
1 | Introduction

Inaccuracies are omnipresent in our every day life ranging from our daily language to
sketchy decision criteria to errors of measurement. Already Oskar Morgenstern2 pointed
out that all economic decisions are characterized by the fact that both quantitative
and non-quantitative information influence the act of decision-making (cf. Morgenstern
1965, p. 1). Even emotions and mainly intuition can be of central importance in the
process (cf. Holtfort 2011, p. 507).

Intuition can be regarded in different ways, one of which is considering it as knowledge
gained by experience. Players knowingly and unknowingly gather information and keep
them in mind. That is why they make decisions “from the gut” instead of employing a
process of weighing up different alternatives (cf. Holtfort 2011, p. 508). Also economic
theory deals with contents which are e.g. obtained from personal experiences or other
“non-constructional” ways (cf. Morgenstern 1965, p. 88). Hence, subjective judgment
can be an important factor.

Another matter that needs to be raised concerning impreciseness are linguistic inaccura-
cies which are present in our daily language. People speak of something being “likely” or
“unlikely”, that a “large” claim occurred, that an event will happen in the “near” future,
etc. Usually, the terms are not precisely mathematically described and implemented in
the decision-making process or mathematical models but remain vague.

An actuary at an insurance company is faced with similar situations. On the one hand,
his/her calculations and the underlying models need to be as precise as possible and
should correspond to the given data whether it is in the field of pricing, claims reserving,
product controlling or other. At the same time, he/she should form an opinion or
assessment to what extent his/her calculations express a realistic view of (future) reality.
2Oskar Morgenstern, ∗ 1902, † 1977, was an Austrian-US-American economist.
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2 1 Introduction

Adjustments due to personal opinions are necessary or common in various situations:
Circumstances are thinkable in which the given data is not sufficient or does not reflect
a realistic view. Whether the derived consequences are too optimistic or pessimistic –
in comparison to personal experience – adjustments in one or the other direction are
possible.
Moreover, personal assessment can be found in the context of risk classification. “De-
termining the significant factors [...] however, may involve some subjective judgment”
(cf. Outreville 1988, p. 150). Risks are often clustered in risk classes. If a risk can
be seen as part of one class or another, an actuary will decide to which class the risk
belongs. The presence of subjective judgment can also be seen in connection to pricing
within the use of expert systems e.g. when historical data and/or information is not
available (cf. Culp 2006, p. 164). In claims reserving subjective judgment is also present
when estimating loss reserves on a single case basis (cf. Lemaire 1988, p. 396). In this
particular case, actuaries often do not employ mathematical models but set up reserves
according to the information they have at hand as well as their personal opinion and
experience.

In practice, the actuary tends to adjust particular data (or parts of it) solely based on
his/her intuition. This also applies in the field of claims reserving on which the present
work will focus. This subdiscipline of insurance mathematics provides (stochastic)
methods which are methodically advanced and diverse. The literature on claims
reserving deals with various models which differ in a lot of facets: whether they are
purely computational or make use of a stochastic framework, employ credibility theory
or the Kalman filter, refer to paid or incurred data, etc. In addition, regulatory
frameworks set more legal requirements in order to determine the reserve.

Nevertheless, the methods presented in the literature do not generally comprise a
formalized approach to consider these subjective judgments. From a methodological
point of view, the theory of fuzzy set seems to be appropriate. Fuzzy sets represent
an approach to describe vagueness and imprecision. Particularly, it aims to depict
limitations on knowledge and inaccuracies in context with numerical descriptions
of problems. Thereby, it emanates from subjective judgments and not from global
assumptions. Since its introduction in the seminal paper of Lotfi A. Zadeh (cf. Zadeh
1965) it underwent a continuous further development. It provides means to compute
with vague expressions and a whole “computing tool box” has been developed. It took
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years till the theory found its way into claims reserving.

In view of the above, the present work pursues two main goals. On the one hand, it
aims to give an overview of existing methodical approaches for depicting subjective
judgment in claims reserving. In this context, all necessary basics of the two branches of
research, i.e. claims reserving and fuzzy set theory, are summarized. On the other hand,
the present work will show in what way subjective judgment can be implemented in the
two most popular claims reserving methods, i.e. the chain-ladder (CL) (cf. Section 4.3)
and the Bornhuetter Ferguson (BF) (cf. Section 4.4) method. Therefore, three new
approaches – two based on CL and one based on BF – are developed in the scope of
this dissertation.

As already mentioned, subjective judgment can arise in the field of claims reserving. This
is addressed in Chapter 5 of which an earlier version has been published in Insurance:
Mathematics & Economics (cf. Heberle and Thomas 2016). The fundamental idea of the
fuzzy chain-ladder (FCL) model is to model the observation that actuaries might adjust
previously calculated development factors according to their subjective judgment in
the context of the CL method using fuzzy numbers and their corresponding arithmetic.
To the best of our knowledge, the CL method has not been the center of studies within
fuzzy applications in spite of its popularity. The method aims to model the development
factors with the help of triangular shaped fuzzy numbers with equal spreads as they
are easy to implement. Moreover, the derived reserve has been fuzzy as well in earlier
models, i.e. not a specific value has been derived but a range of possible values. Since a
reserve is a figure in the balance sheet of an insurance company it needs to be specified
as a crisp number. Therefore, our method will apply a defuzzification method and also
will make an attempt to quantify the uncertainty of the prediction.

This idea shall be further pursued in the second approach (see Chapter 6) by applying
a fuzzy regression method which assumes a functional relation described with fuzzy
coefficients to the CL method in its linear model representation. In fact, a regression
“tube” will be derived in which all data points lie. Methods of fuzzy regression partially
provide possibilities to subjectively assess the scattering of the data around the regression
line which describes a functional relationship. This fact shall be additionally taken into
consideration, such that actuaries can subjectively assess the informative value of the

about 20 years until the first applications in insurance were discussed and another 20
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4 1 Introduction

depending on the data – in this model compared to the FCL model.

An additional idea is pursued in the third approach (see Chapter 7): The considered BF
method utilizes a priori information which is given either by an external source (market
statistics, expert knowledge, organizational data, etc.) or internally. In case a priori
information is available the BF method is a popular alternative to the CL method.
Depending on its origin the information can be afflicted with vagueness. The fuzzy
Bornhuetter Ferguson (FBF) model aims to map this with the help of fuzzy numbers.
Development factors as well as the a priori information shall be modeled with fuzzy
numbers. Again, the goal is to derive predictions for the reserves.

The structure of the work is as follows: Subsequent to the general introduction the
theory of fuzzy sets is introduced in Chapter 2. The basic concepts are presented and
all necessary theory for the later chapters is provided. Moreover, a distinction between
the theory of fuzzy sets and probability theory is drawn. The comparison is followed
by a literature survey of applications of fuzzy methods in insurance in Chapter 3. It
is classified by the field of application: underwriting, risk classification, pricing and
claims reserving. The latter point is only mentioned briefly since it is discussed in
detail in Chapter 4. Here the problem of claims reserving as well as an overview of
reserving methods is addressed. Subsequently, the FCL method which makes use of
fuzzy numbers and their corresponding arithmetic is presented in Chapter 5. The model
is motivated and examined followed by a numerical example. As a further utilization
a model of fuzzy regression is applied to the CL method in Chapter 6, in particular
the representation as a sequence of linear models. The description of the methodology
is followed by an example for which the same data base as before is used in order to
draw a comparison. The FBF method is introduced in Chapter 7 and additionally
takes into account a priori information. Within this model framework reserves and
their corresponding uncertainty are deduced. A short summary is given and questions
for further research are raised in Chapter 8.

data. For this approach we will model the fuzzy coefficients with triangular shaped
fuzzy numbers of different spreads. The aim is to reduce the prediction uncertainty –
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In reality we often face situations in which we cannot decide precisely whether an
object belongs to a certain class or not. We might consider classes like “all tall men” or
“all damages much higher than 10,000 e”. In these cases it is not always possible to
distinguish between objects which are members of those classes and those which are
not. A class like e.g. “all good students” is not a set in the mathematical sense as the
word “good” is not described in a mathematically precise manner. A first approach to
even consider those sets has been introduced by Zadeh (cf. Zadeh 1965).
The aim of this chapter is to give an introduction to the theory of fuzzy sets, fuzzy
numbers and fuzzy regression. Firstly, we give a motivation for the introduction of
this theory and outline the historic development in Section 2.1.1. Subsequently, a
presentation of fuzzy sets according to Zadeh is given. In Section 2.2 fuzzy numbers as
a special case of fuzzy sets are introduced and the corresponding arithmetic is defined.
Finally, the basic concepts of fuzzy regression are presented in Section 2.3.

2.1 Fuzzy Sets

2.1.1 Historical Development

For a long time the scholars in philosophy taught that logic is a two-valued science.
Therefore a proposition or statement is either e.g. “true” or “false”, “0” or “1”. Aristotle
(384 BC – 322 BC), a student of Plato, was one of the founders of this school. Aristotle’s
law of non-contradiction, the second law of “The Three Laws of Thought”, states that
a proposition cannot be true and false at the same time. Additionally, his law of
the excluded middle says that an object either possesses an attribute or its opposite.
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6 2 Fuzzy Theory

Aristotle forbids that a proposition “in the middle” holds true, i.e. that an object only
possesses an attribute to a certain extent (cf. Eberhart and Shi 2011, p. 284).

Scientists at the beginning of the twentieth century began to argue that not everything
is two-valued. In mathematics a theory is developed for “perfect” objects. If objects
fulfill these assumptions the proposition holds true, otherwise not. As objects in reality
usually are not “perfect”, the mathematical findings are – strictly speaking – not
applicable. Therefore, Black proposes to introduce a symbolism for vagueness, i.e. for
the case if requirements are not completely fulfilled (cf. Black 1937, pp. 427-429).

In one of his lectures Bertrand Russell pursues a similar idea. “I propose that all
language is vague and that therefore my language is vague” (cf. Russell 1923, p. 84).
Language is often a source of problems in modeling. As an example the following
situation could be considered: If a person tells his friend to be at his house shortly after
five p.m., this can be perceived by his friend in another way than it was actually meant.
In one understanding this might be the time interval from 5:00 to 5:10 p.m. whereas
another person could be of the opinion that this is the time interval from 5:00 to 5:15
p.m. In order to cope with the problem of imprecise language Black proposed the use
of so-called consistency-profiles to picture this vagueness (cf. Black 1937, pp. 430ff.).

A first idea of a set theory which allows for a multi-valued logic came up from Menger.
His ensembles flous are the French counterpart to fuzzy sets (cf. Menger 1951). In fact,
the work of Lotfi A. Zadeh laid the foundation of the further research on fuzzy sets
(cf. Zadeh 1965) and his theory is closer to the idea of Black’s consistency-profiles (cf.
Dubois and Prade 1980, p. 4).

After the publication of Zadeh’s pioneer article a fast development in research took place.
A survey about the early works can be found in Kaufmann (1975). For further literature
see e.g. Dubois and Prade (1980), Bandemer and Gottwald (1993), Zimmermann (2001)
or Dubois and Prade (2000). Nonetheless, the reactions to Zadeh’s publication were
divided. While the responses in the United States were quite cautious or there were harsh
critics3, scientists and technicians in Europe and Japan jumped onto the bandwagon.
The use of fuzzy logic succeeded in Europe for the first time with the regulation of a
steam raising unit in a power plant (cf. Altrock 1995, p. 7). Further applications in
Japan were the regulation of a metro in which fuzzy technologies allowed for smooth
3For a collection of citations of critics see e.g. Altrock (1995, p. 7) and Dubois and Prade (2000, p. 3).
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2.1 Fuzzy Sets 7

driveaways and slowdowns as well as implementations in camcorders, microwaves and
washing machines (cf. Altrock 1995, pp. 8f.).

2.1.2 Basic Notations

The representation in this section basically relies on Bandemer and Gottwald (1993),
Dubois and Prade (1980), Kruse et al. (1995) and Zimmermann (2001).
According to Cantor (1895) a set is “any collection M into a whole of definite, distinct
objects m (which are called the “elements” of M) of our perception or of our thought”
(cf. Cantor 1895, p. 481). In the following we will speak of a crisp set whenever we
consider a set in the sense of Cantor. There are several ways to mathematically describe
a set. Either every single element is listed or (for readability) the set is denoted with
the help of descriptive characteristic traits, or the set is described with an indicator
function (cf. Merz and Wüthrich 2013b, pp. 32ff.). As the objects are distinguishable
in the case of crisp sets it is always possible to define an indicator function. Let Ω be a
basic set and A a subset of Ω, i.e. A ⊂ Ω. The function

1A : Ω −→ {0, 1}, ω �→
⎧⎪⎪⎨
⎪⎪⎩
1 if ω ∈ A

0 if ω /∈ A

is called indicator function (or characteristic function) of A.

As stated before, there are linguistic inaccuracies in our everyday life as well as in
business or scientific contexts. Indicator functions do not allow for gradual memberships
to a certain set. In order to cope with that impreciseness Zadeh has defined the concept
of fuzzy sets according to which we can specify the grade of membership for all elements
x ∈ X to a fuzzy set Ã (cf. Zadeh 1965, p. 339). The idea was to enlarge the image set
of a characteristic function and to permit grades of membership in the interval [0, 1].

Definition 2.1 (Fuzzy set)
Let X �= ∅ be a collection of objects. A fuzzy set Ã in X is defined by

Ã =
{
(x, μÃ(x)) | x ∈ X

}
.

where μÃ : X −→ [0, 1] is called membership function. We refer to μÃ(x) as the
grade of membership of an element x in X with respect to Ã. Furthermore, we
consider FP(X) as the fuzzy power set of X, i.e. the set of all fuzzy sets in X.
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8 2 Fuzzy Theory

The membership function μ specifies to which extent an element belongs to a fuzzy
set Ã. Consequently, the closer the grade of membership to one, the higher the grade
of membership of x in Ã. Usually, those elements are assigned grade of membership
of one which definitely belong to a set. The membership function is not necessarily
bounded by zero and one. Nevertheless, it is a preferable setting. In fact, a fuzzy set is
defined by its membership function.

An example of a membership function is shown in Figure 2.1. Dubois and Prade (1980)
even refer to this kind of representation as extended Venn diagram. A classical Venn
diagram cannot be drawn for fuzzy sets but an extended form can be used to visually
verify set theoretic operations (cf. Dubois and Prade 1980, p. 14).

μÃ(x)

X

1

Figure 2.1: An example of a membership function of a fuzzy set Ã.

One criticism to fuzzy set theory often is the assignment of the grades of membership.
In fact, they do not exist but are assigned to elements by an individual or a group.
Therefore, it is a subjective assignment. There even might be fields of interest in which
the mapping might be more controversial than in others. E.g. there might be more
consensus in the field of “age” than in “smartness”.

Remarks 2.2
a) The use of the interval [0, 1] as the image set of the membership function allows

for a convenient interpretation of the grade of membership.
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2.1 Fuzzy Sets 9

b) Definition 2.1 ensures that every crisp set A ∈ P(X), where P(X) denotes the
power set of X, can be considered as a fuzzy set since {0, 1} ⊆ [0, 1].

c) Even though the membership function might be seen as a fuzzy analogon to
a density function in probability theory there are remarkable differences which
support that those two concepts should not be mixed up. Normally, the area
enclosed by the membership function and the abscissae, i.e. the axis referring to
the elements of the basic set X, is not necessarily one. The interpretation differs
as the value of a membership function μÃ(x) expresses the grade of membership
of a certain element x to a fuzzy set Ã. In contrast, a density function specifies
probabilities of subsets of a basic set Ω where (Ω,A, P ) is a probability space.

The difference between a crisp and a fuzzy set is also visualized in Figure 2.2. While it is
easy to verify whether an element x ∈ X belongs to the crisp set C ⊂ X in Figure 2.2a
an element x of a fuzzy set Ã cannot be identified clearly in all cases in Figure 2.2b.
The lighter the color in Figure 2.2b, the lower is the grade of membership. This comes
along with Zadeh’s interpretation who pointed out that fuzziness stands for diffuse, i.e.
fuzzy, boundaries (cf. Kruse et al. 1995, p. vi).

X

C

(a) A crisp set C ∈ P(X).
X

Ã

(b) A fuzzy set Ã ∈ FP(X).

Figure 2.2: Illustration of a crisp and a fuzzy subset of a basic set X.

In the following some characteristics of fuzzy sets are presented in order to describe
them.
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10 2 Fuzzy Theory

Definition 2.3 (Height of a fuzzy set)
Let Ã be a fuzzy set. We call

hgt(Ã) := sup
x∈X

μÃ(x)

height of a fuzzy set Ã.

Definition 2.3 states that the height of a fuzzy set Ã specifies the least upper bound of
the membership function μÃ. Consequently, it indicates the largest grade of membership
of a fuzzy set. If the height is one, normal fuzzy sets are being considered which are
defined in the following Definition 2.4.

Definition 2.4 (Normal fuzzy set and core)
Let Ã be a fuzzy set. Ã is called normal if hgt(Ã) = 1. Moreover, the crisp set of
elements having a degree of membership of one is refered to as the core of Ã, i.e.
core(Ã) = {x ∈ X | μÃ(x) = 1}.
Remarks 2.5

a) Fuzzy sets Ã of which the basic set is nonempty with a height strictly between
zero and one, i.e. 0 < hgt(Ã) < 1, are called unnormal.

b) A nonempty fuzzy set Ã can always be normalized by division of μÃ(x) by
supx∈X μÃ(x) for all x ∈ X.

c) Definition 2.4 states that a fuzzy set Ã is normal if the core is nonempty.

For convenience sake we will always consider normal fuzzy sets if not explicitly stated
otherwise. Referring to Definition 2.1, the concept of fuzzy sets and its associated
membership function is a generalization of a set and its indicator function in the
classical sense (cf. Zimmermann 2001, p. 14). While considering fuzzy sets it is possible
that a set also comprises elements with grade of membership zero. Consequently, one
is interested in those elements with a grade of membership unequal to zero.

Definition 2.6 (Support of a fuzzy set)
Let Ã be a fuzzy set. The crisp set

supp(Ã) := {x ∈ X | μÃ(x) > 0}
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2.1 Fuzzy Sets 11

is called support of Ã.

This issue can be generalized by the concept of an α-level set. So far only a representation
with the help of a membership function has been considered. There exists an alternative
representation via α-level sets, α ∈ R. We consider X = R. Then, they denote unions
of intervals [a, b] ⊆ X in which the elements are assigned a grade of membership of at
least α. This issue is sometimes referred to as horizontal representation of a fuzzy set
(cf. Kruse et al. 1995, p. 16).4 As we are mostly considering fuzzy sets on the basic set
X = R we are restricting ourselves to that case if not explicitly stated otherwise.

Definition 2.7 (α-level set)
Let Ã be a fuzzy set and α ∈ [0, 1]. The set

Ãα := {x ∈ X | μÃ(x) ≥ α}

is called α-level set or α-level (cut). The set Ã′
α := {x ∈ X | μÃ(x) > α} is called

strong α-level set or strong α-level (cut).

The concept of an strong α-level set and support of a fuzzy set is visualized in Figure 2.3.
All elements x ∈ X having a membership grade exceeding the threshold α belong to the
strong α-level set. A strong α-level set is a subset of the support where for a choice of
α = 0 the support is given, i.e. Ã′

0 = supp(Ã). In fact, this concept allows us to form a
family of crisp sets out of a fuzzy set if we build an α-level set for every α ∈ [0, 1]. The
notation α-level cut yields from the fact that the prescription for composing α-level
sets divides up an originally fuzzy set into several crisp sets.

Moreover, every fuzzy set can be characterized by its α-cuts due to the following
Proposition 2.8.

Proposition 2.8
Let Ã be a fuzzy set over a basic set X and μÃ denotes the corresponding membership
function. We then have

μÃ(x) = sup
α∈[0,1]

{
min

(
α,1Ãα

(x)
)}

.

4Kruse et al. denote the representation via membership functions analogously as vertical representa-
tion.
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12 2 Fuzzy Theory

μÃ(x)

X

α

Strong α-level set

support supp(Ã)

Figure 2.3: Strong α-level set Ã′
α and support supp(Ã) of a fuzzy set Ã.

Proof. Let x ∈ X and α ∈ [0, 1]. It holds

min
(
α,1Ãα

(x)
)

=

⎧⎪⎪⎨
⎪⎪⎩

α if x ∈ Ãα ⇔ μÃ(x) ≥ α

0 if x /∈ Ãα ⇔ μÃ(x) < α
.

We yield

μÃ(x) = sup{α | α ≤ μÃ(x)}
= sup

α∈[0,1]

{
min

(
α,1Ãα

(x)
)}

.

Another important concept in the theory of fuzzy sets is convexity. In crisp set theory
convexity is defined with the help of the support whereas fuzzy set theory makes use of
the membership function. This definition will be of use later on in order to define fuzzy
numbers.

Definition 2.9 (Convex fuzzy set)
Let Ã be a fuzzy set. A fuzzy set Ã is called convex if

μÃ(λx1 + (1 − λ)x2) ≥ min(μÃ(x1), μÃ(x2)), x1, x2 ∈ X, λ ∈ [0, 1].
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2.1 Fuzzy Sets 13

Remark 2.10
We also speak of a convex fuzzy set if all α-level sets are convex (cf. Zimmermann
2001, p. 15). As α-level sets are crisp sets here the definition of convexity for crisp sets
applies.

An illustration of a convex and a non-convex fuzzy set is given in Figure 2.4. In plain
English a fuzzy set is convex if the graph of its membership function does not possess
any “valleys”.

μÃ(x)

X

(a) A convex fuzzy set Ã.

μB̃(x)

x

(b) A non-convex fuzzy set B̃.

Figure 2.4: Convex and non-convex fuzzy sets

Like for crisp sets set operations can be also defined for fuzzy sets. Generally they are
stated as defined in Definition 2.11 (cf. Zimmermann 2001, pp. 16ff.).

Definition 2.11
Let Ã and B̃ be fuzzy sets and μÃ and μB̃ denote their corresponding membership
functions. We then define the following:

a) Two fuzzy sets Ã and B̃ are said to be equal if

μÃ(x) = μB̃(x) for all x ∈ X.

b) The membership function μÃ∩B̃ of the intersection Ã ∩ B̃ is defined for every
x ∈ X by

μÃ∩B̃(x) := min{μÃ(x), μB̃(x)}.
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14 2 Fuzzy Theory

c) The membership function μÃ∪B̃ of the union Ã ∪ B̃ is defined for every x ∈ X by

μÃ∪B̃(x) := max{μÃ(x), μB̃(x)}.

d) The membership function μÃC of the complement ÃC of a normalized fuzzy set Ã

for every x ∈ X is defined by

μÃC(x) = 1 − μÃ(x).

Remark 2.12
The definition of the membership function of the union and intersection is not intuitively
at first hand. Bellman and Giertz came up with a justification for the definition with
the help of the min- and max-operators (cf. Bellman and Giertz 1973).

2.1.3 The Extension Principle

The aim of this section is to present one of the most applied propositions in fuzzy set
theory, the extension principle, which was firstly stated by Zadeh in a rather simple
form (cf. Zadeh 1965, p. 346). The form which is used nowadays has been firstly shown
in Zadeh (1975a,b,c).

The objective has been to transfer familiar operations like e.g. addition and multiplica-
tion to fuzzy sets. These will be used in Section 2.2. The definition will be stated in
the sense of a generalization. Therefore, it is intended that the well-known operations
are equivalent in the case of crisp sets. With the help of Definition 2.13 we can allow
for fuzzy sets in a mapping instead of crisp elements.
We follow the presentations by Hanss (2005, pp. 44f.) and Zimmermann (2001, pp. 55f.).

Definition and Proposition 2.13 (Extension principle)
Let X1, . . . , Xn, X be non-empty sets and

f : X1 × . . . × Xn −→ X

be a mapping. Let Ã1 ∈ FP(X1), . . . Ãn ∈ FP(Xn) be fuzzy sets with corresponding
membership functions
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2.1 Fuzzy Sets 15

μÃ1
: X1 −→ [0, 1], . . . , μÃn

: Xn −→ [0, 1].

We yield the membership function μf(Ã1,...,Ãn) : X −→ [0, 1] of a fuzzy set
f(Ã1, . . . , Ãn) ∈ FP(X) by

μf(Ã1,...,Ãn)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
x=f(x1,...,xn)

min
(
μÃ1

(x1), . . . , μÃn
(xn)

)
if there exist x1, . . . , xn

with x=f(x1, . . . , xn)

0 otherwise

(2.1)

and therefore a mapping

f̃ : FP(X1) × . . . × FP(Xn) −→ FP(X).

We say that f : X1 × . . . × Xn −→ X has been extended to f̃ : FP(X1) × . . . ×
FP(Xn) −→ FP(X) by means of the extension principle.

Remarks 2.14
a) Every n-tuple (x1, . . . , xn) ∈ X1 × . . . × Xn is mapped to an element x ∈ X

via the mapping f . First, the minimal grades of membership are determined
component-wise. Then, the supremum of these grades of membership is taken as
the grade of membership of the element x to the fuzzy set f(Ã1, . . . , Ãn).

b) If there exist no inverse images in (2.1) we use the common convention that
sup ∅ = 0.

2.1.4 Relationship between Probability Theory and Fuzzy Set
Theory

This section aims to highlight the differences between classical probability theory and
fuzzy set theory. The prevailing discussion exists since the emergence of fuzzy set
theory with the seminal paper of Lotfi A. Zadeh in 1965 (cf. Zadeh 1965). In the course
of controversial discussions about the differences and similarities Kosko wonders: “Is
uncertainty the same as randomness? If we are not sure about something, is it only up
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