
1

1 Introduction

Within the past decades, computational fluid dynamics (CFD) has been well estab-
lished as a design and analysis tool for many technical applications beside theoretical
considerations and numerical experiments. To categorize the different numerical
schemes, one key parameter is the order k of the underlying method. Given a charac-
teristic mesh size h, then the error e of a numerical method of order k is proportional
to hk. In 2007, a survey within the CFD community led to the conclusion that the
term ’high-order’ is widely accepted and implicates methods of order k ≥ 3 (Wang
et al., 2013a). It is not surprising that this survey gives this unanimous result, since the
current state of the art methods in industry are still the finite volume method (FVM)
and the finite element method (FEM) of second order.

Nowadays, engineering accuracy is assumed to have a relative error between 5% and
10%, see for example Karniadakis and Sherwin (2005), Wang et al. (2013a). Yet, these
demands on accuracy can yield problematic scenarios when an error in engineering
accuracy for one variable leads to a much higher error in another variable. In short,
the demands to accuracy in CFD are growing and low order methods are not suited to
satisfy them for many problems (Wang et al., 2013a).

High order methods are appealing due to the low dissipation and low dispersion
capabilities. Further, they can reach the same accuracy with less degrees of freedom
(DOF) compared to low order methods. In other words, with the same number of
DOF high-order methods can achieve higher accuracy. A prominent example of the
class of high-order methods is the discontinuous Galerkin (DG) method, which is
composed of cell-wise independent, discontinuous interpolations. It can bee seen as a
mix between FVM and FEM and allows to obtain arbitrary high-order convergence
rates on structured and unstructured grids.

In the past years, much effort has been devoted to drive the development of high-order
methods even to industrial applications, for example ADIGMA (Kroll et al., 2010)
and the follow-on project IDIHOM (Kroll et al., 2015a) or workshops on high-order
CFD methods (Wang et al., 2013a). The reported results demonstrated that high-order
methods outperform well established low order methods for a variety of external and
internal compressible flows, see for example Beck et al. (2014), Renac et al. (2015) and
de Wiart and Hillewaert (2015). Further, first attempts are made by Fechter and Munz
(2015) to also use high-order methods for the simulation of compressible multiphase
problems. However, there are still numerous unsolved problems in context of high-
order methods, for example efficient time integration algorithms. Whereas explicit
time integrators are inefficient on highly anisotropic grids due to the severe time step
restriction, implicit solvers suffer from memory bottlenecks and inefficient routines on
parallel computers.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2 Introduction

The majority of the above mentioned high-order approaches uses boundary fitted
domains, i.e., the computational mesh is aligned to the boundary of the geometry.
Even though the IDIHOM project solved many steps in context of high-order meshing,
it also revealed that a robust and automated generation of complex curved meshes
of high quality is still not available (Kroll et al., 2015b). A different approach is the
immersed boundary method (IBM), where the boundary is embedded in a background
mesh in order to simplify the mesh generation or to handle moving boundaries.
The development of an accurate and robust IBM can also be seen as a first major
step towards a high-order multiphase formulation, where two immiscible fluids are
separated by a sharp interface.

1.1 Goals and outline of this work

In this work, we develop a novel numerical formulation for compressible flows, which
embeds geometrical boundaries into a background mesh. Overall goal of this formula-
tion is to simplify the mesh generation in the case of higher ansatz functions and the
achievement of high-order accuracy. We use the DG method because it is perfectly suit-
able for this task due to its easy extension to higher order and its geometrical flexibility.
Non-conformal meshes, which contain elements with hanging nodes, are inherently
supported by the DG method. By combining this mesh flexibility with an IBM, we can
generate non-conformal anisotropic meshes with linear elements and at the same time
maintain the order of accuracy of the DG method due to a high-order representation of
the immersed boundary. The zero iso-contour of a level set function is used to realize
the high-order representation of the immersed boundary. The inevitable creation of
cut cells induces severe restrictions to the stable time step. This problem is addressed
by an extended formulation of an explicit local time stepping (LTS) algorithm. Instead
of using the same small time step for all cells, the LTS algorithm clusters cells with
similar stable time steps and individually integrates each cluster in time.

The underlying Navier–Stokes equations for compressible flows are briefly described
in Chapter 2. From a software engineering point of view, it is important that every step
in developing a new numerical scheme is carefully tested. To this end, first a boundary
fitted DG formulation is introduced, verified and validated in Chapter 3. Further,
we introduce the LTS algorithm and demonstrate the conservative properties of the
complete system. In Chapter 4, the novel DG IBM formulation is presented which
consists of several building blocks, namely the modified quadrature formulation to
integrate over implicitly given domains, a cell agglomeration strategy and the changes
in the spatial and temporal discretization due to the existence of cut cells. We obtain
the high-order accuracy for several two dimensional test cases. Further, we assess the
robustness of the formulation and give guidelines for some user-specific parameters,
namely the penalty parameter and the agglomeration threshold. Main parts of this
chapter were previously published by the author and his co-workers (Müller et al.,
2017). Finally, we summarize the obtained results and give prospects for further
extensions based on this novel DG IBM formulation in Chapter 5.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



The framework BoSSS 3

1.2 The framework BoSSS

All numerical results presented in the following have been obtained by means of the
software framework Bounded Support Spectral Solver (BoSSS) (Kummer et al., 2009),
which offers generic tools for the development of numerical methods using the DG
approach. Its modular structure is depicted in Figure 1.1. Main advantage of this
structure is the ability to reuse certain parts of the existing source code. Continuous
unit testing of numerous parts of each module assures a verified code basis. The
BoSSS framework has been successfully applied for instance to incompressible flows
(Kummer, 2012; Klein et al., 2013), incompressible multiphase flows (Kummer, 2017)
and low Mach number flows (Klein et al., 2016).

Figure 1.1: Layer structure of the BoSSS framework (modified version of Müller (2014))

This work is mainly concerned with three modules, namely ’Compressible Navier–
Stokes’, ’Time discretization’ and ’Numerical integration’. The main development is
devoted to the module ’Compressible Navier–Stokes’ in Layer 4. It was initiated in
the work by Müller (2014) with a solver for the inviscid Euler equations. During this
work, the extension of the viscous operator to solve the compressible Navier–Stokes
equations is accomplished. Further, the DG IBM formulation is incorporated into this
module. In general, this is a non-trivial task, but we choose the formulation in such a
way that parts of the boundary fitted code can be reused. This design choice improves
the development significantly, because we incorporate already verified code parts like
the above mentioned viscous flux formulation. For the accurate integration of cut
cells, a modification of an existing strategy is implemented in the module ’Numerical
integration’. The LTS algorithm is part of the module ’Time discretization’ in Layer 3. It
is written in a generic fashion such that all users can access it for any applications which
require time integration. The algorithm is not specially tailored to solve immersed
boundary problems. Further, every written extension in each module is supplied with
unit tests, which ensure also a verified code basis in the future.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5

2 Governing equations

We are interested in the motion of compressible fluids. A characteristic feature of these
fluids is the change of volume under the influence of pressure, which is called the
compressibility and thus, we call them compressible fluids. In this Chapter, we briefly
introduce the Navier–Stokes equations for compressible fluids. Various textbooks
cover the fundamental concepts, equations and relations of gas dynamics, see e.g.,
Feistauer (2003) or Anderson (2011).

2.1 Navier–Stokes equations

The compressible Navier–Stokes (CNS) equations are given as

∂ρ̃

∂t̃
+

∂ρ̃ũj

∂x̃j

= 0, (2.1)

∂ρ̃ui

∂t̃
+

∂ρ̃ũiũj

∂x̃j

+
∂p̃δij
∂x̃j

− ∂τ̃ij
∂x̃j

= ρ̃F̃j, (2.2)

∂ρ̃E

∂t̃
+

∂ũj(ρ̃E + p̃)

∂x̃j

− ∂ũiτ̃ij
∂x̃j

+
∂q̃j
∂x̃j

= ũj ρ̃F̃j + Q̃, (2.3)

where ρ̃ is the density per unit mass, ũj are the components of the velocity vector, p̃
is the pressure, F̃j are body forces, Q̃ are heat sources and ρ̃E is the total energy per
volume. The total energy is the sum of the inner energy ρ̃ẽ and the kinetic energy of
the motion of the fluid. All dimensional quantities are indicated with (̃·).
Through out this thesis, we assume a Newtonian fluid with viscous stresses defined by

τ̃ij = μ̃

[(
∂ũi

∂x̃j

+
∂ũj

∂x̃i

)
− 2

3

∂ũk

∂x̃k

δij

]
, (2.4)

where μ̃ denotes the dynamic viscosity and δij is the Kronecker delta. We assume the
dynamic viscosity as a constant or according to the Power law, which reads as

μ̃(T̃ ) = T̃ ω, (2.5)

where μ is depends on the temperature T̃ and the viscosity exponent ω. The heat fluxes
q̃j are modeled using Fourier’s Law

q̃j = −k̃ ∂T̃
∂x̃j

, (2.6)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.


