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1 Introduction

1.1 Motivation

In various applications, it is important to model, simulate and compute processes
on surfaces, curves or on more general submanifolds. Most of these processes are
governed by partial differential equations (PDEs) on surfaces, or on submanifolds,
respectively. Depending on the application, the problem domain is either steady, or
deforming, or moving and deforming at the same time. These distinct cases imply an
increasing complexity of the problem. Areas of interest range from fluid mechanics,
bio-chemistry and medical imaging to image processing.

For example, in image processing, surface differential equations on steady surfaces
are involved when smoothing and regularizing images (Diewald, Preußer, Rumpf,
and Strzodka, 2001). Denoising (Bertalmı́o, Cheng, Osher, and Sapiro, 2001) as well as
deblurring (Cheng, 2000) of images is achieved by solving surface diffusion equations,
for instance, in brain imaging (Mémoli, Sapiro, and Thompson, 2004).

In biochemistry, the interaction of pairs of chemicals, called morphogenes, in the
epithelial, i.e. outer, layer of growing organisms is modelled by reaction-diffusion
equations on the organisms’ surface (Leung and Berzins, 2003a). Morphogenes have
been used in modelling spatial pattern formation and the regeneration of body cells
such as receptor cells in the eye of a Drosophila (Koch and Meinhardt, 1994). Coat
markings of mammals as well as the formation of skeletal pattern are assigned to
morphogenes (Maini, Painter, and Nguyen Phong Chau, 1997). These morphogenesis
processes are goverended by differential equations on deforming surfaces.

In fluid mechanics, the transport of mass, energy or momentum on phase interfaces is
a topic of increasing importance. Here, interfacial transport is modelled by PDEs on
the phase interface and therefore, on moving and deforming interfaces. In particular, it
is often inevitable to examine the transport of surface active substances on the moving
interface, such as emulsifiers or detergents. For their surface active behavior, these
compounds are known as surface active agents, or shortly surfactants (Schramm, 2000).
The transport of these substances on two-phase interfaces is governed by convection-
diffusion equation defined on evolving surfaces. These surfaces may change rapidly
with respect to geometry or topology.
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Because their structure includes both a part which has affinity to nonpolar media
and one part that has an affinity to polar media, surfactants absorb at interfaces that
separate media of different polarity. During adsorption, the surfactant molecules form
a monolayer on the interface between the immiscible phases, destroying the cohesive
forces between the polar and non-polar molecules and replacing them. While the
hydrophilic head of the adsorbed surfactant molecule orients itself towards the polar
phase, the hydrophobic tail lies either flat on the interface, or aligns itself to the less
polar liquid (Gecol, 2007), if the interface is sufficiently occupied. As a consequence of
the adsorption process, most types of surfactants reduce the interfacial free energy, i.e.
the surface tension (Tricot, 1997a). This implies that the surface tension of a surfactant
covered interface is lower than the one of a clean interface. Furthermore, the interfacial
tension is comparatively lower in interfacial regions of high surfactant concentration.
When the surfactant is not uniformly distributed, a Marangoni force is introduced by
the gradient that exists in surfactant concentration. This Marangoni force is directed
from regions of high surfactant concentration to regions of low surfactant concentration
along the interface (Kas-Danouche, Papageorgiou, and Siegel, 2004).

Numerous industrial processes that involve two-phase or free surface flows require
controlling mechanisms of the surface tension. Fur this purpose, surfactants are usually
added to either of the phases.

Silicone surfactants are used as stabilizing agents for polyetherane foam by reducing
interfacial tension and, consequently, promoting the formation of a coherent interfacial
film (Snow, Pernisz, and Braun, 2006). They function as stabilizer of foams, for instance,
in enhanced oil recovery or drilling operations.

Surfactants are used to control the formation of small droplets in industrial emulsifi-
cation processes by lowering the surface tension, and hence facilitating the droplet
breakup and preventing coalescence (Janssen, Boon, and Agterof, 1994; Eggleton, Tsai,
and Stebe, 2001). Surfactants are commonly added to stabilize emulsions, i.e. mixtures
of two or more immiscible fluids, such as oil and water. Emulsions are present not only
in food, cosmetic and pharmaceutical products, but they are also frequently applied
in technical processes. For instance, emulsions are used as cooling lubricants in order
to minimize both frictional effects and temperature during machining processes, for
instance, in metal fabrication (Doll and Sharma, 2011). Emulsified fuels, where water
droplets are dispersed in the fuel and stabilized by a surfactant additive, are used in
automotive technology in order to minimize emissions. For example, water in diesel
dispersions have been investigated as direct fuel substitutes that can be utilized with
little or no modifications in existing diesel engines by Nadeem, Rangkuti, Anuar, Haq,
Tan, and Shah (2006). They were reported to significantly reduce the emissions of NOx,
CO, SOx as well as particle matter.

Coating forms an important aspect of numerous industrial manufacturing processes in
order to protect, functionalize and lubricate surfaces. Surfactants are often employed
as additives to facilitate coating processes by reducing the surface tension (Tricot,
1997b). At the same time, several processes involve coating liquids that are surfactant
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solutions, and surface and bulk rheology of these solutions naturally impacts the
coating properties.

From the numerical perspective, evolving interfacial physical quantities along a mov-
ing deformable surface is a highly challenging task. The surface differential operators
involved require a thoughtful approximation that is distinct from the available dis-
cretizations of standard differential operators. Depending on the method applied,
tracking or capturing an interface also requires great expertise. In most research works
a Lagrangian grid is used to track the phase interface and employed to discretize
interfacial equations, implying that these equations are only solved on the interface,
see e.g. Ceniceros (2003), James and Lowengrub (2004), Kruijt-Stegeman, van de Vosse,
and Meijer (2004), Lai, Tseng, and Huang (2008), Lee and Pozrikidis (2006), Muradoglu
and Tryggvason (2008) or Zhang, Eckmann, and Ayyaswamy (2006).

In the present work, a numerical framework for solving interfacial convection-diffusion
problems is established. In contrast to these traditional approaches, the method pre-
sented here does not treat interfacial transport problems by establishing a Lagrangian,
i.e. interfacial grid, but instead, it is founded on maintaining the Eulerian grid. Up to
now, considerably fewer works on numerical simulations of interfacial equations are
based on such an Eulerian approach. Several limited examples are given by Bertalmı́o,
Cheng, Osher, and Sapiro (2001), Greer (2006), Greer, Bertozzi, and Sapiro (2006),
Burger (2009) as well as Dziuk and Elliott (2009) for various interfacial differential
equations. Especially when the a surface moves and deforms quickly, as in the case of
a fluidic interface, an Eulerian representation of the surface differentials has favorable
properties. Beyond, the method can be easily combined with an interface capturing
technique that presumes an implicit representation of the interface.

For this purpose, the Discontinuous Galerkin (DG) method is employed, which incor-
porates favorable features of both Finite Element (FE) and Finite Volume (FV) methods.
The DG method has become increasingly popular in the past decades, as it combines
polynomial approximations of arbitrary order with the use of numerical fluxes to
approximate integrals over the cell boundaries. Consequently, the DG approach is
highly convenient for hyperbolic problems. At the same time, it is flexible with respect
to the domain’s geometry and achieves O(hp) order of convergence. Importantly, the
use of numerical fluxes establishes a local block structure of the discretization, which
supports parallel computing, and allows to incorporate boundary conditions easily.
The treatment of surface convection-diffusion equations by the DG method highly
benefits from these features, and to the author’s knowledge, it is the first published
work that pursues an Eulerian approach for resolving surface differential operators in
the context of a DG method.

A parallelized and modular package for the numerical simulation of interfacial trans-
port problems is designed. The library, developed in C#, discretizes both interfacial
convection and convection-diffusion equations by a DG method, and is integrated in
the existing software framework BoSSS initiated by Kummer (2012). Here, the surface
convection-diffusion equation is extended into the underlying three-dimensional space
by identifying the surface gradient with the projection of the standard gradient to
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its tangential part. In this way, the interfacial transport problem can be discretized
based on the existent Eulerian grid, at the same time admitting an implicit interface
representation as the zero-isocontour of a Level Set function. In contrast to the Lan-
grangian approach, this Eulerian approach is highly suitable for moving and deforming
interfaces and allows for an accurate resolution of the interface.

1.2 Thesis Outline

The present work is structured as follows.

The surface differential equations under consideration focus on the general case of
interfacial transport in fluid mechanical applications. For this reason, in chapter 2,
starting from the standard postulates of continuum mechanics, the derivation of local
mass balance laws for the bulk phases and for the phase interface for some arbitrary
physical quantity are provided, following Wang and Oberlack, 2011. The resulting
equations are then employed to derive the equations of the physical model under
consideration, i.e. the Navier–Stokes equations for two phases, including interfacial
jump conditions, and the interfacial convection–diffusion equation describing material
transport at a two–phase interface.

Chapter 3 gives a comprehensive overview of existing numerical research on surface
and interfacial transport. Available methods are classified as traditional Lagrangian
approaches, where the submanifold itself is resolved by a Lagrangian grid, or as Eule-
rian approaches, where the interfacial problem is extended into the underlying three–
dimensional domain and discretized on basis of the given Eulerian grid. Special
attention is paid to existing works dealing with interfacial transport in fluid mechan-
ical applications. In this context, the method selected for the treating the interfacial
equations highly depends on the approach employed for tracking or capturing the
interface. Therefore, numerical methods that are available for representing the phase
interphase are additionally outlined in chapter 3.

The solver developed within the context of this work is based on a Discontinuous
Galerkin (DG) discretization of the transport problem. For this reason, the fundamen-
tals of the DG method are explained in chapter 4 with a particular focus on the PDEs
relevant to the subsequent work. Its characteristic features are underlined, pointing
out to the motivation for founding the subsequent approximations on a DG scheme.
Against this background, chapter 4 further motivates the design of the method pre-
sented, incorporating an interface capturing approach by a Level Set function and an
Eulerian approach for resolving the surface differentials.

In the Eulerian formulation, however, the conserved form of the interfacial balance
law is destroyed by the extension of the interfacial differential equation to the three-
dimensional domain. This fact has been identified as an obstacle at the initial project
phase. From the viewpoint of numerical accuracy, the conserved form of a differential
equation is always favorable to reduce numerical errors and preserve the quantity
numerically. In chapter 5, infinite sets of conservation laws have been discovered
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by using the direct construction method, i.e. by applying local conservation law
multipliers (Kallendorf, Cheviakov, Oberlack, and Wang, 2012). These conserved
forms constitute a well-suited basis for discretizing the interfacial transport equation
by a DG scheme, while maintaining an implicit representation of the interface. The
obtained results are also applicable to the construction of more general balance laws
for other excess surface physical quantities. The system of governing equations is
subsequently rewritten in a fully conserved form in the three-dimensional domain.

In chapter 6, general exact solutions to the interfacial transport of a solute on the
spherical surface with both convective and diffusive terms are developed (Kallendorf,
Fath, Oberlack, and Wang, 2015). The transport of insoluble surfactant in a Stokes
flow setting is investigated, where a spherical shaped inner phase is dispersed in an
outer phase. The model is simplified by assuming that the impact of the surfactant on
surface tension is negligible. Its investigation has been motivated by the lack of exact
solutions to the interfacial transport problem. The general solutions derived involve
Heun’s confluent functions, and for the steady case, it is shown that these solutions
collapse to a simple exponential form. Furthermore, for the purely diffusive problem,
exact solutions are constructed using Legendre polynomials.

The embedded interfacial transport problem is discretized on a small subdomain of
the original domain only, which is given by a Narrow Band tube of few cells thickness
around the interface. As this narrow band changes position and structure in accordance
with the interface, it is not created as an independent physical grid, but rather induced
from the full grid through selective storage allocation and extraction of the relevant
entries, or coordinates, respectively. Chapter 7 describes how such a coordinate based
Narrow Band is implemented within the software framework BoSSS (Kummer, 2012).
Furthermore, a method for extending values to newly acquired cells of this subdomain
is developed and analysed in chapter 8. This tool, which is based on employing a
pseudo-timestepping scheme, is essential when discretizing problems on a dynamically
moving Narrow Band.

Chapter 8 describes the Eulerian DG scheme that is established in the present work
for discretizing interfacial transport equations. This implementation is based on sim-
plest forms of the conservation laws that have been developed in chapter 5. The
convection-diffusion equation is discretized by a simple operator splitting scheme,
which motivates to solve the purely convective and the purely diffusive parts of the
conserved form independently. Computational examples of all of the three forms of sur-
face transport equation are developed and solved for both two-and three-dimensional
underlying domains. Based on exact solutions to the two-dimensional examples, a
study of convergence is presented, where the purely convective equation, both on a
steady and on a moving surface, as well as the purely diffusive equation on a steady
surface are considered. Illustrations of sample problems are provided for problems
of all mentioned complexities, i.e. for steady, but complex, moving as well as moving
and deforming surfaces.
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To conclude, chapter 9 summarizes the results achieved within the context of the
present thesis. This chapter concludes with an outlook of further improvements and
ideas for continued research.
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2 Equations of the Physical Model

2.1 Transport Equations in Two-Phase Flow

In this section, starting from the standard postulates of continuum mechanics, local
mass balance laws for the bulk phases and for the phase interface are derived for some
arbitrary physical quantity. The derivation presented here is adopted from Wang and
Oberlack (2011), who established, in addition to the classical mass balance laws for
the bulks in a three-phase setting, local mass balance laws for phase interfaces and
contact lines. The resulting equations are then employed to derive the equations of
the physical model under consideration, i.e. the Navier – Stokes equations for two
phases, including interfacial jump conditions, and the material transport equations at
a two-phase interface and in the bulks.

2.1.1 Mass Balance Laws in a Two-Phase Setting

Let Γ denote a physical variable charaterizing a partial aspect of a state of a body
at time t. A material domain Ω (t) of the body under consideration is chosen with
respect to which the physical variable is evaluated. For this purpose, a setting with two
immiscible phases is assumed, considering a material domain Ω which is decomposed
into two disjoint subdomains B(1) and B(2) occupied by the distinct phases. The
two phases are separated by a curved surface S, the phase interface, which can be
identified with a two-dimensional, moving, orientable and mathematically singular
surface in the three-dimensional Euclidian space. This surface is singular in the sense
that a vanishing interface thickness is considered, across which the physical quantities
may be discontinuous.

In fact, in multiphase systems, an interface is rather given by a thin transition layer of
only few molecular layers thickness, across which physical quantities, such as mass or
momentum, change smoothly but rapidly. But as the thickness of this interfacial transi-
tion zone ranges at the nanometer scale, the interface is infinitely thin as compared
to the dimensions of the adjacent bulks and can be considered as a two-dimensional
continuum, with its own material properties, for instance, surface tension.

The material domain Ω is bounded by an outer boundary ∂Ω = ∂B(1) ∪ ∂B(2) ∪ C in
Lagrangian representation, where the curve C denotes the intersection of the interface
Swith the domain’s boundary ∂Ω. As depicted in figure 2.1, n denotes the outward
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Figure 2.1: Control volume that is occupied by two phases, separated by an interface.

unit normal vector of ∂Ω and n(s) the unit normal of the interface S, pointing from
B(1) intoB(2). In addition, the unit normal s to the curve C, which is tangent to the
interface and oriented outward from the system, is needed in the following derivations.

Denoting the total time derivative by d
dt , the time rate of change of the physical variable

Γ of the body per unit time can be decomposed into

dΓ

dt
= F + P + S, (2.1)

destinguishing the flux F of the variable from outside into the body through the surface
∂Ω, its production P within the domain as well as its supply S, or source by action, at
a distance from outside of the body. The physical variable can be specified by means
of densities γ(i), in each subdomainB(i), i = 1,2, and density γ(s), on the interface S,
repectively, in Eulerian representation, i.e.

Γ = 2∑
i=1
∫
B(i)
γ(i) dv + ∫

S
γ(s) da. (2.2)

On the interface, densities of the respective surface excess amounts are employed.
The surface excess N (s)

l of a component l corresponds to the difference between its
actual amount present in the real system, and its amount in a reference system if its
concentration within the adjacent bulks is extended to a chosen geometrical dividing
surface (Mitropoulos, 2008). The dividing surface, i.e. singular interface, is usually
located where the surface excess of the solvent is zero, as depicted in figure 2.2.
Likewise, the terms on the right hand side can be expressed in integral form employing

● the non-convective bulk flux densities of Γ (per unit surface area), φ(i) (i = 1,2),
through the material outer surfaces ∂B(i) of the bulk phasesB(i),

● the non-convective surface flux density of Γ (per unit line length), φ(s), through
the outer boundary curve C of the phase interface S,
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Figure 2.2: Surface excess concentration in a two-component system according to
Mitropoulos (2008). The concentration profile is given as a function of distance normal
to the phase boundary. The surface excess is the sum of shaded areas above and below
of the dividing surface. Usually, the dividing surface is chosen as the zero surface
excess of the solvent.

● the bulk and surface production densities, π(i) (in the bulk phasesB(i), i = 1,2)
and π(s) on the phase interface, respectively,

● as well as the bulk and surface supply rate densities ζ(i) (in the bulk phasesB(i),
i = 1,2) and ζ(s), on the interface, respectively.

Using these densities, one immediately obtains

P = 2∑
i=1
∫
B(i)
π(i) dv + ∫

S
π(s) da (2.3)

S = 2∑
i=1
∫
B(i)
ζ(i) dv + ∫

S
ζ(s) da. (2.4)

With respect to the non-convective fluxes, one assumes that the surface flux vector φ(s)
C

per unit length at the curve C depends on the coordinate xC of C, the time t and the
line normal s and has the form

φ
(s)
C = φ(s)

C (xC, t,s) = −φ(s) ⋅ s. (2.5)

The equality on the right hand side results from the Cauchy lemma for the line flux
density, which implies a linear dependence if the line flux density φ

(s)
C depends on the

normal at the line s. In sum,

F = − 2∑
i=1
∫
∂B(i)

φ(i) ⋅n da − ∫
C
φ(s) ⋅ s dl. (2.6)
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As the partial volumeB(i) is enclosed by the set ∂B(i) ∪S, Gauss’ divergence theorem
can be applied to the surface density integrals in identity (2.6), i.e.

∫
∂B(i)

φ(i) ⋅n da = ∫
B(i)

∇ ⋅φ(i) dv − ∫
S
φ(i) ⋅n(s) da , i = 1,2.

Inserting density integrals (2.3), (2.4) and (2.6) into equation (2.1) yields a mass balance
statement in a setting with two phases in integral form:

2∑
i=1

d

dt ∫B(i)(t) γ(i) dv +
d

dt ∫S γ(s) da
= 2∑

i=1
∫
B(i)
(π(i) + ζ(i) −∇ ⋅φ(i)) dv

+ ∫
S
(π(s) + ζ(s)) da + 2∑

i=1
∫
S
φ(i) ⋅n(s) da − ∫

C
φ(s) ⋅ s dl. (2.7)

2.1.2 The Geometric Surface

With respect to the subsequent considerations, the notions of a parametric surface
representation and of surface differentials will be needed. An evolving surface that
is oriented by the normal field n(s) can be represented by a local mapping x

(s)
i =

x̂
(s)
i (ξ(s), t), i = 1, . . . ,D, introducing a set of parameters ξ(s) = (ξ(s)1 , ξ

(s)
2 ) in a three-

dimensional setting, or a single parameter ξ(s) = ξ(s), in the two-dimensional case,
which is denoted as a one-dimensional vector here. As one important property, the
local velocity field of the interface is given by the local time derivative of this mapping,

w(s)(x, t) = ∂x̂(s)

∂t
∣
ξ(s)
. (2.8)

Furthermore, a curvilinear coordinate system can be introduced on the surface based on
the parametric form. The partial derivatives of the local mapping define its tangential
vectors f i, i.e.

f i(ξ(s), t) = ∂x̂(s)

∂ξ
(s)
i

(ξ(s), t) , i = 1, . . . ,D − 1,
which correspond to the tangent base vectors of a curvilinear coordinate system on the
surface, provided that the mapping is sufficiently smooth. The normalization

ei(ξ(s), t) = 1

∥f i∥f i(ξ(s), t) , i = 1, . . . ,D − 1
yields a set of orthonormal basis vectors with scale factors

hi =
�����������
∂x̂(s)

∂ξ
(s)
i

����������� , i = 1, . . . ,D − 1.
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