
Š 1

1 Š Introduction

“Software gets slower faster
than hardware gets faster.”

Niklaus Wirth, 1995

The performance requirements for an automotive embedded system have increased
steadily in recent years and this also raised the number of electronic control units (ECUs)
per car. Today, they contain a complex in-vehicle network of 70 or more ECUs [Für10],
which realize thousands of control functions altogether. Each of these ECUs consumes
electrical energy and this leads to a higher overall energy consumption of the car.
Nevertheless, the demand for more functionality continues and this means more
control functions must be integrated. This requires more computational power in the
form of ECUs and it increases the overall electrical power consumption of the car. As
a result, minimizing the resource consumption per car and per ECU is an important
design objectives for automotive embedded system design [Mös10].

On the contrary, numerous control functions in a car must guarantee upper bounds
on the response time to realize the desired functionality. This marks an essential
difference between general purpose computing and automotive control software.
For this reason, minimizing the latency of critical sensor/actuator paths is a typical
optimization objective for automotive embedded systems [Nat+07]. An example for a
critical sensor/actuator latency is the maximum time between pushing the gas pedal
and the point in time when the driver recognizes the acceleration. The more control
functions the engine management system (EMS) ECU has to compute (active cylinder
management, exhaust gas recirculation, pre- and post-injection, etc.) the longer is the
response time.

Increasing the processor’s clock rate in the ECU was a first countermeasure to satisfy
the increasing performance requirement. However, this solution leads to a higher
electrical power consumption and heat dissipation, whereas the additional gained
compute power is low. Moreover, this technique faces physical limits with the result
that it is impractical to further increase the clock rate. The automotive industry is
therefore searching for alternative hardware platforms that satisfy the performance
and efficiency requirements.

Fortunately, embedded multicore processors, like the Infineon AURIX [Inf] or the
Freescale Qorivva [Fre15], have become widely available for the automotive indus-
try. These processors were designed for safety critical applications in the first place,
but they also provide a surplus of computational power, in comparison to a single-
core processor. This makes it possible to efficiently exploit thread-level parallelism of
automotive control software.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2 Š Introduction

Consequently, the ECU can either execute a more complex algorithm or execute the
same application on multiple cores with a reduced clock rate, such that deadlines are
still kept, to save electrical energy. Thus, multicore ECUs are seen as the hardware
platform for current and future automotive control software in cars.

However, introducing multicore ECUs is a great challenge [MB09] for the automotive
industry. Until now, software is developed and optimized for the execution on a single-
core ECU. This software is well tested and much effort was spent on the optimization
and maintenance. As a result, most existing (legacy) control software is supposed to
be re-used, because the code is known to be reliable and the development process can
be shortened. Consequently, the migration of automotive legacy software to multicore
ECUs must be supported. This is a fundamental step for the adaptation of multicore
ECUs in the automotive domain and for taking full advantage of these platforms.
Consequently, this Ph.D. thesis focuses on the migration of automotive legacy control
software to multicore ECUs.

Automotive control software is developed according to the AUTomotive Open System
ARchitecture (AUTOSAR) standard [AUT14a]. The standard established an industry-
wide understanding, a uniform development methodology, and a uniform terminol-
ogy for automotive control software. A hierarchical software-component (SW-C) model
describes the application according to the concept of a virtual function bus (VFB). In
this concept, runnables, i.e. elementary code pieces; a schedulable job, within SW-Cs
implement the functional behaviour of the component. Each SW-C realizes a part of
the overall control and runnables frequently communicate with each other. Executing
the runnables in the correct order and frequency realizes the control function.

However, multicore ECUs have significantly different properties than general purpose
multicore processors and automotive control software strongly differs from inherently
parallel high performance computing (HPC) programs. This makes the parallelization a
non-trivial task that demands for a specific approach, as the next section describes in
more detail.

1.1 Problem Statement and Approach

The central requirements for embedded systems design are predictability and robustness
[Hen08]. The consequences for automotive software parallelization are twofold:

a) Predictability — The execution order of runnables must be deterministic to form
a predictable data-flow, i.e. an order in which runnables process data, from
sensors to actuators.

b) Robustness — An upper bound on the sensor/actuator latency must be guaran-
teed.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.1 Problem Statement and Approach Š 3

The cores of a multicore processor perform calculations independent of each other, but
they share resources such as the bus, memory, or other peripherals. That means the
parallel execution on multiple cores requires a coordination of accesses to these shared
resources to avoid unforeseen computational interleaving. This is necessary to avoid
data races, i.e. concurrent access to the same shared memory location from at least two
cores. Otherwise, inconsistent data might be the result or the data-flow between a
sensor and an actuator might break. Another important factor is the duration of this
computation, which should be as small as possible in automotive control software.
Consequently, the challenge in this Ph.D. thesis is to schedule tasks to cores in a way that
the data-flow between sensor and actuator produces a valid result with a low latency.

To achieve this, constraints must specify the correct functional behaviour to create the
same sensor/actuator data-flow like in the former sequential execution. Unfortunately,
the information about the legacy application is limited. However, this original applica-
tion’s configuration for the single-core ECU describes a correct functioning system and
it can be used to derive parallelization constraints. Hence, the parallelization approach
in this thesis relies on the original application’s configuration for the single-core ECU.
This approach leads to further challenges that are described in the following.

Automotive control software typically contains a high number of data dependencies.
Many runnables frequently exchange data with each other. Every runnable is a
consumer and a producer of interim results in a data-flow from a sensor to an actuator.
This results in a dense task dependence graph (TDG). Sensor data flows into this TDG in
different runnables, traverses it on multiple paths, and the results leave it in different
runnables. Thereby, paths overlay each other and a clear distinction between relevant
and less relevant data-flows is hard.

Runnables consume and produce data with a fixed period and they have to be executed
in the correct order to realize a data-flow from the sensor(s) to the actuator(s). This
results in a large amount of precedence constraints that must be respected during
parallelization and this frequently forces serialization of producer and consumer
runnable. This imposes the question:

� How can parallel execution of communicating runnables be enabled, but sensor/ac-
tuator data-flows be guaranteed with a worst-case latency?

Furthermore, the AUTOSAR standard itself imposes limitations on the parallelization.
A runnable is seen as smallest schedulable entity that requires an allocation to a core
and a mapping to a task. The runnable is allocated indirectly by assigning the SW-C,
containing the runnable, to a core. Hence, if two independent runnables are mapped to
the same core, no parallel execution is possible. A parallelization approach beyond the
state of the art potentially requires extensions of the existing standard. The challenge
here is to minimize these changes and remain compliant to the standard as far as
possible.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4 Š Introduction

� Which extensions for the AUTOSAR standard are required to guarantee efficient
and deterministic parallel execution on a multicore ECU?

This Ph.D. thesis attempts to answer these research questions. The contributions are
described in the following section.

1.2 Contributions of this Thesis

This thesis was developed in the context of the research projects parMERASA [par11;
Ung+16] and EMC2 [EMC14]. The research activities in the projects were conducted in
close collaboration with project partners and thus results have been published jointly.
During the parMERASA project, a processor architecture was developed to address
the challenge of overestimations in the worst-case execution time (WCET) by pessimism.
The design of the processor architecture follows the demands of automotive software.
The WCET estimations are thus less pessimistic than usual. Nevertheless, the approach
in this thesis is applicable to any automotive control software.

Initially, a set of functional and non-functional objectives for automotive software
parallelization has been defined based on the challenges described previously. A
qualitative comparison and discussion of existing approaches has been conducted.
As a result, the following main deficiencies have been identified in state-of-the-art
approaches:

� Reconfiguring approaches define an efficient new application configuration for
which a re-validation of the functional correctness is required. Moreover, their
applicability is limited to systems with specific scheduling policies. Contrar-
ily, preserving approaches maintain the same data-flow and fulfil most of the
requirements, but they are not compatible with AUTOSAR.

� The AUTOSAR standard does not provide a method for predictable interpro-
cessor communication between parallel executed tasks. The proposed interpro-
cessor communication mechanisms either access shared memory locations in
an unpredictable order or data dependencies force frequent serialization of the
task scheduling. Strong deterministic multithreading (DMT) and time-triggered
architectures (TTAs) ensure determinism. However, the former one misses a link
between the internal artificial clock and real time. The latter one has strict time
budgets that cannot be exceeded or the data-flow can break.

� A relaxation of inter-task data dependencies for improving parallel performance
by reading less up-to-date input data is possible. However, state-of-the-art
approaches do not define rules for transforming inter-task communication in
such a manner that the sensor/actuator data-flow is predictable and reproducible.
Moreover, the end-to-end latency constraints are maintained.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.2 Contributions of this Thesis Š 5

These deficiencies motivate for a parallelization approach that achieves determinism
and robustness by considering the original application’s configuration. Therefore,
precedence constraints are derived between runnables of the same release period,
using the original control flow, and between tasks with different release periods, using
the original task priority. Latency constraints are derived, for relevant end-to-end
chains, by taking precedence constraints and the original task period into account.
These constraints build the foundation for further parallelization steps. The following
sections describe the contributions of this Ph.D. over the state of the art.

Runnable-level Parallelization—The static partitioned scheduler RunPar [Pan+14]
is proposed for the separate parallelization of tasks, which schedules runnables and
not tasks. RunPar is a result of collaborative work in the parMERASA project. The
author of this thesis mainly contributed in formulating the problem, analysing the
case study, and conducting experiments. RunPar uses a bin-packing heuristic and a
priority rule to assign the longest chain of dependent runnables first. The heuristic
guarantees predictability, robustness, and data consistency of the parallel program by
construction. The runtime overhead is low and a re-validation is unnecessary. The
implementation can be done efficiently and only minimal modifications at operating
system level are required. A complex diesel EMS is used to extensively evaluate
RunPar. The results show that RunPar efficiently reduces a task’s WCET on two cores,
but the improvement on higher core counts is minor. The reason for this is that RunPar
executes tasks in sequential order and this limits the achievable parallelism.

Consequently, this thesis proposes a new AUTOSAR structure named Supertask, which
further exploits runnable-level parallelism of AUTOSAR tasks and still maintains the
original data-flow of the application. Runnables from (originally) consecutive sched-
uled tasks are grouped into one Supertask, which then becomes a unique scheduling
entity with a period equal to the least common multiple of tasks composing it. Run-
nables of the Supertask are then scheduled with RunPar, whereas inter-task data
dependencies are respected. This allows for maintaining the original data-flow and
increasing the parallelism in the legacy application. The scalability of Supertasks is
evaluated and compared against separate parallelization with RunPar. The results
report a significant improvement over RunPar, but more than two cores cannot be
used efficiently with runnable-level parallelization.

These results also show that the original target of the parallelization is achieved only
in parts. Consequently, distributing complete tasks is investigated as an alternative
strategy.

Task-level Parallelization—The high number of precedence constraints between tasks
causes frequent serialization, when RunPar is used and prevents an efficient usage
of computational resources. The target of task-level parallelization is a relaxation of
constraints that were respected by RunPar, so that communicating tasks can execute
in a parallel way and still communicate in a predictable manner.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6 Š Introduction

Therefore, this thesis proposes the novel communication mechanism timed implicit
communication (TIC) [Keh+15], which overcomes the shortcomings of AUTOSAR
implicit communication (an unpredictable data-flow). TIC [Keh+15] allows dependent
tasks to execute in a parallel way, while maintaining the application’s data-flow
independent of the task schedule. Therefore, the communication between producer
and consumer is decoupled by shifting the reception of data by one producer period
(and bound to the task period). The producer task stores data in a buffer and attaches
a publication timestamp, which is the end of the current producer period. Afterwards,
the consumer task reads from the previous producer instance (compared to the single-
core ECU execution) by selecting a value with the appropriate timestamp from the
buffer. Thereby, the functional behaviour is independent from the point in time at
which a task instance is scheduled within its period.

The communication between tasks is transformed in a predictable manner, which
guarantees an identical data-flow for all target platforms. Thus, predictability and
reproducibility are guaranteed. The approach is compliant to AUTOSAR and is
implemented at AUTOSAR run-time environment (RTE) level and does not require
modification of source code. The runnable-to-task mapping remains unchanged,
which guarantees a correct data-flow within a task. The evaluation of TIC showed a
speed-up of a 2.7 times faster execution on four cores and a 4.5 times faster execution
on eight cores execution, when the utilization is at its maximum. However, the end-to-
end latency is increased due to delayed transmission. Despite the benefits of TIC, it
requires careful choice in applying this mechanism.

For this reason and for a better classification, runnable-level parallelization (with
Supertasks and separate parallelization with RunPar) is compared to task-level par-
allelization (with TIC). The results show that Supertasks provide a higher speed-up
under low processor utilization and TIC provides better performance under high
processor utilization. Interestingly, these observations suggest the use of Supertasks
and TIC as complementary strategies for increasing the overall system performance.
Therefore, a method for deriving a hyperperiod schedule must be aware of the end-
to-end latency and it must apply TIC and RunPar selectively. The coordination of
RunPar and TIC is thus investigated.

Coordination of Runnable- and Task-level Parallelization—Introducing TIC allows
parallel execution, but it also introduces an additional delay between a sensor and
an actuator. Combining runnable- and task-level parallelization can compensate the
negative impact on the latency and exploit the performance of the multicore ECU at
the same time.

Coordinating runnable- and task-level parallelization means to optimize contradictory
targets. However, each approach has individual advantages that can be used to
compensate the shortcomings in the other. To achieve this, an evolutionary algorithm
for solving the resource-constrained project scheduling problem is adapted to generate a set

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.3 Thesis Outline Š 7

of possible hyperperiod schedules. The parallel schedule quality (PSQ) is established as a
metric for quantifying the quality of a schedule. This allows for selecting the schedule
with the highest overall benefit from parallelization and finding a satisfactory solution
in reasonable time.

The computed schedule is predictable, robust, efficient, cost-effective, and can be
implemented in AUTOSAR straightforward. The first-in-last-out (FILO) latency is iden-
tical to the reference platform and reducing the processor’s clock rate to a minimum
utilizes idle intervals. All task periods are scaled with the same value for this.

RunPar and TIC significantly reduce the clock rate, whereas TIC achieves a much lower
value (58% less than RunPar). Thus, solely using RunPar provides an overall better
performance, if less than half of the inter-task communication uses TIC. The trend
reverses when more inter-task communication is replaced and thus the best solution
is found in this region. However, combining runnable- and task-level parallelism
outperforms the individual approaches and provides the best overall performance.

Proof of Concept—The proposed approach is applied to a real diesel EMS to investi-
gate the performance and efficiency with a real application as an example. In the first
instance the mechanisms are applied and evaluated in simulation studies. Promising
techniques are selected for implementation on an Infineon AURIX platform. The
studies on the real platform are conducted to analyse the performance of simulative
studies and deployment on a real platform. Finally, a migration process for an indus-
trial environment is derived from these experiences. One section describes a step by
step process. This eases the migration of legacy software to a multicore ECU.

1.3 Thesis Outline

Chapter 2 provides the background to this thesis and introduces fundamental terms.
Automotive control software is explained and a short overview about the AUTOSAR
software architecture standard is given. Fundamental work steps of software paral-
lelization are explained. The processor architecture, which is used for the evaluation
of the approach, is explained as well as its simulation environment. An overview
about timing analysis techniques for the estimation of WCETs is given.

Chapter 3 begins with a definition of functional and non-functional objectives, taking
the properties of legacy automotive embedded control software and the AUTOSAR
methodology into account. Afterwards, state-of-the-art approaches for each paral-
lelization step are explained and discussed in the context of the previously defined
objectives. This specifically includes methods for automotive or embedded systems
and more general methods. A discussion in the context of the objective is conducted.
The chapter concludes with a summary of deficiencies.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



8 Š Introduction

Chapter 4 introduces the partitioned scheduling approach RunPar for runnable-level
parallelization and introduces the optimization with Supertasks. The implementation
in AUTOSAR and the handling of interrupts are described. The approaches are
evaluated and compared against each other in an evaluations section.

Chapter 5 introduces a mechanism for predictable task-level communication called
TIC that allows for parallel execution of tasks. Moreover, the migration with TIC
and the implementation in AUTOSAR are described. The evaluation of the approach
investigates the performance, buffer, and latency overhead. The findings motivate the
combination of TIC with RunPar.

Consequently, chapter 6 describes the combination of the approaches from chapters 4
and 5 in a coordinated manner. Rules for the classification of communication are
defined and a self-adaptive evolutionary algorithm, for combining the approaches, is
described. The evaluation first compares the individual approaches against each other
and investigates the performance of the combined approach afterwards.

The chapters 4 to 6 contain a qualitative analysis of each approach. A list of research
questions is derived to motivate for experimental investigations. The results are
discussed in the context of these questions and main findings from experiments are
summarized in each chapter separately.

Finally, chapter 7 summarizes the main findings of the three main chapters 4 to 6 in
this thesis and draws conclusions on the results. Moreover, ideas for improvements
and future work are given.

Appendix A describes the applicability of the approach in an industrial mass produc-
tion environment. Moreover, the chapter lists the tools required to implement the
parallelization approach and it describes the migration process step by step to ease re-
producing. Finally, the applicability of the approach is shown with an implementation
on the Infineon AURIX processor.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Š 9

2 Š Background

“There is nothing more
practical than a good theory”

Kurt Lewin, 1952

This chapter introduces the fundamentals for this thesis. Section 2.1 explains automo-
tive control software basically. Domain specific wording, which is used throughout the
following chapters, is introduced. Section 2.2 gives an overview about software paral-
lelization. This includes fundamentals about subtask decomposition and dependency
analysis. Section 2.3 describes the extraction of relevant parallelization constraints
from automotive control software and it introduces necessary notations. Section 2.4
describes the considered processor architecture and employed tools. The last section
in this chapter provides a summary of the main points.

2.1 Automotive Control Software

Automotive software is described according to the AUTomotive Open System ARchi-
tecture (AUTOSAR) standard [AUT14a]. The consortium behind the standard is a
worldwide development partnership of car manufacturers, suppliers, and companies
from the electronics, semiconductor, and software industry. AUTOSAR standard-
ises the software architecture, services, and a methodology comprising configuration
and description methods. The software architecture covers a superset of properties
from existing software and common development practices. AUTOSAR shaped a
uniform understanding of control software across the whole automotive industry and
harmonises the development process. The terminology is used throughout this thesis.

Automotive control software is integrated in an embedded real-time system; the elec-
tronic control unit (ECU). In the scope of this thesis, this device executes one application
with real-time properties. The model of automotive control software is derived from a
classical task model presented in the fundamental work of Liu and Layland [LL73] as
well as the formulation of Forget and Pagetti et al. [For+10; Pag+11].

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



10 Š Background

Definition 2.1 (Real-time application): A real-time application consists of a set of n tasks:

A = {τi | 1 ≤ i ≤ n, i ∈ N}. (2.1)

The real-time attributes (πi, Ti, Ci, Oi, Di) characterise each task τi ∈ A.

� πi is the priority.

� τi is instantiated periodically with period Ti.

� τ
p
i denotes the p-th iteration of task τi.

� Ci is the worst-case execution time (WCET) of τi expressed in time units.

� Oi is the release time of the first instance of τi, i.e. the offset with respect to the start
time of the system.

� Di ≤ Ti is the relative deadline of τi; they are implicitly defined, i.e. Di = Ti.

� The release time of τp
i is op

i = Oi + pTi.

� The absolute deadline of τp
i is dp

i = op
i + Di.

Automotive control applications are real-time applications in the sense of definition 2.1.
Later in this chapter, in section 2.3.2.2, the formulation is extended to describe and
derive latency constraints. Chapters 4 to 6 consider different aspects of automotive
control applications and adapt this definition for the specific needs.

Automotive control software has strict real-time constraints and the order in which
output is produced matters. This mainly distinguishes the parallelization of such
software from others, for example from the area of high performance computing.
For this reason, precedence constraints are extracted to define a partial order for the
execution of runnables, and latency constraints are extracted to specify the acceptable
response time of the application.

2.1.1 AUTomotive Open System ARchitecture (AUTOSAR)

The software architecture of automotive control software is divided in three parts as
shown in figure 2.1. A hierarchical component-based model describes the control
application on the top layer. In this model, elementary code pieces (runnables) within
the components implement the functional behaviour. Each component realizes a
subtask of the overall control and communicates frequently with other components.

The structure of such an application is a block diagram, as they are characteristic for
control engineering and similar to the representation in a model-based development
environment like MATLAB. Executing the runnables of the blocks in the appropriate
order guarantees the data-flow through the blocks. Therefore, runnables with the same

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.1 Automotive Control Software Š 11

Complex 
Device 
Driver

Run-Time Environment

Application
Ba

si
c 

So
ftw

ar
e

Microcontroller Abstraction Layer

Service Layer

ECU Abstraction Layer

Microcontroller

Runnable_1 Runnable_2

Figure 2.1: The AUTORSAR Software Architecture.

release time (periodic or sporadic) are grouped into AUTOSAR task structures and
scheduled by the AUTOSAR OS, which is part of the basic software (BSW). In contrast to
the application layer, the BSW has a layered architecture and many hardware-specific
components. Thus, the run-time environment (RTE) serves as separation between them.
This makes the control application independent from the hardware architecture below.

The AUTOSAR operating system (AR-OS) [AUT14a] supports periodic and sporadic
task execution. Deadlines are defined implicitly, which means a task instance must
finish its execution before the release of the next task instance. Typically, a fixed
priority-preemptive scheduling with rate monotonic (RM) priority assignment [LSD89]
is used.

2.1.1.1 Virtual Function Bus

The virtual function bus (VFB) is a model for describing an AUTOSAR control ap-
plication. A particular characteristic is the independence from the ECU’s hardware
architecture. The model has a component-based structure, describes the functional
separation, and the communication between components. This allows for easier re-use
of components.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



12 Š Background

The structural element is the software-component (SW-C), which can be nested. No
limitation about the number hierarchy levels is made. Within a SW-C runnables
implement the functional behaviour. Within the component, they can exclusively
exchange data through inter-runnable-variable (IRV), which cannot be accessed from
runnables in another SW-C. This concept is similar to the encapsulation of private
data in a class instance of an object oriented programming language.

Interaction across component boundaries is possible through ports. Within the SW-C a
runnable is associated to the port whose data are either read or written. Outside of a
SW-C ports are associated with each other with an assembly-connector. One port can
have multiple connections with other ports and multiple runnables can read from or
write to the same port. That means the port serves as an interface and a runnable does
not have a direct connection to another runnable, although they communicate with
each other practically.

A port-interface further specifies a port. Multiple kinds of port-interfaces can be
specified, because this is the only point for inter-component interaction. Most relevant
for this thesis are sender-receiver communication, for transmitting a datum, and
client-server communication, for invoking operations.

The developer can define the communication via IRVs, within a SW-C, or through
a sender-receiver port, between SW-C, either as explicit or as implicit. By default,
communication is explicit, i.e. a precedence constraint is imposed from producer
runnable to consumer runnable, defining a strict order of execution. The consumer
reads the most recent value of the producer. Implicit communication means that
a datum is distributed to all consumer runnables after the producer runnable has
finished its execution. On the consumer side, the datum is buffered and calculations
are performed on a copy meanwhile. As a result, concurrent execution of runnables is
possible, because the datum is buffered, but delivered with a delay. This is a form of
asynchronous communication. Storing data in a queue is another possibility, but their
use is rare and is therefore not considered in this thesis.

In client-server communication, the provider of the operation is denoted as server that
offers an operation to one or more clients. That means the client-runnable triggers the
execution of a server-runnable through a well-defined interface. The server-runnable
typically maintains an internal state and parallel execution is therefore not possible.

Apart from those communication mechanisms, four other kinds of ports can be speci-
fied:

1) a parameter interface provides a constant value or calibration data,

2) a non-volatile data interface provides access to non-volatile memory,

3) a trigger interface immediately starts the execution of a runnable,

4) and a mode-switch interface notifies a SW-C about the state from the mode man-
ager to adjust the component’s behaviour.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.1 Automotive Control Software Š 13

2.1.1.2 Run-Time Environment

The AUTOSAR RTE serves as a separation between the layered architecture design of
the BSW and the component-based design of the application. It makes the application
independent from a specific ECU and is the realization of the port-interfaces in the VFB
model of an application. This includes the application’s access to the BSW modules,
the connections to the AUTOSAR OS, and communication services. A SW-C can only
access the BSW modules on the same ECU, but it can communicate with SW-Cs on
another ECU through the RTE. The RTE therefore hides the concrete implementation
of the communication behind a standardised application programming interface (API).

The RTE guarantees data consistency for IRVs and sender-receiver communication.
Additionally, it is possible to use per-instance memory (PIM) for direct memory ac-
cesses, but the RTE does not guarantee consistency in this case and thus PIM is not
recommended and consequently not considered in this thesis.

The RTE is in addition responsible for scheduling SW-Cs from the application and
from the BSW. Therefore, runnables with the same release period are typically grouped
into the same task. Although, this is not stipulated by the standard, but it represents a
reasonable and logic combination. The task bodies and schedule tables are automati-
cally generated from the RTE configuration. The OS starts the tasks and the runnables
within the task are executed one after another. Guards may check if all runnables must
be executed. The RTE and the BSW scheduler are generated for each ECU to ensure
efficiency of the implementation.

2.1.1.3 Basic Software

The microcontroller abstraction makes the layers above independent from the underlying
processor architecture. This layer has direct access to the microcontroller hardware,
contains the hardware-specific drivers, and provides a standardized set of interface
functions to the ECU abstraction layer above. ECU abstraction provides interfaces to
the hardware drivers of the microcontroller abstraction, contains external drivers, and
it provides an API for accessing peripherals and devices regardless of their physical
location. The communication service for example is part of this layer. A complex
device driver allows direct access from the RTE to the microcontroller hardware. This
interface is used to integrate proprietary functions, implement time-critical or complex
sensor/actuator operations, or encapsulate legacy functions in the architecture. The
service layer provides basic services to the application and BSW modules. It contains
amongst others the AUTOSAR OS, which is based on the specification Offene Systeme
und deren Schnittstellen für die Elektronik in Kraftfahrzeugen (OSEK) [OSE05].

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



14 Š Background

2.1.2 Migration to AUTOSAR

AUTOSAR is now introduced in the electrical/electronic (E/E) architecture development
processes of car manufacturers. The standard enables shorter design cycles and easier
re-use of legacy software [DT11]. Nevertheless, a large fraction of legacy control
software is not compliant to AUTOSAR standard. The migration is necessary to
ensure interoperability and re-use in the future.

Migrating legacy control software to AUTOSAR is twofold. It can be distinguished
in defining the communication, on application layer with the VFB (SW-Cs, ports,
runnables, etc.), and configuring the BSW, i.e. OS tasks, runnable-to-task mapping,
etc. The description and configuration are defined according to the AUTOSAR meta-
model and stored in a standardised XML-file format. The application’s source code
is refactored. Concretely, the communication is replaced by RTE API calls and the
original operating system (OS), drivers, etc. are replaced by the BSW.

The migration to AUTOSAR becomes more relevant in the context of parallelization,
because the SW-C structure of the application has a direct impact on the achievable
degree of parallelism. The reason for this is runnables are distributed to cores indirectly
by assigning a SW-C to a core. As a result, if a component contains two independent
runnables no parallel execution is possible. The migration must therefore create a
fine-grained VFB model, in which a SW-C contains only one runnable to allow for a
maximal degree of parallelism in later steps.

Only few publications about the migration of legacy software to AUTOSAR are avail-
able, because this activity often concerns proprietary or confidential contents. Reports
about the migration in the context of parallelization are rare. However, existing litera-
ture concerns two kinds of legacy software. The software can either be available as a
model in a proprietary model-based environment like MATLAB/Simulink or it can be
plain source code.

2.1.2.1 Migration of Model-based Legacy Software

A development environment for model-based automotive software often allows for
direct export of an AUTOSAR XML description and source code. For example, the
commercial tool Embedded Coder [The15a] for MATLAB and Simulink supports these
features [The15b].

Manufacturers that maintain an own proprietary model can transform their model
with the ATLAS Transformation Language (ATL) [Jou+06]. The language specifies the
transformation from an arbitrary source model to and target model with a mixture of
declarative and imperative constructs. The work by Selim et al. [Sel+12] describes the
migration of the General Motors (GM) meta-model to the AUTOSAR meta-model via
model transformation with ATL. Horizontal transformation manipulates models at

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.1 Automotive Control Software Š 15

the same abstraction level, but possibly expressed in different formalisms. An example
is the transformation of a MATLAB state machine into an UML state machine. Vertical
transformation manipulates different abstraction levels. An example is generating a
deployment model from a software and hardware architecture model.

The migration steps cover the application layer only and the configuration of the
BSW is done in a separate step. The generated SW-C structure is equivalent to the
model from which it is generated. Thus, the hierarchy can have multiple levels with
independent runnables within the same SW-C. Model transformation techniques do
not consider software parallelization. The transformation from a (proprietary) meta-
model to the AUTOSAR meta-model is straightforward, because the source model
contains explicit information about the control function, data dependencies, etc. and
the transformation can be done without loss of information.

2.1.2.2 Migration from Plain Source Code

The migration from plain source code is complex and the expenditure is high. An
in-depth analysis of data dependencies is needed. Common techniques are explained
later in section 2.2.2. The result from this analysis must be interpreted to create
an application model, the BSW must be configured, and the source code must be
refactored to use the RTE API.

A helpful tool for creating a VFB model is the AUTOSAR Tool Platform (Artop)
[Knü+10]. Artop is a textual description language, which can be used royalty free by
all AUTOSAR members. The tool is based on Eclipse and provides base functionality
for creating design and configuration tools for AUTOSAR. Several subprojects provide
a textual modelling environment (ARText), for describing SW-Cs, timing, variant
handling, etc., or a test environment (ARUnit), for implementing test cases.

Kum et al. [Kum+08] describe the migration of a legacy software including the
AUTOSAR BSW. The methods separate the application’s source code into parts: the
control application, ECU devices, communication, other services, and peripherals.
These parts are mapped to the equivalent part in AUTOSAR afterwards. For example,
peripherals are mapped to the microcontroller abstraction in the BSW.

The control application is first divided into SW-Cs and second broken down into
runnables. A data-flow between two runnables is interpreted as sender-receiver
communication and a function call is interpreted as client-server communication. This
interpretation is advantageous, because the RTE guarantees data consistency in both
cases. However, the actual implementation of the process is not described.

Contrarily, the case study by Scheidemann et al. [SKS10a; SKS10b] is an example for
the usage of ARText. Like the approach of Kum et al., a static data and control flow
analysis is conducted first. The information about function calls, read and write access

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



16 Š Background

to global variables, and data types of variables and parameters are used to map the
communication to AUTOSAR communication paradigms in ARText.

The RTE (runnable-to-task mapping, client-server communication, and events) and
communication stack are configured in a separate ECU development phase. The OS is
replaced by an AUTOSAR compliant one and the parameters are determined from
the former OS configuration. Contrarily, Scheidemann et al. already consider the
multicore ECU and thus a mapping is generated (this is discussed in more detail in
chapter 3) first. The BSW is configured in a semi-automatic way afterwards, because it
depends on the mapping.

2.1.3 Case Study: Diesel Engine Control

The performance and the efficiency of the approach in this thesis need to be evaluated.
Using a real application is advantageous, because this allows for drawing conclusions
in a real deployment. To that end, a diesel engine management system (EMS) is used
as example, because the application contains a large amount of highly connected
runnables.

The examined EMS comprises roughly 1200 runnables that implement the behaviour
of numerous SW-Cs. They exchange data via sender-receiver and IRV communication.
The SW-C’s internal states are updated at different rates, e.g. sensor values are polled
with a greater or equal frequency than they are processed. Therefore, runnables with
the same released period are mapped to the same task.

Figure 2.2 provides a simplified description of the task set in the diesel EMS. The
nodes in this directed graph represent tasks and the edges represent communication
between them.

The task τ1 executes after an interrupt from the camshaft sensor (crank-angle task).
Tasks τ2 to τ12 execute with the period denoted by the label close to the node, task τ5
has a period of one millisecond for example.

A solid edge represents explicit communication between two tasks, which is imposed
by the runnables mapped to this task. As a result, communication between takes
place with different frequencies. The dashed edges represent implicit communication.
In this example, only the communication with the sporadic crank-angle task τ1 is
implicit.

The EMS also contains client-server communication. This requires a mechanism for
maintaining memory coherency, when a server-runnable updates the internal state
of the SW-C it belongs to. This is out of the scope of this thesis. To still conduct a
performance evaluation, calls are enclosed in ticket-locks [ORS14]. They block other
runnables until the execution of the server-runnable has finished. These locks can

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.


