Contents

1 | Introduction .. 1
 1.1 Problem Statement and Approach 2
 1.2 Contributions of this Thesis 4
 1.3 Thesis Outline 7

2 | Background ... 9
 2.1 Automotive Control Software 9
 2.1.1 AUTomotive Open System ARchitecture (AUTOSAR) 10
 2.1.2 Migration to AUTOSAR 14
 2.1.3 Case Study: Diesel Engine Control 16
 2.2 Software Parallelization 17
 2.2.1 Subtask Decomposition Fundamentals 18
 2.2.2 Dependence Analysis Fundamentals 19
 2.3 Parallelization Constraints in Automotive Software 22
 2.3.1 Extraction of Precedence Constraints 22
 2.3.2 End-to-end Paths and Latency Semantics 25
 2.4 Considered Processor Architecture and Analysis Tools 30
 2.4.1 Static Code Analysis with Understand 30
 2.4.2 parMERASA Multi-core Processor Architecture 31
 2.4.3 Static Worst-Case Execution Time Analysis 33
 2.4.4 Erdős-Rényi Model 34
 2.5 Summary of Background 34

3 | State of the Art and Problem Analysis 37
 3.1 Objectives 37
 3.1.1 Functional Objectives 38
 3.1.2 Non-functional Objectives 38
 3.2 Mapping and Scheduling 40
 3.2.1 Reconfiguring Parallelization Approaches 40
 3.2.2 Preserving Parallelization Approaches 52
 3.2.3 Discussion and Summary 57
 3.3 Predictable Interprocessor Communication and Data Consistency 59