Sebastiaan van Putten (Autor)
Eine hybride Methode zur objektiven Beschreibung von Reifencharakteristika

https://cuvillier.de/de/shop/publications/7518

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
<td>I</td>
</tr>
<tr>
<td>Kurzfassung</td>
<td>V</td>
</tr>
<tr>
<td>Abstract</td>
<td>IX</td>
</tr>
<tr>
<td>Notation</td>
<td>XIX</td>
</tr>
<tr>
<td>1. Einführung</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Motivation</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Literaturübersicht</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Zielstellung und Struktur</td>
<td>8</td>
</tr>
<tr>
<td>2. Wissenschaftliche Grundlage</td>
<td>11</td>
</tr>
<tr>
<td>2.1. Kraftübertragung zwischen Reifen und Fahrbahn</td>
<td>13</td>
</tr>
<tr>
<td>2.1.1. Reifenaufbau und Einfluss auf die Kraftübertragung</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2. Reifenkontaktfläche und Kontaktbedingungen</td>
<td>16</td>
</tr>
<tr>
<td>2.1.3. Deformationskinematik</td>
<td>17</td>
</tr>
<tr>
<td>2.1.4. Visko-elastisches Materialverhalten und Schubspannungen</td>
<td>18</td>
</tr>
<tr>
<td>2.1.5. Mechanismen der Elastomerreibung</td>
<td>23</td>
</tr>
<tr>
<td>2.1.6. Wechselwirkung von Fahrbahnoberflächen mit der Kraftübertragung</td>
<td>27</td>
</tr>
<tr>
<td>2.1.7. Charakteristische Größen der Kraftübertragung</td>
<td>28</td>
</tr>
<tr>
<td>2.2. Fahrdynamik von Kraftfahrzeugen</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1. Langsame und stationäre Kurvenfahrt</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2. Schnelle und stationäre Kurvenfahrt</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3. Schnelle und instationäre Kurvenfahrt</td>
<td>32</td>
</tr>
<tr>
<td>2.3. Modellierungsansätze in der Fahrzeugdynamik</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1. Reifenmodelle</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2. Gesamtfahrzeugmodelle</td>
<td>35</td>
</tr>
<tr>
<td>2.4. Existierende Prüffelder zur Beschreibung von Systemeigenschaften</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1. Übersicht und Eigenschaften der Prüffelder für Reifen</td>
<td>36</td>
</tr>
<tr>
<td>2.4.2. Prüffelder für Radführungen</td>
<td>39</td>
</tr>
<tr>
<td>2.4.3. Gesamtfahrzeugprüfstände</td>
<td>39</td>
</tr>
<tr>
<td>2.5. Diskussion</td>
<td>39</td>
</tr>
<tr>
<td>2.6. Zusammenfassung</td>
<td>40</td>
</tr>
<tr>
<td>3. Hybride Identifikationsmethode für Reifencharakteristika</td>
<td>43</td>
</tr>
<tr>
<td>3.1. Definition von zu untersuchenden Gesamtfahrzeugkenngrößen</td>
<td>45</td>
</tr>
<tr>
<td>3.2. Definition von Reifenbetriebsbedingungen im Gesamtfahrzeugversuch</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1. Bestimmung der Radstellung</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2. Bestimmung von Kräften und Momenten</td>
<td>51</td>
</tr>
<tr>
<td>3.2.3. Bestimmung der Reifentemperatur</td>
<td>53</td>
</tr>
<tr>
<td>3.2.4. Ableitung von Betriebsbedingungen</td>
<td>53</td>
</tr>
<tr>
<td>3.3. Klasseifikation von Reifencharakteristika</td>
<td>56</td>
</tr>
<tr>
<td>3.3.1. Definition und Eigenschaften von Strukturgrößen</td>
<td>57</td>
</tr>
<tr>
<td>3.3.2. Definition und Eigenschaften von Reibgrößen</td>
<td>57</td>
</tr>
<tr>
<td>3.4. Gesamtübersicht der Methode</td>
<td>58</td>
</tr>
<tr>
<td>3.5. Diskussion der Identifikation von Reifencharakteristika direkt am Fahrzeug</td>
<td>59</td>
</tr>
<tr>
<td>3.5.1. Aspekte bezogen auf die Reifenkonditionierung</td>
<td>59</td>
</tr>
<tr>
<td>3.5.2. Aspekte bezogen auf die Vollständigkeit der Eigenschaftsidentifikation</td>
<td>60</td>
</tr>
<tr>
<td>3.5.3. Prozessuale Aspekte</td>
<td>60</td>
</tr>
<tr>
<td>3.5.4. Auswahl des meist geeigneten Ansatzes</td>
<td>61</td>
</tr>
<tr>
<td>3.6. Zusammenfassung</td>
<td>61</td>
</tr>
</tbody>
</table>

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.
4. Beschreibung von Strukturgrößen

4.1. Beschreibung der Kraftübertragung von Reifen im Haftzustand	66
4.1.1. Die Umfangschlupfsteifigkeit	66
4.1.2. Die Schräglauflaufsteifigkeit und Rückstellsteifigkeit	69
4.2. Beschreibung der instationären Kraftübertragung	76
4.2.1. Transientes longitudinales Verhalten und longitudinale Einlauflänge	77
4.2.2. Transientes laterales Verhalten und laterale Einlauflänge	82
4.3. Prüfmethode für Strukturgrößen	84
4.3.1. Prozedur zur Reifenkonditionierung	84
4.3.2. Methode zur Identifikation von longitudinalen Strukturgrößen	86
4.3.3. Methode zur Identifikation von lateralen Strukturgrößen	86
4.3.4. Auswahl eines geeigneten Prüfstandes für Strukturgrößen	91
4.4. Präzision der Prüfmethode für Strukturgrößen	93
4.5. Experimentelle Analyse von Sensitivitäten und Randbedingungen	93
4.5.1. Einfluss der Abrollgeschwindigkeit auf Strukturgrößen	93
4.5.2. Einfluss der Reifentemperatur auf Strukturgrößen	96
4.5.3. Einfluss des Reifeninnendrucks auf Strukturgrößen	97
4.5.4. Einfluss der Felgenmaulweite auf Strukturgrößen	99
4.5.5. Einfluss des Sturzwinkels auf Strukturgrößen	99
4.6. Diskussion	101
4.7. Zusammenfassung	103

5. Beschreibung von Reibgrößen

5.1. Isotrope Beschreibung der Elastomerreibung	107
5.1.1. Beschreibung der Abhängigkeit von der Reifentemperatur	108
5.1.2. Beschreibung der Abhängigkeit von der Gleitgeschwindigkeit	109
5.1.3. Reibungsgesetz	109
5.2. Beschreibung der Kraftübertragung im partiellen Haft- und Gleitbereich	110
5.2.1. Der longitudinalen Grenzbereich und bezogene Reibungskoeffizient	111
5.2.2. Der laterale Grenzbereich und bezogene Reibungskoeffizient	116
5.3. Prüfmethode für Reibgrößen	118
5.3.1. Methode zur Identifikation von longitudinalen Reibgrößen	119
5.3.2. Methode zur Identifikation von lateralen Reibgrößen	120
5.3.3. Auswahl eines geeigneten Prüfstandes für Reibgrößen	120
5.4. Präzision der Prüfmethode für Reibgrößen	122
5.5. Experimentelle Analyse von Sensitivitäten und Randbedingungen	124
5.5.1. Beobachtete Stick-Slip-Schwingungen	125
5.5.2. Einfluss der Beschaffenheit der Fahrbahnoberfläche auf Reibgrößen	126
5.5.3. Einfluss von Zwischenmedien auf Reibgrößen	129
5.6. Diskussion	135
5.7. Zusammenfassung	136

6. Eigenschaftsynthese mittels mechanisch-analytischer Modellierung

6.1. Modellaufbau und Parameterraum	141
6.2. Parameteridentifikation des mechanisch-analytischen Modells	142
6.2.1. Approximation der Dimension der makroskopischen Kontaktfläche	144
6.2.2. Identifikation von strukturbezogenen Parametern	145
6.2.3. Identifikation von reibungsbezogenen Parametern	147
6.3. Gegenüberstellung synthetisierter Ergebnisse	149
6.3.1. Virtuelle Messdaten und Parameteridentifikation	152
6.4. Diskussion	152
6.5. Zusammenfassung	155
7. Validierung der Methode am Gesamtfahrzeug 157
 7.1. Gesamtfahrzeugmodellierung und Parameteridentifikation 160
 7.1.1. Validierung des Gesamtfahrzeugmodells 162
 7.2. Gegenüberstellung von gemessenen und gerechneten Fahrzeugkenngrößen 162
 7.2.1. Auswertung und Konfidenzintervall von Fahrzeugmessungen 162
 7.3. Validierung von longitudinalen Kenngrößen 164
 7.4. Validierung von stationären lateralen Kenngrößen 167
 7.4.1. Maximale Lateralbeschleunigung 167
 7.4.2. Lenkradwinkelgradient im Linearbereich 167
 7.4.3. Lenkradwinkelgradient im Grenzbereich 170
 7.4.4. Schwimmwinkelgradient im Linearbereich 170
 7.4.5. Schwimmwinkelgradient im Grenzbereich 170
 7.5. Validierung von instationären lateralen Kenngrößen 170
 7.5.1. Validierung der Eigenfrequenz der Giergeschwindigkeit 172
 7.5.2. Validierung der Verstärkung der Giergeschwindigkeit 172
 7.6. Diskussion .. 174
 7.7. Zusammenfassung .. 175

8. Schlussbetrachtung 177
 8.1. Handlungsempfehlungen ... 181

Literaturverzeichnis 183

A. Transientes Verhalten bei dynamischer Vertikalkraftanregung 207

B. Weitere Darstellungen der Schubspannung in der Kontaktfläche bei lateraler Beanspruchung 211

C. Darstellung des bezogenen lateralen Reibungskoeffizienten 215