

Acknowledgements

I remember my first contact with Germany and I would especially like to thank my supervisor Prof. Dr. Peter Winterhalter who gave me an opportunity to do research in his laboratory during my Erasmus exchange year. This experience has turned my life around. Few years later, he gave me the opportunity to do my Ph.D thesis in his group. I thank him for his support during this time, which I will never forget. Moreover, I would like to thank the thesis committee: apl. Prof. Dr. Ulrich Engelhartdt and Prof. Dr. Robert Kreuzig.

I am thankful to German Academic Exchange Service (DAAD) for the financial support in cooperation together with Herrn Dr. Kropf of Henkel AG & Co. KGaA at the beginning of my doctoral thesis. Additionally, I thank Dipl.-Ing. Olaf Melzer of the Faculty of Agricultural Sciences and Landscape Architecture of the University of Applied Sciences (Osnabrück) for supplying black carrots. Also, I would like to thank Dr. Melanie Stürtz (Symrise AG) for providing samples for the project.

In addition, I thank Dr. Maria Ramos Jerz, Dr. Gerold Jerz, Dr. Elyana Cuevas Montilla and Dr. Silke Hillebrand for giving me academic support during my stay in the laboratory and for their friendship. I wish to thank Mrs Carola Balcke, in particular, for the help in the corrections and assistance with literature. Furthermore, I thank Tuba Esatbeyoglu, Stephanie Trebst, Stefanie Kuhnert, Recep Gök, Andrea Wilkens, Sebastian Tolle, Mariana Neves, Emmanuel Letsyo, Christian Bork, Nils Kaiser, Ulf Stodt, Rouba Horanni, Eva Schmalfuss and Josefine Ostberg for the nice time that we spent together in and out of the laboratory, and their advice, feedback, and assistance. Moreover, I would like to thank my master students and exchange students for their help, support and the nice time we had together.

On the other hand, I thank my Spanish family: especialmente a el tío Julian y la tía Lolín, que por ellos comenzó mi aventura por Europa. A Guadalupe, Juan, Ma. Dolores, los Julianets, Olga, Tony y Olga que siempre me apoyaron y por los gratos momentos. Maria y Alicia, mil gracias por estar siempre en todo aquel tiempo, que siempre hemos compartido juntas.

To my Mexican family: Muchas gracias a mis padres, René y Tina, asi como a mis hermanos y a mi cuñada, René, Morgan y Yuli, por su motivación y apoyo incondicional en mi preparación por salir adelante y superarme día a día. Me siento muy afortunada de contar siempre con todos ustedes, además la educación es la mejor herencia que me han podido dar apesar de todas las circunstancias.

Ich danke meiner deutschen Familie: Petra, Peter, dem lieben Herbert und der lieben Gerti für eure Unterstützung. Besonders möchte ich mich bei André bedanken. Vielen Dank für deinen Glauben an mich, für deine Geduld und weil du immer für mich da bist...egal was passiert. Con mucho amor y cariño.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

Content

		Acknowledgements.		I
		List of figures		VII
		List of tables		XIII
		Abbreviations		XV
1	Intr	oduction and Intention		1
2	Ger	neral		3
	2.1	Polyphenols		3
		2.1.1 Classification	of Polyphenols	3
		2.1.1.1 Non-fl	avonoids	4
		2.1.1.1.1	Hydroxybenzoic acids	4
		2.1.1.1.2	Hydroxycinnamic acids	4
		2.1.1.2 Flavon	oids	5
		2.1.1.2.1	Flavanones	6
		2.1.1.2.2	Flavones	6
		2.1.1.2.3	Flavonols	7
		2.1.1.2.4	Flavan-3-ols: Catechins and Proanthocyanidins	8
		2.1.1.2.5	Anthocyanidins: Anthocyanins	10
		2.1.2 Biosynthesis of	f phenolics, polyphenols and anthocyanins	18
		2.1.3 Absorption, Bi	oactivity and Metabolism of anthocyanins	27
		2.1.3.1 Anthor	cyanin absorption and metabolism	27
		2.1.3.2 Bioact	ivity of Anthocyanins	33
		2.1.3.2.1	Antioxidant activity	33
		2.1.3.2.2	Anti-carcinogenic effects	35
		2.1.3.2.3	Anti-inflammatory effects	37
		2.1.3.2.4	Anti-cardiovascular effects	38
		2.1.3.2.5	Antidiabetic effects	38
		2.1.3.2.6	Neuroprotective effects	39
		2.1.3.2.7	Antibacterial, antimicrobial and antiviral activity	40
		2.1.3.2.8	Gastro protective effects	40

		2.1.3.2.9 Skin protective effect	41
		2.1.3.2.10 Effect on vision	41
	2.2	Raw materials	42
		2.2.1 Blackberry (<i>Rubus fruticosus</i>)	42
		2.2.2 Black chokeberry (Aronia melanocarpa)	43
		2.2.3 Sour cherries (Prunus cerasus L.)	44
		2.2.4 Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.)	45
		2.2.5 Purple sweet potato (<i>Ipomoea batatas</i> L.)	46
		2.2.6 Roselle (Hibiscus sabdariffa L.)	47
		2.2.7 Butterfly pea (<i>Clitoria ternatea</i> L.)	48
	2.3	Preparative techniques for separation	49
		2.3.1 Countercurrent Chromatography	49
		2.3.1.1 High-Speed Countercurrent Chromatography (HSCCC)	52
		2.3.1.2 High Performance Countercurrent Chromatography (HPCCC)	53
		2.3.1.3 Low-Speed Rotary Countercurrent Chromatography (LSRCCC)	54
		2.3.2 Membrane chromatography	55
3	Res	2.3.2 Membrane chromatography	55 57
3	Res 3.1	2.3.2 Membrane chromatography ults and Discussion Working outline	55 57 57
3	Res 3.1 3.2	2.3.2 Membrane chromatography ults and Discussion Working outline Blackberry	55 57 57 58
3	Res ³ 3.1 3.2	 2.3.2 Membrane chromatography ults and Discussion Working outline Blackberry 3.2.1 Chemical composition 	55 57 57 58 58
3	Res ³ .1 3.2	 2.3.2 Membrane chromatography ults and Discussion Working outline Blackberry 3.2.1 Chemical composition	55 57 57 58 58 63
3	Res ³ 3.1 3.2	 2.3.2 Membrane chromatography ults and Discussion Working outline	55 57 57 58 58 63 63
3	Res ¹ 3.1 3.2	 2.3.2 Membrane chromatography	55 57 57 58 58 63 63 66
3	Res ³ 3.1 3.2	 2.3.2 Membrane chromatography 2.3.2 Membrane chromatography ults and Discussion Working outline Blackberry 3.2.1 Chemical composition 3.2.2 Preparative separations 3.2.2.1 Membrane chromatography 3.2.2.2 Countercurrent Chromatography Black chokeberry 	55 57 57 58 63 63 63 66 71
3	Res ¹ 3.1 3.2 3.3	 2.3.2 Membrane chromatography	55 57 57 57 58 63 63 63 66 71 71
3	Res ³ 3.1 3.2	 2.3.2 Membrane chromatography	55 57 57 58 58 63 63 66 71 71 77
3	Res ³ 3.1 3.2 3.3	 2.3.2 Membrane chromatography	55 57 57 58 58 63 63 66 71 71 77 77
3	Res ³ 3.1 3.2 3.3	 2.3.2 Membrane chromatography	55 57 57 58 58 63 63 63 63 71 71 71 77 77 80
3	Res ³ 3.1 3.2 3.3	 2.3.2 Membrane chromatography	55 57 57 57 58 58 63 63 63 63 71 71 71 77 77 80 85

		3.4.2 Preparative separations	90
		3.4.2.1 Membrane chromatography	90
	3.5	Black carrots	94
		3.5.1 Chemical composition	94
		3.5.2 Preparative separations	98
		3.5.2.1 Membrane chromatography	98
		3.5.2.2 Countercurrent Chromatography	101
	3.6	Purple sweet potato	105
		3.6.1 Chemical composition	105
		3.6.2 Preparative separations	108
		3.6.2.1 Membrane chromatography	108
		3.6.2.2 Countercurrent Chromatography	111
	3.7	Roselle	114
		3.7.1 Chemical composition	114
		3.7.2 Preparative separations	117
		3.7.2.1 Membrane chromatography	117
		3.7.2.2 Countercurrent Chromatography	122
	3.8	Butterfly pea	124
		3.8.1 Chemical composition	124
		3.8.2 Preparative separations	129
		3.8.2.1 Membrane chromatography	129
		3.8.2.2 Countercurrent Chromatography	131
	3.9	Authenticity and Food Adulterations	133
4	Mat	terial and Methods	135
	4.1	Plant materials	135
	4.2	Chemicals	137
	4.3	Extraction of polyphenols	138
	4.4	Adsorption chromatography on Amberlite XAD-7	138
	4.5	Solvent precipitation	138
	4.6	Device parameters	139

	4.6.1 HPLC-DAD	.39
	4.6.1.1 Analytical HPLC-DAD 1	.39
	4.6.1.2 Preparative HPLC-UV/VIS 1	.41
	4.6.2 HPLC-DAD-ESI-MS ⁿ	.42
	4.6.3 TLC	.43
	4.6.4 UV Spectrophotometer 1	.43
	4.6.4.1 Total phenolic content by Folin Ciocalteu method 1	.44
	4.6.5 Membrane chromatography 1	.44
	4.6.6 Countercurrent Chromatography 1	.45
	4.6.6.1 High-Speed Countercurrent Chromatography 1	.45
	4.6.6.2 High Performance Countercurrent Chromatography	45
	4.6.6.3 Low-Speed Rotary Countercurrent Chromatography	46
	4.6.7 Nuclear Magnetic Resonance Spectroscopy 1	.48
5	Summary and Conclusion 1	55
6	Zusammenfassung1	57
7	References	59

List of figures

Fig. 2.1. Classes of polyphenols (Iriti and Faoro, 2009)	3
Fig. 2.2. Chemical structure of hydroxybenzoic acids	4
Fig. 2.3. Chemical structure of hydroxycinnamic acids.	4
Fig. 2.4. Structures of principal flavonoids subgroups (Crozier et al., 2009; Iriti and Faoro, 2009).	5
Fig. 2.5. Chemical structure of flavanones and some examples	6
Fig. 2.6. Structure of flavones.	7
Fig. 2.7. Chemical structures of flavonol aglycones.	7
Fig. 2.8. Chemical structure of flavan-3-ols.	8
Fig. 2.9. Some chemical structures of A-type and B-type proanthocyanidins	9
Fig. 2.10. Chemical structure of sugars, which usually occur in anthocyanins.	. 12
Fig. 2.11. Structure of aliphatic and aromatic acids that can exist in anthocyanins	13
Fig. 2.12. Equilibrium forms of anthocyanidins. $R = glycoside$; R_1 and R_2 can be OH, CH ₃ or OCH ₃ groups,	
according to the type of aglycone	. 14
Fig. 2.13. Specific positions of anthocyanidins to react (Mateus and Freitas, 2009; Andersen and Jordheim,	
2013)	15
Fig. 2.14. Reaction on the C-Ring, generating hemiketals and sulfites. $R = glycoside$; R_1 and R_2 can be OH, CH ₃	or
OCH₃ groups, according to the type of aglycone	. 16
Fig. 2.15. The formation of pyranoanthocyanins: reaction between Mv-3-glc and carbonyl compounds	. 17
Fig. 2.16. Metalloanthocyanin: Representation of interaction between cation and anthocyanin in commelinin	
(left), self-assembly of metalloanthocyanins (middle) and protocyanidin (right) (Yoshida et al., 2009)	. 18
Fig. 2.17. Pathway for the biosynthesis of phenolics and polyphenols (modified from Salminen and Karonen,	
2011)	. 19
Fig. 2.18. The shikimate pathway (Herrmann and Weaver, 1999)	20
Fig. 2.19. Biosynthesis of phenylalanine and tyrosine (Keller et al., 1982)	21
Fig. 2.20. Biosynthesis of phenolic acids and hydrolyzable tannins (Crozier et al., 2009)	. 22
Fig. 2.21. Biosynthesis of flavonoids (Macheix et al., 1990)	. 23
Fig. 2.22. Biosynthesis of anthocyanidins and flavonols (Bowsher et al., 2008; Gould et al., 2009).	. 25
Fig. 2.23. Biosynthesis of anthocyanins (Gould et al., 2009; He et al., 2010)	. 26
Fig. 2.24. Schematic of the probable anthocyanins bioabsorption (McGhie and Stevenson, 2013) and pH value	?5
of the different parts in the human gastrointestinal tract (Pandit and Soltis, 2012). Acy: Anthocyanidins; Acy-	Gly:
anthocyanin glycoside; Acy-methyl: methylated anthocyanidins; Acy-Gluc: anthocyanidin glucuronide	. 29
Fig. 2.25. Classification of antioxidants (Carocho and Ferreira, 2013)	33
Fig. 2.26. Diseases induced by oxidative stress in humans (Pham-Huy et al., 2008)	. 34
Fig. 2.27. Blackberry plant (left, © Wolfgang Dirscherl/pixelio.de) and blackberry fruits (right)	. 42
Fig. 2.28. From left to right: Aronia arbutifolia, Aronia prunifolia, Aronia melanocarpa Nero and Viking (Sourc	:e:
with permission of Aronia ORIGINAL Naturprodukte GmbH)	. 43
Fig. 2.29. Sweet cherries (© Johannes Heide/pixelio.de) and sour cherries (© Tim Reckmann/pixelio.de)	. 44

Fig. 2.30. Black carrots cultivars: Antonina, Deep Purple, Purple Haze and Purple Sun (From left to right)	45
Fig. 2.31. Purple Sweet Potato from China (left and in the middle) and the distribution of anthocyanin	
pigmentation in sweet potatoes (right) by Huamán (1992)	46
Fig. 2.32. Roselle plant from Mexico (left and in the middle, by R. René Rodríguez Arzaba) and its dark red	
calyces	47
Fig. 2.33. Clitoria ternatea L.: seeds (left), flowers (in the middle) and dried flowers (right)	48
Fig. 2.34. Basic model systems for CCC: hydrostatic (left) and hydrodynamic (right) equilibrium systems (Ito ar	пd
Conway, 1986)	49
Fig. 2.35. Search for the HSCCC (Ito and Conway, 1986)	50
Fig. 2.36. Head (H) to Tail (T) orientations of helical column in synchronous planetary motion. They are	
determined by the handedness of the coil, right or left (Ito, 1984)	50
Fig. 2.37. Principle unilateral hydrodynamic equilibrium system (Ito and Conway, 1986)	51
Fig. 2.38. Single-coil design (left) (Ito and Conway, 1986) and HSCCC with multilayer triple-coils (right)	52
Fig. 2.39. Single-Coil CCC system (modified from Sutherland, 1987)	52
Fig. 2.40. Spectrum HPCCC system which can be used in analytical or semipreparative scale	53
Fig. 2.41. Low-Speed Rotary Countercurrent Chromatography system (Du et al., 2000)	54
Fig. 2.42. Membrane chromatography system	56
Fig. 2.43. Sartobin S IEX 150 mL membrane adsorber capsule (left), microporous structure with pore size 0.45	-
3μm (at the middle) and flow path (right) (Source: Sartorius AG, Göttingen, Germany)	56
Fig. 3.1. Schema of work	57
Fig. 3.2. HPLC-DAD and HPLC-Chromatograms at 520 nm, 280 nm, 320 nm and 360 nm of blackberry. Peak	
numbering according to Table 3.1, 3.2 and 3.3	59
Fig. 3.3. Membrane Chromatography overview (a), fraction collection of copigments (b-d) and anthocyanins ((e).
	63
Fig. 3.4. HPLC-DAD analyses of a separation of a blackberry extract by Membrane Chromatography	64
Fig. 3.5. HPLC-Chromatograms at 280 nm and 520 nm of copigment fraction and anthocyanin fraction. Peak	
numbering according (peak 1-4) to Table 3.1 and peak 5 is a cyanidin-derivative	65
Fig. 3.6. HPLC-DAD chromatogram of blackberry XAD-7 extract before separation	66
Fig. 3.7. LSRCCC system: Detector, fraction collector and plotter (left), column and motor (at the middle) and	
coil with blackberry sample (right)	66
Fig. 3.8. LSRCCC chromatogram at 520 nm of blackberry XAD-7 extract	67
Fig. 3.9. Polymeric fraction of blackberry after LSRCCC separation	67
Fig. 3.10. DAD-Contour-Plot Chromatogram of LSRCCC Fraction 5 before HSCCC separation (at the top) and	
HSCCC separation of LSRCCC Fraction 5 at 520 nm (in the middle) and 280 nm (at the bottom)	70
Fig. 3.11. DAD-Contour-Plot Chromatogram and HPLC Chromatograms at 520 nm, 280 nm and 360 nm of	
Aronia melanocarpa juice. Peak numbering according to Table 3.5	72
Fig. 3.12. DAD-Contour-Plot chromatogram and HPLC-chromatograms of Aronia melanocarpa pomace at 520)
nm, 280 nm and 374 nm. Peak numbering according to Table 3.5	76

Fig. 3.13. DAD-Contour-Plot Chromatograms of Aronia melanocarpa pomace XAD-7 extract (at the top),
copigment fraction (at the middle) and anthocyanin fraction (at the bottom)
Fig. 3.14. HPLC chromatograms of anthocyanin fraction and copigment fraction from Aronia melanocarpa juice
extract (A) and pomace (B) at 520 nm and 280 nm. Peak numbering according to Table 3.5
Fig. 3.15. HSCCC chromatogram of the copigment fraction of Aronia melanocarpa pomace at 280 nm
Fig. 3.16. HSCCC chromatogram of the copigment fraction of Aronia melanocarpa juice extract at 280 nm 81
Fig. 3.17. HSCCC chromatogram of the anthocyanin fraction of Aronia melanocarpa juice extract at 520 nm 83
Fig. 3.18. HSCCC chromatogram of the anthocyanin fraction from Aronia melanocarpa pomace at 520 nm 83
Fig. 3.19. HPCCC chromatogram of anthocyanin fraction from Aronia melanocarpa A20 extract at 520 nm 84
Fig. 3.20. HPLC-DAD-Contour-Plot chromatogram and Base Peak UV chromatogram at 520 nm of sour cherry
extract Actiplants® Cherry Purevital. (For peak numbers see Table 3.8)
Fig. 3.21. 5-Carboxypyrano-cyanidin-3-(2 ^G -glucosylrutinoside) (left) and 5-Carboxypyrano-cyanidin-3-rutinoside
(right)
Fig. 3.22. Base Peak UV Chromatogram at 280 nm (at the top), 320 nm (in the middle) and 360 nm (at the
bottom) of sour cherry extract. Peak numbering according to Table 3.10
Fig. 3.23. a) Sample loading of Actiplants [®] Cherry Purevital extract b) elution of anthocyanins and c) elution of
copigments after second separation
Fig. 3.24. DAD-Contour-Plot chromatogram of the anthocyanin fraction (a) and of the copigment fraction (b)
from Actiplants® Cherry Purevital extract
Fig. 3.25. Base Peak chromatogram at 520 nm and 280 nm of the anthocyanin fraction from sour cherry
extract. For peak numbers see Table 3.8
Fig. 3.26. Base Peak chromatogram at 520 nm and 280 nm of the copigment fraction from sour cherry extract.
Peak numbering according to Table 3.10
Fig. 3.27. Base Peak Chromatogram at 320 nm of the copigment fraction from sour cherry extract. Peak
numbering (Peak 10-19) according to Table 3.10, while peak 20 and peak 21 are 3-FQA and 5-FQA, respectively.
Fig. 3.28. DAD-Contour-Plot chromatograms (left) and HPLC chromatograms at 520 nm (right) for detection of
anthocyanins of black carrots: a) Antonina, b) Deep Purple, c) Purple Sun, d) Purple Haze and e) Beta Sweet.
Peak numbering according to Table 3.14
Fig. 3.29. HPLC chromatograms of black carrots at 280 nm. For peak numbering, cf. Table 3.16
Fig. 3.30. DAD-Contour-Plot chromatograms of the XAD-7 extract, anthocyanin fraction and copigment fraction
of Antonina, Deep Purple and Purple Sun carrots
Fig. 3.31. HPLC chromatograms of anthocyanin fraction (A) and copigment fraction (B) from Deep Purple black
carrot at 520 nm and 280 nm. Peak numbering according to Table 3.14 and Table 3.16
Fig. 3.32. HPLC chromatograms of anthocyanin fraction (C) and copigment fraction (D) from Antonina black
carrot at 520 nm and 280 nm. Peak numbering according to Table 3.14 and Table 3.16
Fig. 3.33. HPLC chromatograms of anthocyanin fraction (E) and copigment fraction (F) from Purple Sun black
carrot at 520 nm and 280 nm. Peak numbering according to Table 3.14 and Table 3.16

Fig. 3.34. HSCCC chromatograms of anthocyanin fraction from Antonina, Deep Purple and Purple Sun carrots at	
520 nm and chemical structure of the main anthocyanin	?
Fig. 3.35. HSCCC Chromatograms of copigment fraction from Antonina, Deep Purple and Purple Sun carrots at	
280 nm	l
Fig. 3.36. HPLC DAD Plot chromatogram of Chinese PSP (top) and HPLC chromatograms at 520 nm (middle) and	
280 nm (bottom). Peak numbering according to Table 3.17 and Table 3.18	5
Fig. 3.37. Purple Sweet potatoes (a-b), extraction of polyphenols from purple sweet potato (c-d) and isolation of	
PSP polyphenols by Amberlite XAD-7 column chromatography (e))
Fig. 3.38. Separation of purple sweet potato XAD-7 extract by membrane chromatography (left), copigment	
fraction elution (at the middle) and anthocyanin fraction elution (right))
Fig. 3.39. HPLC DAD Plot chromatograms of PSP anthocyanin fraction and PSP copigment fraction)
Fig. 3.40. HPLC-DAD chromatograms at 520 nm (A) and 280 nm (B) of copigment and anthocyanin fraction. For	
peak numbering, see Table 3.17 and Table 3.19)
Fig. 3.41. HSCCC chromatogram of PSP anthocyanin fraction at 520 nm)
Fig. 3.42. HSCCC chromatogram of PSP copigment fraction at 280 nm	l
Fig. 3.43. HPLC DAD plot chromatograms of Hibiscus sabdariffa L. from 200 nm to 600 nm and HPL-DAD	
chromatogram at 520 nm	l
Fig. 3.44. HPLC-Chromatograms of Hibiscus sabdariffa L. at 280 nm, 320 nm and 360 nm. Peak numbering	
according to Table 3.21	;
Fig. 3.45. Hibiscus sabdariffa L.: a) dried calyces, b) extraction of polyphenols, c-d) concentration of polyphenols	
onto XAD-7 column and e) HPLC DAD plot chromatogram of HSL XAD-7 extract	}
Fig. 3.46. HPLC DAD plot chromatograms of HSL anthocyanin fraction and HSL copigment fraction after	
separation by membrane chromatography	}
Fig. 3.47. HPLC chromatogramms of HSL anthocyanin fraction at 520 nm and 280 nm. For peak numbering, see	
Table 3.22)
Fig. 3.48. HPLC-DAD chromatogramms of HSL copigment fraction at 520 nm, 280 nm, 320 nm and 360 nm. For	
peak numbering, see Table 3.22)
Fig. 3.49. HSCCC separation of Hibiscus sabdariffa L. XAD-7 extract at 520 nm and 280 nm	}
Fig. 3.50. HPLC DAD plot chromatogram from 200 to 660 nm and Base Peak chromatograms of Clitoria ternated	1
L. at 520 nm, 360 nm, 320 nm and 280 nm. For peak numbers see Tables 3.23 and 3.24	;
Fig. 3.51. Biosynthesis of Ternatin C5 (Kogawa et al., 2007)	,
Fig. 3.52. Possible biosynthetic pathways of ternatins and preternatins (Terahara et al., 1998)	,
Fig. 3.53. Clitoria ternatea L.: HPLC-DAD analysis of raw extract (top), anthocyanin fraction (middle) and	
copigment fraction (bottom))
Fig. 3.54. HPLC Chromatogram at 520 nm of raw extract, anthocyanin fraction and copigment fraction of	
Clitoria ternatea L)
Fig. 3.55. HPCCC chromatogram of raw extract of Clitoria ternatea L. at 280 nm	
Fig. 3.56. HPCCC chromatogram of copigment fraction of Clitoria ternatea L. at 280 nm	?
Fig. 3.57. Determination of total phenolic content in red/black fruits	ļ

Fig. 3.58. HPLC-DAD Profile of Aronia melanocarpa juice and aronia extracts AE1-AE4 (left) and detection of	r
adulteration in AE2-AE4 by UV-chromatogram at 520 nm (right)	. 134

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

List of tables

Table 2.1. Structure of anthocyanidins.	11
Table 2.2. Pharmacokinetics of anthocyanins in humans and animals after consumption (Prior and Wu, 2006	ō;
Daayf and Lattanzio, 2009; Fernandes et al., 2015)	30
Table 2.3. Absorption of anthocyanins in cell models (Fernandes et al., 2015).	32
Table 3.1. Anthocyanin content and LC-MS data of anthocyanins in blackberry.	60
Table 3.2. LC-MS data of ellagitannins in blackberry	61
Table 3.3. Phenolic acids, flavonols and flavan-3-ols in blackberry.	62
Table 3.4. Distribution of phenolic compounds from blackberry after LSRCCC separation.	68
Table 3.5. LC-ESI-MS ⁿ data of polyphenols in Aronia melanocarpa juice.	73
Table 3.6. Anthocyanin content in Aronia melanocarpa products.	75
Table 3.7. Separation of Aronia melanocarpa XAD-7 extracts by Membrane Chromatography	78
Table 3.8. LC-MS ⁿ data of anthocyanins in sour cherry extract Actiplants [®] Cherry Purevital.	86
Table 3.9. Anthocyanin content in cherry products.	87
Table 3.10. LC-MS data of copigments in Actiplants [®] Cherry Purevital extract	89
Table 3.11. Quantification of chlorogenic acids in Actiplants Cherry Purevital.	90
Table 3.12. Quantification of flavonols in Actiplants Cherry Purevital.	90
Table 3.13. Amount of obtained fractions from sour cherry extract after membrane chromatography.	91
Table 3.14. LC-MS data of the main polyphenols in black carrots.	96
Table 3.15. Quantification of anthocyanins in black carrots.	96
Table 3.16. LC-MS data and quantification of main chlorogenic acids in black carrots.	98
Table 3.17. Mass Spectrometric data and quantification of Anthocyanins from Chinese PSP.	107
Table 3.18. LC-MS data of Copigments in Chinese PSP.	108
Table 3.19. LC-MS data and quantification of phenolic acids present in copigment fraction after separation b	ру
membrane chromatography	111
Table 3.20. LC-MS data and quantification of anthocyanins Hibiscus sabdariffa L. from Mexico.	115
Table 3.21. LC-MS data of phenolic compounds in Hibiscus sabdariffa L.	117
Table 3.22. LC-MS data of phenolic compound in Hibiscus sabdariffa L. after membrane chromatography	121
Table 3.23. Anthocyanins in Clitoria ternatea L.	126
Table 3.24. Flavonols of Clitoria ternatea L. flowers	128
Table 4.1. List of raw material	135
Table 4.2. List of chemicals.	137
Table 4.3. Calibration range for quantification by HPLC	140
Table 4.4. Technical data of Sartobind SIEX 150 mL, filter capsule and pumpe system.	144
Table 4.5. Parameters for CCC separations.	146

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

Abbreviations

АсОН	Acetic acid
AF	Anthocyanin-fraction
AJ	Concentrated aronia juice
arab	arabinoside
AP	Aronia pomace
A20	Actiplants® Aronia 20 %
Conc.	Concentration
CCC	Counter-current chromatography
CH ₃ CN	Acetonitrile
CF	Copigment-fraction
CQA	Caffeoylquinic acid
Су	Cyanidin
δ	Chemical shift in ppm (Parts per Million)
d	Doublet
dd	doublet of doublets
ddd	doublet of doublet of doublets
DAD	Diode array detector
DEPT	Distortionless enhancement by polarisation transfer
Del	Delphinidin
diglc	diglucoside
DM	Dry matter
ESI	Electrospray ionization
EtOAc	Ethyl acetate
EtOH	Ethanol
FW	Fresh weight
GAE	Gallic acid equivalent
gal	galactoside
glc	glucoside
Н	Head
HCl	Hydrochloric acid
Hz	Hertz
HPLC	High-performance liquid chromatography
HSCCC	High-Speed Counter-current chromatography
i. D.	inside diameter
J	J-coupling in Hertz (s-1; Hz)

2

		Γ.
	6.4	
-		

k	Partition coefficient
λ	Wavelength in nm
LC	Liquid Chromatography
LP	Lower phase
LSRCCC	Low Speed Rotary Countercurrent Chromatography
m	Multiplett
М	Molar
$[M]^+$	Pseudo-molecular ion (pos. Modus)
[M-H] ⁻	Pseudo-molecular ion (neg. Modus)
max	Maxima
MC	Membrane chromatography
МеОН	Methanol
min	Minutes
MS	Mass spectrometry
Mv	Malvidin
m/z	Mass-to-charge-ratio
n-BuOH	n-Butanol
n.d.	Not detected
nm	nanometer
NMR	Nuclear magnetic resonance
No.	Number
p. a.	per Analysis
Pg	Pelargonidin
Pn	Peonidin
ppm	Parts per million
Pt	Petunidin
q	quartet, quadruplet
rpm	Revolutions per minute
RP-18	Reversed-phase 18
rut	rutinoside
S	Singlet
samb	sambubioside
soph	sophoroside
Т	Tail
t	triplet
tBME	<i>tert</i> -butyl methyl ether
TFA	Trifluoroacetic acid