
1 Basics - Superconductivity and
Josephson effect

1.1 Short introduction to superconductivity

Electric resistivity of metals yields from the interaction of conduction electrons with lattice

imperfections and phonons1. When lowering the temperature the number of thermal acti-

vated phonons is reduced. Therefore, one expects an increase of conductivity till it is limited

only by impurities.

In 1911 Heike Kamerlingh Onnes discovered the "Disappearance of the resistance of mer-

cury" at a temperature slightly above the boiling point of liquid Helium [69]. The effect he

had found is superconductivity. It describes a phase transition at a critical temperature Tc that

is found in several elements and materials. In table 1.1 the critical temperatures of metals

used in this work are displayed.

Metal Tc (K) λL (nm)

Nb 9.2 32-44

Pb 7.2 32-39

Al 1.19 50

Table 1.1: Values of critical temperature Tc and London penetration depth λL(T = 0) for selected

materials (from [70]).

The vanishing of the resistance at low temperatures yields from the pairing of electrons with

opposite spin to so called Cooper pairs. It arises from a weak attractive coupling mechanism,

1Phonons are quantized lattice vibration. They act as quasiparticles in solid-state physics, since a quasi-

momentum (no mass transport) and energy can be assigned to them.
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1 Basics - Superconductivity and Josephson effect

which for conventional superconductors is given by electron phonon interaction. The energy

gap for single-particle excitations is found in the theory of Bardeen, Cooper and Schrieffer

(BCS) [71] as 2G = 3.5kBTc. Thus, low temperatures are needed to avoid breaking of the

pairs by thermal excitation. Because the paired particles have an integral spin, they can be

treated as Bosons. The total wave vector of a pair as sum of the electrons wave vectors

�q =�k1 +�k2 is the same for all pairs. This quality enables the Cooper pairs to occupy the

same quantum state. A description with only one wave function

Ψ(�r) =Ψ0e
−iχ(�r), (1.1)

where χ(�r) is the coordinate dependent phase, becomes possible. This superconducting

state is decoupled from the crystal lattice. Individual scattering of electrons cannot change

the momentum �q, since it is common to all the Cooper pairs. With the momentum of the

charge carriers being a conserved quantity ideal conductivity is achieved.

The BCS theory also gives explanations for various other phenomena connected with su-

perconductivity. For example, the steep change in the specific heat and the Meissner effect

are discussed. Latter was experimentally found in 1933 by Meissner and Ochsenfeld [72].

They observed that an external magnetic field is expelled completely from the bulk of a

superconductor and, therefore, ideal diamagnetic properties are achieved.

An explanation was firstly given by London and London in 1935 [73]. They developed

a phenomenological theory of the electromechanical properties from superconductors. By

starting from the equation of motion of a single electron in the Drude model [74]

m
d�v
dt

+m
�vD
τ

=−e�E, (1.2)

where m is the mass and e the charge of a conduction electron, �E the electric field, v the

velocity , vD the drift velocity, and τ the mean time to an interaction of an electron with the

lattice, some general statements can be deduced. In the steady state d�v/dt is equal to zero

and one obtains Ohms law

�jN =−enN�vD =
nNe2τ
m

�E, (1.3)

with�jN being the current density and nN the density of charge carriers in a normal conducting

metal. A normal conductance σ = ne2τ/m may be introduced. By assuming the time to an

interaction with the lattice τ to be infinite for a superconductor2 equation (1.2) becomes an

2This assumption expresses that no interaction with the lattice occurs.
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1.2 Flux quantization

�̇jS =
nSq2S
m
�E. (1.4)

Here, the electron charge is replaced by the charge of a cooper pair qS. A stationary current

can be found in a superconducting material even if �E =0 immediately by integration. After

taking the curl, one can substitute the current density by the magnetic field �H as �jS = curl�H

and curl�E = −μ0 �̇H as found from the Maxwell equations3. Integration with respect to the

time together with the identity curl
(
curl�Y

)
= grad(div�Y )−Δ�Y and again oneMaxwell equa-

tion, div�H = 0, yields the homogeneous screening relation for the magnetic field

Δ�H =
1

λ 2
L

�H. (1.5)

This equation includes the Meissner effect. The general solution gives an exponential decay

of the magnetic field in a region of size λL =
√
m/nSq2Sμ0, the London penetration depth,

from the surface of the superconductor. The supercurrent follows the same exponential de-

cay. A list of λL for different materials can be found in table 1.1.

The London theory has several limitations. For example, it gives no explanation for the

dependence of the London penetration depth on temperature nor on the thickness of a super-

conducting film. The theory developed by Ginzburg and Landau in 1950 [75] to overcome

these problems marked the first complete theoretical explanation of superconductivity and is

still commonly used for describing inhomogeneous superconductors. Starting from the basic

theory of phase transitions of the second kind4, they introduced an ordering ParameterΨ that

is zero above the critical temperature. It can be identified with the common wave function

for the superconducting charge carriers. The normalization is selected such that the ordering

parameter will be connected to the density of superconducting charge carriers |Ψ|2 = nS. The

phase χ(�r) of this "effective" wave function (1.1) depends on the applied magnetic field due

to the vector potential �A. The magnetic field is connected to the superconducting currents by

the gradient of Ψ and, therefore, by the phase of the wave function.

1.2 Flux quantization

One important effect for the development and the understanding of superconducting elec-

tronics is the quantization of magnetic flux in a closed superconducting loop. As mentioned,

3The displacement current is neglected.
4Phase transitions without latent heat.
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1 Basics - Superconductivity and Josephson effect

the Ginzburg-Landau theory connects the supercurrent �jS to the gradient of the phase φ(�r)

and the vector potential �A. This statement can be expressed by the equation [75]

�jS =− iqSh̄
2m

(Ψ∗gradΨ−ΨgradΨ∗)− q
2
S

m
|Ψ|2�A, (1.6)

where qs denotes the charge and m the mass of the "superconducting electrons".

Φ

dr

Figure 1-1: Sketch of a thin superconducting ring. A supercurrent represented by the current density

jS will create a magnetic flux in the loop. The line element for the integration in the text is always

parallel to the vector of the current density.

Assuming the geometry shown in Fig. 1-1, integration of (1.6) along the closed supercon-

ducting ring together with (1.1) yields

∮
∂D
�jS �dr =−

∮
∂D

qSh̄
2m
|Ψ0|2 gradχ(r)�dr− q

2
S

m
|Ψ0|2

∮
∂D
�A�dr.

Here, D is the sphere enclosed by the circular integration path. The current density �jS can

be set to zero, if the integration path is shifted away from the surface of the superconductor,

because the supercurrents are located only in a small layer of thickness λL. A simplification

to

qSh̄
m

∮
gradχ �dr =

q2S
m

∫
D
�B �dF (1.7)

can be found by the use of Stoke’s theorem and |Ψ0|2 = nS. The integral on the right is equal

to the magnetic flux in the loop Φ. The integral on the left side gives the phase difference

between the wave function at the start and the end of the integration path. Because both

points coincide and the wave function should be single valued, the integral necessarily has

to be a multiple of 2π . Therefore, the total flux Φ enclosed by the loop has to be quantized.

This quantization is expressed by

Φ= n
h
qs
. (1.8)
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1.3 The Josephson effect

The first experimental observations of quantized flux were reported independently from Doll

and Näbauer [76] as well as from Deaver and Fairbank [77] in 1961. The value both groups

found for the flux quantum is Φ0 = h/2e. A comparison with (1.8) shows that the charge of

the supercurrent carriers is given by 2e and indicates the pairing of electrons.

1.3 The Josephson effect

The main building block of superconducting electronics, and therewith superconducting

quantum bits, is the Josephson junction. It is named after B.D. Josephson. In 1962 he

predicted "possible new effects" [12] on coupled superconductors by a general perturbation

theory, today summarized as Josephson effect. It is found for superconductors separated by a

region of weakened superconductivity or by thin layers of conducting or isolating materials.

The latter type is sketched in Fig. 1-2 and called tunnel junction. Its non-superconducting

layers have a typical thickness of several nanometers. All junctions considered in this work

are tunnel junctions with an isolating barrier of aluminum oxide.

Superconductor

Barrier

Superconductor

Current

Voltage

Figure 1-2: Schematic of a Josephson tunnel junction. Two superconductors are connected via an

isolating barrier. The current through and the voltage across the junction are defined by its properties.

The electronic properties of a Josephson junction are found by simple considerations [78]

assuming two superconductors with wave functions Ψ1 and Ψ2 and corresponding eigenen-

ergies E1,2. Their dynamic is given by the Schrödinger equation

∂Ψk
∂ t

=− i

h̄
(EkΨk+KΨl). (1.9)

Here K is a weak coupling coefficient and the indices k, l ∈ [1,2];k �= l. A solution is given

by (1.1) for each of the superconductors. Also the normalization of the Ginzburg-Landau

theory |Ψk|=√nk can be used. Inserting Ψk =
√
nkeiχk into (1.9) yields

1

2
√
nk
ṅk+ iχ̇k

√
nk =− i

h̄

(
Ek
√
nk+K

√
nlei[χl−χk]

)
. (1.10)
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1 Basics - Superconductivity and Josephson effect

Here the dot indicates a partial time derivative. Under the assumption that two superconduc-

tors of the same kind are used (n1 = n2 = nS) the real part of the equation multiplied with

charge 2e gives

jS = 2eṅ=
4enSK
h̄

sinϕ = jc sinϕ, (1.11)

where ϕ = χ2− χ1 is the phase difference across the junction and jc the critical current

density. This equation describes the DC-Josephson effect and is known as the first Josephson

equation. From it follows that a Josephson junction can carry a superconducting current that

is created by the tunneling of Cooper pairs through the barrier. Its value depends on the

phase difference across the junction and is limited to a maximum value of jc. Another effect

is found by considering the imaginary parts of (1.10) and subtracting them5

ϕ̇ =
E2−E1
h̄

=
2eV
h̄
. (1.12)

Here, V denotes the voltage across the junction. This equation explains the AC-Josephson

effect, which states that a voltage drop at a Josephson junction is connected to a time varying

phase difference. Furthermore, by integration of (1.12) and inserting into (1.11) the corre-

sponding AC-current can be identified. Its frequency is given by ν = 2eV/h.

Together with the voltage drop a discussion of further current channels, besides the super-

current explained by (1.11), becomes necessary at the Josephson junction. It is summarized

in the so-called RCSJ (Resistive and Capacitive Shunted Junction)-model, as illustrated in

Fig. 1-3. There are two main additional channels to consider for a tunnel junction. On the

R CJ

Figure 1-3: Circuit diagram of a Josephson junction in the RCSJ-model.

one hand, the superconducting electrodes together with the isolating barrier form a capaci-

tor and therewith make a displacement current possible. The value of capacitance is given

by the material and the size of the junction. A typical value for aluminum oxide barriers is

5To clarify, subtracting the equation for χ̇1 from similar one for χ̇2.
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1.4 Quantum mechanics of a Josephson junction

about 50 fF/μm2. On the other hand, besides the tunneling of Cooper pairs also quasiparti-

cles can give a contribution to the current flow. Because the propagation of these electrons

is connected to losses, one can introduce a normal resistance RN. This current channel can

be neglected in most cases connected to superconducting quantum circuits because the junc-

tions are usually kept in the superconducting state at temperatures well below Tc. Therefore,

the quasi particle density can be neglected. In summary, by expressing the voltage with the

derivative of the phase at the junction the sum of the currents is given by

I = Ic sinϕ+
Φ0

2πRN
ϕ̇+

Φ0

2π
CJϕ̈ (1.13)

as firstly proposed in the works by Stewart [79] and McCumber [80].

1.4 Quantum mechanics of a Josephson junction

As described before, superconductivity as well as the Josephson effect are quantum phenom-

ena. But in general also a quantum theory has to be considered for the observables (current

and voltage or phase and charge) at the junction [81].

A first step is to find the Hamiltonian and, therefore, start with the energy conservation law

on the Josephson junction. It can be found by multiplying (1.13) with the voltage (1.12).

Neglecting the dissipative current channels yields

IV =
d

dt

(
EJ(1− cosϕ)+

1

2

(
Φ0

2π

)2

CJϕ̇2

)
. (1.14)

The Josephson coupling energy EJ is used, and its value is given by

EJ =Φ0Ic/2π. (1.15)

The potential (U(ϕ)) and kinetic (Ek(ϕ̇)) energy form the Lagrangian L (ϕ, ϕ̇) = Ek−U ,

from which the generalized momentum can be derived as

p=
∂L

∂ ϕ̇
=

(
Φ0

2π

)2

CJϕ̇, (1.16)

whereas the generalized coordinate is given by the phase ϕ . The Hamiltonian of the system

is

H = pϕ̇−L =
p2

2m
+EJ(1− cosϕ),
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1 Basics - Superconductivity and Josephson effect

where the mass is defined as m = h̄2CJ/4e2. Furthermore, with the relation for the AC-

Josephson effect (1.12), one can relate the charge Q to the momentum.

Q=CJV =CJ
Φ0

2π
ϕ̇ =

2e
h̄
p (1.17)

The quantization is done by substitution the variables with operators. In the phase basis the

momentum is p̂=−ih̄∂/∂ ϕ̂ and the coordinate ϕ̂ . Hence, the Hamiltonian reads in the flux

basis

H =−EC ∂ 2

∂ ϕ̂2
+EJ(1− cos ϕ̂). (1.18)

Here, the symbol is changed to simply H to denote the quantum Hamiltonian and the charg-

ing energy EC at the junction is used as

EC =
2e2

CJ
(1.19)

With the expression for the momentum the commutation relation between the charge Q̂ and

phase ϕ̂ at the junction can be easily found

[
ϕ̂, Q̂

]
=

2e
h̄

[ϕ̂, p̂] = 2ie. (1.20)

Here, the commutation relation6 [ϕ̂, p̂] = ih̄ as well as (1.12) and the definition of the flux

quantum by (1.8) are used. Because the phase and the charge do not commute, obviously, not

both can be well defined at the junction at the same time. The critical parameter is the ratio

between EJ and EC. For example, if EJ � EC the phase and therewith the current through

the junction are well defined. In this case, the charge degree of freedom can couple different

stable phase states as described later.

These quantum effects at the Josephson junction are sometimes called "secondary quantum

effects" because superconductivity or the Josephson effect themselves are quantum effects

but form the basis for the considerations above.

6As found for the given observables by applying the commutator to the wave function (1.1), for example in

the phase basis.
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2 Theoretical analysis of flux qubits and
cavities

2.1 The quantum two-level system

A quantum bit, or qubit, is a physical system containing two distinguishable states. The

difference to a classical bit lays in the possibility for both states to exist in a superposition,

what yields a statistical probability in the measurement result. This fact is expressed by the

equation for the state vector of the qubit

|Ψ〉= pg|g〉+ pe|e〉. (2.1)

In this superposition p2n denotes the probability to measure state |n〉. It can take values be-

tween zero and one. The basis state vectors |g〉 and |e〉 are normalized and orthogonal. The

state Ψ itself should satisfy similar normalization condition, so that p2g + p2e = 1. Accord-

ingly, the total probability to measure either state |g〉 or state |e〉 is one. For illustration

of the superposition of the qubit and therewith operations on the qubit the so called Bloch

sphere can be used. It is sketched in Fig. 2-1. The basic states |g〉 and |e〉 are located at the

poles. Each point on this unit sphere corresponds to a superposition of the basic states. For

example, at the equator a perfect superposition with p2g = p2e = 1/2 is found. Any operation

changing the qubit’s state corresponds to a rotation on the Bloch sphere. Furthermore, any

of this operations can be composed by rotations around the axis x, y and z, and therefore

simply by a linear combination of the Pauli matrices, listed below.

σx =

(
0 1

1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0

0 −1

)
(2.2)
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2 Theoretical analysis of flux qubits and cavities

z

x

y

|e>

|g>

Figure 2-1: Sketch of the Bloch sphere. Each quantum state of the qubit corresponds to a single point

on a unit sphere. The basis states |g〉 and |e〉 are located on the poles.

Two important examples of such linear combinations are the raising and lowering operators

defined by

σ± =
1

2
(σx± iσy) , (2.3)

that only transform the ground to excited state and vice versa, respectively. Natural candi-

dates for qubits are trapped ions, nuclear or electronic spins and quantum dots. In contrast,

in this work the qubit is formed by a superconducting circuit.

The superconductivity ensures the coherence needed for a quantum system. Furthermore,

as shown in chapter 1.4 Josephson junctions can be described using the laws of quantum

mechanics. Following the statement in the mentioned chapter the solid-state qubits are dis-

tinguished depending on the well-defined quantum variable. For EJ ≈ 20EC they are usually

called flux qubits [23]. Other types include phase (EJ ≈ 200EC) and charge qubits [22]

(4EJ ≈ EC ) as well as transmons [29] (EJ ≈ 100EC)1.

2.2 The superconducting flux qubit

The flux qubit consists of a superconducting loop interrupted by at least one Josephson junc-

tion. The Josephson junction needs to be considered when calculating the conditions of the

flux quantization in the loop. Namely, the phase difference on the junctions is added to the

1Note that definition of the charging energy EC differs in some works to the one given in this work. For

example it can be defined concerning only a single electron instead of a cooper pair.
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2.2 The superconducting flux qubit

h̄
2e

(ϕ+2πn) =Φ

ϕ
2π

=
Φ
Φ0
−n. (2.4)

Therefore, the flux in the loop Φ is directly related to the phase difference ϕ at the junction.

If, for a moment the inductance Lq of the qubit loop is considered, it is easy to find that

Φ=Φe−LqI. (2.5)

Here, Φe is the externally applied flux and I the current in the qubit loop. Equation (2.5)

implies that the external flux is partly compensated by the flux created due to the circulating

current I and it follows

ϕ
2π

=
Φe

Φ0
− LqI
Φ0
−n. (2.6)

The effective flux in the loop may be defined as the difference between external flux and

the one compensated by the current flowing through the loop inductance Φ = Φe− LqI.
Introducing more junctions with phase differences ϕ̃m to (2.4) gives

ϕ
2π

=
Φ
Φ0
−n−∑

m

ϕ̃m
2π
. (2.7)

When comparing this equation to (2.6) it is obvious that the additional Josephson junctions

have the same influence as the loop inductance [23]. Furthermore, smaller inductances are

preferable, since they provide less coupling to the noisy environment (compare section 2.4).

Therefore, usually three junctions are fabricated to a low inductance qubit loop. The typical

shape of a flux qubit is sketched in Fig. 2-2.

To understand the quantum behavior of a flux qubit, it is necessary to find the corresponding

Hamilton operator and therewith the energy level structure. As seen in Fig. 2-2 the stan-

dard flux qubit consists of a loop containing three Josephson junctions. Two junctions are

designed to have identical size while the one of the third is scaled by a factor α < 1. If the

inductance of the loop is neglected the potential energy is given by the sum of the Josephson

energies (1.14),

U(ϕ1,ϕ2) = EJ (2+α− cosϕ1− cosϕ2−α cos [2π f +ϕ1−ϕ2]) . (2.8)
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