), 2.00-2.08 (m, 1H, 

PCHHCH2), 2.18 (d, J = 1.0 Hz, 3H, oTol-CH3) 2.37-2.62 (m, 3H, PCHHCH2), 2.93 (s, 3H, 

oTol-CH3), 3.82 (s, 5H, Cp-CH), 4.29 (d, 3JHH = 2.2 Hz, 1H, (oTol)2PCCHCH), 4.38 (d, 
3JHH = 2.1 Hz, 1H, (oTol)2PCCH), 6.82-6.91 (m, 2H, oTol-CH), 6.98-7.09 (m, 4H, oTol-CH), 

7.35-7.39 (m, 1H, oTol-CH), 7.39-7.44 (m, 1H, oTol-CH). 
13C{1H}-NMR (C6D6): �/ppm = 21.1 (d, JCP = 19.8 Hz, oTol-CH3), 22.3 (d, JCP = 26.5 Hz, 

oTol-CH3), 26.7 (d, JCP = 17.5 Hz, PCH2CH2), 27.9 (d, JCP = 4.5 Hz, PCH2CH2), 28.0 (dd, 

JCP = 14.6 Hz. JCP = 2.3 Hz, C(CH3)3), 32.1 (d, JCP = 20.1 Hz, C(CH3)3), 67.8 (s, 

(oTol)2PCCHCH), 71.2 (s, Cp-CH), 76.0 (dd, JCP = 14.3 Hz, 3JCP = 10.9 Hz, (oTol)2PC), 76.4 

(d, JCP = 4.5 Hz, (oTol)2PCCH), 91.9 (dd, JCP = 39.2 Hz, JCP = 19.3 Hz, (oTol)2PCC), 102.6 

(d, JCP = 6.9 Hz, (oTol)2PCCC), 125.6 (s, oTol-CH), 125.8 (s, oTol-CH), 128.0 (s, oTol-CH), 

129.3 (s, oTol-CH), 130.2 (d, JCP = 6.6 Hz, oTol-CH), 130.3 (d, JCP = 4.4 Hz, oTol-CH), 

132.2 (s, oTol-CH), 135.8 (d, JCP = 2.7 Hz, oTol-CH), 136.7 (d, JCP = 9.3 Hz, oTol-C), 140.6 

Fe

P

P(oTol)2

 



Experimental 

 

203 

(d, JCP = 24.3 Hz, oTol-C), 141.7 (d, JCP = 12.6 Hz, oTol-C), 143.5 (d, JCP = 31.4 Hz, oTol-

C). 
31P{1H}-NMR (C6D6): �/ppm = –43.4 (d, 3JPP = 16.8 Hz, P(oTol)2), 0.2 (d, 3JPP = 16.8 Hz, 

PC(CH3)3). 

IR (KBr): ν~ /cm–1 = 3053(m), 3003(w), 2929(s), 2856(m), 1919(w), 1846(w), 1803(w), 

1774(w), 1705(w), 1587(w), 1460(m), 1416(w), 1378(w), 1381(w), 1276(w), 1226(w), 

1194(w), 1130(m), 1053(w),1001(w), 816(m), 750(s), 719(w), 581(w), 511(w), 452(s). 

MS (EI): m/z(%) = 513(7), 512(17), 457(5), 456(30), 455(100), 453(6), 243(6), 242(8), 

241(11). 

[�] 20
D = –240 (c = 0.42, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C30H34FeP2: C: 70.32, H: 6.69; measured: C: 70.25, H: 6.70. 

Rf (SiO2, hexanes:CH2Cl2:NEt3 (50:50:1)): 0.34. 

m.p.: 71-76 °C. 

 

 

 

(R,SP)-(�5-2,4-cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-

butyl-6-dicyclohexylphosphino-(1,2,3-trihydro-

cyclopenta[b]phosphole-3a-yl]iron (42) 

 

To a solution of 32 (1.73 g, 3.55 mmol) in THF (10 mL) was 

added dropwise n-butyllithium (2.90 mL, 1.6 M in hexane, 

4.64 mmol) at –78 °C. After 30 min this was added via cannula 

to a solution of tert-butylphosphine dichloride (734 mg, 4.62 mmol) in THF (10 mL) at  

–78 °C. After 1 h a solution of LiAlH4 (5.10 mL, 2 M in THF, 10.2 mmol) was added and the 

reaction mixture was allowed to warm up to 0 °C during 3 h, then 2 M aq. NaOH was added 

until no more gas was formed. The suspension was filtered over a pad of silica eluting with 

ethyl acetate and the solvent was evaporated under reduced pressure. The residue was 

dissolved in THF (15 mL) and a solution of iPr2NH (0.750 mL, 5.32 mmol) and  

n-butyllithium (3.30 mL, 1.6 M in hexane, 5.28 mmol) in THF (5 mL) (prepared at 0 °C) was 

added. The solution was heated at 60 °C for 10 h. It was extracted three times with sat. aq. 

NaCl and dried over MgSO4. The solvent was removed under reduced pressure and column 

chromatography (SiO2, 15×5 cm hexanes:Et2O:NEt3 (100:10:1)) gave the title compound 42 

(879 mg, 50%) as an orange solid. 
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 C28H42FeP2 (496.43 g/mol) 
1H-NMR (C6D6): �/ppm = 1.12 (d, JHP = 11.0 Hz, 9H, C(CH3)3), 1.15-2.60 (m, 26H, Cy-CH, 

PCH2CH2), 4.03 (s, 5H, Cp-CH), 4.20 (s, 1H, Cy2PCCHCH), 4.25 (s, 1H, Cy2PCCH). 
13C{1H}-NMR (C6D6): �/ppm = 26.9 (dd, JCP = 10.3 Hz, JCP = 1.0 Hz, Cy-CH2), 27.1 (d, 

JCP = 16.6 Hz, PCH2CH2), 27.6 (d, JCP = 9.8 Hz, PCH2CH2), 27.7 (d, JCP = 4.5 Hz, Cy-CH2), 

27.9 (d, JCP = 10.8 Hz, Cy-CH2), 27.9 (d, JCP = 6.9 Hz, Cy-CH2), 28.5 (d, JCP = 12.9 Hz, Cy-

CH2), 29.2 (dd, JCP = 14.2 Hz, 5JCP = 3.2 Hz, C(CH3)3), 30.2 (s, Cy-CH2), 31.0 (s br, Cy-

CH2), 31.4 (d, JCP = 15.3 Hz, Cy-CH2), 32.3 (d, JCP = 21.4 Hz, C(CH3)3), 32.4 (d, 

JCP = 14.6 Hz, Cy-CH2), 33.2 (d, JCP = 18.7 Hz, Cy-CH2), 35.9 (d, JCP = 12.5 Hz, PCH), 38.6 

(d, JCP = 16.5 Hz, PCH), 66.6 (d, JCP = 1.8 Hz, Cy2PCCH), 71.0 (s, Cy2PCC), 71.5 (d, 

JCP = 1.2 Hz, Cp-CH), 71.9 (s, Cy2PC), 78.1 (s br, Cy2PCCHCH), 100.2 (dd, JCP = 4.5 Hz, 

JCP = 0.9 Hz, C(P)C(P)C). 
31P{1H}-NMR (C6D6): �/ppm = –11.6 (s br, PCy2), 1.9 (d, 3JPP = 7.0 Hz, PC(CH3)3). 

IR (KBr): ν~ /cm–1 = 3078(w), 2920(s), 2848(s), 1636(w), 1544(w), 1443(m), 1413(w), 

1358(w), 1265(w), 1175(w), 1126(m), 1047(w), 1001(m), 885(w), 848(w), 818(m), 693(w). 

MS (EI): m/z(%) = 497(5), 496(14), 441(5), 440(31), 439(100), 437(6), 331(6), 275(13), 

274(6), 244(5), 243(8), 242(5), 241(17). 

[�] 20
D = –79 (c = 0.090, CHCl3 / 0.75% EtOH). 

EA: calculated (%) for C28H42FeP2: C: 67.74, H: 8.53; measured: C: 67.70, H: 8.46. 

Rf (SiO2, hexanes:EtOAc:NEt3 (100:10:1)): 0.29. 

m.p.: 170-175 °C. 

 

 

 

(S)-(�5-2,4-Cyclopentadien-1-yl)(�5-1-bromo-2-ethyl-

cyclopenta-2,4-dien-1-yl)iron (44) 

 

A solution of 4 (340 mg, 1.17 mmol) in EtOAc (15 mL) 

containing palladium on charcoal (30 mg, 10% Pd, moistened 

with 50% H2O) was shaken under dihydrogen atmosphere at 

ambient pressure for 5 h. After filtration the solvent was 

evaporated under reduced pressure. Column chromatography (SiO2, 10×4 cm, hexanes) gave 

the title compound 44 (331 mg, 97%) as an orange liquid. 
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 C12H13BrFe (292.98 g/mol) 
1H-NMR (C6D6): �/ppm = 1.04 (t, 3JHH = 7.5 Hz, 3H, CH3), 2.27 (dq, 2JHH = 15.0 Hz, 
3JHH = 7.5 Hz, 1H, CHH), 2.37 (dq, 2JHH = 15.0 Hz, 3JHH = 7.5 Hz, 1H, CHH), 3.70 (t, 
3JHH = 2.5 Hz, 1H, C(Br)CHCH), 3.75-3.78 (m, 1H, C(Br)CCH), 3.95 (s, 5H, Cp-CH), 4.24 

(dd, 3JHH = 2.3 Hz, 4JHH = 1.5 Hz, 1H, C(Br)CH). 
13C{1H}-NMR (C6D6): �/ppm = 14.7 (s, CH3), 21.7 (s, CH2), 65.5 (s, C(Br)CHCH), 65.9 (s, 

C(Br)CCH), 69.3 (s, C(Br)CH), 71.3 (s, Cp-CH), 80.3 (s, CBr), 89.4 (s, CEt). 

IR (NaCl): ν~ /cm–1 = 3094(m), 2966(s), 2930(m), 2870(m), 1771(w), 1719(w), 1652(w), 

1463(m), 1387(m), 1304(w), 1168(w), 1106(m), 1072(m), 1001(m), 931(m), 818(s). 

MS (EI): m/z(%) = 295(15), 294(93), 293(19), 292(100), 290(7), 279(11), 277(11), 213(20), 

212(18), 210(9), 208(5), 197(6), 157(10), 147(7), 146(7), 142(6), 141(13), 137(8), 135(9), 

129(6), 121(24), 115(8), 92(14), 91(20), 81(5), 65(11), 56(34). 

[�] 20
D = –2.0 (c = 0.58, CHCl3 / 0.75% EtOH). 

EA: calulated (%) for C12H13BrFe: C: 49.19, H: 4.47; measured: C: 49.56, H: 4.64. 

Rf (SiO2, hexanes): 0.47. 

 

 

 

(S)-(�5-2,4-Cyclopentadien-1-yl)(�5-1-diphenylphosphino-3-

ethyl-2-hydroxymethyl-cyclopenta-2,4-dien-1-yl)iron (46) 

 

To a solution of 45 (300 mg, 704 μmol) in THF (10 mL) was 

added LiAlH4 (400 μL, 2 M in THF, 800 μmol) at 0 °C. After 

30 min 2 M aq. NaOH was added until no more gas was formed, 

the organic layer was dried over MgSO4 and the solvent was 

evaporated under reduced pressure. Column chromatography (SiO2, 15×4 cm, hexanes:EtOAc 

(4:1 � 2:1)) gave the title compound 46 (262 mg, 87%) as a yellow oil which solidified on 

standing. 

 

C25H25FeOP (428.28 g/mol) 
1H-NMR (C6D6): �/ppm = 1.12 (t, 3JHH = 7.5 Hz, 3H, CH3), 1.15 (ddd, 3JHH = 7.2 Hz, 
3JHH = 4.9 Hz, 5JHP = 1.3 Hz, 1H, OH) 2.16-2.26 (m, 1H, CHHCH3), 2.32-2.42 (m, 1H, 

CHHCH3), 3.69 (dd, 3JHH = 2.5 Hz, 3JHP = 1.0 Hz, 1H, Ph2PCCH), 3.86 (s, 5H, Cp-CH), 4.06 
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(d, 3JHH = 2.5 Hz, 1H, Ph2PCCHCH), 4.46 (dd, 2JHH = 12.2 Hz, 3JHH = 7.2 Hz, 1H, CHHOH), 

4.74 (ddd, 2JHH = 12.2 Hz, 3JHH = 4.9 Hz, 4JHP = 2.6 Hz, 1H, CHHOH), 6.91-7.02 (m, 3H, Ph-

CH), 7.03-7.11 (m, 3H, Ph’-CH), 7.35-7.41 (m, 2H, Ph-CH), 7.56-7.62 (m, 2H, Ph’-CH). 
13C{1H}-NMR (C6D6): �/ppm = 15.4 (s, CH3), 21.3 (s, CH2CH3), 58.4 (d, 3JCP = 10.5 Hz, 

CH2OH), 69.6 (d, 2JCP = 4.0 Hz, Ph2PCCH), 69.9 (s, Ph2PCCHCH), 70.3, (s, Cp-CH), 76.7 (d, 
2JCP = 7.2 Hz, CCH2OH), 90.9 (d, 1JCP = 23.3 Hz, Ph2PC), 94.1 (d, 3JCP = 3.5 Hz, CEt), 128.3 

(s, Ph-CH), 128.4 (d, JCP = 7.7 Hz, Ph-CH), 128.6 (d, JCP = 5.8 Hz, Ph’-CH), 129.2 (s, Ph’-

CH), 132.8 (d, JCP = 18.2 Hz, Ph-CH), 135.4 (d, JCP = 21.0 Hz, Ph’-CH), 137.9 (d, 
1JCP = 9.8 Hz, Ph’-C), 141.1 (d, 1JCP = 11.4 Hz, Ph-C). 
31P{1H}-NMR (C6D6): �/ppm = –8.78 (s). 

IR (KBr): ν~ /cm–1 = 3446(s), 3066(m), 3020(w), 2960(m), 2923(m), 2868(m), 1585(w), 

1477(m), 1434(s), 1368(m), 1307(w), 1277(w), 1241(w), 1184(w), 1154(m), 1131(w), 

1107(m), 1068(w), 1000(m), 966(s), 822(s), 748(s), 701(s), 505(s), 485(m), 446(m). 

MS (EI): m/z(%) = 429(29), 428(100), 426(7), 291(18), 290(78), 289(32), 275(9), 261(8), 

197(6), 183(20), 181(12), 167(5), 166(6), 165(11). 

EA: calculated for C25H25FeOP: C: 70.11, H: 5.88; measured: C: 70.03, H: 5.90. 

[�] 20
D = –212 (c = 0.098, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:EtOAc (4:1)): 0.21. 

m.p.: 124-126 °C. 

 

 

 

(S)-(�5-2,4-Cyclopentadien-1-yl)(�5-1-

boranyl(diphenyl)phosphino-3-ethyl-2-hydroxymethyl-

cyclopenta-2,4-dien-1-yl)iron (47) 

 

To a solution of 46 (200 mg, 425 μmol) in THF (5 mL) was 

added BH3 (1.00 mL, 1 M in THF, 1.00 mol). After 3 h the 

reaction mixture was extracted with sat. aq. NaHCO3, dried 

over MgSO4 and the solvent was evaporated under reduced pressure. Column 

chromatography (SiO2, 10×4 cm, hexanes:EtOAc (2:1)) gave the title compound 47 (205 mg, 

99%) as a yellow oil which solidified glass-like upon standing. 
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C25H28BFeOP (442.12 g/mol) 
1H-NMR (C6D6): �/ppm = 1.07 (t, 3JHH = 7.5 Hz, 3H, CH3), 1.60-2.60 (m br, 3H, BH3), 1.83 

(t, 3JHH = 6.5 Hz, 1H, OH), 2.05-2.17 (m, 1H, CHHCH3), 2.24-2.35 (m, 1H, CHHCH3), 3.73 

(dd, 3JHP = 2.4 Hz, 3JHH = 2.4 Hz, 1H, EtCCHCH), 3.99 (s, 5H, Cp-CH), 4.04 (d, 
3JHH = 2.4 Hz, 1H, EtCCH), 4.36 (dd, 2JHH = 12.5 Hz, 3JHH = 6.9 Hz, 1H, CHHOH), 5.03 (dd, 
2JHH = 12.5 Hz, 3JHH = 6.0 Hz, 1H, CHHOH), 6.86-6.96 (m, 3H, Ph-CH), 6.96-7.08 (m, 3H, 

Ph’-CH), 7.56-7.66 (m, 2H, Ph-CH), 7.72-7.82 (m, 2H, Ph’-CH). 
13C{1H}-NMR (C6D6): �/ppm = 15.3 (s, CH3), 21.0 (s, CH2CH3), 57.1 (s, CH2OH), 69.2 (d, 
1JCP = 63.0 Hz, EtCCC), 70.7 (d, 3JCP = 5.8 Hz, EtCCH), 71.0 (s, Cp-CH), 71.7 (d, 
2JCP = 3.8 Hz, EtCCHCH), 90.5 (d, 2JCP = 14.4 Hz, EtCC), 95.5 (d, 3JCP = 7.1 Hz, EtC), 128.4 

(d, JCP = 10.0 Hz, Ph’-CH), 128.6 (d, JCP = 9.9 Hz, Ph-CH), 130.8 (d, JCP = 2.2 Hz, Ph-CH), 

131.0 (d, JCP = 2.2, Ph’-CH), 131.4 (d, 1JCP = 60.2 Hz, Ph’-C), 132.7 (d, 1JCP = 57.2 Hz, Ph-

C), 132.9 (d, JCP = 9.4 Hz, Ph-CH), 133.8 (d, JCP = 9.5 Hz, Ph’-CH). 
31P{1H}-NMR (C6D6): �/ppm = 28.6-30.0 (m). 

IR (KBr): ν~ /cm–1 = 3446(m), 3056(m), 2965(m), 2932(m), 2873(m), 2387(s), 22.67(w), 

1972(w), 1897(w), 1654(w), 1479(m), 1436(m), 1376(m), 1314(m), 1275(m), 1154(m), 

1106(s), 1062(s), 978(m), 823(m), 742(s), 697(s), 646(m), 595(w), 499(s). 

MS (FAB): m/z(%) = 443(5), 442(18), 441(7), 430(5), 429(30), 428(100), 427(10), 426(9), 

425(7), 412(16), 411(48), 409(5), 345(9), 335(13), 333(5), 291(7), 290(18), 289(8), 227(8), 

211(5), 185(6), 183(15), 165(8), 136(6), 121(6), 91(8), 77(7), 56(6), 39(5). 

[�] 20
D = –207.0 (c = 0.67, CHCl3 / 0.75% EtOH). 

EA: calculated for C25H28BFeOP: C: 67.92, H: 6.38; measured: C: 67.75, H: 6.43. 

Rf (SiO2, hexanes:EtOAc (2:1)): 0.51. 

 

 

 

 (S)-(�5-2,4-Cyclopentadien-1-yl)(�5-2-ethyl-1-formyl-

cyclopenta-2,4-dien-1-yl)iron (48) 

 

To a solution of 44 (600 mg, 2.05 mmol) in THF (8 mL) was 

added n-butyllithium (1.50 mL, 1.6 M in hexane, 2.40 mmol) at 

–78 °C. After 20 min DMF (220 μL, 2.86 mmol) was added and 

the solution was allowed to warm up to room temperature. The 

reaction mixture was extracted twice with water and dried over MgSO4. The solvent was 

Fe

CHO
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evaporated under reduced pressure and column chromatography (SiO2, 15×4 cm, 

hexanes:EtOAc (5:1)) gave the title compound 48 (457 mg, 92%) as a red liquid which 

solidified upon storage at 5 °C. 

 

C13H14FeO (242.09 g/mol) 
1H-NMR (C6D6): �/ppm = 1.04 (t, 3JHH = 7.5 Hz, 3H CH3), 2.38 (dq, 2JHH = 15.0 Hz, 
3JHH = 7.5 Hz, 1H, CHHCH3), 2.59 (dq. 2JHH = 15.0 Hz, 3JHH = 7.5 Hz, 1H, CHHCH3), 3.85 

(s, 5H, Cp-CH), 3.99 (t, 3JHH = 2.5 Hz, 1H, EtCCHCH), 4.04 (s br, 1H, EtCCH), 4.46 (s br, 

1H, EtCCCH), 10.00 (s, 1H, CHO). 
13C{1H}-NMR (C6D6): �/ppm = 15.6 (s, CH3), 21.4 (s, CH2), 70.1 (s, Cp-CH), 70.3 (s, 

EtCCCH), 70.7 (s, EtCCHCH), 72.8 (s, EtCCH), 77.5 (s, CCHO), 93.6 (s, EtC), 192.4 (s, 

CHO). 

IR (KBr): ν~ /cm–1 = 3086(w), 2966(w), 2926(w), 2866(w), 2796(w), 2728(w), 1671(s), 

1439(m), 1408(w), 1383(w), 1362(w), 1312(w), 1278(m), 1188(w), 1151(w), 1104(w), 

1038(w), 1001(m), 823(m), 744(m), 533(w), 492(m). 

MS (EI): m/z(%) = 243(16), 242(100), 214(14), 213(35), 212(16), 199(25), 148(21), 122(13), 

121(30), 56(15). 

[�] 20
D = –168 (c = 0.26, CHCl3 / 0.75% EtOH). 

EA: calculated for C13H14FeO: C: 64.50, H: 5.83; measured: C:64.37, H:5.76. 

Rf (SiO2, hexanes:EtOAc (5:1)): 0.40. 

m.p.: 43-44 °C. 

 

 

 

(S)-(�5-2,4-Cyclopentadien-1-yl)(�5-2-ethyl-1-

hydroxymethyl-cyclopenta-2,4-dien-1-yl)iron (49) 

 

To a solution of 48 (457 mg, 1.89 mmol) in THF (5 mL) was 

added LiAlH4 (2.0 mL, 1 M in THF, 2.00 mmol) at 0 °C. After 

20 min 2 M aq. NaOH was added until no more gas was formed, 

the organic layer was dried over MgSO4 and the solvent was 

evaporated under reduced pressure. Column chromatography (SiO2, 15×4 cm, hexanes:EtOAc 

(2:1)) gave the title compound 49 (424 mg, 92%) as a yellow oil which solidified on standing. 

 

Fe

OH
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 C13H16FeO (244.11 g/mol) 
1H-NMR (C6D6): �/ppm = 1.06 (t, 3JHH = 7.5 Hz, 3H, CH3), 1.07 (dd, 3JHH = 6.9 Hz, 
3JHH = 4.6 Hz, 1H, OH), 2.10-2.28 (m, 2H, CH2CH3), 3.86 (t, 3JHH = 2.4 Hz, 1H, EtCCHCH), 

3.88 (s, 5H, Cp-CH) 3.99-4.02 (m, 1H, EtCCH), 4.08-4.11 (m, 1H, EtCCCH), 4.15 (dd, 
2JHH = 11.9 Hz, 3JHH = 4.6 Hz, 1H, CHHOH), 4.26 (dd, 2JHH = 11.9 Hz, 3JHH = 6.9 Hz, 1H, 

CHHOH). 
13C{1H}-NMR (C6D6): �/ppm = 15.4 (s, CH3), 21.0 (s, CH2CH3), 59.4 (s, CH2OH), 66.1 (s, 

EtCCHCH), 68.3 (s, EtCCH), 68.5 (s, EtCCCH), 69.0 (s, Cp-CH), 86.4 (s, EtCC), 90.3 (s, 

EtC). 

IR (KBr): ν~ /cm–1 = 3261(s), 3091(m), 2963(m), 2926(m), 2867(m), 1743(w), 1687(w), 

1636(w), 1468(w), 1448(w), 1415(w), 1373(w), 1315(m), 1278(m), 1196(w), 1134(w), 

1103(m), 1034(w), 992(s), 814(s), 764(w), 682(m), 547(w), 485(m), 444(w). 

MS (EI): m/z(%) = 245(16), 244(100), 242(7), 226(20), 179(11), 161(6), 139(5), 138(62), 

121(8), 106(14), 105(10), 91(29), 56(6). 

[�] 20
D = +35.0 (c = 0.44, CHCl3 / 0.75% EtOH). 

EA: calculated for C13H16FeO: C: 63.96, H: 6.61; measured: C: 63.78, H: 6.52. 

Rf (SiO2, hexanes:EtOAc (2:1)): 0.48. 

m.p.: 66-68 °C. 

 

 

 

(S,S)-Di(2-ethylferrocen-1-yl)methyl ether (50) 

 

To a solution of 49 (100 mg, 410 μmol) and p-toluenesulfonyl 

chloride (80 mg, 419 μmol) in CH2Cl2 (5 mL) was added 

triethyl amine (60 μL, 434 μmol) at room temperature. After 4 h 

the solvent was evaporated and the crude product was purified 

by column chromatography (SiO2, 15×4 cm, hexanes:EtOAc 

(10:1)) to give the title compound 50 (58 mg, 60%) as an orange oil which solidified upon 

storage at 5 °C. 

 

C26H30Fe2O (470.21 g/mol) 

Fe

O

Fe
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1H-NMR (C6D6): �/ppm = 1.15 (t, 3JHH = 7.5 Hz, 6H, CH3), 2.20-2.43 (m, 4H, CH2CH3), 

3.91-3.93 (m, 2H, EtCCHCH), 3.93 (s, 10H, Cp-CH), 3.95-3.98 (m, 2H, EtCCH), 4.14-4.17 

(m, 2H, EtCCCH), 4.15 (d, 2JHH = 11.2 Hz, 2H, CHHO), 4.44 (d, 2JHH = 11.2 Hz, 2H, 

CHHO). 
13C{1H}-NMR (C6D6): �/ppm = 15.4 (s, CH3), 21.2 (s, CH2CH3), 66.2 (s, EtCCHCH), 66.8 (s, 

CH2O), 68.4 (s, EtCCH), 69.2 (s, Cp-CH), 70.0 (s, EtCCCH), 82.5 (s, EtCC), 91.0 (EtC). 

IR (NaCl): ν~ /cm–1 = 3092(m), 2963(s), 2932(s), 2866(m), 2235(w), 2050(w), 1919(w), 

1761(w), 1699(w), 1636(w), 1453(s), 1344(m), 1276(m), 1193(w), 1137(m), 1105(m), 

1044(s), 1002(s), 956(w), 884(w), 815(s), 758(m). 

MS (EI): m/z(%) = 472(6), 471(33), 470(100), 268(7), 258(6), 235(11), 228(20), 227(91), 

226(10), 225(7), 212(13), 193(6), 186(5), 121(13). 

[�] 20
D = +13.5 (c = 0.45, CHCl3 / 0.75% EtOH). 

EA: calculated for C26H30Fe2O: C: 66.41, H: 6.43; measured: C: 66.12, H: 6.54. 

Rf (SiO2, hexanes:EtOAc (10:1)): 0.56. 

m.p.: 20-25 °C. 

 

 

 

(S,SP),(S,SP)-{(�4-1,5-cyclooctadiene)-bis{(�5-2,4-

cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-butyl-(1,2,3-

trihydro-cyclopenta[b]phosphole-3a-yl]iron}-iridium(I)}-

tetrakis[3,5-bis(triflouromethyl)phenyl]borat (67) 

 

[Ir(cod)Cl]2 (14.6 mg, 21.7 �mol) was dissolved in CH2Cl2 

(1 mL) and a solution of 6 (26.0 mg, 86.7 �mol) in CH2Cl2 

(1 mL) was added. After 10 min NaBArF (45.0 mg, 50.8 �mol) was added and the resulting 

mixture was stirred at room temperature for 1 h. The solvent was evaporated under reduced 

pressure and purification by column chromatography (SiO2, 2×10 cm) first by elution of the 

side products with TBME and then of the product with CH2Cl2 followed by recrystallization 

from CH2Cl2/hexanes gave 67 (51.0 mg, 67%) as a brown-orange solid. 

 

C72H66BF24Fe2IrP2 (1764 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 1.27 (d, J = 14.1 Hz, 18H, C(CH3)3), 1.79-1.92 (m, 2H, cod-

CH2), 2.12-2.45 (m, 6H, cod-CH2), 2.63-2.88 (m, 6H, CH2), 2.97-3.08 (m, 2H, CH2), 4.16 (s, 

Fe

P P
FeIr

BArF  
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10H, Cp-CH), 4.27-4.31 (m, 2H, CH), 4.45-4.55 (m, 4H, CH, cod-CH), 4.58-4.62 (m, 2H, 

CH), 6.57-6.65 (m, 2H, cod-CH), 7.56 (s, 4H, BArF-CH), 7.70-7.75 (m, 8H, BArF-CH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 26.3 (s, cod-CH2), 26.4-26.6 (m, CH2), 29.2-29.3 (m, 

C(CH3)3), 31.3-31.8 (m, CH2), 36.3-36.5 (m, cod-CH2), 40.3-40.6 (m, C(CH3)3), 63.9-64.1 

(m, CH), 67.5-67.7 (m, CH), 70.0 (s, Cp-CH), 74.9-75.2 (m, cod-CH), 75.5-75.7 (m, CH), 

76.7-77.3 (m, CP), 91.2-91.4 (m, cod-CH), 99.4-99.7 (m, C(P)C), 117.0-117.2 (m, BArF-CH), 

124.3 (q, 1JCF = 272 Hz, BArF-CF3), 127.9-129.1 (m, BArF-C), 134.5 (s, BArF-CH), 161.4 (q, 
1JBC = 50.0 Hz, BArF-CB). 
31P{1H}-NMR (CD2Cl2): �/ppm = 31.7 (s). 

IR (KBr): ν~ /cm–1 = 2961(m), 2874(w), 1613(w), 1466(w), 1355(s), 1278(s), 1128(s), 

1005(w), 889(w), 835(w), 713(w), 675(w). 

MS (ESI): m/z(%) = 902(47), 901(100), 900(32), 899(73), 897(7). 

EA: calculated (%) for C72H66BF24Fe2IrP2: C: 49.03, H: 3.77; measured: C: 49.03, H: 3.76. 

[�]
20
D = –10 (c = 0.074, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:2)): 0.28. 

m.p.: 235-240 °C (dec.). 

 

 

 

(R,SP),(R,SP)-{(�4-1,5-cyclooctadiene)-bis{(�5-2,4-

cyclopentadien-1-yl)[(3a,4,5,6,6a-�)-1-tert-butyl-6-

trimethylsilyl-(1,2,3-trihydro-cyclopenta[b]phosphole-3a-

yl]iron}-iridium(I)}-tetrakis[3,5-

bis(triflouromethyl)phenyl]borat (68)  

 

[Ir(cod)Cl]2 (20.0 mg, 29.8 �mol) was dissolved in CH2Cl2 

(1 mL) and a solution of 39 (45.0 mg, 121 �mol) in CH2Cl2 (1 mL) was added. After 10 min 

NaBArF (63.0 mg, 71.1 �mol) was added and the resulting mixture was stirred at room 

temperature for 6 h. The solvent was evaporated under reduced pressure and purification by 

column chromatography (SiO2, 2×10 cm) first by elution of the side products with TBME and 

then of the product with CH2Cl2 followed by recrystallization from CH2Cl2/hexanes gave 68 

(55.0 mg, 48%) as a red-brown solid. 

 

C78H82BF24Fe2IrP2Si2 (1908 g/mol) 

Fe

P P
Fe

IrSiMe3

Me3Si

BArF  
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1H-NMR (CD2Cl2): �/ppm = 0.39 (s, 18H, Si(CH3)3), 1.30 (d, 3JHP = 13.9 Hz, 18H, C(CH3)3), 

1.65-1.79 (m, 2H, cod-CHH), 2.00-2.23 (m, 4H, cod-CHH), 2.32-2.45 (m, 2H, cod-CHH), 

2.67-2.87 (m, 6H, CH2CHH), 3.01-3.13 (m, 2H, CH2CHH), 4.15 (s, 10H, Cp-CH), 4.19-4.30 

(m, 2H, cod-CH), 4.70 (d, 3JHH = 2.6 Hz, 2H, CHCH), 4.74-4.77 (m, 2H, CHCH), 6.10-6.18 

(m, 2H, cod-CH), 7.56 (s, 4H, BArF-CH), 7.70-7.75 (m, 8H, BArF-CH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 3.1 (s, Si(CH3)3), 25.4-25.6 (m, CH2CH2), 26.3 (s, cod-

CH2), 29.4 (s, cod-CH2), 29.9-30.1 (m, C(CH3)3), 32.2-32.6 (m, cod-CH2), 36.3-36.5 (m, 

CH2CH2), 40.0 (d, 1JCP = 21.4 Hz, C(CH3)3), 67.4-67.5 (m, CHCH), 69.7-70.0 (m, cod-CH), 

70.1 (s, Cp-CH), 79.2 (d, 1JCP = 43.1 Hz, C(Si)C), 85.7-85.8 (m, CHCH), 87.7-87.9 (m, cod-

CH), 104.0-104.4 (m, C(Si)CC), 117.0-117.2 (m, BArF-CH), 124.3 (d, 1JCF = 272 Hz, BArF-

CF3), 127.9-129.1 (m, BArF-C), 134.5 (s, BArF-CH), 161.4 (q, 1JBC = 50.0 Hz, BArF-CB). 
31P{1H}-NMR (CD2Cl2): �/ppm = 49.4 (s). 

IR (KBr): ν~ /cm–1 = 2958(m), 1612(w), 1467(w), 1355(m), 1278(s), 1128(s), 1005(w), 

889(w), 837(w), 712(w), 676(w). 

MS (ESI): m/z(%) = 1047(21), 1046(51), 1045 (97), 1044(39), 1043(59), 1041(8), 675(8), 

674(35), 673 (100), 672(25), 671(65), 670(6), 669(15), 667(7). 

EA: calculated (%) for C78H82BF24Fe2IrP2Si2•CH2Cl2: C: 47.60, H: 4.25; measured: C: 47.96, 

H: 4.05. 

[�]
20
D = +13 (c = 0.081, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:2)): 0.28. 

m.p.: 140-150 °C (dec.). 

 

 

 

(R,SP)-{(�4-1,5-cyclooctadiene)-{(�5-2,4-cyclopentadien-1-

yl)[(3a,4,5,6,6a-�)-1-tert-butyl-6-diphenylphosphino-(1,2,3-

trihydro-cyclopenta[b]phosphole-3a-yl]iron}-iridium(I)}-

tetrakis[3,5-bis(triflouromethyl)phenyl]borat (69) 

 

[Ir(cod)Cl]2 (40.0 mg, 59.5 �mol) was dissolved in CH2Cl2 

(1 mL) and a solution of 40 (58.0 mg, 120 �mol) in CH2Cl2 (1 

mL) was added. After 10 min NaBArF (110 mg, 124 �mol) was added and the resulting 

mixture was stirred at room temperature for 1 h. The solvent was evaporated under reduced 

pressure and purification by column chromatography (SiO2, 2×10 cm) first by elution of the 

Fe

P
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side products with TBME and then of the product with CH2Cl2 followed by recrystallization 

from CH2Cl2/hexanes gave 69 (170 mg, 86%) as an orange solid. 

 

C68H54BF24FeIrP2 (1648 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.88 (d, JHP = 15.3 Hz, 9H, C(CH3)3) 1.80-1.90 (m, 1H, cod-

CH2), 1.92-2.06 (m, 2H, cod-CH2), 2.11-2.23 (m, 2H, cod-CH2), 2.29-2.43 (m, 3H, cod-CH2), 

2.75-2.85 (m, 1H, CHHCH2), 2.87-3.16 (m, 3H, CHHCH2), 4.20-4.28 (m, 1H, cod-CH), 4.31 

(s, 5H, Cp-CH), 4.96-5.00 (m, 1H, CH), 5.00-5.08 (m, 1H, cod-CH), 5.14-5.22 (m, 2H, cod-

CH), 5.51-5.55 (m, 1H, CH), 7.36-7.44 (m, 3H, Ph-CH), 7.48-7.59 (m, 9H, Ph-CH, BArF-

CH), 7.70-7.76 (m, 8H, BArF-CH), 7.83-7.90 (m, 2H, Ph-CH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 28.4 (d, JCP = 5.6 Hz, C(CH3)3), 29.3-29.5 (m, cod-CH2), 

30.0 (d, JCP = 25.3 Hz, CH2), 31.0 (d, JCP = 8.6 Hz, CH2), 31.1-31.2 (m, cod-CH2), 31.8-32.1 

(m, cod-CH2), 38.7 (d, JCP = 17.7 Hz, C(CH3)3), 68.2 (dd, JCP = 58.6 Hz, JCP = 22.1 Hz, 

Ph2PC), 73.5 (d, JCP = 6.6 Hz, CH), 73.8 (s, Cp-CH), 75.3-75.5 (m, CH), 77.8 (d, 

JCP = 11.1 Hz, cod-CH), 78.1 (d, JCP = 8.6 Hz, cod-CH), 79.1 (d, JCP = 14.2 Hz, cod-CH), 

79.3 (d, JCP = 13.6 Hz, cod-CH), 96.9-97.2 (m, C), 99.9 (d, JCP = 55.2 Hz, C), 117.0-117.3 (m, 

BArF-CH), 124.4 (q, 1JCF = 272 Hz, BArF-CF3), 128.3-129.0 (m, BArF-C),128.7 (d, 

JCP = 10.1 Hz, Ph-CH), 126.9 (d, JCP = 10.0 Hz, Ph-CH), 130.2 (d, JCP = 52.6 Hz, Ph-C), 

130.7-130.9 (m, Ph-CH), 131.2 (d, JCP = 11.5 Hz, Ph-CH), 131.4 (d, JCP = 9.4 Hz, Ph-CH), 

134.5 (s, BArF-CH), 137.0 (d, JCP = 41.5 Hz, Ph-C), 161.8 (q, 1JBC = 49.9 Hz, BArF-CB). 
31P{1H}-NMR (CD2Cl2): �/ppm = 11.2 (d, JPP = 9.5 Hz), 29.4 (d, JPP = 9.5 Hz). 

IR (KBr): ν~ /cm-1 = 2991(w), 2933(w), 1613(w), 1466(w), 1436(w), 1355(m), 1278(s), 

1128(s), 1006(w), 889(w), 838(w), 744(w), 707(w), 677(w). 

MS (ESI): m/z(%) = 787(6), 786(36), 785 (100), 784(30), 783(70), 782(5), 781(10). 

EA: calculated (%) for C68H54BF24FeIrP2•CH2Cl2: C: 47.82, H: 3.26; measured: C: 47.92, H: 

3.32. 

[�]
20
D = –80 (c = 0.065, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:2)): 0.28. 

m.p.: 235-240 °C. 
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(R,SP)-{(�4-1,5-cyclooctadiene)-{(�5-2,4-cyclopentadien-1-

yl)[(3a,4,5,6,6a-�)-1-tert-butyl-6-di(ortho-toluyl)phosphino-

(1,2,3-trihydro-cyclopenta[b]phosphole-3a-yl]iron}-

iridium(I)}-tetrakis[3,5-bis(triflouromethyl)phenyl]borat 

(70) 

 

[Ir(cod)Cl]2 (40.0 mg, 59.5 �mol) was dissolved in CH2Cl2 

(1 mL) and a solution of 41 (62.0 mg, 121 �mol) in CH2Cl2 (1 mL) was added. After 10 min 

NaBArF (110 mg, 124 �mol) was added and the resulting mixture was stirred at room 

temperature for 1 h. The solvent was evaporated under reduced pressure and purification by 

column chromatography (SiO2, 2×10 cm) first by elution of the side products with TBME and 

then of the product with CH2Cl2 followed by recrystallization from CH2Cl2/hexanes gave 70 

(161 mg, 81%) as an orange solid. 

 

C70H58BF24FeIrP2 (1676 g/mol) 
1H-NMR (CD2Cl2, two conformers): �/ppm = 1.07 (d, J = 15.1 Hz, 9H, C(CH3)3 minor)1.18 

(d, J = 15.0 Hz, 9H, C(CH3)3 major), 1.80-2.50 (m, 7H major, 7H minor, CH2) 1.84 (s, 3H, 

CH3 major), 1.87 (s, 3H, CH3 major), 1.90 (s, 3H, CH3 minor), 2.08 (s, 3H, CH3 minor), 2.57-

2.72 (m, 1H major, CH2), 2.77-2.86 (m, 1H major, 1H minor, CH2), 2.88-3.19 (m, 3H major, 

4H minor, CH2), 3.99 (s, 5H major, Cp-CH), 4.21 (s, 5H minor, Cp-CH), 4.40-4.73 (m, 3H 

major, 1H minor), 4.82-4.85 (m, 1H minor), 4.92-5.00 (m, 1H minor), 5.02-5.10 (m, 2H 

minor), 5.13-5.21 (m, 1H major), 5.44-5.47 (m, 1H major, CH), 5.47-5.55 (m, 1H major, 1H 

minor, CH), 7.07-713 (m, 1H minor, oTol-CH), 7.18-7.38 (m, 5H major, 3H minor, oTol-

CH), 7.47-7.70 (m, 2H major, 3H minor, oTol-CH) 7.56 (s, 4H major, 4H minor, BArF-CH), 

7.73 (s, 8H major, 8H minor, BArF-CH), 9.05 (ddd, J = 15.7 Hz, J = 7.6 Hz, J = 1.4 Hz, 1H, 

oTol-CH major), 9.16 (ddd, J = 13.8 Hz, J = 7.6 Hz, J = 1.8 Hz, 1H, oTol-CH minor). 
13C{1H}-NMR (CD2Cl2): �/ppm = 21.1 (d, J = 4.9 Hz), 21.3 (d, J = 2.8 Hz), 21.8 (d, 

J = 3.6 Hz), 22.2 (d, J = 3.8 Hz), 26.3-26-5 (m), 26.9-27.0 (m), 28.1 (d, J = 5.2 Hz), 28.8 (d, 

J = 5.3 Hz), 30.0-30.7 (m), 31.7-31.9 (m), 32.3-32.4 (m), 36.5-36.7 (m), 37.9 (d, J = 5.3 Hz), 

38.9 (d, J = 17.5 Hz), 40.2 (d, J = 18.8 Hz), 67.1 (d, J = 23.1 Hz), 69.6 (d, J = 17.5 Hz), 72.4 

(d, J = 7.0 Hz), 72.6 (d, J = 13.5 Hz), 73.0 (s), 73.8 (s), 75.3-75.4 (m), 75.9-76.0 (m), 79.8 (d, 

J = 11.1 Hz), 83.4 (d, J = 7.0 Hz), 83.5-83.7 (m), 84.6 (d, J = 2.0 Hz), 97.7 (t, J = 11.8 Hz), 

102.4 (dd, J = 54.5 Hz, J = 38.1 Hz), 117.0-117.3 (m, BArF-CH), 124.3 (q, 1JCF = 272 Hz, 

BArF-CF3), 124.9 (d, J = 11.3 Hz), 125.7 (d, J = 14.6 Hz), 126.1 (d, J = 8.6 Hz), 127.7 (d, 
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J = 50.3 Hz), 128.8-129.2 (m, BArF-C), 130.6 (d, J = 2.0 Hz), 131.3 (d, J = 2.3 Hz), 131.4 (d, 

J = 2.7 Hz), 131.6 (d, J = 7.8 Hz), 131.8 (d, J = 2.5 Hz), 132.1 (d, J = 6.2 Hz), 132.5 (d, 

J = 9.0 Hz), 132.7-133.2 (m), 134.5 (s, BArF-CH), 136.1 (d, J = 14.2 Hz), 137.9 (d, 

J = 24.7 Hz), 138.8 (d, J = 11.6 Hz), 140.8 (d, J = 82.8 Hz), 140.9 (d, J = 90.0 Hz), 141.3 (s), 

161.5 (q, 1JCB = 49.8 Hz, BArF-CB). 
31P{1H}-NMR (CD2Cl2, two conformers): �/ppm = 13.5 (d, JPP = 9.0 Hz, minor), 18.3 (d, 

JPP = 8.1 Hz, major), 29.8 (d, JPP = 9.0 Hz, minor), 30.9 (d, JPP = 8.1 Hz, major). 

IR (KBr): ν~ /cm–1 = 2940(m), 2948(m), 2889(w), 1611(w), 1463(w), 1355(s), 1278(s), 

1128(s), 1006(w), 889(w), 837(w), 753(w), 713(w), 675(w). 

MS (ESI): m/z(%) = 815(8), 814(41), 813(100), 812(26), 811(63). 

EA: calculated (%) for C70H58BF24FeIrP2: C: 50.17, H: 3.49; measured: C: 50.24, H: 3.52. 

[�]
20
D = –180 (c = 0.075, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:2)): 0.28. 

m.p.: 215-220 °C (dec.). 

 

 

 

(R,SP)-{(�4-1,5-cyclooctadiene)-{(�5-2,4-cyclopentadien-1-

yl)[(3a,4,5,6,6a-�)-1-tert-butyl-6-dicyclohexylphosphino-

(1,2,3-trihydro-cyclopenta[b]phosphole-3a-yl]iron}-

iridium(I)}-tetrakis[3,5-bis(triflouromethyl)phenyl]borat 

(71) 

 

[Ir(cod)Cl]2 (40.0 mg, 59.5 �mol) was dissolved in CH2Cl2 

(1 mL) and a solution of 42 (60.0 mg, 121 �mol) in CH2Cl2 (1 mL) was added. After 10 min 

NaBArF (130 mg, 147 �mol) was added and the resulting mixture was stirred at room 

temperature for 1 h. The solvent was evaporated under reduced pressure and purification by 

column chromatography (SiO2, 2×10 cm) first by elution of the side products with TBME and 

then of the product with CH2Cl2 followed by recrystallization from CH2Cl2/hexanes gave 71 

(163 mg, 83%) as an orange solid. 

 

C68H66BF24FeIrP2 (1660 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.95-2.37 (m, 29H, Cy-CH, Cy-CH2, cod-CH2), 1.23 (d, 

JHP = 15.0 Hz, 9H, C(CH3)3), 2.35-2.43 (m, 1H, Cy-CHH), 2.67-3.02 (m, 4H, PCH2CH2), 
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4.35 (s, 5H, Cp-CH), 4.53-4.62 (m, 1H, cod-CH), 4.64-4.67 (m, 1H, cod-CH), 4.67-4.75 (m, 

1H, CHCH), 4.75-4.84 (m, 1H, CHCH), 5.29 (d, J = 2.0 Hz, 1H, cod-CH), 5.42-5.51 (m, 1H, 

cod-CH), 7.56 (s, 4H, BArF-CH), 7.70-7.75 (m, 8H, BArF-CH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 25.3 (d JCP = 6.0 Hz, Cy-CH2), 27.1 (d, JCP = 13.4 Hz, Cy-

CH2), 27.3 (d, JCP = 12.8 Hz, Cy-CH2), 27.5 (d, JCP = 5.8 Hz, Cy-CH2), 27.6 (d, JCP = 5.7 Hz, 

Cy-CH2), 28.4-28.5 (m, cod-CH2), 29.3 (d, JCP = 5.6 Hz, C(CH3)3), 29.4-29.6 (m), 29.8 (d, 

JCP = 7.2 Hz, Cy-CH2), 30.2 (d, JCP = 24.3 Hz, PCH2CH2), 30.4 (d, JCP = 4.9 Hz, PCH2CH2), 

31.0 (d, JCP = 8.8 Hz, Cy-CH2), 32.0-32.2 (m, cod-CH2), 33.8-33.9 (m, Cy-CH2), 36.9 (d, 

JCP = 17.6 Hz, C(CH3)3), 42.0 (d, JCP = 23.1 Hz, Cy-CH), 49.2 (d, JCP = 17.3 Hz, Cy-CH), 

70.8 (dd, JCP = 47.6 Hz, JCP = 22.4 Hz, Cy2PC), 72.6 (s, Cp-CH), 73.0 (d, JCP = 11.0 Hz, 

CHCH), 74.5 (dd, JCP = 5.9 Hz, JCP = 1.8 Hz, cod-CH), 75.0 (d, JCP = 7.0 Hz, cod-CH), 75.5 

(d, JCP = 12.0 Hz, CHCH), 79.0 (d, JCP = 14.5 Hz, cod-CH), 79.4 (d, JCP = 8.1 Hz, cod-CH), 

95.8 (t, JCP = 11.8 Hz, Cy2PCCC), 100.4 (dd, JCP = 55.9 Hz, JCP = 36.8 Hz, Cy2PCC), 117.0-

117.3 (m, BArF-CH), 124.3 (q, JCF = 272 Hz, BArF-CF3), 128.0-129.1 (m, BArF-C), 134.5 (s, 

BArF-CH), 160.9 (q, JCB = 49.8 Hz, BArF-CB). 
31P{1H}-NMR (CD2Cl2): �/ppm = 12.8 (d, JPP = 10.1 Hz), 36.4 (d, JPP = 10.1 Hz). 

IR (KBr): ν~ /cm–1 = 2940(m), 2860(w), 1611(w), 1455(w), 1355(s), 1277(s), 1128(s), 

1003(w), 890(w), 837(w), 713(w), 676(w). 

MS (ESI): m/z(%) = 799(6), 798(37), 797(100), 796(28), 795(68), 793(8). 

EA: calculated (%) for C68H66BF24FeIrP2: C: 49.20, H: 4.01; measured: C: 49.13, H: 3.93. 

[�]
20
D = –10 (c = 0.072, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (2:1)): 0.28. 

m.p.: 235-240 °C (dec.). 
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(S,SP)-{(�4-1,5-cyclooctadiene)-(�5-2,4-cyclopentadien-1-

yl)[(3a,4,5,6,6a-�)-1-tert-butyl-(1,2,3-trihydro-

cyclopenta[b]phosphole-3a-yl]iron-pyridine-iridium(I)}-

tetrakis[3,5-bis(triflouromethyl)phenyl]borat (75) 

 

[Ir(cod)Py2]BArF (100 mg, 75.6 �mol) was dissolved in CH2Cl2 

(3 mL) and a solution of 6 (22.0 mg 73.3 �mol) in CH2Cl2 

(1 mL) was added. After 1 h the solution was filtered over a pad of SiO2 and recrystallized 

from CH2Cl2/hexanes to give 75 (75.0 mg, 66%) as an orange solid. 

 

C61H50BF24FeIrNP (1543 g/mol) 
1H-NMR (333 K, CDCl3): �/ppm = 0.97 (d, 2JHP = 14.6 Hz, 9H, C(CH3)3), 1.35-1.70 (m, 1H 

CH2), 1.77-2.14 (m, 3H, CH2), 2.16-2.32 (m, 2H, CH2), 2.33-2.60 (m, 5H, CH2), 2.61-2.74 

(m, 1H, CH2), 3.82 (s br, 1H, CH), 3.98-4.16 (m, 2H, cod-CH), 4.19-4.32 (m, 1H, cod-CH), 

4.38 (s, 5H, Cp-CH), 4.45 (s, 1H, CH), 4.46 (s, 1H, CH), 4.53-4.72 (m, 1H, cod-CH), 7.47- 

7.57 (m, 6H, BArF-CH, Py-CH), 7.73 (s, 8H, BArF-CH), 7.77 (t, JHH = 7.6 Hz, 1H, Py-CH), 

8.81 (s, 2H, Py-CH). 
13C{1H}-NMR (333 K, CDCl3): �/ppm  = 28.0 (s, C(CH3)3), 65.4 (s, CH), 65.4 (s, cod-CH), 

68.1 (d, JCP = 10.4 Hz, CH), 70.6 (s, Cp-CH), 75.7 (s, cod-CH), 75.8 (s, CH), 90.3-91.0 (m, 

cod-CH), 91.2-91.5 (m, cod-CH), 117.4-117.6 (m, BArF-CH), 124.7 (q, 1JCF = 272.3 Hz, 

BArF-CF3), 126.8 (s, Py-CH), 128.5-129.5 (m, BArF-C), 134.9 (s, BArF-CH), 139.2 (s, Py-

CH), 151.1 (s, Py-CH), 161.9 (q, 1JCB = 50.0 Hz, BArF-CB). (all secondary and quarternary 

signals were not detected). 
31P{1H}-NMR (333 K, CDCl3): 30.4-30.8 (m). 

IR (KBr): ν~ /cm–1 = 2954(m), 1610(m), 1455(w), 1357(s), 1278(s), 1130(s), 889(m), 836(w), 

755(w), 712(m), 675(m). 

MS (ESI): m/z(%) = 681(30), 680(100), 679(21), 678(66). 

EA: calculated (%) for C61H50BF24FeIrNP: C: 47.49, H: 3.27, N: 0.91; measured: C: 47.26, H: 

3.11, N: 0.78. 

[�]
20
D = –54.2 (c = 0.78, CHCl3 / 0.75% EtOH). 

Rf (SiO2, CH2Cl2): 0.77. 

m.p.: 210- 215 °C (dec). 
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4.3.2 Preparation of Terpene-Derived Phosphorus Compounds 

 

 

1-Bromo-2-(diphenylphosphino)benzene[3] (90) 

 

To a solution of 2-bromo-1-iodobenzene (4.40 g, 15.5 mmol) in 

THF (10 mL) was added iPrMgCl (7.70 mL, 2 M in THF, 

15.4 mmol) while keeping the temperature below –35 °C. The 

solution was stirred for 1 h at –35 °C then diphenylphosphine 

chloride (3.45 mL, 18.6 mmol) was added while keeping the 

temperature below –30 °C. After 45 min at –30 °C the solution was allowed to warm up to 

room temperature. Water (1 mL) was added and the solvent was removed under reduced 

pressure. The residue was dissolved in EtOAc (20 mL) and extracted with sat. aq. NaHCO3 

and sat aq. NaCl. The solution was dried over MgSO4 and the solvent was removed under 

reduced pressure. The resulting oil was overlaid with EtOH and sonicated. The formed solid 

was filtered, washed twice with cold EtOH and dried under vacuum to give the title 

compound 90 (3.55 g, 73%) as a white solid. 

 

C18H14BrP (341.19 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 6.76-6.80 (m, 1H, C(Br)CH), 7.20-7.26 (m, 2H, 

C(Br)CHCHCH), 7.26-7.31 (m, 4H, Ph-CCH), 7.34-7.42 (m, 6H, Ph-CCHCHCH), 7.59-7.63 

(m, 1H, C(Br)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 127.2 (s, C(Br)CCHCH), 128.3 (d, 3JCP = 7.2 Hz, Ph-

CCHCH), 128.7 (s, Ph-CCHCHCH), 129.4 (d, 1JCP = 30.9 Hz, C(P)C(Br)), 129.9 (s, 

C(Br)CHCH), 132.6 (d, 2JCP = 2.3 Hz, C(Br)C(P)CH), 133.6 (d, 2JCP = 20.4 Hz, Ph-CCH), 

134.2 (s, C(Br)CH), 135.6 (d, 1JCP = 11.1 Hz, Ph-C), 138.6 (d, 2JCP = 12.3 Hz, CBr). 
31P{1H}-NMR (CD2Cl2): �/ppm = –4.6 (s). 
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1-(Diphenylphosphino)-2-methylbenzene[4] (92) 

 

Magnesium turnings (261 mg, 10.7 mmol) were stirred under 

argon for 2 h and then overlaid with THF (30 mL). Three drops 

of 1,2-dibromoethane were added followed by a few drops of a 

solution containing 2-bromotoluene (1.30 mL, 10.8 mmol) in 

THF (5 mL). Upon start of the reaction the remaining solution 

of 2-bromotoluene in THF was added drop-wise. The reaction mixture was heated to reflux 

until all magnesium was dissolved. The reaction mixture was cooled to –78 °C and a solution 

of diphenylphosphine chloride (2.00 mL, 11.1 mmol) in THF (2 mL) was added drop-wise. 

The reaction mixture was stirred overnight at room temperature and extracted twice with sat. 

aq. NaCl and dried over MgSO4. The solvent was removed under reduced pressure and the 

crude product oil treated with EtOH. The formed solid was filtered and washed with cold 

ethanol and the supernatant was concentrated and purified by column chromatography (SiO2, 

3×15 cm, hexanes:EtOAc (1:0 � 5:1)) to give the title compound 92 (2.95 g combined yield, 

99%) as a white solid. 

 

C19H17P (278.33 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 2.39 (s, 3H, CH3), 6.78 (dd, 3JHH = 7.3 Hz, 3JHP = 4.7 Hz, 1H, 

CC(P)CH), 7.09 (t, 3JHH = 7.3 Hz, 1H, C(P)CCHCH), 7.20-7.30 (m, 6H, C(P)CCHCHCH, Ph-

CCH), 7.32-7.38 (m, 6H, Ph-CCHCHCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 20.6 (d, 3JCP = 21.2 Hz, CH3), 125.6 (s, CC(P)CHCH), 

128.2 (d, 3JCP = 7.0 Hz, Ph-CCHCH), 128.3 (s, C(P)CCHCH), 128.4 (s, Ph-CCHCHCH), 

129.7 (d, 3JCP = 4.5 Hz, C(P)CCH), 132.3 (s, CC(P)CH), 133.6 (d, 2JCP = 19.9 Hz, Ph-CCH), 

135.8 (d, 1JCP = 12.3 Hz, C(P)C), 136.1 (d, 1JCP = 10.7 Hz, Ph-C), 141.9 (d, 2JCP = 25.4 Hz, 

CCH3). 
31P{1H}-NMR (CD2Cl2): �/ppm = –13.1 (s). 

Rf (SiO2, hexanes): 0.18. 
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1-(Boranyldiphenylphosphino)-2-methylbenzene (95) 

 

To a solution of 92 (200 mg, 725 μmol) in THF (5 mL) was 

added BH3•THF (1.00 mL, 1 M in THF, 1.00 mmol) at room 

temperature. After 30 min the solvent was evaporated, the 

residue dissolved in TBME and filtered. After removal of the 

solvent under reduced pressure the crude product was 

recrystallized from TBME to give the title compound 95 (182 mg, 87%) as a white solid. 

 

C19H20BP (290.15 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.85-1.70 (m, 3H, BH3), 2.24 (s, 3H, CH3), 7.05 (dd, 
2JHP = 11.8 Hz, 3JHH = 7.9 Hz, 1H, CC(P)CH), 7.17 (t, 3JHH = 7.5 Hz, 1H, CC(P)CHCH), 

7.26-7.31 (m, 1H, C(P)CCH), 7.43 (t, 3JHH = 7.5 Hz, C(P)CCHCH), 7.45-7.51 (m, 4H, Ph-

CCHCH), 7.51-7.58 (m, 2H, Ph-CCHCHCH), 7.59-7.65 (m, 4H, Ph-CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 21.9 (d, 3JCP = 4.9 Hz, CH3), 125.5 (d, 3JCP = 9.6 Hz, 

CC(P)CHCH), 127.5 (d, 1JCP = 55.4 = Hz, C(P)C), 128.5 (d, 3JCP = 10.1 Hz, Ph-CCHCH), 

128.7 (d, 1JCP = 56.0 Hz, Ph-C), 130.9 (d, 4JCP = 2.4 Hz, Ph-CCHCHCH), 131.0 (d, 
4JCP = 2.3 Hz, C(P)CCHCH), 131.5 (d, 3JCP = 8.8 Hz, C(P)CCH), 132.8 (d, 2JCP = 9.4 Hz, Ph-

CCH), 133.8 (d, 2JCP = 8.7 Hz, CC(P)CH), 142.5 (d, 2JCP = 10.3 Hz, CCH3). 
31P{1H}-NMR (CD2Cl2): �/ppm = 20.0-21.5 (m). 

IR (KBr): ν~ /cm–1 = 3219(m), 3050(m), 2379(s), 2343(s), 2256(m), 1967(w), 1898(w), 

1818(w), 1772(w), 1590(w), 1479(m), 1470(m), 1435(s), 1387(w), 1333(w), 1312(w), 

1285(w), 1205(w), 1135(m), 1105(s), 1063(s), 1027(m), 999(w), 806(w), 755(s), 741(s), 

713(s), 696(s), 676(m), 621(m), 603(s), 551(w), 515(s), 498(s), 455(m), 442(m). 

MS (EI): m/z(%) = 287(11), 286(6), 277(21), 276(100), 275(74), 197(12), 166(5), 165(16). 

EA: calculated (%) for C19H20BP • 1/3 H2O: C: 77.06, H: 7.03; measured: C: 76.92, H: 6.94. 

Rf (SiO2, hexanes:EtOAc, 10:1): 0.40. 

m.p.: 144-146 °C. 
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(1S,2R,4R)-2-(Dichlorophosphino)-1-isopropyl-4-

methylcyclohenxane[5] (97) 

 

Magnesium turnings (3.34 g, 139 mmol) were stirred overnight 

under argon and then overlaid with Et2O (5 mL). 0.5 mL of a 

solution of 99 (7.95 g, 45.4 mmol) in Et2O (45 mL) were added 

followed by 0.05 mL 1,2-dibromoethane. Upon start of the 

reaction the remaining solution of 99 in Et2O was added while keeping the reaction mixture at 

reflux. After complete addition, the reaction mixture was heated to reflux for 1 h then allowed 

to cool down to room temperature and the formed suspension was dissolved by addition of 

THF (1 mL). The Grignard-solution was added via a filter-paper equipped cannula to a 

solution of PCl3 (15.0 mL, 172 mmol) in Et2O (15 ml) at 0 °C. The formed white suspension 

was allowed to warm up to room temperature and filtered under argon. The solvent was 

removed under reduced pressure and the crude product was distilled to give the title 

compound 97 (6.63 g, 61%) as a colorless liquid. 

 

C10H19PCl2 (241.14 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.90 (d, 3JHH = 6.8 Hz, 3H, CH3), 0.96 (d, 3JHH = 6.8 Hz, 3H, 

CH3), 0.97 (d, 3JHH = 6.5 Hz, 3H, CH3), 1.10-1.28 (m, 3H), 1.36-1.54 (m, 2H), 1.74-1.83 (m, 

2H), 1.97 (dtd, 1JHP = 27.1 Hz, JHH = 11.2 Hz, JHH = 3.1 Hz, 1H, C(P)H), 2.22-2.32 (m, 2H). 
13C{1H}-NMR (CD2Cl2): �/ppm = 15.1 (d, 4JCP = 2.0 Hz, CH3), 20.9 (s, CH3), 21.9 (s, CH3), 

24.7 (d, JCP = 6.4 Hz, CH2), 28.1 (d, JCP = 24.7 Hz, CH), 32.0 (s, CH2), 32.6 (d, JCP = 2.0 Hz, 

CH), 34.3 (s, CH2), 44.2 (d, JCP = 8.8 Hz, CH), 49.6 (d, 1JCP = 52.7 Hz, C(P)H). 
31P{1H}-NMR (CD2Cl2): �/ppm = 212.7 (s).  

b.p.: 74 °C (0.08 mbar). 
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(1S,2R,4R)-2-Chloro-1-isopropyl-4-methylcyclohexane[6] 

(99) 

 

Zinc dichloride (75.0 g, 550 mmol) was dissolved in conc. HCl 

(36-38%, 51 mL) while cooling in an ice bath. (–)-Menthol 

(26.0 g 166 mmol) was added and the reaction mixture was 

heated at 35 °C for 6 h. The reaction mixture was allowed to 

cool down to room temperature, the layers were separated and the aqueous layer was 

extracted with hexane (50 mL). The combined organic layers were extracted with water 

(25 mL) and conc. H2SO4 (6 × 20 mL) until the extract was colorless. The organic layer was 

washed with water (5 × 20 mL) and dried over MgSO4. The solvent was removed under 

reduced pressure and the crude product was distilled to give the title compound 99 (24.8 g, 

85%) as a colorless liquid. 

 

C10H19Cl (174.71 g/mol) 
1H-NMR (CDCl3): �/ppm = 0.77 (d, 3JHH = 6.9 Hz, 3H, CH3CHCH3), 0.85-0.95 (m, 1H, 

CH3CHCHHCH2), 0.92 (d, 3JHH = 7.2 Hz, 3H, CH3CHCH3), 0.92 (d, 3JHH = 5.9 Hz, 3H, 

CH3), 0.97-1.08 (m, 1H, CH3CHCH2CHH), 1.33-1.50 (m, 3H, CHC(Cl)HCHHCH), 1.67-1.75 

(m, 2H, CHHCHH), 2.20-2.26 (m, 1H, C(Cl)HCHH), 2.35 (sepd, 3JHH = 7.0 Hz, 
3JHH = 3.0 Hz, 1H, CH3CHCH3), 3.78 (td, 3JHH = 11.1 Hz, 3JHH = 4.2 Hz, 1H, C(Cl)H). 
13C{1H}-NMR (CDCl3): �/ppm = 15.1 (s, CH3CHCH3), 21.0 (CH3CHCH3), 21.9 (s, CH3), 

24.2 (CH3CHCH2CH2), 27.1 (s, CH3CHCH3), 33.4 (s, CH3CH), 34.2 (CH3CHCH2CH2), 46.7 

(s, C(Cl)HCH2), 50.4 (s, C(Cl)HCH), 63.9 (s, C(Cl)H). 

[�] 20
D = –45.8 (c = 2.50, CHCl3 / 0.75% EtOH). 

b.p.: 92-95 °C (12 mbar). 

 

 

 

Cl

 



Experimental 

 

223 

(1R,2RS,4S)-2-Bromo-1,3,3-trimethyl-bicyclo[2.2.1]heptane 

(103) 

 

To a solution of triphenylphosphine (12.4 g, 47.3 mmol) and 

imidazole (3.20 g, 47.1 mmol) in CH2Cl2 (50 mL) was added 

bromine (2.40 mL, 46.8 mmol) while keeping the temperature 

below 10 °C. (+)-Fenchol (7.00 g, 45.5 mmol) dissolved in 

CH2Cl2 (10 mL) was added and the suspension was heated to reflux for 15 h. After cooling 

down to room temperature the reaction mixture was extracted with water and sat. aq. NaCl 

and dried over MgSO4. The solution was concentrated under reduced pressure, hexanes were 

added and the solution filtered. The filtrate was concentrated under reduced pressure and 

again filtered. After removal of the solvent under reduced pressure, the crude product was 

distilled to give the title compound 103 (5.29 g, 54%) as a colorless liquid. 

 

C10H17Br (217.15 g/mol) 
1H-NMR (CDCl3): �/ppm = 1.04 (s, 3H, CH3CCH3), 1.07-1.12 (m, 1H, CCHHCH), 1.17 (s, 

3H, CH3CCH3), 1.21 (s, 3H, CCH3), 1.23-1.32 (m, 1H, CCHHCH2), 1.41-1.51 (m, 1H, 

CCH2CHH), 1.61-1.69 (m, 2H, CCHHCHH), 1.78-1.81 (m, 1H, CH), 1.81-1.86 (m, 1H, 

CCHHCH), 3.77 (d, 4JHH = 2.3 Hz, 1H, C(Br)H). 
13C{1H}-NMR (CDCl3): �/ppm = 25.5 (s, CCH2CH2), 26.2 (s, CH3CCH3), 21.8 (s, CCH3), 

31.3 (s, CH3CCH3), 35.7 (s, CCH2CH2), 41.5 (s, CCH2CH), 44.2 (s, CCH3), 49.7 (s, CH), 

50.6 (s, CH3CCH3), 76.8 (s, C(Br)H). 

IR (NaCl): ν~ /cm–1 = 2958(s), 2872(s), 1740(w), 1661(w), 1459(s), 1380(m), 1319(w), 

1231(m), 1157(w), 1105(w), 956(w), 902(m), 857(w), 819(m), 715(m), 678(w). 

MS (EI): m/z(%) = 218 (3), 216(3), 203(14), 201(14), 137(30), 136(6), 123(15), 121(12), 

109(13), 107(6), 95(25), 93(22), 82(8), 81(100), 80(17), 79(21), 77(9), 69(12), 67(14), 55(10), 

41(14), 39(7). 

EA: calculated (%) for C10H17Br: C: 55.31, H: 7.89; measured: C: 56.38, H: 7.99. 

[�] 20
D = –5.0 (c = 0.64, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes, KMnO4): 0.8. 

b.p.: 74-76 °C (2 mbar). 
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(1R,2S,4S)-2-Bromo-1,7,7-trimethyl-bicyclo[2.2.1]heptane[7] 

(104) 

 

A solution of (–)-�-Pinene (34.0 g, 250 mmol) in CHCl3 

(300 mL) was aerated with hydrogen bromide (generated by 

slow hydrolylsis of PBr3 (30 mL, 319 mmol)) while keeping the 

temperature at 0 °C. When the solution turned yellow the 

introduction of HBr was stopped and the solution degassed with a stream of argon. The 

solvent was evaporated under reduced pressure and the residue purified by Kugelrohr-

distillation (100 °C, 0.1 mbar) and recrystallization from methanol to give the title compound 

104 (37.0 g, 68%) as a white solid. 

 

 

C10H17Br (217.15 g/mol) 
1H-NMR (CDCl3): �/ppm = 0.86 (s, 3H, CH3), 0.88 (s, 3H, CRH3CCSH3), 0.96 (s, 3H, 

CRH3CCSH3), 1.27 (ddd, JHH = 12.4 Hz, JHH = 9.5 Hz, JHH = 4.5 Hz, 1H CHCHRHSCH2), 

1.37-1.47 (m, 1H, CHCH2CHRHS), 1.53 (dd, JHH = 14.0 Hz, JHH = 4.5 Hz, 1H 

CHCHRHSCH2), 1.66 (t, JHH = 4.5 Hz, 1H CH2CHCH2), 1.69-1.80 (m, 1H C(Br)HCHRHS), 

2.06 (ddd, JHH = 13.5 Hz, JHH = 9.5 Hz, JHH = 4.4 Hz, 1H, CHCH2CHRHS), 2.47-2.57 (m, 1H, 

C(Br)HCHRHS), 4.32 (ddd, JHH = 10.6 Hz, JHH = 4.4 Hz, JHH = 2.8 Hz, 1H, C(Br)H). 
13C{1H}-NMR (CDCl3): �/ppm = 13.7 (s, CH3), 18.5 (s, CSH3CCRH3), 20.9 (s, CSH3CCRH3), 

28.1 (s, CHCH2CH2), 30.4 (s, CHCH2CH2), 40.8 (s, C(Br)HCH2), 45.0 (s, CH2CHCH2), 47.0 

(s, CH3CCH3), 50.9 (s, C(Br)HC), 62.9 (s, C(Br)H). 

[�] 20
D = –32.0 (c = 2.00, CHCl3 / 0.75% EtOH). 
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(1R,2R,3R,5S)-3-Bromo-2,6,6-trimethyl-

bicyclo[3.1.1]heptane (105) 

 

From a solution of (R)-Alpine-Borane (20.0 mL, 0.5 M in THF, 

10.0 mmol) the solvent was evaporated under reduced pressure. 

The residue was dissolved in CH2Cl2 (10 mL) and cooled in an 

ice bath. Under the exclusion of light bromine (0.56 mL, 

10.9 mmol) was added. After 30 min the cooling bath was removed and the reaction mixture 

was stirred for another 2 h. After addition of 2 M aq. NaOH while cooling the aqueous layer 

was extracted with CH2Cl2. The combined organic layers were washed with sat. aq. NaCl and 

dried over MgSO4. The solvent was evaporated under reduced pressure and the residue was 

bulb-to-bulb condensed under vaccum (40 °C � liq. N2). The crude product was distilled to 

give the title compound 105 (970 mg, 45%) as a colorless liquid. 

 

C10H17Br (217.15 g/mol) 
1H-NMR (CDCl3): �/ppm = 1.00 (s, 3H, CRH3CCSH3), 1.13 (d, JHH = 7.2 Hz, 3H, CHCH3), 

1.21 (s, 3H, CRH3CCSH3), 1.22 (d, JHH = 9.7 Hz, 1H, CHCHRHSCH) 1.87 (td, JHH = 6.0 Hz, 

JHH = 1.8 Hz, 1H, CH3CHCH), 1.96 (tdd, JHH = 6.0 Hz, JHH = 3.6 Hz, JHH = 2.5 Hz, 1H, 

C(Br)HCH2CH), 2.43-2.48 (m, 1H, CHCHRHSCH), 2.46-2.51 (m, 1H, C(Br)HCHRHS), 2.59 

(quind, JHH = 7.2 Hz, JHH = 1.8 Hz, 1H, C(Br)HCH), 2.67-2.76 (m, 1H, C(Br)HCHRHS), 4.39 

(dt, JHH = 9.8 Hz, JHH = 7.0 Hz, 1H, C(Br)H). 
13C{1H}-NMR (CDCl3): �/ppm = 20.2 (s, CHCH3), 23.8 (s, CRH3CCSH3), 28.0 (s, 

CRH3CCSH3), 35.2 (s, CHCH2CH), 38.9 (s, C), 40.9 (s, C(Br)HCH2), 43.3 (s, 

C(Br)HCH2CH), 49.3 (s, CH3CHCH), 49.4 (CH3CH), 52.8 (s, C(Br)H). 

IR (NaCl): ν~ /cm–1 = 2923(s), 1706(m), 1455(m), 1376(m), 1287(w), 1204(m), 865(w), 

779(w), 685(m). 

MS (EI): m/z(%) = 203(1), 201(1), 138(6), 137(73), 136(9), 96(5), 95(39), 94(13), 93(43), 

92(9), 91(12), 84(5), 83(67), 82(10), 81(100), 80(14), 79(20), 77(12), 69(58), 68(9), 67(21), 

56(6), 55(41), 43(10), 41(39), 39(12). 

EA: calculated (%) for C10H17Br: C: 55.31, H: 7.89; measured: C: 56.85, H: 8.01. 

[�] 20
D = –46.5 (c = 1.40, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes, KMnO4): 0.80. 

b.p.: 72 °C (2 mbar). 
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Bis(diethylamino)phosphine chloride[8] (107) 

 

To a solution of phosphorus trichloride (5.25 mL, 60.2 mmol) in 

hexane (120 mL) was added a solution of diethylamine (25 mL, 

240 mmol) in hexane (25 mL) while keeping the temperature 

below –60 °C. After complete addition the solution was allowed 

to warm up to room temperature and filtered under argon. After 

evaporation of the solvent under reduced pressure the crude product was distilled to give the 

title compound 107 (10.9 g, 86%) as a colorless liquid. 

 

C8H20ClN2P (210.70 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 1.12 (t, 3JHH = 7.1 Hz, 12H, CH3), 3.15 (s br, 8H, CH2). 
13C{1H}-NMR (CD2Cl2): �/ppm = 13.3 (d, 3JCP = 4.8 Hz, CH3), 40.7 (d, 2JCP = 17.9 Hz, CH2). 
31P{1H}-NMR (CD2Cl2): �/ppm = 156.8 (s).  

b.p.: 60 °C (0.15 mbar). 

 

 

 

(1R,2S,4S)-2-(Dichlorophosphino)-1,7,7-trimethyl-

bicyclo[2.2.1]heptane (108) 

 

Magnesium turnings (565 mg, 23.5 mmol) were stirred under 

argon for 2 h and then overlaid with THF (20 mL). A small 

portion of iodine was added and after disappearance of the color 

the suspension was heated to reflux. A solution of 104 (4.80 g, 

22.1 mmol) in THF (10 mL) was added drop-wise and after complete addition the reaction 

mixture was heated for another hour. The reaction mixture was allowed to cool down to room 

temperature and the solution was added via a filter-paper equipped cannula to a solution of 

107 (4.75 mL, 22.5 mmol) in THF (10 ml) at –78 °C. After 15 min the reaction mixture was 

allowed to warm up to room temperature and concentrated to half volume under reduced 

pressure. While cooling in an ice bath HCl (46 mL, 2 M in Et2O, 92.0 mmol) was added. The 

ice bath was removed and pentane (10 mL) was added. After 20 min the suspension was 

filtered and the solvent was removed under reduced pressure. The crude product was distilled 

to give the title compound 108 (2.81 g, 50%) as a colorless liquid. 
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 C10H17Cl2P (239.12 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.89 (s, 3H, CRH3CCSH3), 0.94 (s, 3H, CRH3CCSH3), 1.07 (s, 

3H, CH3CCH2), 1.18-1.30 (m, 1H, CCH2CHRHS), 1.25-1.39 (m, 1H, PCHCHRHS), 1.50-1.64 

(m, 1H, CCHRHSCH2), 1.72-1.80 (m, 1H, CCHRHSCH2), 1.75-1.79 (m, 1H, CH2CHCH2), 

1.76-1.88 (m, 1H, CCH2CHRHS), 2.13-2.26 (m, 1H, PCHCHRHS), 2.67 (dddd, J = 11.5 Hz, 

J = 5.4 Hz, J = 3.5 Hz, J = 1.7 Hz, 1H, CHP). 
13C{1H}-NMR (CD2Cl2): �/ppm = 15.2 (s, CH3CCH2), 17.8 (s, CRH3CCSH3), 18.0 (d, 
4JCP = 1.4 Hz, CRH3CCSH3), 28.8 (s, CHCH2CH2), 31.3 (d, 3JCP = 29.1 Hz, CHCH2CH2), 33.4 

(d, 2JCP = 21.8 Hz, PCHCH2), 44.3 (d, 3JCP = 2.1 Hz, CH2CHCH2), 49.4 (d, 2JCP = 9.9 Hz, 

PCHC), 50.6 (d, 3JCP = 2.9 Hz, CH3CCH3), 56.5 (d, 1JCP = 49.4 Hz, CHP). 
31P{1H}-NMR (CD2Cl2): �/ppm = 195.7 (s). 

b.p.: 57-60 °C (0.1 mbar). 

 

 

 

(2-Diphenylphosphinophenyl)((1R,2S,4S)-1,7,7-trimethyl-

bicyclo[2.2.1]heptan-2-yl)phosphine oxide (109) 

 

To a solution of 90 (272 mg, 866 μmol) in THF (5 mL) was 

added at –78 °C n-butyllithium (0.55 mL, 1.6 M in hexane, 

880 μmol). After 1 h this solution was transferred via cannula to 

a solution containing 108 (207 mg, 866 μmol) in THF (5 mL) at 

–78 °C. After 15 min the cooling bath was removed and the reaction mixture was allowed to 

warm up to room temperature. The solution was added to a mixture of triethyl amine (2 mL) 

and water (8 mL). EtOAc (10 mL) and sat. aq. NaHCO3 (15 mL) were added and the aqueous 

layer was extracted with EtOAc. The combined organic layers were washed with sat. aq. 

NaCl and dried over MgSO4. The solvent was evaporated under reduced pressure and the 

crude product was purified by column chromatography (SiO2, 23×3 cm, hexanes:EtOAc 

(1:1)) to give the two separable diastereoisomers of title compound 109 (125 mg + 90 mg, 

56% combined yield) as white foams. 
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(+)-109: 

C28H32OP2, 446.50 g/mol 
1H-NMR (C6D6): �/ppm = 0.54 (s, 3H, CRH3CCSH3), 0.66 (s, 3H, CRH3CSCH3), 1.00 (s, 3H, 

C(P)HCCH3), 1.27-1.36 (m, 1H, CHCHRHSCH2), 1.32-1.46 (m, 1H, C(P)HCHRHS), 1.40-1.50 

(m, 1H, CHCH2CHRHS), 1.41-1.45 (m, 1H, CHCH2CH2), 1.54-1.68 (m, 2H, CHCHRHSCH2, 

C(P)HCHRHS), 2.56 (ddd, JHH = 13.1 Hz, JHH = 9.3 Hz, JHH = 3.4 Hz, 1H CHCH2CHRHS), 

2.68-2.78 (m, 1H, C(P)H), 6.83 (t, JHH = 7.5 Hz, 1H, Ph2PCCHCH), 6.97-7.06 (m, 7H, Ph-

CH), 7.00-7.06 (m, 1H, Ph2PCCHCHCH), 7.15-7.25 (m, 2H, Ph2PCCH, Ph-CH), 7.32-7.37 

(m, 2H, Ph-CH), 8.03 (dddd, J = 12.6 Hz, J = 7.5 Hz, J = 3.3 Hz, J = 1.1 Hz, 1H, 

Ph2PCCCH), 8.22 (dt, 1JPH = 466.3 Hz, J = 4.5 Hz, 1H, PH). 
13C{1H}-NMR (C6D6): �/ppm = 15.8 (s, C(P)HCCH3), 18.3 (s, CH3CCH3), 18.3 (s, 

CH3CCH3), 28.4 (s, CHCH2CH2), 30.8 (s br, C(P)HCH2), 31.5 (d, 3JCP = 9.0 Hz, 

CHCH2CH2), 44.1 (dd, 1JCP = 73.1 Hz, 4JCP = 7.2 Hz, C(P)H), 45.4 (d, 3JCP = 4.5 Hz, 

CHCH2CH2), 50.0 (d, 3JCP = 3.0 Hz, CH3CCH3), 50.5 (d, 2JCP = 10.6 Hz, C(P)HC), 128.9 (s, 

Ph-CH), 128.9 (d, JCP = 2.2 Hz, Ph-CH), 129.0 (d, JCP = 1.6 Hz, Ph-CH), 129.2 (s, Ph-CH), 

129.5 (d, JCP = 10.8 Hz, Ph2PCCHCHCH), 131.6 (d, JCP = 2.3 Hz, Ph2PCCHCH), 133.1 (t, 

JCP = 9.7 Hz, Ph2PCCCH), 133.5 (d, JCP = 19.0 Hz, Ph-CH), 134.5 (d, JCP = 20.0 Hz, Ph-CH), 

135.4 (d, JCP = 8.9 Hz, Ph2PCCH), 136.2 (d, 1JCP = 10.9 Hz, Ph-C), 137.1 (d, 1JCP = 10.6 Hz, 

Ph-C), 139.9 (dd, 1JCP = 89.8 Hz, 2JCP = 30.3 Hz, Ph2PCC), 140.1 (dd, JCP = 18.8 Hz, 

JCP = 10.1 Hz, Ph2PC). 
31P{1H}-NMR (C6D6): �/ppm = –19.8 (d, 3JPP = 52.4 Hz, PPh2), 24.7 (d, 3JPP = 52.4 Hz, 

PHO). 

IR (KBr): ν~ /cm–1 = 3050(w), 2982(w), 2949(m), 2870(m), 1479(m), 1455(m), 1433(m), 

1389(w), 1310(w), 1179(s), 1110(m), 914(m), 938(m), 832(m), 743(s), 694(s). 

MS (EI): m/z(%) = 310(18), 309(100), 183(18). 

EA: calculated (%) for C28H32OP2: C: 75.32, H: 7.22; measured: C: 74.16, H: 7.26. 

[�] 20
D = +63.0 (c = 0.35, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:EtOAc (1:1)): 0.36. 

m.p.: 52-62 °C. 
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(–)-109: 

C28H32OP2, 446.50 g/mol 
1H-NMR (C6D6): �/ppm = 0.24 (s, 3H, CRH3CCSH3), 0.68 (s, 3H, CRH3CCSH3), 1.03 (s, 3H, 

C(P)HCCH3), 1.30-1.46 (m, 2H, C(P)HCHRHS, CHCH2CHRHS), 1.49 (t, JHH = 4.1 Hz, 1H, 

CHCH2CH2), 1.61-1.76 (m, 2H, CHCH2CH2), 1.96 (ddd, JHP = 18.3 Hz, JHH = 12.3 Hz, 

JHH = 5.9 Hz, 1H, C(P)HCHRHS), 2.13-2.20 (m, 1H, C(P)H), 2.92 (ddd, JHH = 12.8 Hz, 

JHH = 9.0 Hz, JHH = 3.9 Hz, 1H, CHCH2CHRHS), 6.94 (t, JHH = 7.5 Hz, 1H, Ph2PCCHCH), 

6.96-7.03 (m, 6H, Ph-CH), 7.04-7.08 (m, 1H, Ph2PCCH), 7.08-7.15 (m, 5H, Ph2PCCHCHCH, 

Ph-CH), 8.48-8.56 (m, 1H, Ph2PCCCH), 8.68 (dd, JPH = 470.4 Hz, JHH = 4.5 Hz, 1H, PH). 
13C{1H}-NMR (C6D6): �/ppm = 15.1 (d, JCP = 1.9 Hz, C(P)HCCH3), 18.0 (s, CRH3CCSH3), 

18.5 (s, CRH3CCSH3), 27.1 (s, C(P)HCH2), 28.2 (s, CHCH2CH2), 31.8 (d, JCP = 6.6 Hz, 

CHCH2CH2), 44.9 (dd, JCP = 73.0 Hz, JCP = 4.7 Hz, C(P)H), 45.6 (d, JCP = 3.8 Hz, 

CHCH2CH2), 49.8 (d, JCP = 2.2 Hz, CH3CCH3), 50.1 (d, JCP = 11.1 Hz, C(P)HC), 128.9 (d, 

JCP = 6.8 Hz, Ph-CH), 129.1 (s, Ph-CH), 129.2 (d, JCP = 7.8 Hz, Ph-CH), 129.7 (d, 

JCP = 10.3 Hz, Ph2PCCHCHCH), 131.6 (d, JCP = 2.1 Hz, Ph2PCCHCH), 133.7 (d, 

JCP = 19.8 Hz, Ph-CH), 133.9 (d, JCP = 19.5 Hz, Ph-CH), 134.2 (dd, JCP = 9.4 Hz, 

JCP = 7.4 Hz, Ph2PCCCH), 135.3 (d, JCP = 8.9 Hz, Ph2CCH), 135.6 (d, 1JCP = 9.3 Hz, Ph-C), 

136.8 (d, 1JCP = 10.3 Hz, Ph-C), 137.9 (dd, JCP = 16.4 Hz, JCP = 9.6 Hz, Ph2PC), 140.0 (dd, 

JCP = 91.6 Hz, JCP = 28.7 Hz, Ph2PCC). 
31P{1H}-NMR (C6D6): �/ppm = –23.2 (d, 3JPP = 71.6 Hz, PPh2), 9.9 (d, 3JPP = 71.6 Hz, PHO). 

IR (KBr): ν~ /cm-1 = 3051(w), 2983(w), 2948(m), 2871(m), 1478(m), 1449(m), 1433(m), 

1389(w), 1311(w), 1184(s), 1110(m), 1027(w), 997(w), 903(m), 816(m), 743(s), 695(s). 

MS (EI): m/z(%) = 310(19), 309(100), 183(20). 

EA: calculated (%) for C28H32OP2: C: 75.32, H: 7.22; measured: C: 73.99, H: 7.19. 

[�] 20
D = –81.0 (c = 0.36, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:EtOAc (1:1)): 0.48. 

m.p.: 55-65 °C. 
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(2-Diphenylphosphinophenyl)((1S,2R,4R)-1-iso-propyl-4-

methylcyclohex-2-yl)(2-hydroxyethyl)phosphine (118) 

 

To a solution of 90 (700 mg, 2.23 mmol) in THF (20 mL) was 

added n-butyllithium (1.5 mL, 1.6 M in hexane, 2.40 mmol) at –

78 °C. After 1 h this solution was transferred via cannula to a 

solution containing 97 (546 mg, 2.27 mmol) in THF (5 mL) at –

78 °C. After 1 h LiAlH4 (90 mg, 2.37 mmol) was added and the solution was allowed to warm 

up to room temperature. Water (5 mL), aq. HCl (1 M, 2 mL) and EtOAc (10 mL) were added 

and the aqueous layer was extracted with EtOAc. The combined organic layers were washed 

with sat. aq. NaCl and dried over MgSO4. The solvent was evaporated under reduced pressure 

and the residue dissolved in THF (12 mL). The solution was cooled down to –78 °C and n-

butyllithium (1.5 mL, 1.6 M in hexane, 2.40 mmol) was added. After 15 min (2-

chloroethoxy)trimethylsilane (0.5 mL, 3.08 mmol) was added and the reaction mixture was 

allowed to warm up to room temperature overnight. Ethanol (5 mL) was added and the 

solvent was evaporated under reduced pressure to give light yellow foam which was dissolved 

in THF (15 mL). Tetrabutylammonium fluoride • 3 H2O (1.00 g, 3.17 mmol) was added and 

the solution was stirred for 2 h. EtOAc (10 mL) and water (10 mL) were added and the 

aqueous layer was extracted with EtOAc. The combined organic layers were washed with 

water and sat. aq. NaCl and dried over MgSO4. The solvent was evaporated under reduced 

pressure and the crude product was purified by column chromatography (SiO2, 23×4 cm, 

CH2Cl2:EtOAc (100:1 � 10:1)) to give the title compound 118 (402 mg, 38%) as a mixture 

of two diastereoisomers. 

Separation of the diastereoisomers was achieved by semi-preparative chiral HPLC (AD, 

hexane:iPrOH (97:3)), whereupon the first eluting diastereoisomer quickly oxidized and could 

not be used for catalysis or proper analysis. 

 

C30H38OP2 (476.57) 
1H-NMR (CD2Cl2): �/ppm = 0.70-0.90 (m, 13H, CH3, CH2, CH), 1.10-1.20 (m, 1H, CH), 

1.24-1.36 (m, 1H, CH2), 1.56-1.72 (m, 2H, CH2, CH2), 1.72-1.82 (m, 1H, CH), 1.82-1.95 (m, 

1H, CH2), 2.10-2.21 (m, 1H, CH2), 2.25-2.38 (m, 1H, CH), 3.48-3.65 (m, 2H, CH2), 6.94-7.01 

(m, 1H, Ar-CH), 7.16-7.28 (m, 5H, Ar-CH), 7.28-7.38 (m, 7H, Ar-CH), 7.48-7.56 (m, 1H, 

Ar-CH). 
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13C{1H}-NMR (CD2Cl2): �/ppm = 15.3 (d, JCP = 5.0 Hz, CH3), 21.1 (s, CH3), 21.9 (s, CH3), 

24.4 (dd, JCP = 19.0 Hz, JCP = 8.0 Hz, CH2CH2OH), 25.0 (d, JCP = 8.0 Hz, CH2), 28.2 (d, 

JCP = 20.4 Hz, CH), 33.1 (d, JCP = 2.3 Hz, CH), 34.7 (s, CH2), 35.9 (d, JCP = 3.3 Hz, CH2), 

37.7 (dd, JCP = 15.0 Hz, JCP = 5.2 Hz, CH), 45.9 (d, JCP = 10.5 Hz, CH), 59.9 (d, 

JCP = 24.7 Hz, CH2OH), 127.9 (s, Ar-CH), 128.0 (s, Ar-CH), 128.1 (s, Ar-CH), 128.1 (s, Ar-

CH), 128.2 (s, Ar-CH), 128.3 (s, Ar-CH), 131.4 (d, JCP = 7.3 Hz, Ar-CH), 133.1 (d, 

JCP = 19.2 Hz, Ar-CH), 133.5 (d, JCP = 19.7 Hz, Ar-CH), 134.2 (d, JCP = 6.6 Hz, Ar-CH), 

136.9 (d, JCP = 5.4 Hz, Ar-C), 137.3 (d, JCP = 6.6 Hz, Ar-C), 142.6 (d, JCP = 9.8 Hz, Ar-C), 

142.9 (d, JCP = 9.6 Hz, Ar-C). 
31P{1H}-NMR (CD2Cl2): �/ppm = –38.6 (d, 3JPP = 143.5 Hz), –19.1 (d, 3JPP = 143.5 Hz). 

IR (KBr): ν~ /cm–1 = 3381(s), 3055(m), 2950(s), 2925(s), 2869(s), 1963(w), 1897(w), 

1822(w), 1712(w), 1633(w), 1586(w), 1437(s), 1372(m), 1182(s), 1118(s), 1043(s), 1000(m), 

745(s), 696(s), 545(s), 510(m). 

MS (EI): m/z(%) = 476(4), 431(4), 353(5), 338(24), 337(100), 309(10), 294(7), 293(14), 

215(4), 184(4), 183(29). 

EA: calculated (%) for C30H38OP2•H2O: C: 72.85, H: 8.15; measured: C: 72.92, H: 7.68. 

[�] 20
D = –153 (c = 0.16, CHCl3 / 0.75% EtOH). 

Rf (SiO2, CH2Cl2:EtOAc (10:1)): 0.4. 

m.p.: 90-97 °C. 

HPLC (AD-H, n-hexane:iPrOH (97:3), 0.5 mL/min, 20 °C): tR/min = 15.2, 22.8. 

 

 

4.3.3 Preparation of P-Chiral Iridium-PHOX Complexes 

 

 

General procedure for the preparation of the P,N-iridium 

complexes (121-128) 

 

To a solution of the oxazoline and N,N,N,N-

tetramethylethylenediamine (100 μL, 668 μmol) in pentane 

(10 mL) was added sec-butyllithium (600 μL, 1.3 M in hexane, 

960 μmol) at –78 °C. The reaction mixture was stirred for 2 h, 

97 (200 mg, 830 μmol) was added and after additional 30 min the suspension was allowed to 

warm up to –10 °C. The reaction mixture was cooled to –78 °C and the corresponding 
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Grignard-reagent was added. After warming up to room temperature Na2SO4•12 H2O was 

added and the solution was filtered over a pad of Al2O3 eluting with Et2O. The solvent was 

evaporated under reduced pressure to give a yellow oil which was dissolved in CH2Cl2 

(3.5 mL) and added to a solution of [Ir(cod)Cl]2 (177 mg, 264 μmol) in CH2Cl2 (1.5 mL) at 

room temperature. After 30 min NaBArF (500 mg, 564 μmol) was added and the solution was 

stirred for 1 h. The solvent was evaporated under reduced pressure and the crude product was 

purified by column chromatography (SiO2, 3×15 cm). Elution of the side products with 

TBME and then of the product with CH2Cl2 followed by recrystallization from 

CH2Cl2/hexanes gave the desired complexes. 

 

 

 

[(ηηηη4-1,5-Cyclooctadiene)-{(RP)-4,4-dimethyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)methylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(121) 

 

The iridium-complex was prepared according to the general 

procedure from 4,4-dimethyl-2-phenyl-oxazoline (90.0 μL, 527 μmol) and MeMgBr (400 μL, 

3 M in Et2O, 1.20 mmol) to give the title compound 121 (428 mg, 53%) as an orange solid. 

 

C62H58BF24IrNOP (1523.09 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.50-0.62 (m, 1H, Men-CHH), 0.66 (d, 3JHH = 6.5 Hz, 3H, 

CH3CHCH3), 0.75-0.84 (m, 2H, Men-CHH, Men-CHH), 1.08 (d, 3JHH = 6.7 Hz, 3H, CHCH3), 

1.09 (d, 3JHH = 6.7 Hz, 3H, CH3CHCH3), 1.08-1.23 (m, 3H, C(P)HCH, CHCH3, Men-CHH), 

1.41-1.46 (m, 1H, cod-CHH), 1.45 (s, 3H, CH3CCH3), 1.49 (d, 2JHP = 8.5 Hz, 3H, PCH3), 

1.61-1.74 (m, 2H, cod-CHH, Men-CHH), 1.69 (s, 3H, CH3CCH3), 1.76-1.84 (m, 1H, Men-

CHH), 1.88-1.92 (m, 1H, cod-CHH), 2.08-2.36 (m, 6H, C(P)H, cod-CHH, cod-CH2, cod-

CH2), 2.46-2.55 (m, 1H, CH3CHCH3), 3.38-3.45 (m, 1H, cod-CH), 3.50-3.56 (m, 1H, cod-

CH), 4.26 (d, 2JHH = 9.0 Hz, 1H, OCHH), 4.46 (d, 2JHH = 9.0 Hz, 1H, OCHH), 5.12-5.23 (m, 

2H, cod-CH, cod-CH), 7.31-7.37 (m, 1H, C(P)CH), 7.57 (s, 4H, BArF-CH), 7.56-7.66 (m, 2H, 

C(P)CHCHCH), 7.73 (s, 8H, BArF-CH), 7.81-7.84 (m, 1H, C(P)CCH). 
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13C-NMR (CD2Cl2): �/ppm = –4.0 (d, 1JCP = 35.0 Hz, PCH3), 17.6 (s, CH3CHCH3), 21.4 (s, 

CHCH3), 21.7 (s, CH3CHCH3), 25.2 (d, JCP = 10.5 Hz, Men-CH2), 27.0 (d, JCP = 1.7 Hz, cod-

CH2), 27.6 (s, CH3CCH3), 27.8 (s, CH3CCH3), 29.0 (d, JCP = 2.2 Hz, cod-CH2), 29.9 (d, 
4JCP = 7.2 Hz, CH3CHCH3), 31.7 (d, JCP = 1.7 Hz, cod-CH2), 33.1 (d, 3JCP = 8.7 Hz, CHCH3), 

33.4 (s, Men-CH2), 34.6 (d, JCP = 4.2 Hz, cod-CH2), 36.9 (d, JCP = 6.4 Hz, Men-CH2), 39.9 (d, 
1JCP = 26.7 Hz, C(P)H), 43.8 (s, C(P)HCH), 60.3 (s, cod-CH), 62.1 (s, cod-CH), 73.0 (s, 

OCH2C), 82.5 (s, OCH2C), 89.1 (d, JCP = 12.7 Hz, cod-CH), 91.5 (d, JCP = 11.4 Hz, cod-CH), 

117.0-117.2 (m, BArF-CH), 124.3 (q, 1JCF = 272.4 Hz, BArF-CF3), 126.8 (d, 1JCP = 41.6 Hz, 

C(P)C), 128.1-129.0 (m, BArF-C), 128.8 (s, C(P)CH), 129.6 (d, 2JCP = 12.5 Hz, C(P)C), 130.4 

(d, 3JCP = 7.3 Hz, C(P)CCH), 130.5 (d, 4JCP = 1.7 Hz, C(P)CCHCH), 133.3 (d, 3JCP = 6.0 Hz, 

C(P)CHCH), 134.5 (s, BArF-CH), 161.4 (q, 1JCB = 49.8 Hz, BArF-CB), 165.7 (d, 
3JCP = 6.1 Hz, NCO). 
31P-NMR (CD2Cl2): �/ppm = 4.26 (s). 

IR (KBr): ν~ /cm–1 = 2962(m), 2933(m), 2893(m), 1608(m), 1567(w), 1463(w), 1355(s), 

1278(s), 1128(s), 998(w), 965(w), 888(m), 839(w), 741(w), 714(m), 676(m). 

MS (ESI): m/z(%) = 661(27), 660(100), 659(20), 658(56), 550(20), 548(15). 

EA: calculated (%) for C62H58BF24IrNOP: C: 48.89, H: 3.84, N: 0.92; measured: C: 48.97, H: 

3.74, N: 0.87. 

[�] 20
D = –155 (c = 0.22, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:1)): 0.18. 

m.p.: 191-195 °C. 

 

 

 

[(ηηηη4-1,5-Cyclooctadiene)-{(SP)-4,4-dimethyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)phenylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(122) 

 

The iridium-complex was prepared according to the general 

procedure from 4,4-dimethyl-2-phenyl-oxazoline (90.0 μL, 527 μmol) and PhMgBr (1.20 mL, 

1 M in THF, 1.20 mmol) to give the title compound 122 (405 mg, 48%) as a red solid. 

 

P
Ph

Ir

BArF

N

O

 



Chapter 4 
 

234 

C67H60BF24IrNOP (1585.15 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.61 (d, 3JHH = 6.8 Hz, 3H, CH3CHCH3), 0.79 (d, 3JHH = 6.6 Hz, 

3H, CH3CHCH3), 0.83-0.90 (m, 1H, Men-CHH), 0.91 (d, 3JHH = 6.3 Hz, 3H, CH3), 1.12-1.40 

(m, 6H, cod-CH2, cod-CHH, cod-CHH, CH3CHCH3, C(P)HCH), 1.48 (s, 3H, CH3CCH3), 

1.55-1.80 (m, 3H, Men-CHH, cod-CHH, cod-CHH), 1.84 (s, 3H, CH3CCH3), 1.92-2.40 (m, 

7H, CHCH3, Men-CH2, Men-CHH, Men-CHH, cod-CH2), 1.62-2.78 (m, 2H, C(P)H, cod-

CH), 3.89-3.95 (m, 1H, cod-CH), 4.23 (d, 2JHH = 8.9 Hz, 1H, OCHH), 4.48 (d, 2JHH = 8.9 Hz, 

1H, OCHH), 4.87-4.95 (m, 1H, cod-CH), 5.36-5.42 (m, 1H, cod-CH), 7.42-7.82 (m, 1H, 

C(P)CHCH), 7.51-7.67 (m, 11H, BArF-CH, Ph-CH, C(P)CHCHCH), 7.74 (s, 8H, BArF-CH), 

7.97 (dd, 3JHH = 7.8 Hz, 4JHP = 3.6 Hz, 1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 16.3 (s, CH3CHCH3), 20.8 (s, CH3CHCH3), 22.0 (s, CH3), 

25.2 (d, JCP = 9.5 Hz, Men-CH2), 25.5 (s, cod-CH2), 26.5 (s, CH3CCH3), 27.2 (s, cod-CH2), 

28.4 (s, CH3CCH3), 31.3 (s, CH3CHCH3), 33.4 (s, cod-CH2), 33.5 (s, CH3CH), 33.8 (d, 

JCP = 13.4 Hz, Men-CH2), 35.8 (d, JCP = 4.6 Hz, cod-CH2), 41.6-42.0 (m, Men-CH2), 42.6 (d, 
1JCP = 21.2 Hz, C(P)H), 43.6 (d, 2JCP = 3.1 Hz, C(P)HCH), 62.6 (s, cod-CH), 64.5 (cod-CH), 

73.2 (s, CH3CCH3), 82.9 (s, OCH2), 84.3 (d, JCP = 14.1 Hz, cod-CH), 90.8 (d, JCP = 9.4 Hz, 

cod-CH), 117.0-117.3 (m, BArF-CH), 123.5 (d, 1JCP = 50.0 Hz, Ph-C), 124.3 (q, 
1JCF = 272.5 Hz, BArF-CF3), 128.1-129.1 (m, BArF-C, C(P)C), 128.4 (d, JCP = 9.5 Hz, Ph-

CH), 130.8 (d, 3JCP = 7.6 Hz, C(P)CCH), 131.0 (d, 4JCP = 1.9 Hz, C(P)CCHCH), 131.4 (d, 

JCP = 2.2 Hz, Ph-CH), 131.7 (d, 2JCP = 13.8 Hz, C(P)C), 132.4 (d, 2JCP = 6.2 Hz, C(P)CH), 

132.9 (d, JCP = 13.7 Hz, Ph-CH), 133.0 (d, 3JCP = 5.7 Hz, C(P)CHCH), 161.4 (q, 
1JBC = 49.8 Hz, BArF-CB), 166.3 (d, 3JCP = 6.4 Hz, NCO). 
31P{1H}-NMR (CD2Cl2): �/ppm = 19.2 (s). 

IR (KBr): ν~ /cm–1 = 2961(m), 2933(m), 2025(w), 1610 (m), 1462(w), 1355(s), 1278(s), 

1127(s), 999(w), 963(w), 889(m), 839(w), 743(m), 712(m), 676(m), 529(w). 

MS (ESI): m/z(%) = 723(8), 722(20), 721(9), 720(12), 613(32), 612(100), 611(23), 610(77), 

609(5), 608(12), 606(5). 

EA: calculated (%) for C67H60BF24IrNOP: C: 50.77, H: 3.82, N: 0.88; measured: C: 50.38, H: 

3.86, N: 0.82. 

[�] 20
D = –120 (c = 0.22, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:1)): 0.12. 

m.p.: 138-143 °C. 
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[(ηηηη4-1,5-Cyclooctadiene)-{(4S,RP)-4-iso-propyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)methylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(123) 

 

The iridium-complex was prepared according to the general 

procedure from (S)-4-iso-propyl-2-phenyl-oxazoline (100 mg, 529 μmol) and MeMgBr 

(400 μL, 3 M in Et2O, 1.20 mmol) to give the title compound 123 (409 mg, 50%) as a red 

solid. 

 

C63H60BF24IrNOP (1537.11 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.55-0.66 (m, 1H, Men-CHH), 0.66 (d, 3JHH = 6.5 Hz, 3H, CH3), 

0.70-0.84 (m, 2H, Men-CHH, Men-CHH), 0.94 (d, 3JHH = 6.7 Hz, 3H, Men-CH3CHCH3), 

1.09 (d, 3JHH = 6.7 Hz, 3H, CH3CHCH3), 1.10 (d, 3JHH = 6.8 Hz, 3H, CH3CHCH3), 1.10-1.15 

(m, 1H, Men-CHCH3), 1.12 (d, 3JHH = 7.1 Hz, 3H, Men-CH3CHCH3), 1.15-1.23 (m, 1H, 

CH(P)CH), 1.51 (d, 2JHP = 8.4 Hz, 3H, PCH3), 1.65-1.93 (m, 5H, cod-CHH, cod-CHH, Men-

CHH, Men-CH2), 1.98-2.41 (m, 8H, cod-CHH, cod-CHH, cod-CH2, cod-CH2, C(P)H, Men-

CH3CHCH3), 2.81-2.89 (m, 1H, CH3CHCH3), 3.31-3.37 (m, 1H, cod-CH), 3.72-3.79 (m, 1H, 

cod-CH), 4.15 (ddd, 3JHH = 10.0 Hz, 3JHH = 4.2 Hz, 3JHH = 2.3 Hz, 1H, CHN), 4.46 (t, 

JHH = 9.8 Hz, 1H, OCHRHS), 4.53-4.60 (m, 1H, cod-CH), 4.66 (dd, 2JHH = 9.6 Hz, 
3JHH = 4.3 Hz, 1H, OCHRHS), 4.94-5.01 (m, 1H, cod-CH), 7.38-7.45 (m, 1H, C(P)CH), 7.57 

(s, 4H, BArF-CH), 7.60 (tt, 3JHH = 7.7 Hz, 4JHH = 1.2 Hz, 1H, C(P)CCHCH), 7.65 (tt, 
3JHH = 7.5 Hz, 4JHH = 1.2 Hz, 1H, C(P)CHCH), 7.73 (s, 8H, BArF-CH), 8.09 (ddd, 
3JHH = 7.6 Hz, 4JHP = 3.8 Hz, 4JHH = 1.4 Hz, 1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = –3.31 (d, 1JCP = 33.8 Hz, PCH3), 14.2 (s, Men-

CH3CHCH3), 16.9 (s, CH3CHCH3), 19.0 (s, Men-CH3CHCH3), 21.4 (s, CHCH3), 21.6 (s, 

CH3CHCH3), 25.2 (d, JCP = 10.6 Hz, Men-CH2), 28.4 (d, JCP = 1.8 Hz, cod-CH2), 29.4 (d, 

JCP = 2.0 Hz, cod-CH2), 30.3 (d, 4JCP = 7.0 Hz, CH3CHCH3), 31.5 (s, Men-CH3CHCH3), 31.6 

(d, JCP = 2.9 Hz, cod-CH2), 32.9 (d, JCP = 6.1 Hz, cod-CH2), 33.0 (s, CHCH3), 33.3 (s, Men-

CH2), 36.5 (d, JCP = 6.5 Hz, Men-CH2), 41.0 (d, 1JCP = 28.1 Hz, C(P)H), 43.2 (s, C(P)HCH), 

60.5 (s, cod-CH), 64.6 (s, cod-CH), 68.4 (s, OCH2), 69.9 (s, NCH), 91.0 (d, JCP = 11.4 Hz, 

cod-CH), 92.6 (d, JCP = 12.9 Hz, cod-CH), 117.0-117.2 (m, BArF-CH), 124.3 (q, 
1JCF = 272 Hz, BArF-CF3), 127.3 (d, 2JCP = 11.5 Hz, C(P)C), 128.0-129.0 (m, BArF-C), 129.9 
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(d, 1JCP = 40.3 Hz, C(P)C), 130.8 (s, C(P)CH), 131.0 (s, C(P)CCHCH), 133.0 (d, 
3JCP = 7.3 Hz, C(P)CCH), 133.5 (d, 3JCP = 6.1 Hz, C(P)CHCH), 134.5 (s, BArF-CH), 161.4 (q, 
1JBC = 49.9 Hz, BArF-CB), 164.3 (d, 3JCP = 5.1 Hz, NCO). 
31P{1H}-NMR (CD2Cl2): �/ppm = 1.4 (s). 

IR (KBr): ν~ /cm–1 = 2962(m), 2932(m), 2888(m), 1785(w), 1606(m), 1463(w), 1355(s), 

1278(s), 1128(s), 1001(w), 961(w), 887(m), 839(w), 714(m), 676(m), 579(w), 518(w), 

448(w). 

MS (ESI): m/z(%) = 676(5), 675(34), 674(100), 673(20), 672(62), 562(13), 560(14), 558(7). 

EA: calculated (%) for C63H60BF24IrNOP: C: 49.23, H: 3.93, N: 0.91; measured: C: 49.24, H: 

3.92, N: 0.91. 

[�] 20
D = –108 (c = 0.24, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:1)): 0.18. 

m.p.: 193-197 °C. 

 

 

 

[(ηηηη4-1,5-Cyclooctadiene)-{(4S,SP)-4-iso-propyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)phenylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(124) 

 

The iridium-complex was prepared according to the general 

procedure from (S)-4-iso-propyl-2-phenyl-oxazoline (100 mg, 529 μmol) and PhMgBr 

(1.20 mL, 1 M in THF, 1.20 mmol) to give the title compound 124 (447 mg, 53%) as a red 

solid. 

 

C68H62BF24IrNOP (1599.18 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.80-0.90 (m, 1H, Men-CHH), 0.84 (d, 3JHH = 6.6 Hz, 3H, CH3), 

0.88 (d, 3JHH = 6.4 Hz, 3H, Ox-CH3CHCH3), 0.89 (d, 3JHH = 6.9 Hz, 3H, Men-CH3CHCH3), 

0.91 (d, 3JHH = 8.0 Hz, 3H, Men-CH3CHCH3), 1.04 (d, 3JHH = 7.0 Hz, 3H, Ox-CH3CHCH3), 

1.12-1.26 (m, 2H, Men-CHH, Men-CHH), 1.30-1.49 (m, 2H, CHCH3, cod-CHH), 1.51-1.88 

(m, 5H, C(P)HCH, Men-CHH, Men-CHH, cod-CHH, cod-CHH), 2.08-2.43 (m, 7H, Ox-

CH3CHCH3, Men-CHH, cod-CH2, cod-CH2, cod-CH), 2.44-2.54 (m, 2H, Men-CH3CHCH3, 
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cod-CH), 2.66-2.76 (m, 1H, C(P)H), 3.36-3.42 (m, 1H, cod-CH), 4.16.-4.21 (m, 1H, NCH), 

4.43 (t, 2JHH = 9.3 Hz, 1H, OCHRHS), 4.70 (dd, 2JHH = 9.6 Hz, 3JHH = 2.6 Hz, 1H, OCHRHS), 

4.76-4.83 (m, 2H, cod-CH, cod-CH), 7.41-7.53 (m, 6H, Ph-CH, C(P)CH), 7.56-7.61 (m, 1H, 

C(P)CHCH), 7.57 (s, 4H, BArF-CH), 7.65-7.71 (m, 1H, C(P)CCHCH), 7.73 (s, 8H, BArF-

CH), 8.36 (dd, 3JHH = 7.8 Hz, 4JHH = 4.0 Hz, 1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm =15.0 (s, Ox-CH3CHCH3), 16.9 (s, Men-CH3CHCH3), 18.7 

(s, Ox-CH3CHCH3), 21.3 (s, Men-CH3CHCH3), 21.6 (s, CH3), 25.7 (d, JCP = 9.5 Hz, Men-

CH2), 26.7 (s, cod-CH2), 29.0 (s, cod-CH2), 29.5 (d, 3JCP = 3.6 Hz, Men-CH3CHCH3), 31.3 (s, 

cod-CH2), 31.7 (s, Ox-CH3CHCH3), 33.3 (s, Men-CH2), 33.7 (d, 3JCP = 13.3 Hz, CHCH3), 

34.6 (d, JCP = 4.3 Hz, cod-CH2), 40.3 (d, JCP = 1.8 Hz, Men-CH2), 43.9 (d, 2JCP = 3.4 Hz, 

C(P)HCH), 45.0 (d, 1JCP = 23.3 Hz, C(P)H), 61.6 (s, cod-CH), 67.0 (s, cod-CH), 67.9 (s, 

OCH2), 70.0 (s, NCH), 88.4 (d, JCP = 12.2 Hz, cod-CH), 93.1 (d, JCP = 11.2 Hz, cod-CH), 

117.0-117.3 (m, BArF-CH), 124.3 (q, 1JCF = 272 Hz, BArF-CF3), 125.6 (d, 1JCP = 49.4 Hz, Ph-

C), 128.1-129.1 (m, C(P)C, BArF-C), 128.2 (d, JCP = 9.8 Hz, Ph-CH), 129.0 (d, 
2JCP = 12.8 Hz, C(P)C), 131.0 (d, JCP = 2.2 Hz, Ph-CH), 131.9 (d, 4JCP = 2.1 Hz, 

C(P)CCHCH), 132.2 (d, JCP = 8.3 Hz, Ph-CH), 132.8 (d, 3JCP = 6.3 Hz, C(P)CHCH), 133.5 

(d, 3JCP = 7.9 Hz, C(P)CCH), 134.5 (s, BArF-CH), 136.7 (s, C(P)CH), 161.4 (q, 
1JBC = 49.8 Hz, BArF-CB), 164.5 (d, 3JCP = 6.0 Hz, NCO). 
31P{1H}-NMR (CD2Cl2): �/ppm = 18.3 (s). 

IR (KBr): ν~ /cm–1 = 2964(m), 2933(m), 2882(m), 1607 (m), 1565(w), 1463(w), 1355(s), 

1278(s), 1127(s), 1002(w), 967(w), 889(m), 839(w), 743(w), 712(m), 677(m), 544(w). 

MS (ESI): m/z(%) = 738(6), 737(37), 736(100), 735(29), 734(65), 732(5), 627(6), 626(25), 

625(16), 624(51), 623(20), 622(75), 621(9), 620(30), 618(5). 

EA: calculated (%) for C68H62BF24IrNOP: C: 51.07, H: 3.91, N: 0.88; measured: C: 50.96, H: 

3.90, N: 0.76. 

[�] 20
D = –84 (c = 0.25, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:1)): 0.18. 

m.p.: 146-155 °C. 
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[(ηηηη4-1,5-Cyclooctadiene)-{(4S,RP)-4-tert-butyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)methylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(125) 

 

The iridium-complex was prepared according to the general 

procedure from (S)-4-tert-butyl-2-phenyl-oxazoline (107 mg, 527 μmol) and MeMgBr 

(400 μL, 3 M in Et2O, 1.20 mmol) to give the title compound 125 (212 mg, 26%) as an orange 

foam. 

 

C64H62BF24IrNOP (1551.15 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.48-0.60 (m, 1H, Men-CHH), 0.64 (d, 3JHH = 6.5 Hz, 3H, 

CHCH3), 0.76-0.82 (m, 2H, Men-CHH, Men-CHH), 1.02 (d, 3JHH = 6.7 Hz, 3H, CH3CHCH3), 

1.04-1.26 (m, 3H, Men-CHH, CHCH3, C(P)HCH), 1.07 (d, 3JHH = 6.8 Hz, 3H, CH3CHCH3), 

1.14 (s, 9H, C(CH3)3), 1.50-1.60 (m, 1H, cod-CHH), 1.55 (d, 2JHP = 8.2 Hz, 3H, PCH3), 1.62-

1.72 (m, 2H, Men-CHH, cod-CHH), 1.75-1.83 (m, 1H, Men-CHH), 1.98-2.28 (m, 4H, cod-

CH2, cod-CHH, cod-CHH), 2.35-2.48 (m, 3H, cod-CH2, CH3CHCH3), 2.50-2.59 (m, 1H, 

CHP), 3.48-3.60 (m, 2H, cod-CH, cod-CH), 3.96 (dd, 3JHH = 9.5 Hz, 3JHH = 3.3 Hz, 1H, 

NCHCH2), 4.46 (t, 2JHH = 3JHH = 9.7 Hz, 1H, NCHCHRHS), 4.56-4.63 (m, 1H, cod-CH), 4.75 

(dd, 2JHH = 9.8 Hz, 3JHH = 3.3 Hz, 1H, NCHCHRHS), 4.87-4.96 (m, 1H, cod-CH), 7.40-7.46 

(m, 1H, C(P)CH), 7.57 (s, 4H, BArF-CH), 7.57-7.62 (m, 1H, C(P)CCHCH), 7.62-7.67 (m, 1H, 

C(P)CHCH), 7.73 (s, 8H, BArF-CH), 8.14 (dd, 3JHH = 7.7 Hz, 4JHH = 3.7 Hz, 1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = –1.4 (d, 1JCP = 34.5 Hz, PCH3), 17.6 (s, CH3CHCH3), 21.4 

(s, CHCH3), 21.8 (s, CH3CHCH3), 25.6 (s, C(CH3)3), 25.7 (d, JCP = 10.4 Hz, Men-CH2), 26.2 

(d, JCP = 1.8 Hz, cod-CH2), 29.6 (d, JCP = 2.0 Hz, cod-CH2), 29.7 (d, 3JCP = 6.3 Hz, 

CH3CHCH3), 31.0 (d, JCP = 1.8 Hz, cod-CH2), 33.0 (d, 3JCP = 9.1 Hz, CHCH3), 33.2 (s, Men-

CH2), 34.2 (s, C(CH3)3), 35.2 (d, JCP = 4.1 Hz, cod-CH2), 38.1 (d, JCP = 6.2 Hz, Men-CH2), 

41.4 (d, 1JCP = 26.3 Hz, C(P)H), 43.6 (s, C(P)HCH), 60.8 (s, cod-CH), 62.1 (s, cod-CH), 70.1 

(s, NCHCH2), 74.0 (s, NCHCH2), 91.0 (d, JCP = 12.5 Hz, cod-CH), 94.6 (d, JCP = 11.8 Hz, 

cod-CH), 117.0-117.3 (m, BArF-CH), 124.3 (q, 1JCF = 272.4 Hz, BArF-CF3), 128.0 (d, 
2JCP = 11.6 Hz, C(P)C), 128.1-129.0 (m, BArF-C), 130.0 (d, 1JCP = 40.4 Hz, C(P)C), 131.0 (d, 
4JCP = 1.9 Hz, PCCCHCH), 131.1 (s, C(P)CH), 133.0 (d. 3JCP = 7.5 Hz, C(P)CCH), 133.6 (d, 
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3JCP = 6.0 Hz, C(P)CHCH), 134.5 (s, BArF-CH), 161.4 (q, 1JBC = 49.8 Hz, BArF-CB), 164.6 

(d, 3JCP = 4.6 Hz, NCO). 
31P{1H}-NMR (CD2Cl2): �/ppm = 1.3 (s). 

IR (KBr): ν~ /cm–1 = 2964(m), 2933(m), 2884(m), 1609 (m), 1598(m), 1354(s), 1277(s), 1163 

(s), 1125(s), 1001(w), 967(w), 879(m), 839(m), 744(w), 714(m), 682(m), 667(m). 

MS (ESI): m/z(%) = 689(35), 688(100), 687(18), 686(60), 578(7), 577(7), 576(21), 574(14). 

EA: calculated (%) for C64H62BF24IrNOP: C: 49.56, H: 4.03, N: 0.90; measured: C: 49.68, H: 

4.05, N: 0.75. 

[�] 20
D = –125 (c = 0.24, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:4)): 0.78. 

m.p.: 186-193 °C. 

 

 

 

[(ηηηη4-1,5-Cyclooctadiene)-{(4S,SP)-4-tert-butyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)phenylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(126) 

 

The iridium-complex was prepared according to the general 

procedure from (S)-4-tert-butyl-2-phenyl-oxazoline (107 mg, 527 μmol) and PhMgBr 

(1.20 mL, 1 M in THF, 1.20 mmol) to give the title compound 126 (324 mg, 38%) as an 

orange foam. 

 

C69H64BF24IrNOP (1613.22 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.56 (d, 3JHH = 6.6 Hz, 3H, CH3CHCH3), 0.70 (d, 3JHH = 6.8 Hz, 

3H, CH3CHCH3), 0.80-1.00 (m, 2H, cod-CHH, Men-CHH), 0.93 (d, 3JHH = 6.5 Hz, 3H, CH3), 

1.13 (s, 9H, C(CH3)3), 1.17-1.48 (m, 3H, Men-CHH, Men-CHH, CH3CHCH3), 1.49-1.64 (m, 

2H, CHCH3, C(P)HCH), 1.65-1.84 (m, 4H, Men-CHH, Men-CHH, cod-CH2), 1.96-2.05 (m, 

1H, cod-CHH), 2.12-2.20 (m, 1H, cod-CHH), 2.28-2.56 (m, 5H, cod-CH2, cod-CHH, cod-

CH, Men-CHH), 3.04-3.14 (m, 1H, C(P)H), 3.91-3.97 (m, 1H, cod-CH), 4.15 (dd, 
3JHH = 8.6 Hz, 3JHH = 1.8 Hz, 1H, CHN), 4.42 (t, JHH = 9.2 Hz, 1H, OCHRHS), 4.75-4.84 (m, 

2H, cod-CH, OCHRHS), 4.95-5.10 (m, 1H, cod-CH), 7.43-7.56 (m, 7H, Ph-CH, C(P)CHCH), 
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7.58 (s, 4H, BArF-CH), 7.60-7.65 (m, 1H, C(P)CCHCH), 7.73 (s, 8H, BArF-CH), 8.37 (dd, 
3JHH = 8.0 Hz, 4JHH = 4.1 Hz, 1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 15.9 (s, CH3CHCH3), 20.9 (s, CH3CHCH3), 22.1 (s, CH3), 

24.6 (s, cod-CH2), 25.0 (d, JCP = 9.7 Hz, Men-CH2), 25.5 (s, C(CH3)3), 27.5 (s, cod-CH2), 

28.2 (d, 3JCP = 2.6 Hz, CH3CHCH3), 32.6 (s, cod-CH2), 33.3 (d, 3JCP = 14.9 Hz, CHCH3), 33.3 

(d, JCP = 1.1 Hz, Men-CH2), 34.8 (s, C(CH3)3), 36.5 (d, JCP = 4.2 Hz, cod-CH2), 42.0 (d, 

JCP = 6.2 Hz, Men-CH2), 43.2 (d, 1JCP = 21.9 Hz, C(P)H), 43.4 (d, 2JCP = 2.6 Hz, C(P)HCH), 

64.1 (s, cod-CH), 64.7 (s, cod-CH), 69.4 (s, OCH2), 73.5 (s, NCH), 88.5 (d, JCP = 14.2 Hz, 

cod-CH), 93.8 (d, JCP = 9.8 Hz, cod-CH), 117.0-117.2 (m, BArF-CH), 124.3 (q, 
1JCF = 272 Hz, BArF-CF3), 128.1-129.0 (m, BArF-C, C(P)C), 128.3 (d, JCP = 9.8 Hz, Ph-CH), 

128.9 (d, 1JCP = 41.4 Hz, Ph-C), 130.0 (d, 1JCP = 37.6 Hz, C(P)C), 130.9 (d, JCP = 2.3 Hz, Ph-

CH), 131.8 (d, 4JCP = 2.1 Hz, C(P)CCHCH) 132.1 (d, JCP = 8.8 Hz, Ph-CH), 133.1 (d, 
3JCP = 7.4 Hz, C(P)CCH), 133.2 (d, 3JCP = 5.9 Hz, C(P)CHCH), 134.5 (s, BArF-CH), 136.3 (s, 

C(P)CH), 161.4 (q, 1JBC = 49.8 Hz, BArF-CB), 165.4 (d, 3JCP = 5.8 Hz, NCO) 
31P{1H}-NMR (CD2Cl2): �/ppm = 16.6 (s). 

IR (KBr): ν~ /cm–1 = 2965(m), 2931(m), 2891(m), 2878(m), 1609 (m), 1354(s), 1277(s), 

1162(s), 1125(s), 1001(w), 971(w), 886 (m), 839(m), 744(w), 714(m), 682(m), 668(m). 

MS (ESI): m/z = 751(44), 750(100), 749(30), 748(63), 640(29), 638(76), 637(14), 636(47), 

634(11), 632(7). 

EA: calculated (%) for C69H64BF24IrNOP: C: 51.37, H: 4.00, N: 0.87; measured: C: 51.32, H: 

3.95, N: 0.75. 

[�] 20
D = –51 (c = 0.22, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:4)): 0.78. 

m.p.: 183-191 °C. 
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[(ηηηη4-1,5-Cyclooctadiene)-{(4S,RP)-4-benzyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)methylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(127) 

 

The iridium-complex was prepared according to the general 

procedure from (S)-4-benzyl-2-phenyl-oxazoline (115 mg, 485 μmol), 97 (148 mg, 614 μmol) 

and MeMgBr (350 μL, 3 M in Et2O, 1.05 mmol) to give the title compound 127 (257 mg, 

33%) as an orange foam. 

 

C67H60BF24IrNOP (1585.16 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.60-0.71 (m, 1H, Men-CHH), 0.70 (d, 3JHH = 6.5 Hz, 3H, 

CHCH3), 0.74-0.85 (m, 2H, Men-CHH, cod-CHH), 1.08 (d, 3JHH = 6.7 Hz, 3H, CH3CHCH3), 

1.12 (d, 3JHH = 6.8 Hz, 3H, CH3CHCH3), 1.15-1.25 (m, 3H, Men-CHH, cod-CHH, 

C(P)HCH), 1.56 (d, 2JHP = 8.4 Hz, 3H, PCH3), 1.64-1.74 (m, 2H, cod-CHH, cod-CHH), 1.78-

1.90 (m, 2H, Men-CHH, cod-CHH), 2.05-2.45 (m, 7H, Men-CH2, C(P)H, cod-CH2, cod-

CHH, cod-CHH), 2.72-2.80 (m, 1H, CHHPh), 2.92-3.01 (m, 1H, CH3CHCH3), 3.49-3.55 (m, 

1H, cod-CH), 3.59 (d, 2JHH = 13.4 Hz, 1H, CHHPh), 3.71-3.78 (m, 1H, cod-CH), 4.46-4.53 

(m, 2H, NCHRHSCH), 4.49-4.63 (m, 1H, NCHRHSCH), 4.70-4.76 (m, 1H, cod-CH), 5.10-5.17 

(m, 1H, cod-CH), 7.20-7.24 (m, 2H, Ph-CH), 7.31-7.37 (m, 1H, Ph-CH), 7.37-7.42 (m, 2H, 

Ph-CH), 7.42-7.47 (m, 1H, C(P)CH), 7.56 (s, 4H, BArF-CH), 7.58-7.64 (m, 1H, 

C(P)CCHCH), 7.64-7.70 (m, 1H, C(P)CHCH), 7.73 (s, 8H, BArF-CH), 8.06 (dd, 
3JHH = 7.4 Hz, 4JHP = 3.6 Hz, 1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = –3.12 (d, 1JCP = 33.8 Hz, PCH3), 17.8 (s, CHCH3), 21.4 (s, 

CH3CHCH3), 21.7 (s, CH3CHCH3), 25.2 (d, JCP = 10.5 Hz, Men-CH2), 27.5 (s, cod-CH2), 

30.4 (d, 3JCP = 6.7 Hz, CH3CHCH3), 30.4 (s, cod-CH2), 30.5 (d, JCP = 2.2 Hz, cod-CH2), 32.7 

(d, 3JCP = 8.8 Hz, CHCH3), 33.2 (s, cod-CH2), 34.1 (d, JCP = 3.8 Hz, Men-CH2), 36.5 (d, 

JCP = 6.3 Hz, Men-CH2), 41.0 (d, 1JCP = 28.1 Hz, C(P)H), 42.8 (s, C(P)HCH), 43.1 (s, 

CH2Ph), 61.7 (s, cod-CH), 64.7 (s, cod-CH), 66.4 (s, NCHCH2), 72.4 (s, NCHCH2), 90.2 (d, 

JCP = 12.0 Hz, cod-CH), 93.2 (d, JCP = 12.2 Hz, cod-CH), 117.0-117.3 (m, BArF-CH), 124.3 

(q, 1JCF = 272.3 Hz, BArF-CF3), 127.4 (d, 2JCP = 11.6 Hz, C(P)C), 127.6 (s, Ph-CH), 128.0-

129.0 (m, BArF-C), 128.3 (s, Ph-CH), 129.1 (s, Ph-CH), 129.5 (d, 1JCP = 40.9 Hz, C(P)C), 

130.6 (s, C(P)CH), 131.0 (d, 4JCP = 1.7 Hz, C(P)CCHCH), 132.6 (d, 3JCP = 7.3 Hz, 
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C(P)CCH), 133.6 (d, 3JCP = 6.1 Hz, C(P)CHCH), 134.5 (s, BArF-CH), 161.4 (q, 
1JBC = 49.8 Hz, BArF-CB), 164.7 (d, 3JCP = 5.4 Hz, NCO). 
31P{1H}-NMR (CD2Cl2): �/ppm = 2.1 (s). 

IR (KBr): ν~ /cm–1 = 2960(m), 2929(m), 2890(m), 2875(m), 1609 (m), 1354(s), 1277(s), 

1163(s), 1124(s), 1000(w), 972(w), 886 (m), 839(m), 744(w), 713(m), 682(m), 668(m). 

MS (ESI): m/z(%) = 724(5), 723(34), 722(100), 721(27), 720(60), 612(15), 611(9), 610(38), 

609(9), 608(24), 606(7). 

EA: calculated (%) for C67H60BF24IrNOP: C: 50.77, H: 3.82, N: 0.88; measured: C: 50.85, H: 

3.84, N: 0.78. 

[�] 20
D = –114 (c = 0.23, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:4)): 0.68. 

m.p.: 72-78 °C. 

 

 

 

[(ηηηη4-1,5-Cyclooctadiene)-{(4S,SP)-4-benzyl-2-[2’-

((1S,2R,4R)-1-iso-propyl-4-methylcyclohex-2-

yl)phenylphosphinyl)-phenyl]-4,5-dihydrooxazole}-

iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borat 

(128) 

 

The iridium-complex was prepared according to the general 

procedure from (S)-4-benzyl-2-phenyl-oxazoline (112 mg, 473 μmol), 97 (170 mg, 705 μmol) 

and PhMgBr (1.20 mL, 1 M in THF, 1.20 mmol) to give the title compound 128 (195 mg, 

25%) as a red foam. 

 

C72H62BF24IrNOP (1647.23 g/mol) 
1H-NMR (CD2Cl2): �/ppm = 0.72 (d, 3JHH = 6.8 Hz, 3H, CH3CHCH3), 0.75-0.80 (m, 1H, 

Men-CHH), 0.78 (d, 3JHH = 6.6 Hz, 3H, CH3CHCH3), 0.95 (d, 3JHH = 6.5 Hz, 3H, CHCH3), 

1.07-1.42 (m, 5H, Men-CH2, Men-CHH, cod-CHH, C(P)HCH), 1.45-1.80 (m, 5H, Men-CHH, 

Men-CHH, cod-CHH, cod-CHH, CHCH3), 1.89-1.97 (m, 1H, CH3CHCH3), 2.08-2.18 (m, 2H, 

cod-CH, cod-CHH), 2.29-2.35 (m, 2H, cod-CH2), 2.43-2.50 (m, 2H, cod-CH2), 2.78-2.86 (m, 

1H, CHHPh), 2.88-2.92 (m, 1H, C(P)H), 3.54 (d, 2JHH = 13.6 Hz, 1H, CHHPh), 3.65-3.70 (m, 

1H, cod-CH), 4.43 (t, JHH = 8.9 Hz, 1H, OCHRHSCH), 4.54-4.61 (m, 1H, OCH2CH), 4.64 (dd, 
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2JHH = 9.3 Hz, 3JHH = 2.8 Hz, 1H, OCHRHSCH), 4.95-5.02 (m, 2H, cod-CH, cod-CH), 7.22 (d, 
3JHH = 7.1 Hz, 2H, CH2Ph-CH), 7.32-7.37 (m, 1H, CH2Ph-CH), 7.37-7.43 (m, 2H, CH2Ph-

CH), 7.43-7.53 (m, 5H, PPh-CH), 7.56 (s, 4H, BArF-CH), 7.60.7.65 (m, 2H, C(P)CHCH), 

7.70-7.75 (m, 1H, C(P)CCHCH), 7.74 (s, 8H, BArF-CH), 8.38 (dd, 3JHH = 7.8 Hz, 4JHH = 3.7, 

1H, C(P)CCH). 
13C{1H}-NMR (CD2Cl2): �/ppm = 16.5 (s, CH3CHCH3), 20.8 (s, CH3CHCH3), 22.2 (s, 

CHCH3), 25.2 (d, JCP = 8.8 Hz, Men-CH2), 25.7 (s, cod-CH2), 27.8 (s, cod-CH2), 28.1 (s, 

CH3CHCH3), 29.4 (s, Men-CH2), 32.5 (s, cod-CH2), 33.1 (s, Men-CH2), 33.9 (d, 
3JCP = 15.8 Hz, CHCH3), 36.0 (d, JCP = 4.1 Hz, cod-CH2), 42.5 (s, CH2Ph), 43.4 (d, 
1JCP = 23.4 Hz, C(P)H), 43.7 (d, 2JCP = 5.5 Hz, C(P)HCH), 62.8 (s, cod-CH), 66.4 (s, 

NCHCH2), 66.9 (s, cod-CH), 71.3 (s, NCHCH2), 88.0 (d, JCP = 13.2 Hz, cod-CH), 93.8 (d, 

JCP = 10.6 Hz, cod-CH), 117.0-117.3 (m, BArF-CH), 124.3 (q, 1JCF = 272.4 Hz, BArF-CF3), 

125.9 (d, 1JCP = 50.2 Hz, PPh-C), 126.6 (d, 1JCP = 38.9 Hz, C(P)C), 127.6 (s, CH2Ph-CH), 

128.0-129.0 (m, BArF-C), 128.2 (d, JCP = 10.0 Hz, PPh-CH), 128.3 (s, CH2Ph-CH), 129.1 (s, 

CH2Ph-CH), 129.9 (d, 2JCP = 12.9 Hz, C(P)C), 131.0 (d, JCP = 2.1 Hz, PPh-CH), 131.5 (d, 

JCP = 8.3 Hz, PPh-CH), 132.1 (d, 4JCP = 1.9 Hz, C(P)CCHCH), 132.9 (d, 3JCP = 6.3 Hz, 

C(P)CHCH), 133.5 (d, 3JCP = 7.7 Hz, C(P)CCH), 134.1 (s, CH2Ph-C), 134.5 (BArF-CH), 

135.9 (s, C(P)CH), 161.4 (q, 1JBC = 49.9 Hz, BArF-CB), 165.1 (d, 3JCP = 6.1 Hz, NCO). 
31P{1H}-NMR (CD2Cl2): �/ppm = 19.9 (s). 

IR (KBr): ν~ /cm–1 = 2961(m), 2930(m), 2891(m), 2877(m), 1609 (m), 1354(s), 1277(s), 

1163(s), 1124(s), 1000(w), 979(w), 887 (m), 839(m), 744(w), 713(m), 682(m), 668(m). 

MS (ESI): m/z(%) = 786(7), 785(41), 784(100), 783(27), 782(61), 780(7), 675(5), 674(17), 

673(8), 672(31), 671(6), 670(25), 668(7). 

EA: calculated (%) for C72H62BF24IrNOP: C: 52.50, H: 3.79, N: 0.85; measured: C: 52.13, H: 

3.88, N: 0.70. 

[�] 20
D = –138 (c = 0.14, CHCl3 / 0.75% EtOH). 

Rf (SiO2, hexanes:CH2Cl2 (1:4)): 0.84. 

m.p.: 78-84 °C. 
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 (1R,2S,4S)-2-(Dichlorophosphino)-1-isopropyl-4-

methylcyclohenxane (129) 

 

In analogy to the formation of 97,its enantiomer was prepared 

from 130 (4.00 g, 22.9 mmol) to give the title compound 129 

(2.65 g, 48%) as a colorless liquid. 

 

The analytical data measured were identical to 97. 

 

 

 

(1R,2S,4S)-2-Chloro-1-isopropyl-4-methylcyclohexane (130) 

 

In analogy to the formation of 99, its enantiomer was prepared 

from (+)-menthol (10.0 g, 64.0 mmol) to give the title 

compound 130 (6.70 g, 60%) as a colorless liquid. 

 

 

The analytical data measured were identical to 99 except for the optical rotation. 

[�] 20
D = +45.7 (c = 2.10, CHCl3 / 0.75% EtOH). 

 

 

4.3.4 Preparation of Single Crystals 

 

 

Complexes for X-ray studies were prepared by combining a solution of the ligand in CH2Cl2 

(1 mL) with a solution of the metal source in CH2Cl2 (1 mL) at room temperature: 

51: Prepared from 6 (38.0 mg, 127 μmol) and [Rh(nbd)Cl]2 (27.0 mg, 58.6 μmol). 

52: Prepared from 6 (24.5 mg, 81.7 μmol) and [Pd(MeCN)2Cl2] (10.0 mg, 38.6 μmol). 

53: Prepared 39 (38.4 mg, 103 μmol) and [Pd(MeCN)2Cl2] (13.0 mg, 50.2 μmol). 

54: Prepared from 6 (16.0 mg, 53.3 μmol) and [Rh(nbd)2]BF4 (9.50 mg, 25.4 μmol). 

55: Prepared from 40 (24.0 mg, 49.6 μmol) and [Rh(nbd)Cl]2 (11.0 mg, 47.7 μmol). 

56: Prepared from 40 (24.3 mg, 50.2 μmol) and [Pd(MeCN)2Cl2] (13.0 mg, 50.2 μmol). 
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Single crystals of the complexes 51, 52, 53, 54, 55, 56, 69, 70, 71, 75, 123, 124, 125 and 126 

could be grown by slow diffusion of hexane into a solution of the corresponding complex in 

CH2Cl2 carried out in a closed NMR-tube. 

 

In case of the ferrocenephospholanes 6, 40, 42 and 43 single crystals were obtained by 

recrystallization from hot methanol. 

 

 

4.3.5 Procedure for the Competition Experiments 

 

 

In a NMR-tube [M(diene)Cl]2 (2 μmol) and 40 (4 μmol) were dissolved in CD3OD or CD2Cl2 

(0.5 mL). In the case of CD3OD sonication was needed to achieve dissolution. After 15 

minutes NMR-spectra were recorded and the second portion of [M(diene)Cl]2 (2 μmol) was 

added. After additional 15 minutes the obtained solution was analyzed by NMR-spectroscopy 

and ESI-MS. 

 

 

4.3.6 Hydrogenation Procedures 

 

 

4.3.6.1 Automated Parallel Hydrogenations (SYMYX) 

 

 

The experiments were performed at Solvias AG in Basel. 

The preparation of the reactions was carried out in a glove box under inert atmosphere. The 

catalyst precursors were prepared in situ by mixing 1,2-dichloroethane solutions of the 

ligands with ethanol solutions of the metal sources. After stirring for 10 minutes, the solvent 

was evaporated to dryness under reduced pressure. The solvent of choice was added and the 

solution distributed to the vials (1.2 mL) via a robotic cannula. The substrate solution in the 

same solvent was added to the vials resulting in a final volume of approximately 0.5 mL. The 

vials were placed in a heated orbital shaker, set under 1 bar of hydrogen and shaken for the 

required time at room temperature. The reaction mixtures were analyzed by chiral GC 

(Lipodex E and Chirasil-L-val). 
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4.3.6.2 Hydrogenations with Iridium-Complexes 

 

 

For the hydrogenation experiments the solvents were degassed prior to use by three freeze-

pump-thaw cycles. In the cases of dichloromethane and 1,2-dichloroethane the solvents were 

stored over aluminium oxide and filtered through a syringe filter before usage. 

 

Procedure for the hydrogenation at elevated pressure: 

The preparation of the reactions was carried out in a glove box under inert atmosphere. The 

substrate (100 �mol) and the catalyst (1 �mol or 0.5 �mol) were dissolved in the appropriate 

solvent (1 mL) and the solution was filled into glass vials (2 mL) containing stirring bars. Up 

to four vials were placed in an autoclave (60 mL) which was closed in the glove box. The 

autoclave was pressurized with H2 and placed on a stirring plate for the time indicated. After 

pressure release the solvent was evaporated under a stream of nitrogen. The residue was 

filtered over a short pad of SiO2 eluting with heptane/Et2O (1:1) and the filtrate was analyzed 

by GC and HPLC. 

 

Procedure for the hydrogenation at ambient pressure: 

The preparation of the reactions was carried out in a glove box under inert atmosphere. The 

substrate (100 �mol) and the catalyst (1 �mol) were dissolved in the appropriate solvent 

(1 mL) and the solution was filled into glass vials (2 mL) containing stirring bars. The vials 

were placed in a flask equipped with a 24/40 joint which was closed in the glove box with a 

rubber septum. A H2-filled ballon equipped with a needle was put on the septum, the flask 

was flushed with H2 by pulling vacuum and placed on a stirring plate for the time indicated. 

After removal of the septum the solvent was evaporated under a stream of nitrogen. The 

residue was filtered over a short plug of SiO2 eluting with heptane/Et2O (1:1) and the filtrate 

was analyzed by GC and HPLC. 

 

For reactions at elevated or low temperature the flask containing the reaction vials was 

immersed in an oil or cooling bath for 30 minutes prior to the exposure to hydrogen. 

Reactions above room temperature were conducted in 1,2-dichloroethane. 
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4.3.6.3 Analytical Data of Hydrogenation Substrates 

 

 

Methyl 2-acetamidocinnamate (59): 

 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 μm), 60 kPa He, 

(100 °C - 2 min - 7 K/min - 250 °C - 10 min)): tR = 23.8 min (H2-59), 

27.3 min (59). 

 

HPLC (Daicel Chiracel OD-H, (2.6×250 mm), heptane/iso-propanol = 90:10, 0.5 mL/min, 

20 °C, 215 nm): tR = 21.1 min ((R)-H2-59), 28.6 min ((S)-H2-59). 

 

 

Methyl 2-acetamidoacrylate (62): 

 

GC (Brechbühler β–cyclodextrin DEtTButSil (SE54) (25 m × 

0.25 mm × 0.25 μm), 60 kPa H2, (90 °C - 20 min - 30 K/min - 180 °C 

- 10 min)): tR = 12.2 min (62), 13.6 min ((S)-H2-62), 17.6 min ((R)-

H2-62). 

 

 

 

Dimethyl itaconate (63): 

 

GC (Chiraldex γ–cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 μm), 60 kPa H2, (80 °C - 20 min - 30 K/min - 160 °C - 10 min)): 

tR = 21.7 min ((R)-H2-63), 22.4 min ((S)-H2-63), 24.4 min (63). 

 

 

 

HN

O

CO2Me

 

CO2Me

HN

O  

CO2Me

CO2Me 



Chapter 4 
 

248 

E-1,2-Diphenylpropene (131): 

 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 μm), 60 kPa He, 

(100 °C - 2 min - 7 K/min - 250 °C - 10 min)): tR = 18.2 min (H2-

131), 21.4 min (131). 

 

HPLC (Daicel Chiracel OJ, (2.6×250 mm), heptane/iso-propanol = 99:1, 0.5 mL/min, 20 °C, 

220 nm): tR = 15.6 min ((R)-H2-131), 23.8 min ((S)-H2-131). 

 

 

E-2-(4-Methoxyphenyl)-2-butene (132): 

 

GC (Chiraldex γ–cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 μm), 60 kPa H2, (60 °C - 30 min - 5 K/min - 100 °C - 20 K/min 

- 160 °C - 10 min)): tR = 38.4 min ((S)-H2-132), 38.6 min ((R)-H2-

132), 41.2 min (132). 

 

 

Z-2-(4-Methoxyphenyl)-2-butene (133): 

 

GC (Chiraldex γ–cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 μm), 60 kPa H2, (60 °C - 30 min - 5 K/min - 100 °C - 20 K/min 

- 160 °C - 10 min)): tR = 38.4 min ((S)-H2-133), 38.6 min ((R)-H2-

133), 39.3 min (133). 

 

 

2-(4-Methoxyphenyl)-1-butene (134): 

 

GC (Chiraldex γ–cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 μm), 60 kPa H2, (60 °C - 30 min - 5 K/min - 100 °C - 20 K/min 

- 160 °C - 10 min)): tR = 38.4 min ((S)-H2-134), 38.6 min ((R)-H2-

134), 40.3 min (134). 

 

 

 

MeO  

MeO  

MeO  
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2-(4-Methoxyphenyl)-3-methyl-2-butene (135): 

 

GC (Brechbühler β–cyclodextrin DEtTButSil (SE54) (25 m × 

0.25 mm × 0.25 μm), 60 kPa H2, (80 °C - 1 K/min - 110 °C - 

10 K/min - 160 °C - 2 min)): tR = 20.9 min ((+)-H2-135), 21.8 min 

((–)-H2-135), 25.1 min (135). 

 

 

7-Methoxy-4-methyl-1,2-dihydro-naphthalene (136): 

 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 μm), 60 kPa He, 

(100 °C - 2 min - 7 K/min - 250 °C - 10 min)): tR = 17.0 min (H2-

136), 19.7 min (136). 

 

HPLC (Daicel Chiracel OD-H, (2.6 × 250 mm), heptane, 0.5 mL/min, 20 °C, 215 nm): 

tR = 20.4 min ((R)-H2-136), 27.0 min ((S)-H2-136). 

 

 

Ethyl E-2-methylcinnamate (74): 

 

GC (Chiraldex γ–cyclodextrin TFA G-TA (30 m × 0.25 mm × 

0.12 μm), 60 kPa H2, (85 °C - 50 min - 10 K/min - 160 °C)): 

tR = 42.9 min ((R)-H2-74), 44.9 min ((S)-H2-74), 57.0 min (74). 

 

 

 

 

E-2-Methyl-3-phenylprop-2-enol (73): 

 

GC (Restek Rtx-1701 (30 m × 0.25 mm × 0.25 μm), 60 kPa He, 

(100 °C - 2 min - 7 K/min - 250 °C - 10 min)): tR = 14.6 min (H2-73), 

16.5 min (73). 

 

MeO  

MeO  

CO2Et

 

OH
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HPLC (Daicel Chiracel OD-H, (2.6×250 mm), heptane/iso-propanol = 95:5, 0.5 mL/min, 

40 °C, 200 nm): tR = 15.3 min ((+)-H2-73), 17.5 min ((–)-H2-73). 

 

 

E-Phenyl-(1-phenylethylidene)amine (137): 

 

GC (Macherey-Nagel Optima 5-Amin (30 m × 0.25 mm × 0.5 μm), 

60 kPa He, (150 °C - 7 K/min - 250 °C - 10 min)): tR = 12.8 min (H2-

137), 13.2 min (137). 

 

HPLC (Daicel Chiracel OD-H, (2.6×250 mm), heptane/iso-propanol = 99:1, 0.5 mL/min, 

20 °C, 210 nm): tR = 24.6 min ((S)-H2-137), 33.0 min ((R)-H2-137). 

 

 

4.4 References 

 

 

[1] J. W. Han, N. Tokunaga, T. Hayashi, Helv. Chim. Acta 2002, 85, 3848-3854. 
[2] a) B. T. Hahn, K. Schwekendiek, F. Glorius, B. Gschwend, A. Pfaltz. Org. Synth. 

2008, 85, 267-277; b) M. R. Krout, J. T. Mohr, B. M. Stoltz, A. Schumacher, A. 
Pfaltz, Org. Synth. 2009, 86, 181-193. 

[3] S. Demay, M. Lotz, K. Polborn, P. Knochel, Tetrahedron: Asymmetry 2001, 12, 
909-914. 

[4] A.-E. Wang, J.-H. Xie, L.-X. Wang, Q.-L. Zhou, Tetrahedron 2005, 61, 259-266. 
[5] M. Hidai, H. Mizuta, H. Yagi, Y. Nagai, K. Hata, Y. Uccida, J. Organomet. Chem. 

1982, 232, 89-98. 
[6] J. G. Smith, G. F. Wright, J. Org. Chem. 1952, 17, 1116-1121. 
[7] R. Krishnamurti, H. G. Kuivila, J. Org. Chem. 1986, 51, 4947-4953. 
[8] P. G. Chantrell, C. A. Pearce, C. R. Toyer, R. Twaits, J. Appl. Chem. 1964, 14, 563. 
 

 

 

 

N

 



 

 

 

 

 

 

Chapter 5 
 

 

Appendix 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

253 

5.1 Crystallographic Data 

 

The X-ray structures were measured by Mr. Markus Neuburger (Department of Chemistry, 

University of Basel) on a Nonius KappaCCD diffractometer, solved using direct methods 

(SIR92[1]) and refined with Crystals[2] by Mr. Markus Neuburger, Dr. Silvia Schaffner and 

Mr. Marcus Schrems (Department of Chemistry, University of Basel). Hydrogen atoms were 

added geometrically.  

 

 6 40 

formula C16H21Fe1P1 C28H30Fe1P2 

Mr [gmol-1] 300.16 484.34 

shape plate plate 

color orange dark orange 

crystal system orthorhombic monoclinic 

space group P 21 21 21 P 21 

crystal size [mm3] 0.05 · 0.10 · 0.20 0.08 · 0.12 · 0.16 

a [Å] 6.3275(1) 10.5728(1) 

b [Å] 10.4666(1) 19.8434(2) 

c [Å] 22.1949(3) 11.7855(1) 

� [°] 90 90 

β [°] 90 99.0002(6) 

γ [°] 90 90 

V [Å3] 1469.91(3) 2442.16(4) 

Z 4 4 

F(000) 632 1016 

� range for data collection [°] 1.835-30.021 1.749-30.036 

ρcalcd [gcm-3] 1.356 1.317 

absorption coeff. � [mm-1] 1.115 0.762 

measured reflections 15358 28272 

independent reflections 4296 (merging r = 0.045) 14289 (merging r = 0.049) 

used reflections[b] 2985 9729 

parameters refined 164 560 

R[c] 0.0274 0.0307 

Rw
[d] 0.0316 0.0645 

goodness of fit 0.9429 0.9479 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 42 43 

formula C28H42Fe1P2 C38H56Fe2P2Si2 

Mr [gmol-1] 496.44 742.68 

shape plate plate 

color orange dark orange 

crystal system orthorhombic orthorhombic 

space group P 21 21 21 P 21 21 21 

crystal size [mm3] 0.07 · 0.10 · 0.20 0.12 · 0.21 · 0.30 

a [Å] 11.12420(10) 11.68110(10) 

b [Å] 11.83570(10) 15.08110(10) 

c [Å] 19.5664(2) 22.0190(2) 

� [°] 90 90 

β [°] 90 90 

γ [°] 90 90 

V [Å3] 2576.17(4) 3878.95(5) 

Z 4 4 

F(000) 1064 1576 

� range for data collection [°] 2.011-27.883 1.637-30.056 

ρcalcd [gcm-3] 1.280 1.272 

absorption coeff. � [mm-1] 0.723 0.917 

measured reflections 21963 39326 

independent reflections 6144 (merging r = 0.038) 11351 (merging r = 0.072) 

used reflections[b] 5259 8347 

parameters refined 281 398 

R[c] 0.0244 0.0265 

Rw
[d] 0.0313 0.0339 

goodness of fit 0.9848 0.9390 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 51 52 

formula C23H29Cl1Fe1P1Rh1 C32H42Cl2Fe2P2Pd1 

Mr [gmol-1] 530.66 777.63 

shape plate block 

color orange orange 

crystal system monoclinic monoclinic 

space group P 21 P 21 

crystal size [mm3] 0.11 · 0.20 · 0.24 0.15 · 0.18 · 0.21 

a [Å] 8.4986(1) 7.9017(1) 

b [Å] 23.7259(3) 11.1250(1) 

c [Å] 10.8182(1) 18.4013(2) 

� [°] 90 90 

β [°] 100.8041(6) 102.6517(8) 

γ [°] 90 90 

V [Å3] 2142.68(4) 1578.32(3) 

Z 4 2 

F(000) 1080 792 

� range for data collection [°] 1.717-30.034 1.134-30.026 

ρcalcd [gcm-3] 1.645 1.636 

absorption coeff. � [mm-1] 1.652 1.763 

measured reflections 24770 13303 

independent reflections 12503 (merging r = 0.049) 8293 (merging r = 0.034) 

used reflections[b] 10475 7544 

parameters refined 489 353 

R[c] 0.0268 0.0296 

Rw
[d] 0.0472 0.0387 

goodness of fit 0.9833 0.9913 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 53 54 

formula C38H58Cl2Fe2P2Pd1Si2 C40H51.50B1Cl2F4Fe2P2Rh1 

Mr [gmol-1] 922.00 966.60 

shape plate plate 

color red orange 

crystal system triclinic monoclinic 

space group P 1 P 1 21 1 

crystal size [mm3] 0.08 · 0.16 · 0.18 0.09 · 0.17 · 0.50 

a [Å] 9.2341(5) 10.1472(2) 

b [Å] 13.4290(2) 20.6777(3) 

c [Å] 18.0505(5) 19.7484(2) 

� [°] 97.53 90 

β [°] 90 101.5094(9) 

γ [°] 110.11 90 

V [Å3] 2081.32(13) 4060.30(11) 

Z 2 4 

F(000) 952 1974 

� range for data collection [°] 1.139-27.432 1.052-27.866 

ρcalcd [gcm-3] 1.471 1.581 

absorption coeff. � [mm-1] 1.404 1.365 

measured reflections 18262 34937 

independent reflections 18262 (merging r = 0.000) 19310 (merging r = 0.055) 

used reflections[b] 10958 10723 

parameters refined 848 938 

R[c] 0.0471 0.0384 

Rw
[d] 0.0824 0.0878 

goodness of fit 1.1063 1.0007 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 55 56 

formula C38H38Cl1Fe1P2Rh1 C28H30Cl2Fe1P2Pd1 

Mr [gmol-1] 750.87 661.65 

shape plate plate 

color orange red  

crystal system monoclinic triclinic 

space group P 21 P 1 

crystal size [mm3] 0.02 · 0.16 · 0.27 0.14 · 0.20 · 0.22 

a [Å] 12.5733(3) 10.0875(2) 

b [Å] 10.9522(3) 10.4665(2) 

c [Å] 13.2138(3) 13.1753(2) 

� [°] 90 86.7786(10) 

β [°] 95.7859(16) 84.1075(11) 

γ [°] 90 80.2617(11) 

V [Å3] 1810.34(8) 1362.70(4) 

Z 2 2 

F(000) 768 668 

� range for data collection [°] 1.549-27.844 1.555-27.885 

ρcalcd [gcm-3] 1.377 1.612 

absorption coeff. � [mm-1] 1.043 1.521 

measured reflections 16599 12548 

independent reflections 8592 (merging r = 0.057) 12547 (merging r = 0.000) 

used reflections[b] 4722 10107 

parameters refined 400 614 

R[c] 0.0341 0.0357 

Rw
[d] 0.0786 0.0521 

goodness of fit 0.8841 1.0726 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 69 70 

formula C69H56B1Cl2F24Fe1Ir1P2 C73H65B1F24Fe1Ir1P2 

Mr [gmol-1] 1732.89 1719.10 

shape plate plate 

color red orange 

crystal system monoclinic monoclinic 

space group C 2 C 2 

crystal size [mm3] 0.04 · 0.11 · 0.39 0.04 · 0.21 · 0.40 

a [Å] 18.4962(13) 19.0162(9) 

b [Å] 18.6257(14) 18.5566(9) 

c [Å] 19.6713(15) 19.7120(7) 

� [°] 90 90 

β [°] 92.364(3) 93.7050(10) 

γ [°] 90 90 

V [Å3] 6771.1(9) 6941.4(5) 

Z 4 4 

F(000) 3432 3428 

� range for data collection [°] 1.841-37.656 2.071-26.401 

ρcalcd [gcm-3] 1.700 1.645 

absorption coeff. � [mm-1] 2.412 2.278 

measured reflections 159022 21656 

independent reflections 35202 (merging r = 0.041) 12318 (merging r = 0.038) 

used reflections[b] 29945 10266 

parameters refined 956 1001 

R[c] 0.0324 0.0366 

Rw
[d] 0.0410 0.0520 

goodness of fit 1.1158 1.1134 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 71 75 

formula C68H66B1F24Fe1Ir1P2 C61H50B1F24Fe1Ir1N1P1 

Mr [gmol-1] 1660.05 1542.88 

shape block block 

color red red 

crystal system orthorhombic triclinic 

space group P 21 21 21 P 1 

crystal size [mm3] 0.08 · 0.15 · 0.34 0.10 · 0.10 · 0.10 

a [Å] 14.2169(3) 12.52820(10) 

b [Å] 19.4540(4) 12.7268(2) 

c [Å] 24.2927(5) 19.5631(3) 

� [°] 90 97.0960(8) 

β [°] 90 103.5043(8) 

γ [°] 90 94.9326(8) 

V [Å3] 6718.8(2) 2988.36(7) 

Z 4 2 

F(000) 3312 1524 

� range for data collection [°] 1.660-34.971 2.953-27.909 

ρcalcd [gcm-3] 1.641 1.715 

absorption coeff. � [mm-1] 2.350 2.610 

measured reflections 246150 27022 

independent reflections 29300 (merging r = 0.029) 27021 (merging r = 0.000) 

used reflections[b] 26362 19391 

parameters refined 974 1785 

R[c] 0.0185 0.0434 

Rw
[d] 0.0258 0.0709 

goodness of fit 1.1369 1.1315 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 123 124 

formula C129H126B2Cl6F48Ir2N2O2P2 C68H62B1F24Ir1N1O1P1 

Mr [gmol-1] 3329.06 1599.20 

shape block plate 

color red red 

crystal system monoclinic monoclinic 

space group P 21 P 21 

crystal size [mm3] 0.09 · 0.17 · 0.26 0.06 · 0.24 · 0.34 

a [Å] 12.9688(8) 19.2425(4) 

b [Å] 39.628(2) 13.0002(3) 

c [Å] 13.2726(8) 26.8992(5) 

� [°] 90 90 

β [°] 99.048(3) 91.2820(10) 

γ [°] 90 90 

V [Å3] 6736.3(7) 6727.3(2) 

Z 2 4 

F(000) 3316 3192 

� range for data collection [°] 1.554-33.914 3.232-31.507 

ρcalcd [gcm-3] 1.641 1.579 

absorption coeff. � [mm-1] 2.234 2.118 

measured reflections 187781 115778 

independent reflections 53195 (merging r = 0.029) 43410 (merging r = 0.030) 

used reflections[b] 46913 37513 

parameters refined 1874 1802 

R[c] 0.0355 0.0404 

Rw
[d] 0.0340 0.0460 

goodness of fit 1.1016 1.1187 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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 125 126 

formula C64H62B1F24Ir1N1O1P1 C69H64B1F24Ir1N1O1P1 

Mr [gmol-1] 1551.16 1613.23 

shape plate plate 

color orange red 

crystal system triclinic triclinic 

space group P 1 P 1 

crystal size [mm3] 0.07 · 0.13 · 0.26 0.09 · 0.21 · 0.23 

a [Å] 12.9614(8) 12.7767(3) 

b [Å] 18.9983(11) 13.6956(3) 

c [Å] 26.1691(14) 19.7389(4) 

� [°] 94.425(3) 77.4150(10) 

β [°] 95.517(3) 88.7350(10) 

γ [°] 90.862(3) 88.3570(10) 

V [Å3] 6393.4(6) 3369.19(13) 

Z 4 2 

F(000) 3096 1612 

� range for data collection [°] 1.568-38.568 1.595-28.326 

ρcalcd [gcm-3] 1.611 1.590 

absorption coeff. � [mm-1] 2.226 2.116 

measured reflections 686797 110973 

independent reflections 141167 (merging r = 0.053) 33288 (merging r = 0.031) 

used reflections[b] 100015 29238 

parameters refined 3350 1874 

R[c] 0.0306 0.0229 

Rw
[d] 0.0516 0.0296 

goodness of fit 1.1361 1.1234 
[a] All data were collected using Mo K� (� = 0.71073 �) at 173 K. [b] Observation criterion: I > 3σ(I). [c] 
R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)2] / Σ[w(F0)

2]}1/2. 
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5.2 List of Abbreviations 

 

 

9-BBN 9-borabicyclo[3.3.1]nonane 

Ac acetyl 

acac acetylacetonate 

aq. aqueous 

Ar aryl 

B3LYP Becke, three-parameter, Lee-Yang-Parr exchange correlation functional 

BArF tetrakis[3,5-bis(trifuoromethyl)phenyl]borat 

Bn benzyl, phenylmethyl 

br broad 

Bu butyl 

bzn benzonitrile 

c concentration 

cat catalyst 

cod 1,5-cyclooctadiene 

conc. concentration 

conv. conversion 

COSY Homonuclear Correlation Spectroscopy 

Cp cyclopentadienyl 

Cy cyclohexyl 

d doublet 

� chemical shift (NMR) 

dabco 1,4-diazabicyclo[2.2.2]octane 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 

DCE 1,2-dichloroethane 

DEPT Distorsionless Enhancement by Polarisation Transfer 

DFT Density Functional Theory 

DIBALH di-iso-butylaluminium hydride 

DMF N,N-dimethyl formamide 

dr diastereoisomeric ratio 

E electrophile 

EA elemental analysis 



Appendix 

 

263 

ee enantiomeric excess 

EI Electron-impact Ionization 

Et ethyl 

equiv. equivalent(s) 

EWG Electron Withdrawing Group 

ESI-MS Electron Spray Ionization Mass Spectrometry 

FAB Fast Electron Bombardment 

GC gas chromatography 

h hour(s) 

HMBC Heteronuclear Multiple Bond Correlation 

HMQC Heteronuclear Multiple Quantum Coherence 

HOESY Heteronuclear Overhauser Effect Spectroscopy 

HPLC High Performance Liquid Chromatography 

Hz hertz 

i iso 

IR Infrared Spectroscopy 

J coupling constant 

LA Lewis acid 

LDA lithium di-iso-propylamide 

LG leaving group 

m multiplet (NMR), medium (IR) 

M molarity, mol/L 

Me methyl 

Men menthyl 

mL mililiter 

min minutes 

m.p. melting point 

MS Mass Spectrometry 

Ms mesyl, methanesulfonyl 

m/z mass-to-charge ratio 

nbd norbornadiene 

n.d. not determined 

NBS N-bromo-succinimide 

NMR Nuclear Magnetic Resonance 
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NOESY Nuclear Overhauser Enhancement Spectroscopy 

Nu nucleophile 

O oxidant 

oTol ortho-tolyl 

Ox oxazoline 

Ph phenyl 

PHIP para-Hydrogen Induced Polarization 

PHOX phosphino-oxazoline 

PGSE Pulse Gradient Spin-Echo 

ppm parts per million 

Pr propyl 

Py pyridine 

q quartet 

quant. quantitative 

quin quintet 

rac. racemic 

Red-Al sodium bis(2-methoxyethoxy)aluminium hydride 

Rf retention factor 

rt room temperature 

S solvent 

s singlet (NMR), strong (IR) 

sat. saturated 

s/c substrate to catalyst ratio 

sec secondary 

sep septet 

SN1 unimolecular nucleophilic substitution 

SN2 bimolecular nucleophilic substitution 

SPO secondary phosphine oxide(s) 

t triplet 

TBAF tetrabutylammonium fluoride 

TBD 1,5,7-triazabicyclo[4.4.0]dec-5-ene 

TBME tert-butyl methyl ether 

tBu tert-butyl, 2-methyl-2-propyl 

TCT 2,4,6-trichloro[1,3,5]triazine 



Appendix 

 

265 

tert tertiary 

THF tetrahydrofuran 

TLC Thin Layer Chromatography 

TFA trifluoroacetate 

TMEDA N,N,N’,N’-tetramethylethylenediamine 

TMP 2,2,6,6-tetramethylpiperidide 

TMS tetramethylsilyl 

TOF Turn Over Frequenzy 

Tol toluene 

tR retention time 

Ts tosyl, 4-toluenesulfonyl 

VSEPR Valence Shell Electron Pair Repulsion 

w weak 
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A stereoselective synthesis of P-chiral ferrocenephospholanes (6, 43, 40, 41, 42) was 

developed starting from Ugi’s amine (1) (Scheme 6.1). Diastereoselective ortho-lithiation and 

a base-induced stereoconvergent intramolecular hydrophosphination were the key steps in the 

synthetic pathway. 

 

Fe

P

Fe

P

PPh2Fe

P

SiMe3 Fe

P

P(oTol)2 Fe

P

PCy2

6 39 40 41 42

Fe

NMe2

R-1

 

Scheme 6.1. Ferrocenephospholanes from Ugi’s amine. 

 

The phosphines obtained were tested in the transition-metal catalyzed asymmetric 

hydrogenation of different substrate classes such as dehydroamino acid derivatives, 

unsaturated esters and ketones. The results showed that these ligands cannot compete with the 

established systems in terms of activity and selectivity. 

 

A closer look at the coordination behaviour of ligand 40 implied that chelation leads to a 

strained molecule. The complexes of 40 with [Rh(nbd)Cl]2, [Rh(cod)Cl]2 and [Ir(cod)Cl]2 

showed a dynamic behaviour in solution. Competition experiments resulted in metal-

exchange revealing labile complexes. The resulting complexes were dependent on the solvent 

used and the diene ligand of the corresponding metal source. 

 

Hydrogenation experiments showed for the activation of the precatalyst a dramatic 

dependence on the diene ligand present in the metal complex. Whereas [Rh(40)(nbd)Cl] was 

easily converted into the active catalyst, the counterpart with 1,5-cycloctadiene was basically 

inert towards dihydrogen. 
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With terpenes as starting material P-chiral secondary phosphine oxides have been prepared. 

The borneol-derived bidentate ligand 109 (Scheme 6.2) was tested in the rhodium-catalyzed 

asymmetric hydrogenation. 

 

109

P

Ph2P

H
O

OH

 

Scheme 6.2. Synthesis of a phosphine-SPO-ligand. 

 

The enantioselectivities obtained were up to 90% ee (TOF = 12000 h–1) with dimethyl 

itaconate and up to 93% ee (TOF = 2700 h–1) with methyl acetamidoacrylate.  

 

A hydroxyethyl-substituted bisphosphine ligand (118) was synthesized and the rhodium 

complex shown to be of low reactivity in the hydrogenation of methyl acetamidoacrylate 

although an enantiomeric excess of 89% was obtained. 

 

Menthol derived P-chiral phosphino-oxazoline-iridium complexes (121-128) (Figure 6.1) 

were prepared and applied in the asymmetric hydrogenation. 

 

121: R1 = R2 = R3 = Me
122: R1 = R2 = Me, R3 = Ph
123: R1 = iPr, R2 = H, R3 = Me
124: R1 = iPr, R2 = H, R3 = Ph
125: R1 = tBu, R2 = H, R3 = Me
126: R1 = tBu, R2 = H, R3 = Ph
127: R1 = Bn, R2 = H, R3 = Me
128: R1 = Bn, R2 = H, R3 = Ph

P
R3

Ir

BArF

N

O

R2
R1

 

Figure 6.1. Menthyl derived P-chiral phosphino-oxazoline-iridium complexes. 

 

The catalysts were generally very active but in most cases the enantioselectivities obtained 

were lower than with previously reported PHOX-systems. In the reduction of E-2-

methylcinnamate (74) the best complex (125), giving 91% ee, was comparable with published 

phosphino-oxazoline-iridium catalysts. The terminal olefin 2-(4-methoxyphenyl)-1-butene 

(134) was hydrogenated with an enantiomeric excess of 87% which represents the highest 

selectivity achieved with PHOX-catalysts for this substrate. 
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