
Chapter 1

Introduction

For many physical problems the models derived by discretization are often composed of
thousands, or even millions of differential equations. Despite the continuous increase of
computational power, the complexity of these models generally makes it not feasible, or
even downright impossible, to work with them. In that case it becomes inevitable to apply
so-called model order reduction methods, which generate a lower-dimensional approxima-
tion of the original system. These methods have been developed for many years and allow
handling of a wide variety of problems, both linear and nonlinear. They have proven them-
selves invaluable in practice.

In recent years parametric problems have come further into the focus of research. These
systems are not fixed, but depend on a variety of parameters, e.g. material properties such
as stiffness. In that case it is impractical, depending on the purpose infeasible, to apply
model order reduction for every new parameter choice. Parametric model order reduction
aims to provide a model of reduced dimension that retains the parametric dependencies
and behaves similarly to the original model. In recent years various methods have been
developed to handle parametric model reduction. While many of these methods have been
applied with great success in practice, due to the wide variety of problems and objectives
there are still numerous challenges to tackle.

The initial problem that inspired this thesis was such a parametric problem: a set of
connected models with up to 32 different parameters of interest. Simplifications of the
model led to a new one that depended on 4 different parameters, but for the desired small
reduction size many parametric model reduction methods did not deliver acceptable results.
The exception to this was parametric model reduction by matrix interpolation, where the
system is reduced for sampling points and the interpolation of their system matrices yields
the reduced parametric system. Because of this problem the focus for most of the doctorate
was on studying the method (as well as the general framework) of matrix interpolation.
For various problems, both academic and real-world, tests showed that preservation of sta-
bility is a pressing issue, for which only one procedure exists in literature. Unfortunately
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CHAPTER 1. INTRODUCTION

interpolation results.

The main focus of this thesis is twofold: to introduce criteria and ways to ensure bet-
ter results for the existing stability procedure and to develop new approaches for stability
preservation for parametric model reduction by matrix interpolation. The problem of
meaningful stability preservation will be shown and two new approaches that preserve
stability will be introduced. One approach of particular interest is based on the idea of
adapting the locally reduced models in such way, that stability for matrix interpolation
is preserved. In addition another new approach will be given, dubbed subspace extension
approach, that uses extended local bases to obtain better interpolation results.

This thesis is organized as follows. The first chapter introduces various well-known def-
initions and results from system theory that are relevant for (the understanding of) this
thesis, such as the definition of linear-time invariant systems, stability, or reachability and
observability. It is followed by a brief introduction of maybe the two most common model
reduction methods for linear time-invariant systems, balanced truncation and moment-
matching. In addition to the necessary definitions and theorems, sketches of algorithms
are given that allow the implementation of these procedures, as well as a simple example
from literature that shows their usefulness. The fourth chapter then introduces existing
methods from literature for parametric model order reduction (for linear time-invariant
systems), such as multiparameter moment-matching, proper orthogonal decomposition or
the eponymous parametric model reduction by matrix interpolation.

The fifth chapter is the core of this thesis and focuses on the problem of stability preserva-
tion for parametric model reduction (within the framework of matrix interpolation). In this
chapter the only method from literature for stability preservation for matrix interpolation
is considered. For this procedure, which is based on Lyapunov equations, examples are
given to highlight some of its fundamental problems and new results are given that may
yield better results. In addition, a new obvious procedure is introduced, where systems are
brought into upper diagonal form. It is explained why said procedure is not feasible for
practical problems. Further it is shown that under certain restrictions the reduced system
obtained by model order reduction can be expressed in a feedback form. This expression is
subsequently used to preserve stability under matrix interpolation. The chapter is closed
by a brief look into stability preservation for matrix interpolation for descriptor systems,
both the case of nonsingular and the case of singular descriptor matrices. The sixth chapter
follows this by introducing two methods from literature that allow for a more meaningful
interpolation if different local bases are used. Based on those two methods a new procedure
is derived, called subspace extension approach, that extends local bases in an attempt to
obtain better results for matrix interpolation. Furthermore interpolation over manifolds
is introduced from literature and the general problem of interpolation weights and sam-
pling points is briefly tackled. The seventh chapter examines the procedures for stability
preservation for two parametric problems: a cantilever beam and an anemometer. It is

it is limited to interpolation with nonnegative interpolation weights and may lead to bad
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results, the second example shows that in some cases its results may be limited by the
approximation of the local systems. The second example also shows the potential use of
the subspace extension approach. The thesis is closed by a conclusion.

shown that while the new stabilization procedure by feedback may generally lead to better
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Chapter 2

Mathematical Background

While system theory is a general term for a multitude of scientific fields, in maths it is
usually used to describe the theory surrounding dynamical systems, i.e. mathematical
constructs that are not static, but change over time. Of particular interest for this thesis
are continuous dynamical systems in the context of control theory, where the term is used
for systems whose dynamics are described by differential equations of a specific structure.
Over the past decades both system and control theory have developed rapidly, to an extent
where covering the theory even only for the systems of interest is beyond the scope of this
thesis. Instead in the following a brief introduction to the numerous necessary definitions,
as well as certain relevant results, is given. Readers interested in this field are referred e.g.
to [42, 43, 71], whereas those interested in a focus on the directly related control theory
are also recommended to examine e.g. [76, 35, 59].

2.1 Linear Time-Invariant System

There are numerous concepts for and different approaches towards dynamical systems in
general. The focus of this thesis however lies on linear time-invariant systems, defined as
follows.

Definition 2.1.
The linear time-invariant (LTI) descriptor system Σ is defined as the system governed by
the differential equations

Eẋ(t) = Ax(t) + Bu(t) (2.1)

y(t) = Cx(t) +Du(t), (2.2)

where E,A ∈ R
n×n, B ∈ R

n×l, C ∈ R
k×n and D ∈ R

k×l.
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the input of the system. In addition A is called the state matrix, B the input matrix, C
the output matrix, D the input-output matrix and E the descriptor matrix. Equation (2.1)
is also called the state equation.

Σ :
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

u y

Figure 2.1: The schematic of a LTI descriptor system.

This important class of systems, in the following simply called LTI systems, allows the
mathematical modeling and simulation of a plethora of different dynamics and has signif-
icant practical relevance. The state x ∈ R

n governed by (2.1) is influenced by the input
u, which e.g. could be a force applied on the system. The output y usually is the inter-
action of the system with the outside, governed by (2.2), depends both on x as well as
the input u. For many systems, one may encounter that D = 0k×l; since in addition D is
unaffected by model order reduction, as will be seen later, in the following it is assumed
w.l.o.g. that D = 0. While this thesis generally assumes real matrices, the results and pro-
cedures given in this thesis can usually be extended to complex systems without difficulty.

Oftentimes systems only have a single input and a single output, i.e. k = l = 1, in
which case they are called single-input-single-output (SISO) systems, else multiple-input-
multiple-output (MIMO) systems. For ease of use, in the following Σ = (E,A,B,C) is
used as an abbreviation for systems as in Definition 2.1.

These systems are particularly interesting for rank(E) < n, as then there are algebraic
constraints that need to be satisfied. Unless mentioned otherwise, this thesis restricts itself
to the case rank(E) = n, which is easier to handle. It should be noted that many results
and definitions from this chapter can be extended to arbitrary linear descriptor systems.

To avoid confusion, φ(t, t0, x0, u) is used in the following to describe the solution of the
state equation, i.e. the state of the system at time t under the input u and with initial
state x0 at time t0. For a system as in Definition 2.1 it can be given as

φ(t, t0, x0, u) = eE
−1A(t−t0)x0 +

∫ t

t0

eE
−1A(t−τ)E−1Bu(τ)dτ, t ≥ t0

x(t) ∈ R
n is called the state of the system, y(t) ∈ R

k the output of the system and u(t) ∈ R
l
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2.1. LINEAR TIME-INVARIANT SYSTEM

and the corresponding output μ(t, t0, x0, u) = Cφ(t, t0, x0, u) follows accordingly.

Of specific interest for these systems, schematically given in Figure 2.1, is their input-
output behavior, e.g. one would rather be interested in a good approximation of the
output μ(t, t0, x0, u) = Cφ(t, t0, x0, u), than of φ(t, t0, x0, u). For the general examination
of this input-output behavior it has proven to be very useful to investigate the system for
a frequency s instead of time t. This requires the switch from the time domain to the
frequency domain, which is done via the Laplace transform.

Definition 2.2 ([35]).
Let f ∈ C0([0,∞)) be such that for m ∈ R and 0 < k <∞ holds

|f(t)| < kemt, ∀ t ≥ 0,

then for s ∈ C its Laplace transform F (s) is defined as

L[t �→ f(t)](s) = F (s) :=

∫ ∞

0−
e−stf(t)dt.

Remark 2.3.
It is easy to see for the Laplace transform that for s ∈ C and f as in Definition 2.2 holds

L
[
t �→ df(t)

dt

]
(s) = sF (s)− f(0).

If applied to systems from Definition 2.1, the input-output behavior over the frequency
domain can be given in a rather simple form as follows.

Definition 2.4 ([35]).
Let Σ = (E,A,B,C) be an LTI system with x(0) = 0, then for s ∈ C\ {Λ(E,A)} , i.e. it
is not a generalized eigenvalue of the pair (E,A), the transfer function H of the system for
zero initial value is defined as

H(s) := C(sE − A)−1B,

which maps the frequency domain input U(s) onto the frequency domain output Y (s), i.e.

H(s)U(s) = Y (s).

The transfer function is a very simple, yet elegant way to obtain the input-output behavior
in the frequency space and therefore useful to examine the general behavior of the system.
In addition, it is of great importance for model order reduction.
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CHAPTER 2. MATHEMATICAL BACKGROUND

2.2 Stability

The concept of stability of a system is at the very core of this thesis and while there are
many different concepts of stability for systems in general, the two most common and
important concepts for LTI systems are stability and asymptotic stability.

Definition 2.5 ([75]).
Let Σ = (E,A,B,C), then the system is stable if for any two states x1, x2 belonging to the
same input u there exists a value M ∈ R+ s.t.

‖x1(t)− x2(t)‖ < M, ∀ t ∈ R+.

It is called asymptotically stable if additionally

limt→∞ ‖x1(t)− x2(t)‖ = 0.

While different norms can be chosen for this definition, if not specified otherwise, the
Euclidean norm is commonly chosen.

Definition 2.5 states that a system is stable if for any two states (under the same input) the
distance of the state trajectories remains bounded as t→∞, whereas asymptotic stability
demands that under the same input the system, no matter the initial state, converges to
the same state as t → ∞, which in case of u ≡ 0 would be the zero state 0 ∈ R

n. While
these definitions are reasonable, they are not very handy to investigate the system. The
following result however gives another criterion for stability and asymptotic stability, that
is often used as an alternative definition.

Proposition 2.6 ([75]).
Let Σ = (E,A,B,C) with rank(E) = n, then the following holds:

1. Σ is stable if and only if for any generalized eigenvalue λ ∈ Λ(E,A) it holds that
Re(λ) ≤ 0 and if Re(λ) = 0 then for λ the geometric multiplicity is equal to its
algebraic multiplicity

2. Σ is asymptotically stable if and only if for any λ ∈ Λ(E,A) holds Re(λ) < 0.

This relation between the state matrix and (asymptotic) stability gives an algebraic, simple
way to handle stability. In addition to this, in practice one may encounter systems that
are unstable for physical reasons, or even as a result of the discretization. In that case part
of control theory is to find an appropriate input u that stabilizes the system.

Definition 2.7 ([75]).
The system Σ = (E,A,B,C) (or just (A,B) if E = I) is called stabilizable (by state
feedback) if there exists a matrix F ∈ R

l×n such that Λ(E,A+BF ) ⊂ C−.
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2.3. OBSERVABILITY AND REACHABILITY

While stabilization may be very difficult for nonlinear systems, both theoretically and
practically, at least in theory it is not problematic for linear systems; interested readers
are referred e.g. to [76].

Eẋ(t) = Ax(t) + Bu(t)

F

+ y(t) = Cx(t)
x

Fx

uu0
y

Figure 2.2: Sketch of a state-feedback loop.

2.3 Observability and Reachability

Aside from stability, two other important properties that are corner stones of (linear) sys-
tem theory are reachability and observability, the former is also important for stabilization
by state-feedback as in Figure 2.2.

Definition 2.8 ([75]).
Let Σ = (E,A,B,C), t0 be fixed, X ⊂ R

n be the subspace of feasible initial states and U
the set of feasible inputs. The state x1 ∈ R

n is called reachable from x0 ∈ X if there exists
u ∈ U, τ > 0 s.t.

φ(t0 + τ, t0, x0, u) = x1.

Equivalently, one says that x0 can be controlled to x1.

The state x1 can be distinguished from x0 if there exists u ∈ U, τ > 0 and t0 ≤ t ≤ t0 + τ
s.t.

μ(t, t0, x0, u) �= μ(t, t0, x1, u).

The set of feasible (or admissible) initial states and input functions may depend on the
specific problem, else a common choice is Rn for the initial states and the set of continuous
functions C1(R) (or commonly also piecewise continuous functions) for the input functions.
With these definitions, one can give the definition of controllability (or reachability) and
observability.

Definition 2.9 ([75]).
Let Σ = (E,A,B,C), then the system is called reachable if for any x0, x1 ∈ R

n there exists
u ∈ U s.t. φ(t0 + τ, t0, x0, u) = x1. For E nonsingular, with Ã := E−1A and B̃ := E−1B,
the reachability matrix of Σ is defined as
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