

Abkürzungen4			
Formelzeichen 5			
1	Einleitung	9	
1.1	Zieldefinition	9	
1.2	Stand der Technik	11	
1.3	Aufgabenstellung	14	
1.4	Gliederung der Arbeit	15	
2	Grundlagen	16	
2.1	Schwingkreise	16	
2.2	Phasenrauschen	17	
2.3	Vierpoloszillatoren	17	
2.4	Grundlegende Verfahren zur nichtlinearen Schaltungsanalyse	19	
2.4.1	Zeitbereichsintegration (TDI)	20	
2.4.2	Harmonische Balance (HB)	21	
2.5	Der verwendete GaN-HEMT	22	
2.5.1	Großsignalmodell	25	
2.5.2	Relevante Transistoreigenschaften auf Grundlage des Großsignalmodells	26	
3	Der kreuzgekoppelte Oszillator	30	
3.1	Frequenzabhängigkeit der Leistungsausbeute	30	
3.2	Phasenrauschen	39	
3.3	Schlussfolgerungen	40	
4	Der modifizierte, kreuzgekoppelte Leistungsoszillator	41	
4.1	Das phasenkorrigierte Rückkoppelnetzwerk	41	
4.1.1	Struktur	41	
4.1.2	Entwurfsstrategie und Dimensionierungsalgorithmus	42	
4.2	Synthese des Netzwerks zur Impedanzanpassung am Oszillatorausgang	56	
4.2.1	Einfache Transformationsleitung	56	
4.2.2	Transformationsleitung mit kapazitivem Spannungsteiler	59	
4.3	Praktischer Entwurf	60	
4.3.1	Prototyp 1	60	
4.3.2	Prototyp 2	65	

5	Elektronische Frequenzsteuerung	76
5.1	Wichtige Varaktorkenngrößen	76
5.2	Anforderungen an Varaktoren für die Frequenzsteuerung in Leistungsoszillatoren	77
5.2.1	Die Durchbruchspannung	77
5.2.2	Schaltungsstruktur und effektive Kapazität	78
5.2.3	Die effektive Varaktorgüte	82
5.3	Prototyp 3	86
6	Die modulare Matrixplasmaquelle QUADRIGA	95
6.1	Auswahl des Resonators	95
6.2	Aufbaukonzept des Plasmaquellenmoduls	96
6.2.1	Funktionsprinzip des idealen Doppel-ICP-Resonators	97
6.2.2	Nichtlinearität und Modenverhalten des Plasmas im Doppel-ICP-Resonator	98
6.2.3	Oszillator	.00
6.2.4	Richtkopplerplatine (RKP)1	.01
6.2.5	Wechselwirkung zwischen Leistungsoszillator und Resonatoren	.02
6.2.6	Modulaufbau	.06
6.3	Aufbaukonzept einer vierfach Matrixquelle1	.07
6.4	PEALD-Prozessergebnisse	.08
6.4.1	Analyse der Abscheidungen einer Einzelquelle1	.08
6.4.2	Analyse der Abscheidungen einer Vierfach-Matrixquelle1	.09
7	Zusammenfassung und Ausblick1	.10
Literatu	r1	.13
Anhang117		