
C
h
ap
te
r 1

Introduction

“ The primary safety problem in software-intensive

systems is not software “failure” but the lack of

appropriate constraints on software behavior. ”— N. Leveson

Given the rapid innovations in software and technology, many complex systems
are becoming software intensive. Software-intensive systems are systems in
which software interacts with other software, systems, devices, sensors and with
people [Wir+08]. Software has become an indispensable part of many modern
systems and often performs the main safety-critical functions. Software safety as
stated in [Alb+99] is practically concerned with the software causal factors that
are linked to individual hazards and ensured that the mitigation of each causal
factor is traced from software requirements to design, implementation, and test.
An unexpected behavior of software may lead to catastrophic results such as
injury or loss of human life, damaged property or environmental disturbances.
Therefore, it becomes essential to test the software components for unexpected
behavior before using them in practice [Min91]. The Toyota Prius, the General
Motors airbag and the loss of the Mars Polar Lander (MPL) mission [JPL00]
are well-known software problems in which the software played an important
role in the loss, although the software had been successfully verified against all
functional requirements. Recently, Google’s self-driving car and Tesla autopilot
are the two latest software-related accidents in the automotive domain.
Many different safety analysis approaches exist. The most widely practiced

safety analysis approaches are Fault Tree Analysis (FTA) [Ves+81], Failure Mode
and Effect Criticality Analysis (FMECA) [FME67] and Hazard and Operability
Analysis (HAZOP) [Tro68] which are developed over 50 years ago, before
computers were common in engineered systems. As a result, these safety analysis

25

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1 | Problem Statement 1 | Introduction

methods do not completely ensure safety in complex systems. In such systems,
the accidents are resulting when component failures, external disturbances,
and/or dysfunctional interactions among system components are not adequately
handled [Lev11]. A new trend is to advance safety analysis techniques using the
system and control theory rather than the reliability theory. STAMP (System-
Theoretic Accident Model and Processes) [Lev11] is a modern approach for
safety engineering that promises to overcome the problems of the traditional
safety analysis techniques. STPA (System-Theoretic Process Analysis) is designed
for safety analysis in the system development and operating stages; the goal
is to identify hazards existing in the system and provide safety constraints to
mitigate those hazards.

1.1. Problem Statement

Safety is a system level property and, hence, needs to be analysed on the
system level. Therefore, the software must fully satisfy the corresponding safety
requirements which constrain the software from these behaviors that violate the
safety of the whole system. Ensuring the safe operations of software involves
that software must deal with hazardous behaviors which are identified by safety
analysis at an early stage. STPA has been developed to derive detailed safety
requirements for complex systems. However, STPA has not yet been placed into
the software development process of safety-critical systems, and the current
software engineering methods do not explicitly incorporate STPA safety activities.
STPA safety analysis is often handled separately by the safety engineers, while
software developers are usually not familiar with system safety analysis processes.
Therefore, there is a gap between the software and safety engineering processes.
Moreover, the complexity of safety-critical software makes exhaustive software

testing impossible. Therefore, we need to make sure that safety is sufficiently
considered. Yet, many existing testing approaches and tools do not incorporate
information from safety analysis. In case they do, they rely on traditional safety
analysis techniques such as FTA and FMECA which focus on component failures
instead of component interaction failures. A software safety testing approach
integrated with alternative systems-theoretic safety analysis approaches such as
STPA has been missing.

26 1 | Introduction

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3 | Contributions 1 | Introduction

1.2. Research Objectives

This dissertation aims to fill the aforementioned gap to place STPA in the soft-
ware engineering process to help software and safety engineers in deriving the
appropriate software safety requirements, formally verifying them, generating
safety-based test cases to recognize the associated software risks, and reduce
them to a low level. Therefore, this dissertation has three main objectives. The
first objective is to develop a comprehensive safety engineering approach which
integrates the STPA safety analysis activities with the software verification activi-
ties in a software engineering development process such as the V-Model [FM91]
to offer seamless safety analysis and verification. The second objective is to
develop algorithms to automate the safety-based formal verification and testing
activities of the proposed approach. Finally, this dissertation aims also at devel-
oping an open source tool to support the application of STAMP methodologies
as well as the software verification activities based on the information derived
during an STPA safety analysis.

1.3. Contributions

The thesis provides four contributions:

• Developing a comprehensive safety engineering approach based on
STPA to derive software safety requirements at the system level [AWL15;
AW14b; AW15a], formally verify them at the design and implementation
levels, and generate safety-based test cases from the STPA results. The
proposed approach has the following contributions: (1) We develop an
algorithm based on STPA to derive unsafe software scenarios and automat-
ically translate them into software safety constraints and specified them
into a formal specification in LTL (Linear Temporal Logic) [Pnu77]. (2)
We explore how to build a Safe Behavioral Model (SBM) based on the
STPA control structure diagram and the process model. (3) We develop an
algorithm to automatically extract the Safe Test Model (STM) from SBM
model and check its correctness by automatically transforming it into a
formal model such as an SMV (Symbolic Model Verifier) [McM93] and

1.3 | Contributions 27

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3 | Contributions 1 | Introduction

verify it against the STPA-generated safety requirements using the NuSMV
model checker [Cim+00].

• Providing formal definitions and algorithms for automation support
to the proposed approach (STPA SwISs), especially the document of STPA
safety analysis results, automatically generate unsafe software scenarios
based on the process model variables as well as automatically verify STPA
software safety requirements and generate safety-based test cases.

• Developing an open-source tool called XSTAMPP to support the appli-
cation of the STAMP methodologies as well as the STPA SwISs approach
and enable the software and safety engineers to derive software safety
requirements, automatically verify their software implementation and
design against the STPA results and automatically generate safety-based
test cases directly from the STPA results.

• Evaluating the application of the STPA SwISs approach. We conducted
three case studies. The first case study is a pilot case study, which was
conducted at our institute during developing a safe software simulator
of the Adaptive Cruise Control (ACC) system with stop-and-go function
to explore the application of the STPA SwISs approach during the devel-
opment process of a safety-critical software. The second case study was
conducted as an industrial case study at the German company BMW Group.
We applied the proposed approach to BMW active cruise control system
with stop-and-go function of the new car model G11. The case study
was performed in the headquarter of BMW Group in Munich, Germany.
The third case study was conducted as an industrial case study at the
German company Continental. We first applied the STPA approach to the
current project of the fully automated vehicle to evaluate and assess the
architecture design of the fully automated vehicle. Then, we explored the
application of the STPA SwISs approach at the software level of the fully
automated vehicle to derive software safety requirements, automatically
generate the unsafe software scenarios, translate them into software safety
requirements and formalize the software safety requirements into formal
specification in LTL to evaluate the architecture of the fully automated
vehicles.

28 1 | Introduction

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.4 | List of Publications 1 | Introduction

1.4. List of Publications

The following is a list of the publications which have been done to finish this
work:

• Abdulkhaleq, A., Wagner, S. (2016) A Systematic and Semi-Automatic
Safety-based Test Case Generation Approach Based on System-Theoretic
Process Analysis. submitted to ACM Transactions on Software Engineering
and Methodology.

• Abdulkhaleq, A., Sebastian, V., Wagner, S., Thomas, J. (2016) An Indus-
trial Case Study on the Evaluation of a Safety Engineering Approach for
Software-Intensive Systems in The Automotive Domain. Preprint. Univer-
sity of Stuttgart.

• Abdulkhaleq, A., Wagner, S., Lammering, D., Röder, J., Balbierer, N., Ram-
sauer, L., Raste, T., Boehmert, H. (2016) A Systematic Approach Based
on STPA for Developing a Dependable Architecture for Fully Automated
Driving Vehicles, in Proceeding of the Procedia Engineering Journal.

• Abdulkhaleq, A., Wagner, S. (2016) XSTAMPP 2.0: New Improvements to
XSTAMPP Including CAST Accident Analysis and an Extended Approach to
STPA. 2016 STAMP Conference at Massachusetts Institute of Technology
(MIT), 21 March 2016, Boston, USA.

• Abdulkhaleq, A., Wagner, S., Leveson, N. (2015) A Comprehensive Safety
Engineering Approach for Software-Intensive Systems Based on STPA,
Procedia Engineering, Volume 128, 2015, Pages 2-11, ISSN 1877-7058.

• Abdulkhaleq, A., Wagner, S. (2015) Integrated Safety Analysis Using
System-Theoretic Process Analysis and Software Model Checking. In
Computer Safety, Reliability, and Security (Safecomp2015), Lecture Notes
in Computer Science, Springer International Publishing, Delft, Netherlands
(22-25 September 2015)

• Abdulkhaleq, A., Wagner, S. (2015) XSTAMPP: An eXtensible STAMP
Platform As Tool Support for Safety Engineering. 2015 STAMP Conference
at Massachusetts Institute of Technology (MIT), 26 March 2015, Boston,
USA.

1.4 | List of Publications 29

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.5 | Outline 1 | Introduction

• Abdulkhaleq, A., Wagner, S. (2014) A Software Safety Verification Method
Based on System-Theoretic Process Analysis. In Computer Safety, Relia-
bility, and Security (Safecomp2014), Lecture Notes in Computer Science,
Springer International Publishing, Vol. 8696, pp. 401-412.

• Abdulkhaleq, A., Wagner, S. (2014) A-STPA: An Open Tool Support for
System-Theoretic Process Analysis. 2014 STAMP Conference at Mas-
sachusetts Institute of Technology (MIT), 27 March 2014, Boston, USA.

• Abdulkhaleq, A., Wagner, S. (2013) Experiences with Applying STPA to
Software-Intensive Systems in the Automotive Domain". 2013 STAMP
Conference at MIT, Boston, USA.

• Abdulkhaleq, A., Wagner, S. (2013) Integrating State Machine Analy-
sis with System-Theoretic Process Analysis (STPA). Multikonferenz Soft-
ware Engineering 2013 (SE 2013), ZeMoSS - Zertifizierung und modell-
getriebene Entwicklung sicherer Software, Aachen, Germany pp. 501-514

1.5. Outline

The remainder of this dissertation is organised as follows: In Chapter 2, we
present the background of this dissertation, including software safety challenges,
traditional and modern safety analysis techniques and software verification and
testing approaches. The state of the art is presented in Chapter 3. In Chapter 4,
we presented our proposed approach for software safety engineering based on
STPA including software testing and verification activities. Chapter 5 presents
the automation support to the proposed approach. The tool support of the
proposed approach is presented in Chapter 6. Chapter 7 presents the empirical
validation, which introduces three cases studies on evaluating the application of
the proposed approach: pilot case study and the two industrial case studies. In
Chapter 8, we conclude the dissertation and present the future work.

30 1 | Introduction

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

C
h
ap
te
r 2

Background

“ It’s hard enough to find an error in your code when

you’re looking for it; it’s even harder when you’ve

assumed your code is error-free. ”— Steve McConnell

2.1. Software Safety Challenges

Software is an integral and increasingly complex part of modern safety critical
systems (as shown in Figure 2.1). Therefore, it is essential to analyse software
safety in a system context to gain a comprehensive understanding of the roles
of software and to identify the software-related risks that can cause hazards
in the system. Leveson [Lev91] noted that software by itself is not hazardous
and cannot directly cause damage to human life or the environment; it can only
contribute to hazards in a system context. Software can create hazardous system
states through erroneous control of the system or by misleading the system
operators when taking actions [Lev11]. Software has no random failures and it
does not wear out like hardware components [Lev91; Jaf+91]. Flaws in software
are systematic failures which stem from flawed requirements, design errors or
implementation flaws [Lev91; Jaf+91]. System hazards related to software
are caused by software flaws, software specification errors and uncontrolled
interactions among different components forming the system, rather than failures
of single components [Har10].
Ensuring the safe operation of systems requires that the potential risks associ-

ated with increased reliance on software be well understood, so that they can
be adequately controlled. To develop safe software, therefore, we first need

31

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 | Safety Analysis Techniques 2 | Background

Figure 2.1.: Software is an integral part of system

to identify and analyse software-related hazards and the unsafe scenarios and
develop the corresponding software safety requirements at the system level.
To assure that these software-related unsafe scenarios cannot occur in a sys-
tem, safety verification activities are required which include a demonstration of
whether the software design and implementation meet those software safety
requirements [NAS10]. However, the software safety requirements are written
in natural languages. Therefore, to enable the software verification activities
(e.g. testing and formal analysis), these requirements should be specified into a
formal specification in Linear Temporal Logic (LTL).

2.2. Safety Analysis Techniques

Over the past seventy years, the most basic models of accident causation are the
sequential models. The Domino model (sequential accident model) by Heinrich
[Hei31] is one of the earliest accident causation models, proposed in 1931. The
Domino model describes an accident as a chain of discrete events which occur
in a particular temporal order [Fer88]. There are five safety factors which are
addressed by the Domino model: 1) social environment, 2) fault of the human,
3) unsafe acts or conditions, 4) accident and 5) injury [Qur08]. Epidemiological
accident models [Isk62] are meant to explain the accident causation in complex
systems. These models are valuable because they provide a basis for discussing
the complexity of accidents that overcomes the limitations of sequential models
[Hol04]. The epidemiological models consider the events leading to accidents as
analogous to the spreading of a disease. The epidemiological accident model can
also be used to study causal relationships between environmental factors and
accidents or diseases. An accident is conceived as the outcome of a combination

32 2 | Background

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 | Safety Analysis Techniques 2 | Background

of factors in this model. Some of the factors manifest and some are latent, but
they happen to exist together in time and space [Rau13]. A famous example of
epidemiological models is the Swiss Cheese model: It was proposed by Reason in
the 1990’s [Rea90] and emphasises the concept of organisational safety and how
protection barriers may fail. The Swiss cheese model [Rea97; RHP06] views
accidents much like the spreading of disease and describes the combination of
latent conditions present in the system for some time and their role in unsafe
acts made by operators.

2.2.1. Traditional Safety Analysis Techniques

There are over 100 different hazard analysis approaches in existence [Eri05].
Many of these approaches, however, are not widely practiced. Fault Tree Analysis
(FTA), Failure Mode and Effect Analysis (FMEA) and Hazard and Operability
Analysis (HAZOP) are most commonly used by system safety analysts. These
approaches are known as traditional hazard analysis techniques in the academic
literature, which rely on accident causation models which are sequential or
epidemiological.

2.2.1.1. FTA

The Fault Tree Analysis Approach (FTA) [Ves+81] was developed at Bell Lab-
oratories in the early 1960’s under a U.S. Air Force contract to analyse the
Minuteman missile system. FTA is a top-down approach to identify critical
failure combinations. FTA is based on the chain of event accidents model. It
is widely used to discover design defects during the development of a system
and to investigate the causes of accidents or problems that occur during system
operations [LN05; Lev82; LH83b]. The input of FTA is a known hazard, failure
or accident, and a design description of the system under analysis. The FTA
process can be divided into four main steps: 1) identify the root node (hazard
or accident or failure); 2) identify the combination of events or conditions that
caused the root node and combine them by using Boolean logic operators; 3)
decompose the sub-nodes until events determined are basic (leaf nodes); and 4)
identify minimum cut sets which are the smallest sets of basic events that cause
the root node to occur.

2.2 | Safety Analysis Techniques 33

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 | Safety Analysis Techniques 2 | Background

2.2.1.2. FMEA and FMECA

The Failure Mode, Effects and Analysis Approach (FMEA) [Mil49] was first
introduced by the U.S. military for weapons systems in 1949 as a systematic,
procedure for evaluating and discovering the potential failures, their potential
cause mechanisms and the risks designed into a product or a process. By the early
1970s FMEA was used in civil aviation and the automotive industry [FME67].
FMEA helps to identify where and how the component might fail and to assess
the relative impact of different failures. FMEA is, similar to FTA, based on the
chain of events accidents model. FMEA is a bottom-up, structured, table-based
process for discovering and documenting the ways in which a component can
fail and the consequences of those failures. The input to FMEA is a design
description of the system and component. The FMEA process can be divided
into four sub-tasks: 1) establish the scope of the analysis, 2) identify the failure
modes of each block; 3) determine the effect of each potential failure mode
and its potential causes; and 4) evaluate each failure mode in terms of the
worst potential consequences and assign the relative values for the assumed
severity, occurrence and chance of detection to calculate the risk priority number.
Ultimately, the analyst has to develop the recommended action required to
reduce the risk associated with potential causes of a failure mode [LN05].
An extension of FMEA called FMECA (Failure Mode, Effects and Criticality

Analysis) [FME67] was developed by reliability engineers to evaluate the effect
of single component failures. FMECA is adopted and used as a hazard analysis
in different domains such as space, nuclear and automotive industries.

2.2.1.3. HAZOP

The Hazard and Operability Study (HAZOP) [Tro68] was initially developed
by imperial chemical industries in 1964 and published in 1974. HAZOP is a
structured hazard analysis technique to identify risks and operability problems in
a given system and develop appropriate safeguards to prevent accidents. HAZOP
was originally developed to be used in the chemical industry to identify the
potential deviations in chemical processes which can lead to accidents, however,
it has been used to identify hazards in different systems in the different domains
(e.g. computer systems, software systems) [McD+95]. HAZOP can be applied

34 2 | Background

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 | Safety Analysis Techniques 2 | Background

Figure 2.2.: A general feedback control structure

on existing system or during the system design phase before the system has been
implemented. The HAZOP process provides guide-words combined with process
parameters (e.g. flow, pressure, time, etc.) to help the analysts in identifying
possible hazards in a system. These guide-words are used to systematically
consider the possible deviations from normal operations of systems like “No", or
“more" or “less" or “as well as " or “part of" or “Reverse" or “other than".

2.2.2. System-Theoretic Safety Analysis

The nature of accident causation has, however, become more complex over
time. Twenty years ago, accidents causation theory was developed further to
capture this increased complexity and a new class of models emerged based
on a holistic and systematic approach [Lev04a]. Furthermore, the prevailing
chain-of-failure-events models provide the basis for almost all of today’s hazard
analysis techniques and the probabilistic risk assessment based on them. All
of these analysis and design techniques focus on hardware component failures

2.2 | Safety Analysis Techniques 35

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 | Safety Analysis Techniques 2 | Background

and thus reliability theory [Lev11]. These methods assume that accidents are
caused by component failures. However, they are not enough to explain accident
causation in the more complex systems.
The development of accident causation models and safety analysis from for-

merly sequential models to systemic models shows the evolution of safety analysis
for complex systems. We must emphasis that traditional analysis types, like
FMEA or FTA have been designed for simpler systems than nowadays being
created in the industry. The integration of technological, software system compo-
nents stretches the limits of safety analysis. Therefore, new methods are needed
which can actually cope with today’s complex systems.
To overcome the limitations of the traditional hazard analysis, a recent coun-

termeasure is to advance safety analysis techniques by system and control theory
rather than reliability theory. The STAMP (System-Theoretic Accident Model and
Processes) [Lev04a] accident model developed by Leveson, which uses system
theory and treats safety as a control problem. Hence, it describes the system as a
whole as opposed to linear cause effect relationships or epidemiological factors
within the system. STAMP also continues corresponding hazard and accident
analysis methods. Within this method, accidents are considered as results from
inadequate enforcement of safety constraints in system design, development and
operations. STAMP treats safety as a control problem rather than component
failures. STAMP is based on system theory, which was designed to understand
the structure and behavior of any type of system. In a system-theoretic approach,
the system is seen as a set of control components which interact with each other
(shown in Figure 2.2). This helps to create models of systems which cover human,
technology, software, and environmental factors [Lev04a]. Therefore, STAMP
considers accidents not only arising from component failures, but also from the
interaction among system components. In other words, accidents occur when
component failures, external disturbances and/or dysfunctional interactions
among system components are not adequately handled by the safety control
system [Lev04a].
The STAMP approach can be divided into two different analysis methodologies.

While STAMP acts as an underlying theory, the methods STPA (System-Theoretic
Process Analysis) and CAST (Causal Accident Analysis based on STAMP) are to
be practically used for safety analysis. STPA is designed for safety analysis in the

36 2 | Background

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

