
1. Introduction

This chapter will start with a general motivation 1.1 to automotive software
engineering as a computer science research field, continuous with the iden-
tified problems 1.2 and research questions on software testing within the
automotive industry, presents an overview to the thesis contribution 1.3 and
concludes with the thesis organization 1.4.

1.1. Motivation

Within the last decade Software gained importance in cars. A modern day
premium car, example given the 2015 Audi A4 [1] may be equipped with
up to 90 Electronic Control Unit (ECU), two high resolution displays, two
Subscriber Identification Module (SIM) cards, 11 communication networks
(Controller Area Network (CAN), FlexRay, Media Oriented Systems Trans-
port (MOST)) and up to six antenna systems (radio, Keyless Entry Start and
Exit System (Kessy), WiFi, etc.) ensuring wireless communication between
the car and various infrastructure. From a computer scientist’s perspective
a modern day car is a heterogeneous network of embedded computers
performing local and distributed tasks. In addition to transport capabilities
customers demand up to date entertainment (including music, video or
online streaming) and comfort(climate control, massage seats, etc.) in a
modern day car. Various features, example given Advanced Driver Assis-
tance Systems (ADAS), rely on data fusion between multiple sensors and
pre calculated values on various ECU. A wide range of sensors starting
from simple switches or rotary encoders to advanced Global Positioning
System (GPS) Antennas or Radar Sensors will be used to sense the car’s
environment or interact with the driver. Realizing innovative ADAS like
Adaptive Cruise Control (ACC) or Matrix headlamps requires fusioning pre
processed measurement data from a camera sensor and a radar sensor as
well as a lookup from the road traffic database. This requires four ECU to

1

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1. Introduction

(a) Audi A8 Electric wires diagram. Picture
extracted from [3]

(b) Audi A4 Electric wires diagram. Picture
extracted from [1]

Figure 1.1.: Audi A4 and A8 schematic showing the electric wiring harness

work together in realizing one specific driving function. Figure 1.1 shows
two modern day premium cars with all their electronic systems and wires,
which sum up to 2.5 km in total length, leaving a modern day car to be
one of the most technical places within a humans daily live. Following
Pretschner et al. [2] a 2007 BMW 7 Series contained about 270 software based
functions and 67 ECU powered by 65 megabyte of data, the 2010 Model has
been expected to contain one gigabyte of software.

The amount of software required to operate a car or an aircraft has in-
creased during past years, even putting the automotive domain in the lead.
Robert Charette [4] compares the complexity between an aircraft and a
car demonstrating that it requires more Lines Of Code (LOC) to operate a
typical car than an aircraft. Dvorak et al. [5] states that software realized
functionality within a military aircraft raises from below 10% on an 1960is
F-4 to 80% on a modern day F-22. Similarly the author states a represen-
tative car from General Motors (GM) rises from 100.000 LOC within the
1970is up to 1.000.000 LOC in 2010. Broy [6] states modern day premium
cars can contain up to 100.000.000 LOC. In previous works Broy [7] reveals
electronics and software development consumes up to 40% of the whole
development budget nowadays. This is in line with a forecast by Siemens
released in 2005, see Aschenbrenner [8]. Similarly a market research from
Ehmer [9] states that 20% of the car’s total development budget in 2000 will
increase to 35% by 2010. They will be distributed among 2% basic software,

2

8% operating system and 28% application software.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.1. Motivation

A car recall costs money. Whenever a malfunction within a car is a threat
to human life, the law forces an Original Equipment Manufacturer (OEM)
to perform repairs. In terms of software this means developing a hotfix and
distributing it. Most OEM do not equip their cars with over the air update
capabilities this means the car has to be moved into a workshop. Within
recent years there have been multiple recalls, compare Figure 1.2. The total
number can be extracted by querying the National Highway Traffic Safety
Administration (NHTSA) database [10], the amount of software related re-
calls can been extracted counting each entry containing the terms ”software”
or ”program” within the recall description or required repair action. The
number of sold vehicles can be gathered from Wards Auto [11]. The majority
of recalls were due to mechanical deficits, but the share of software related
recalls is increasing. Within the automotive industry such a recall can cost
millions, as an OEM has to pay for contacting the customer, maybe a rental
car and the workshop to replace the software. In addition, National Auto-
mobile Dealers Association (NADA) published a Whitepaper [12] analysing
the impact of recalls on a cars (retail)value. They recognized an increasing
number of affected vehicles by recalls within the last decade. Analysing an
OEM’s average car price compared to competitors they found clear impacts
of a recall on achievable market prices, example given Toyota dropped by
-20% after the 2009 recall on self accelerating models. The authors conclude
avoiding a recall will be of economic interest.

Finding bugs later costs more money. A recent Whitepaper from Kloc-
work [14] stated that finding bugs in early development phases might cost
25$, in a later phase this could climb up to 16.000$. The authors values are
based on standard software. Tassey [15] presents multiple analysis concern-
ing the costs when finding bugs in different development stages. The author
states 70% of all errors are introduced during the requirements phase but
50% of all bugs will be discovered during the integration testing phase.
Further the authors analysed the cost of fixing bugs, see Figure 1.3. In line

1Model-year is the first year where a car type is introduced. If a recall is reported in
2008 and 2010, but the car was lunched in 2004, the recall will always bee counted for
Model-year 2004. One car can be affected by multiple recalls during its lifetime. The recall
data is available via NHTSA [10], the sale statistic via Wards [11].

3

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1. Introduction

Figure 1.2.: NHTSA recall statistics on Model-year 2000 - 2014, comparing recalls in total
with software caused recalls and sales 1. One can see more recalls than sold ve-
hicles within multiple years. The graphic has been extracted from Altinger et al.
[13].

with Capers [16] the later a defect is detected, the more expensive it is to fix
it. In terms of the automotive industry the numbers will be even higher, as
the law forces antecedent tests to be repeated. The majority of tests requires
expensive hardware and personnel example given to ride prototype cars for a
defined mileage.

Within a software’s Product Life Cycle (PLC), maintenance can cause the
highest costs. ISO/IEC 14764 [17] defines software maintenance as the
modification of a product after delivery to a customer. The aim of such a
modification is to correct faults, to improve performance or to adopt other
quality attributes of the product. As analysed by Kozlov et al. [18] 49% to
75% of the total software costs are caused by maintenance. Kozlov et al.
examined data between the 1970s and 1990s. Recent data published by
Confora et al. [19] indicate even more than 80% of the total PLC costs
are caused by maintenance nowadays. Shull et al. [20] states that fixing a
software fault during maintenance caused higher costs than finding and
fixing it during the early phase of the software’s PLC, which is in line with
Capers [16]. Even if concrete figures vary, Shull et al. [20] analysed that

4

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.1. Motivation

Figure 1.3.: Costs to fix detected bugs, the graphic has been adopted from Tassey [15].

the effort increase by 100:1 for critical defects on large projects and 2:1 for
non-severe bugs discovered after release.

Summarizing this chapter’s arguments, the share of software increases,
fixing bugs out in the field (after release) costs huge amount of money
and has a negative impact on the OEM’s reputation. Thus finding bugs
during early development stages is of economic interest.

5

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1. Introduction

1.2. Problem Statement

As stated in the previous chapter, developing software is a complex and
expensive task. According to Broy [6] and Aschenbrenner [8] 30-50% from
a car’s total development costs will be dedicated to software by 2030.
Testing has always been a core part of Automotive engineering, as the
W-Development process defines a testing stage for every development
stage, compare Jin-Hua et al. [21]. Indicators where to particular spend
TestCase (TC) are welcome to increase efficiency in testing.

The following research questions are identified:

RQ1: What are the common tools automotive software engineers
use to specify requirements and write their software?

RQ2: Is it possible to use fault prediction within
automotive software projects?
RQ 2.1: Does fault prediction benefit from restrictive

development guidelines (Coding-standards and
development processes)?

RQ 2.2: What are influential parameters for fault prediction
to performing usefully?

RQ 2.3: Do (re)sampling strategies influence the achievable
performance?

RQ 2.4: Is it possible to establish Cross-Project Fault
Prediction (CPFP) within the restrictive development
settings?

RQ3: Which metrics perform best for generated code within
automotive software?
RQ 3.1: Which metrics are independent and share no

correlation with others?
RQ 3.2: Do metrics represent the occurred bugs?

RQ4: What are good fault predicting methods and what
performance can be achieved?

6

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.3. Thesis Statement

1.3. Thesis Statement

Main parts of this thesis were published on international Workshops and
Conferences and are peer reviewed:

• Altinger et al. [13] commits to answer RQ1 by performing a represen-
tative survey upon tools and methods.

• Altinger et al. [22]2presents further insights into software methods and
development procedures within the automotive industry. This work
contributes to answer RQ1.

• Altinger et al. [23] releases an industry grade dataset containing soft-
ware metrics on automotive software projects aiming to answer RQ3
and RQ3.1 by presenting correlation analysis upon those measure-
ments.

• Altinger et al. [24] presents work on Software Fault Prediction (SFP)
and CPFP answering RQ2 by using machine learning classifiers to
predict failures. Comparing the achieved performance values with lit-
erature RQ2.1 will be answered. Correlation analysis and information
ranking will be used to address RQ2.2. Main work will be on RQ2.4
using state of the art literature methods and comparing their perfor-
mance. Finally RQ4 will be answered using a Principle Component
Analysis (PCA) on the metric data.

• Altinger et al. [25] reports on influences of resampling algorithm to
bug prediction performance. This work commits to answer RQ2.3.

• Altinger et al. [26] presents work on bug analysis to response on RQ3.2.

A detailed annotated publication list is given in Section A.1.

2This publication is submitted to review and is not published at date of release of this
thesis

7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1. Introduction

1.4. Thesis Organization

The thesis will be organized as follows. Starting with Chapter 2 to present
the automotive industry as the research area and Chapter 3 containing the
related literature with a focus on the field of fault prediction. Chapter 4
reviews a conducted questionnaire survey on tools used to specify, develop
and test automotive software. An analysis upon three real world software
projects is presented in Chapter 5. The obtained results on fault prediction
are contained within Chapter 6. Finally Chapter 7 gives concluding remarks
and a preview to further research topics.

8

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2. Field of Study - Automotive
Software Development

This chapter gives a short introduction to the automotive industry 2.1
and clarifies some domain specific environment parameters 2.2 along with
common testing approaches 2.3. This examination will focus mainly on a
computer science perspective.
For a more wider introduction to automotive engineering, including other
disciplines such as computer science, the reader is redirected to Winner et al.
[27], Braess et al. [28] and Crolla [29].

2.1. Automotive domain

Compared to the consumer electronic industry the automotive domain has
a rather long PLC. Volpato and Stoccchetti [30] analysed cars PLC data
between 1970 and 2006. They report on small cars to be redeemed by the
new model after five years, premium cars after eight years, with a strong
trend to shorter cycles. This is in line with Broy et al. [31] where they state
a PLC is roughly seven to eight years, service and spare parts may last
up to 15 years. According to the Kraftfahr Bundesamt (English: German
Federal Motor Transport Authority) (KBA) [32] statistically cars in Germany
are decommissioned after 8,8 years in use. Considering the average three
to four year development phase as reported by Crolla [29], see Figure 2.6,
some components development might be 18 to 20 years ago when a car is
still on the road. Sabadka [33] predicts a reduction of a cars development
time from 40 months to 25 in 2013 and further to 20 months in 2018. Using
the VolksWagen (VW) Golf as a case story he analysis a PLC reduction
from ten years in the late 1970is to three years in late 2000. In contrast,
typical consumer products are replaced every two to three years according
to Andrae and Andersen [34], software might be updated within much

9

shorter cycles.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2. Field of Study - Automotive Software Development

Most software runs on ECU with strict hard real-time constraints, mem-
ory and computing power is always limited. A modern day car can be
seen as a heterogeneous network of up to 90ECU performing local and
distributed computing tasks. Some nodes acquire data via a sensor interface,
some pre-process data and some aggregate data, others control actuators.
The automotive environment is rather harsh, example given the operational
temperature is specified between -40◦ and +120◦, shock, Electrostatic Dis-
charge (ESD), vibration, etc. Tils [35] presented a rather good overview to
all physical requirements to car electronics. These limitations may cause
the Central Processing Unit (CPU) to run in throttled computation mode to
fulfil operation requirements.

Hartung et al. [36] addresses the variation diversity within automobiles and
visualizes them with examples. Pretschner et al. [2] uses 80 components
which a customer can order, availability may depend on the country, to
calculate 280 variants an OEM can assemble electronics. During production
the car is equipped with the ECU, but the actual software configuration is
generated and deployed in the production line depending on the configura-
tion the customer ordered. This causes a high number of conditions within
the software, to cover all options. Peleska et al. [37] released an original
software model visualizing the high amount of states and conditions to
realize a simple car’s turn indicator.

The Ultimate time goal: Start Of Production (SOP), the first day when a
new model is built. This day requires all developments to be completed,
all software to be tested and all certificates and accreditation documents
to be issued. Long planning cycles are invested to solve logistic topics,
all components need to pass qualification audits. Crolla [29] gives a brief
overview to these milestones, see Figure 2.6. Once the SOP day is defined,
customers may no longer order the old model, and logistic does not stock
up components from the old model. This means, that from a certain point in
time, it is not possible to extend the production of the old model anymore.
Assuming a cycle time during assembly of about 70 - 90seconds and an
average product price in the five digits regions, a production stop for a day
can easily sum up to millions of EUR.

10

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.2. Development process

Figure 2.1.: The automotive milestone plan with SOP as the ultimate goal. Graphic is a
licensed copy from Crolla [29] copyright granted by Wiley.

2.2. Development process

Automotive engineering uses the V-Model within all disciplines (power-
train, chassis, software, electronics, etc.). A recent survey by Bock et al. [38]
reveals 100% of the interviewee automotive developers are familiar with
this development approach. Schäuffele and Zurawka [39] explain this ap-
plication and its adaptations to automotive in detail. In recent times the
W-Development process, see Figure 2.2, is becoming more popular, as stated
in a survey by Haberl [40]. This is an explicit testing oriented extension to
the well known V-Process. Every specification stage has a corresponding
testing stage. Bock et al. [38] conducted a survey among fifteen automotive
software developers concerning their daily tools and methods usage. He
present Matlab, Matlab/Simulink and TargetLink as the most dominating
tools out of eight commonly known development products. All respondents
are familiar with the V-development process, three quads of them with
AUTomotive Open System ARchitecture (AUTOSAR).

11

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2. Field of Study - Automotive Software Development

Figure 2.2.: The W-Development process as an testing oriented enhancement from the
V-Model, originally presented by Jin-Hua et al. [21].

Following Broy et al. [31] and Bock et al. [38] the majority of automotive
software is developed using model driven or graphical programming ap-
proaches, example given Matlab Simulink [41], with automatic code genera-
tion, example given using TargetLink [42]. Acting according to this process
correlating code and model files are available during the development
stages.

In accordance with the Motor Industry Software Reliability Association
(MISRA) Software development guidelines [43], [44] there are various docu-
ments available during all stages:

• specification: functionality, timing, memory, processing time, etc.
• software architecture: modules, target ECU, schedule, etc.
• interface description: network message layout, method signature, etc.
• static code analysis reports: MISRA compliance, coverage, etc.
• code review reports: comments and suggestions
• test reports: TC pass rate, code coverage, etc.
• · · ·

These documents are quite similar to other software engineering disciplines.
A concrete workflow for software development is presented in Section 4.2.

A major difference is a rather strict development schedule containing the
following milestones:

12

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.2. Development process

• interface freeze
Where all network messages and interface (software and hardware)
definitions have to be finalized. Beyond this point there is no change
of communication messages or data-types.

• software freeze
Where all software modules have to be finished and able to be called
upon. There is no need for full functional implementation. Beyond
this point no method signature changes are allowed.

• 100% software
Where all software modules have to be implemented and be able to
pass functional tests. Succeeding this milestone only bug fixes are
allowed to be submitted.

• SOP
Where all software has to be finally tested.

Boogerd andMoonen [45] analysed a non automotive software fromNXP Semi-
conductors discovering a similar behaviour. Within the early commits the
bug rate increases where the authors conclude this is common behaviour to
implement all features in the first place and later on to fix bugs.

As outlined by Schäuffele and Zurawka [39] not all modules are developed
by the same company. Some do develop modules or components which
they deliver as linkable binary. As stated by Pretschner et al. [2] an OEM
may not even own a full Whitebox specification for third party modules.
Another company might be responsible to integrate various modules to-
gether with an Operationg System (OS) to be executed at the target ECU.
The AUTOSAR standard hosts abstraction layers and defines interface de-
scriptions for all modules to communicate or use services provided by
the OS to interact with the ECUs I/O. Figure 2.3 shows a simplified ar-
chitectural layout. Several vendors offer AUTOSAR OS and basic software
components via configurable code generators. The ECU manufacturer needs
to implement the hardware drivers, whereas the OEM or system vendor
only develops the application modules. As analysed by Dersten et al. [46]
introducing the AUTOSAR standard to automotive has been beneficial to
all software developing parties due to reduced costs on implementation
and reuse capabilities. In addition standardized interfaces and Run Time

13

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2. Field of Study - Automotive Software Development

Figure 2.3.: The AUTOSAR architecture schematic as described by [47].

Environment (RTE) enabled developers to simulation and verify their appli-
cation. The lower layer realizes access to hardware components and provides
basic functionality example given logging and diagnosis services. Figure 2.3
visualises the architecture. The AUTOSAR RTE provides interfaces similar
to an Application Programming Interface (API) and handles the data-flow.
The application layers hosts the functionality, it might contain decision
logics, controller software, etc.
As outlined by Schäuffele and Zurawka [39] the software is organized in
modules partially hosting the functionality. A module can consist of a single
or multiple software model. An application will assemble all modules and
provide the external interfaces.

Developing a car in general requires to follow guidelines and require-
ments defined by laws (worldwide, national and maybe regional), in ad-
dition there are several Norms to be considered. Figure 2.4 lists the most
common Norms. ISO/IEC 15504-2: 2003 (Automotive Software Process Im-
provement and Capability Determination (SPICE)) [48], delivers process

14

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.3. Testing process

documents, ISO 26262, ”functional safety”, [49], guides analysis of hardware
and software and is a core part of every architectural decision. Projects are
grouped into Automotive Safety Integrity Level (ASIL) QM and A to D,
representing the severity of a failure’s consequence, see equation 2.1. Sever-
ity will range between ”no injuries” and ”life threatening” caused by fatal
injuries, Exposure ranges from ”incredibly unlikely” to ”high probability”
when cases occur under normal operations, Controllability ranges between
”controllable” to ”difficult or unable to control”. A system classified as ASIL
D will cause harm to human life if it fails in which a highly likelihood
of situations occur. A visual example of such a system might be a highly
automated car leaving the road due to a software flaw and injuring its
passengers in the case of a crash. An ASIL QM functionality will cause no
harm in case of failure example given a satellite navigation system.

Risk = Severity · (Exposure · Likelihood) (2.1a)
ASIL = Severity · (Exposure · Controllability) (2.1b)

2.3. Testing process

Testing a car is a complex task guided by multiple regulations and defined
by detailed processes. Following the W-Model, see Figure 2.2, various testing
stages have been applied in recent times. Parallel to writing functional re-
quirements dedicated test engineers write test specifications. Every module
has to pass multiple tests on test benches prior to its integration assembly
in a prototype car.
These are most common the ”in the loop” tests, example given Model in the
Loop (MiL), Software in the Loop (SiL), Hardware in the Loop (HiL). These
test beds realize module tests in various integration levels. Using model
driven approaches example given a Simulink Model is the first deliverable
to be tested using MiL to pass functional tests for sub functions organized
within a single model. These model files are used to derive a generated
code which is put on a SiL test, mainly repeating functional tests to ensure
correct code generator settings. Putting all modules together and running
integration tests is the second part. A SiL will be executed as a simula-
tion running on a computer. Within this stage the interface freeze milestone

15

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.


