Inhaltsverzeichnis

1 F	inleitung									1
2]	heorie									7
2	1 Funktion	sweise der OLED)				 			-
2		1								
2	3 Optische	Übergänge					 		. 1	(
2		ansfermechanism								
2		g								
2		ransport durch F								
2		ion								(
3 F	${f robenherst}$	ellung und Me	ssverfahre	n					1	C
3	1 Herstellu	ng der Proben .					 		. 1	(
3		ing								(
3	-	hes Verdampfen								
3	4 Verkapsel	ung					 		. 2]
3		löste Photolumin								۵
3		ffizienz								٠
3	-	er UV-Licht Det								4
3	8 Aufbau d	es Polaronmessp	latzes				 		. 2	١
3	9 Aufbau d	es Degradationsi	messplatzes				 		. 2	8
3	10 Materiali	en					 		. 2	(
3	11 Aufbau d	er verwendeten (OLEDs				 		. 3	4
4 F	inführung i	n die Degradat	tion von C	LEI	Ds				3	
4	1 Merkmal	e der Degradation	n				 		. 3	١
4		on Licht und Sti								
5 U	V-Licht in	m OLEDs							4	9
5	1 Details z	ır Messung der U	JV-Emission	n			 		. 4	٠
5		der UV-Emission								

	5.3	Abklingzeit EL/PL, Spannungsserie	48
	5.4	Korrelation von UV-Licht und Lebensdauer	53
	5.5	Ausblick: UV	58
6	Pola	aronabsorption	63
	6.1	Details zum Messverfahren	63
	6.2	Strom vs. Polaronabsorption	
	6.3	Polaronen durch Dotierung	
7	Best	timmung der Ladungsträgerpfade	7 9
	7.1	System $Ir(ppy)_3$, α -NPD, TPBi	80
	7.2	System $Ir(DBFMI)_3$, $CDBF$, $Ir(DPBIC)_3$	
	7.3	System O636, O5513, $Ir(DPBIC)_3 \dots \dots \dots \dots$	92
8	Exz	iton-Polaron-Quenching	97
	8.1	Nachweis des Quenching	98
	8.2	Simulation des Quenching	108
9	Pola	aroninduzierte Degradation 1	17
	9.1	Systeme mit dem Emitter $Ir(DBFMI)_3 \dots \dots$	117
	9.2	Systeme mit dem Emitter O636	122
10	Zusa	ammenfassung und Ausblick 1	27
	10.1	Zusammenfassung	127
		Ausblick: Sensitizing	