
 

1 
 

CHAPTER 1 

INTRODUCTION

The major aim of geophysical fluid dynamics is the study of large scale motions on 
the Earth and other planets of the solar system. In a continuous kinetic energy spectrum, large 
scales usually contain more energy than small scales.  Mid-latitude westerlies, meandering jet 
streams and banded zonal flows in oceans in the Earth system, banded flow patterns and great 
red spot of Jupiter and banded flow pattern of Saturn are prominent examples. Understanding 
of Generation mechanism of the large scale phenomena is still ongoing research topic in 
geophysical fluid dynamics. Geophysical flows are characterized by a continuous spectrum of 
kinetic energy encompassing several orders of magnitude of spatial and temporal scales of 
motion. Usually energy of large scales of motion is transferred to the small scales. However, 
an inverse cascade of energy from small to large scales is possible as well due to nonlinearity. 
This work aims to contribute to the basic understanding of generation of large scale 
phenomena.  

Fluid layers of planets, e.g., atmosphere, ionized gases in stars, liquid core, subsurface 
oceans, are characterized by rotational and convective motions. Many researchers focused 
only on the convective motions to study generation of the large scale motions and assume 
that rotation play a minor role (Le Bars et al. 2015). However, recent studies (Dwyer et al. 
2011; Le Bars et al. 2011; Stanley et al. 2005) suggested that other kinds of forcings such as 
rotation play a role in organizing the large scale structures in the planets and stars. Different 
forces and mechanisms are relevant in such systems and sometimes it is difficult to identify 
the relation between a mechanism and phenomenon. Complexity of the system can be 
substantially reduced, considering an idealized system which takes into accounts only one of 
the forcings. A deep understanding of the mechanism and phenomenon can be gained in this 
way. We concentrate on the effect of rotation. 

Rotation of solar objects is a necessary source for fluid flows in liquid layers. Many 
Planets and satellites in the solar system undergo harmonic variations in their rotation period 
due to mechanical forcings such as tidal forcing, precession/nutation and libration in 
longitude. As stated by Le Bars et al. (2015), these mechanical harmonic forcings do not 
provide the energy to derive the large scale motions, instead similar to a conveyor they 
extract some part of the rotational energy and convert it into fluid motions. Resonant 
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excitation of inertial waves (inertial normal modes and wave attractors) and occurrence of 
instabilities such as centrifugal (rotational) are examples of this energy transfer.

Focus of the current work is on the longitudinal libration. This is motivated by the 
opportunity of realization of this type of forcing in a laboratory experiment. Nevertheless, the 
discussion might be generalized to other mechanical forcings. Longitudinal libration is a time 
periodic variation of the rotation rate of a planet around its axis of symmetry. It is reported 
that longitudinal libration exists on Mercury, Earth’s Moon, Mars’ moons, Phobos and 
Deimos, four moons of Jupiter and many moons of Saturn (Yoder 1995; Comstock and Bills 
2003; Noir et al. 2009). One of the key questions is how librational forcing couples with the 
interior fluid layers of the planet deriving large scale motions. 

The current work tries to fill the existing gap in understanding of generation of the 
zonal mean flow as a large scale structure.  The main focus is on the following mechanisms: 

1- Mean flow generation by resonant excitation of inertial waves, forming normal 
modes and wave attractors. 

2- Mean flow generation by intermittent centrifugal (rotational) instability.

These mechanisms are also relevant for other mechanical forcings such as tidal and
precession/nutation, thus the discussion might be applied for them as well. In the following 
we summarize what is known about the two mechanisms, and introduce open questions.

Mechanism 1:
A prominent example of inertial waves in the Earth’s atmosphere and oceans is the 

well known near-inertial waves (Plougonven and Snyder 2007; Shakespeare and Taylor 
2014) which play a major role in energy transfer. Another example is when the Earth’s 
rotation is slightly perturbed by large deep earthquakes and inertial waves are resonantly 
excited in the Earth’s core (Melchior and Ducarme 1986; and Aldridge and Lumb 1987).
Existence of the inertial waves is not restricted to the Earth. Dintrans and Ouyed (2001) and 
Wu (2005 a and b) reported the excitation of inertial normal modes on the Jupiter. Savonije
and Papaloizou (1997) and Papaloizou and Savonije (1997) reported that inertial normal 
modes can be excited in adiabatic convective cores of high-mass stars. Papaloizou and
Pringle (1981) investigated the excitation of inertial normal mode in close binary system in 
circular orbit.

Aiming to better understand inertial wave dynamics, many authors investigated 
formation of inertial normal modes and wave attractors by laboratory experiments and/or 
numerical simulations using idealized configurations; sphere (Aldridge and Toomre 1969; 
Sauret et al. 2013; Zhang et al. 2013), spherical shells (Tilgner 2007; Noir et al. 2009; 
Calkins et al. 2010; Koch et al. 2013; Sauret and Le Dizès 2013), cylinders (Noir et al. 2010; 
Swart et al. 2010; Lopez and Marques 2011, 2014; Sauret et al. 2012), cones (Beardsley 
1970), prisms (Maas 2001) and boxes (Boisson et al. 2012). 

The studies mentioned in the previous paragraph are devoted to the excitation of 
inertial waves. Only a few studies dealt with the generation of zonal mean flow as large scale 
motion by inertial waves. Tilgner (2007) showed that nonlinear self interaction of inertial 
waves along the attractor path leads to a zonal mean flow. Morize et al. (2010) confirmed 
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Tilgner’s results using laboratory experiments. Inertial waves along the attractor path and 
inertial normal modes have different spatial structures, although both are characteristics of 
the system at resonance. The former is a progressive wave which appears as localized shear 
layer while the latter is a standing wave emerging as global cells (Boisson et al. 2012). The 
current work considers a system comprised of the two at the same time and contributes to 
clarifications of zonal mean flow generation mechanism. 

Mechanism 2:
The discussion of centrifugal instability in a librational system dates back to early 

work of Aldridge and Toomre (1969). They showed experimentally formation of longitudinal 
roll structures in a centrifugally unstable boundary layer which is excited by longitudinal 
libration of a spherical container. These rolls are later called Görtler vortices by Noir et al.
(2009) and Noir et al. (2010). They are also similar to those found by Görtler (1955) over
non-librating curved surfaces. Noir et al. (2009) and Noir et al. (2010) suggested that the 
Görtler vortices might exist in the molten cores of Earth’s moon and Ganymede, in Callisto’s 
subsurface ocean, molten cores of Mercury and Io, and in the subsurface oceans of Titan and 
Europa. In the current work, for the first time, it is tried to clarify the role of the Görtler 
vortices in generation of a zonal mean flow as a large scale motion in the bulk of a rotating 
cylinder with librating side walls.

The result might also contribute to our understanding of prograde and retrograde jets 
in the atmosphere. Development of the rotational instability due to an imbalance of forces has 
been studied in the meteorological context to understand the zonal mean flow generation; 
Griffiths (2003) investigated the nonlinear evolution of zonally symmetric equatorial inertial 
instability, Kloosterzeil et al. (2007) studied unfolding of the rotational instability in initially 
barotropic vortices in a uniformly rotating and stratified fluid using numerical simulation, 
Plougonven  and  Zeitlin (2009) investigated development of the inertial instability in a 
barotropic parallel shear (channel flow with horizontal shear) using the WRF model 
(Weather Research and Forecast mode). They concentrated on the development of instability 
which leads to a redistribution of angular momentum and make the system centrifugally 
stable. The new equilibrium state could be characterized by a redistribution of angular 
momentum and a resulting large scale motion as a mean flow. The concept mechanism of 
angular momentum transport into the stable environment, and the equation describing the 
final equilibrium state are still weakly understood. This work aims to close the gap. 

Investigating the dynamics associated with formation of the large scale motion 
(upscaling of kinetic energy) requires a suitable approach which allows to capture the 
relevant scales of motion. A substantial increase of computational power over the last decade 
and proven adequacy of Navier-Stokes equations to model real phenomena in fluids 
encouraged the researchers to use numerical solution of Navier-Stokes equations to 
understand geo-and astrophysical fluid dynamics. Simulations resolving all relevant scales of 
motion are named Direct Numerical Simulation. They can be conducted for idealized 
configurations at Ekman numbers substantially larger than in atmosphere and ocean. 

A rotating annular tank filled with a liquid is used in geophysical fluid dynamics 
community to study the atmosphere and ocean dynamics. We consider an isothermal 
homogenous fluid within a rotating annulus with walls partially subjected to longitudinal 
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libration and use direct numerical simulation to investigate the mechanisms 1 and 2. 
Longitudinal libration is considered to force the fluid flow. The configuration is idealized to 
isolate the effect of rotation. We exploit the different dynamical response of the fluid bulk to
longitudinally librating lids and/or cylinder side walls in an axially closed and periodic 
annulus. Furthermore the impact of an inclination of the inner cylinder (frustum geometry) on 
the results is investigated. In principle, frustum resembles the upper half of near equatorial 
region of a sphere.

1.1 Objective

This thesis aims to contribute to the understanding of generation of the zonal mean 
flow in rotating fluids.

-We show that if the Stokes boundary layer becomes centrifugally unstable, the Görtler 
vortices are generated and propagate into the bulk due to the Coriolis effect and establish a 
zonal mean flow.

-First we show that inertial normal modes as global structures are able to generate a zonal 
mean flow via the nonlinear self interaction. Then we discuss that inertial waves (wave 
beams) as concentrated shear layers, which are generated by Ekman pumping and suction, are 
able to generate the normal modes efficiently. We show that inertial waves interact with the 
normal modes and affect generation of the zonal mean flow. Furthermore, we comment 
briefly on normal mode-boundary layer interaction and wave-wave interaction.

1.2 Outline

This study is arranged in two main parts based on the mechanisms 1 and 2 presented 
in section 1.1, and two additional parts for method, and summary and conclusion.

Chapter 2:
The governing equations in generalized curvilinear coordinates and the geometrical 

configurations are introduced. The spatial and temporal disceretization, boundary conditions,
and a convergence study for 2D (used in chapter 4) and 3D (used in chapter 3) direct 
numerical simulations are discussed as well. Note that the post-processing details of the 
numerical results are given in chapters 3 and 4. 

Chapter 3:
The mean flow generation mechanism due to the Görtler vortices generated by a 

centrifugally unstable Stokes boundary layer is investigated using 3D-direct numerical 
simulation. A brief discussion of the centrifugal instability and the current status of 
understanding are given. Using longitudinal libration boundary conditions for either outer 
cylinder side wall and/or top and bottom lids, we show that the mean flow induced by the 
Görtler vortices affects the bulk flow likewise the flow driven by the nonlinearities in the 
oscillatory Ekman boundary layer. 3D-direct numerical simulations of the fluid flow in an 
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annular container with librating outer (inner) cylinder side wall, and Reynolds-averaged 
equations as diagnostic tools are used to investigate the generation mechanism of the 
retrograde (prograde) azimuthal mean flow in the bulk. We explain, phenomenologically,
how the bulk angular momentum is mixed and homogenized due to propagation of the 
Görtler vortices, resulting in a new vortex of basin scale size. Then we investigate the 
Reynolds-averaged equations for the intermediate time scale of the development of the 
Görtler vortices, and for the long time scale of the order of several libration periods. 
Additionally, using the kinetic energy budget of fluctuating flow, the presence of an upscale 
cascade of energy is shown. The dependency of the azimuthal mean flow on Ekman number, 
libration amplitude and libration frequency are presented as well.

As last step in this chapter we present the azimuthal mean flow generation for an 
inclined inner wall annular container when the Stokes-Ekman boundary layer is unstable.

Chapter 4:
We consider low order inertial normal modes as standing waves and progressive 

inertial waves as concentrated beams in a rotating annular cavity with longitudinally librating 
top and bottom lids in a stable regime. The mean flow generation by the normal modes is 
investigated using the results of 2D-direct numerical simulations and analytical solution 
presented by Borcia and Harlander (2013). First, we show excitation of the normal modes in 
a viscous fluid, scanning the bulk kinetic energy close to the resonant frequency predicted by 
the analytical solution. Then following the procedure used by Tilgner (2007), the Navier-
Stokes equations are segregated into linear and nonlinear parts at orders and ,
respectively. The nonlinear equation is used to discuss generation mechanism of the mean 
flow. We discuss excitation efficiency of the mean flow by further decomposition of the 
velocity field into the wave beam and normal mode pattern. An analysis of libration phase 
difference between the wave beam and normal mode, in analogy to resonator and forcing in 
classical mechanics, allows us to explain the difference in excitation efficiency of the mean 
flow. Scaling behavior of the mean flow with respect to the Ekman number and libration 
amplitude is also given. Finally, we extend our work for the inner inclined wall annular 
container and show excitation of the normal mode and corresponding mean flow. 

Chapter 5:
Summary, conclusion and suggestions for future studies are presented based on the 

results discussed in the chapters 3 and 4.
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CHAPTER 2 

GOVERNING EQUATIONS AND METHOD 

2.1 Introduction 

 In this chapter, details of the governing equations and numerical solver are presented. 
First, governing equations in a co-rotating frame of reference and dimensionless parameters 
are introduced. Then the geometrical configurations and transformation relation into the 
generalized curvilinear coordinates are discussed in detail. We briefly touch the conservation 
properties of the numerical solver as well. Finally, details of the numerical solver, 
computations and code benchmark and numerical convergence study are given.  

2.2 Governing Equations 

 We consider a homogeneous and incompressible fluid with kinematic viscosity 
bounded by two concentric cylinders (straight or inclined) and two end plates rotating about 
their symmetry axis, i.e. (see figure 2.1) where  is the mean rotation rate of the 
annulus . Inner cylinder radius is denoted by , outer cylinder radius by  and height 
by  (in meter). To make the flow non-dimensional, compatible with system under 
investigation, the radios of the outer cylinder side wall is taken as length scale, and inverse of 
the mean rotation rate as time scale ( ). Consequently, and

 are velocity and pressure scales, respectively. Hence, non-dimensional quantities are 
given by: 
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where , and denote the dimensionless radial, axial and azimuthal coordinate directions, 
respectively and , , corresponding dimensionless velocity components, denote
dimensionless pressure and dimensionless time. 

The governing equations include the continuity and Navier-Stokes equations which 
are considered in a non-inertial frame of reference rotating with uniform angular velocity 
about the vertical axis . The non-dimensional Navier-Stokes and continuity equations in co-
rotating frame of reference in Cartesian coordinates using vector notation are:

where is the velocity vector in the co-rotating frame of reference, is the kinematic 
pressure taking into account centrifugal force, and is the Ekman number representing the 
ratio of the viscous and the Coriolis forces, and is defined as 

Wall libration is the only forcing mechanism present. In the laboratory frame of reference it is 
defined as 

where is the dimensionless amplitude of the libration and is the dimensionless forcing 
frequency.

2.3 Geometrical configuration

At the equatorial part of a longitudinally librating solid spherical shell, since the 
tangent line to the sphere is parallel to the rotation axis, the boundary layer is similar to a
Stokes boundary layer (Salon et al. 2011). In contrast, in the mid-latitude where the tangent 
line make an angle with respect to the rotation axis, the boundary layer is named oscillatory 
Stokes-Ekman boundary layer (Salon et al. 2011). This implies that the boundary layer has 
properties of both Ekman and Stokes boundary layer. The dynamical response of the fluid 
interior might differ for each of these two boundary layers. Using an annular tank with 
straight and/or inclined side wall, we are able to study the dynamical response of the fluid 
interior to Stokes, Ekman and Stokes–Ekman boundary layer. Stokes boundary layer is 
formed over the straight cylinder side walls which are parallel to the rotation axis. Oscillatory 
Ekman boundary layer forms over the top and bottom lids which are perpendicular to the 
rotation axis. In principle, inclined cylinder side wall resembles the upper half of near 
equatorial region of a sphere. According to the beta-plane approximation, vertical component 
of the rotation vector incorporates into the Coriolis force and the contribution of the 
horizontal component is supposed to be negligible, thus ; where is
inclination angle of the inner inclined wall cylinder (figure 2.1).

(2.1)
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Straight and inclined wall annular configurations used in the present work are shown 
in figure 2.1. Inclined wall annulus is a truncated cone which is comprised of an inner 
inclined (frustum) and outer straight cylinder side walls (figure 2.1b). The tilted wall has an 
inclination angle , and is designed using a Polynomial functions (Klien 2011, 
internal report). Dimensionless height denoted by and inner and outer cylinder radii at the 
bottom by and , and radius of the truncated cone at the cylinder top. Details of the 
geometrical configurations used in chapter 3 and 4 are reported in table 2.1. 

Figure 2.1: Schematic drawing of the straight (a) and inner inclined (b) wall annuli. Whole annulus 
rotates with the same angular velocity. Additionally, the boundaries liberate corresponding to the 
boundary conditions given in table 2.2.

Geometry       Thesis
section

STR1 1.5 1.5 2.0 - Chapter 3
STR2 1.5 1.0 2.0 - Chapter 3
FRUS1 1.5 1.0 1.5 0.85 Chapter 3
STR3 3.0 1.0 3.0 - Chapter 4
FRUS2 3.0 1.0 3.0 0.7 Chapter 4

Table 2.1: Details of the geometrical configurations. STR denotes the straight wall annulus (figure 
2.1a) and FRUS the inner inclined wall annulus (figure 2.1b).

To solve the governing equations for the fluid flow within the two annular 
configurations, the governing equations are discretized in generalized curvilinear coordinates 
on a locally orthogonal grid. In the following t transformation relations are drafted.

2.4 Generalized curvilinear coordinates

One of the main problems of numerical simulation of the fluid flow in curved 
geometries is an accurate numerical representation of the boundary condition. This can be 
achieved when a coordinate line coincide with the curved boundary. An appropriate choice is 

(b)(a)
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the generalized curvilinear coordinate system. We discuss, here, transformation relations 
between Cartesian and generalized curvilinear coordinate systems. Using these relations we 
arrive at the final form of the Navier-Stokes equations in curvilinear coordinate system which 
are solved numerically. If not stated else, the documentation is taken from the HYBRID-
NEW code documentation Kaltenbach and will (2002) and Klein et al. (2014).

A curvilinear region in the physical space is mapped to a regular, rectangular region 
in computational space, where the mesh is uniform and Cartesian. This means that the mesh 
conforms to boundaries of the geometry. As a result, numerical techniques which are used in 
the Cartesian coordinate can be directly used to numerically solve the system of equations for 
the targeted curved geometry without any need for further modifications. However, to have 
numerically accurate solution, a particular attention must be paid to numerical
diesceretization of the metric terms which map the physical grid into its counterpart in the 
computational space, and vice versa (Fletcher 1988). 

In the following we present some basic of the mapping from physical Cartesian 
coordinates to computational curvilinear coordinates or

. Our goal is to write all terms in the Naveir Stokes equations such that the 
independent variables are  or . We start with transformation of 
gradient of any arbitrary field from physical to computational space. Using the chain rule 
we obtain

where

is contra-variant base vector normal to the surface formed by a pair of coordinate lines at a 
given point. A fundamental characteristic of curvilinear coordinates is existence of another 
set of base vectors which are tangent to the coordinate lines. They are called co-variant base 
vectors, and are given by

Components form a matrix which is the Jacobi matrix of transformation. Jacobian,
, is defined as the determinant of the Jacobian matrix. Usually, the components are

known but components are unknown. Our aim is to derive equation for the independent 
variables . It is possible to compute from , taking advantage of the fact that 
co- and contravariant are reciprocal bases ( , where kronecker delta). One 
obtain (Thompson et al. 1985) 

(2.3)

(2.4)

(2.5)
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where is co-variant metric components and contra-variant metric components. They 
are given by 

Using , and co- and  contra-variant metric components, transformations from Cartesian 
to computational space, from co to contra-variant coordinates and vice versa can be given.

Transformation of velocity components

Contra-variant components of a velocity vector, which are derivatives of positions in 
computational space with respect to time, are given by 

where represents velocity components in the Cartesian coordinate system. Cartesian 
components can also be obtained from contra-variant velocity components by the chain 
rule

Conservative and non-conservative derivative

Non-conservative derivative for a scalar quantity in generalized curvilinear 
coordinates for an arbitrary field is given by

Derivative in conservative form can be expressed as

if 

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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