
Chapter 1

Introduction

1.1 Why spherical-gap geometry?

Many planetary bodies in our solar system consist of a solid inner and a liquid outer core,

surrounded by a ‘solid’ shell (the outer spherical shell). The region between two such concentric

spheres is called spherical gap. Such fluid-filled spherical gaps are omnipresent in nature. The

most obvious example is given by our Earth (Fig. 1.1). But also other planets, like Mercury,

Jupiter and Saturn, as well as the Earth’s moon and the Galilean moons of Jupiter consist of

spherical-gap geometry (see e.g. Spohn, 2007). In principle, the Earth consists of different

layers (Fig. 1.1), so-called spherical shells, which are separated with respect to their density

distribution but also to their particular dynamical and chemical processes (rotation, convection,

tectonics, etc.). The solid inner core, the liquid outer core, the mantle and the crust (continental

as well as oceanic) build the basis of the Earth’s structure. The atmosphere, particularly the

troposphere, and the oceans represent an outer fluid layer, dominated by large and small-scale

dynamical motions as well. Because of these different layers, several fields of applications of

spherical gaps can be noticed (see Tab. 1.1). Assuming that the tropopause is a boundary where,

FIGURE 1.1: Image of the Earth and its different layers. Picture taken from Kious et al. (1996).
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Chapter 1. Introduction 2

inner sphere outer shell gap-filling fluid relevant for
continental crust tropopause moist air mixture Meteorology

ocean crust ocean surface saline water Oceanography

solid iron core lower mantle molten metal Geophysics/ Astrophysics

TABLE 1.1: Examples of spherical gaps on the Earth.

for example, waves get reflected, the troposphere forms a very thin spherical gap, for which the

continental crust forms the inner sphere. This behaves similarly for the ocean and the oceanic

crust. From theoretical models of the equatorial ocean and atmospheric dynamics, there remain

large uncertainties since most of the models make use of the traditional approximation that

neglects the vertical component of the Coriolis force. Laboratory and numerical experiments in

spherical-gap geometry are not affected by this kind of approximations and might hence form

a testbed for the subtle equatorial dynamics of geophysical flows (see e.g. Harlander and Maas,

2006, 2007a, Rabitti and Maas, 2013, 2014, Rabitti, 2016). However, in terms of the radius ratio,

the present work is more related to thick spherical gaps like the Earth’s core. It has a radius ratio

of about ri/ro ≈ 0.35 (Spohn, 2007), being ri and ro the inner and outer sphere radius, which

is close to ri/ro = 1/3 used for the present work.

The Earth’s core is one of the most inaccessible places in the universe. The Kola borehole

is the deepest borehole in the history of exploration of the Earth’s interior. However, with a

depth of ∼ 12 km it just ‘scratches’ the surface, considering that the inner core begins at around

2900 km depth. In contrast, gravimetrical analysis and measurements of seismic activities are

indirect methods to determine, for example, the density of the inner core or its spin rate. But

also volcanic activity and the structure of meteorites can be used to obtain information about the

Earth’s interior. Despite all these efforts, most of the structure and dynamical behaviour of the

Earth’s core remains uncertain and unknown. Therefore, it is indispensable to use alternatives

like spherical-gap models (theoretically, numerically and experimentally) to investigate the dy-

namics and underlying mechanisms of the Earth’s liquid outer core, and eventually extrapolate

certain aspects to planetary scales with the help of scaling laws.

One particular property of spherical gaps, like planetary cores, is that they do not rotate con-

stantly since there is additional forcing. There are three main periodic forcing mechanisms:

(i) precession, which is a periodic variation of the rotation vector, (ii) tidal forcing, which is

a periodic variation in shape, and (iii) longitudinal libration, which is a superposed oscillation

on the rotation speed. A rather steady forcing, which is roughly related to libration, is steady

differential rotation for which the inner core and outer shell rotate constantly at different speeds.

Many planetary bodies and satellites, like Mercury, the Earth’s moon or the Galilean moons of

Jupiter librate due to interactions with their gravitational partners (see e.g. Comstock and Bills,

2003). The Earth’s core, on the other hand, undergoes a slight differential rotation (O(10−6))

where the inner core and outer mantle rotate at different speeds. This happens due to a strong
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gravitational coupling between the mantle and the inner core where small fluctuations of the

mantle momentum have a strong impact on the inner core’s rotation (Aldridge and Lumb, 1987,

Rieutord, 1995). One source for such fluctuations is proven to be strong earthquakes (Song and

Richards, 1996, Buffett, 1997). Apart from planetary-shaped bodies, also accretion disks are

driven by differential rotation (Li et al., 2000, 2001) and can approximately be modelled by

spherical gaps. Two review articles about fluid motions in spheres, spherical gaps and spheroids

have recently been published by Le Bars et al. (2015) and Le Bars (2016).

All these rotational background systems have a significant influence on the fluid in the interior

of planets and stars. It is worth to know the interaction between the core rotation and the interior

of the fluid to understand, for example, tidal heating, fluid mixing, and the generation of mag-

netic fields. About the importance and the recent necessity of investigations of pure rotational

effects, Le Bars et al. (2015) stated the following: For more than half a century most research

on fluid dynamics in planetary liquid core models focused on convective processes. The main

purpose of this past research was to demonstrate that convective flows in a rotating spherical

gap can generate a dynamo. Most notably the magnetic field of the Earth is caused by such mo-

tions. However, it is difficult to validate these models with observational data since sufficiently

high temperature gradients cannot be reached neither by laboratory experiments nor by numer-

ical models, or, obtained standard scaling laws fail to extrapolate to real astrophysical systems.

Moreover, Le Bars et al. (2015) noted that it is often assumed that fluid motions in astrophysical

bodies are controlled and driven by convective effects only. However, in situ data from space

missions of the last couple of years imply that there is a huge reservoir of energy stored in the

rotational motion of planets and stars which can sustain intense large-scale flows. Therefore,

studies on pure rotational effects in planetary core shaped models gain increasing attention (the

reader is referred to Le Bars et al., 2015, Le Bars, 2016, for more detailed information).

Moreover, they stated that the mechanical forcings, which are small compared to the overall

rotation, do not directly provide the energy to drive particular flows. They act more as conveyors

that extract a part of the potential rotational energy and transfer it to intense large-scale fluid

motions. Such motions can be inertial waves or wave modes (e.g. in the Earth’s liquid outer core,

Aldridge and Lumb, 1987, Rieutord, 1995) and Stewartson shear layers (Stewartson, 1957, 1966,

Hide and Titman, 1967, Früh and Read, 1999, Hollerbach, 2003, Koch et al., 2013, Sauret and

Le Dizès, 2013). Even more, this energy transfer gives rise to various types of instabilities (e.g.

elliptical instability, shear instability or centrifugal instability) which are the topics of the present

work. Of particular interest are wave interactions and Stewartson layer instabilities (Hide and

Titman, 1967, Hollerbach, 2003, Hollerbach et al., 2004, Schaeffer and Cardin, 2005a,b, Wicht,

2014).

An opportunity to explore aspects of the dynamics and mechanisms in planets and stars is to do

laboratory experiments. Usually, planets, atmospheres and oceans are complex systems with a
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high degree of physical processes and variables. Therefore, it is necessary to confine investi-

gations to certain aspects of the flow. Thus, the main motivation of performing spherical gap

flow experiments is to simplify the entire system of a planetary core and focus on observations

and excitation mechanisms of certain phenomena. Moreover, experiments are not affected by

assumptions, theoretical restrictions and approximations and are hence helpful to validate nu-

merical and analytical models, or to find new aspects of flows. Laboratory experiments are also

necessary from a fluid dynamical point of view. The Navier-Stokes equation might, to some ex-

tent, accurately cover the flow dynamics, however, analytical solutions do not exist for all fluid

dynamical problems. This concerns especially inertial waves in spheres and spherical gaps,

which are investigated in this work.

For these reasons, we conduct various experiments in an isothermally rotating fully transpar-

ent spherical-gap flow experiment with a radius ratio of η = ri/ro = 1/3 in order to improve

previous findings, to find new flow phenomena, and to validate numerical simulations in collab-

oration with the Max Planck Institute of Solar System Research in Göttingen (A. Barik, Group

of J. Wicht) and S. A. Triana from the Royal Observatory of Belgium in Brussels. Our apparatus

can imitate differential rotation and inner sphere libration. The latter has been used to study in-

ertial waves, wave interactions and instabilities under controlled forcing conditions (Koch et al.,

2013). Of special interest is the wave reflection behaviour at inclined walls which can be studied

using simple ray models (Greenspan, 1968, Tilgner, 1999, Harlander and Maas, 2006, Borcia

and Harlander, 2013, Koch et al., 2013). From such models, as well as from experiments and

numerical simulations, it is known that for spherical gaps energy can be focused on closed or-

bits and wave attractors (Tilgner, 1999, Maas, 2001, Rieutord et al., 2001, Harlander and Maas,

2006, Rabitti and Maas, 2013, 2014).

As could be demonstrated more recently, differential rotation in a spherical gap gives rise to

intense large-scale motions, called inertial modes. These modes resembled eigenmodes known

analytically and experimentally from full spheres and spherical gaps (Aldridge, 1967, 1972,

Zhang et al., 2001). Our studies revealed a new secondary instability of inertial modes charac-

terised by a clear and abrupt transition to weak small-scale turbulence.

A rather steady feature which exists for both forcing systems is the Stewartson layer. In spherical

gaps, the Stewartson layer forms a vertical cylinder parallel to the axis of rotation touching the

inner sphere’s equator (Stewartson, 1957, 1966, Hollerbach, 2003, Koch et al., 2013, Sauret and

Le Dizès, 2013). For a critical shear, i.e. when the libration amplitude or the differential rota-

tion exceeds a certain threshold, this layer becomes unstable. Such shear flow instabilities are of

general geophysical interest, for example in meteorology (barotropic Rossby waves), oceanog-

raphy (gulf stream), and astrophysics (Jovian jet) since they contribute to angular momentum

transport and mixing processes.
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1.2 About this thesis

The main body of the present thesis is based on two published articles (Hoff et al., 2016a,c)

and a third manuscript in writing process (Hoff and Harlander, 2017). We suggest two ways

to read the thesis: first sequentially, following the storyline over all nine chapters, or second,

reading the results parts separately (Chapters 6, 7 and 8). Each of these three chapters is based

on a published article or unpublished manuscript, i.e. it has an introduction, methods, results

and discussion. It is therefore written self-contained for convenience of both, the reader and the

author. If more detailed information about theory or measurement techniques is required while

reading, the reader is referred to the respective previous chapter.

Following the content of the three main articles, the thesis consists of the experimental investi-

gation of three different flow phenomena which mainly occur in an isothermally rotating spher-

ical gap flow; Stewartson layers and their instabilities (Hoff et al., 2016a, Hoff and Harlander,

2017), inertial wave shear layers excited by an external periodic mechanical forcing (Hoff et al.,

2016a), and propagating inertial modes excited by steady differential rotation forcing (Hoff

et al., 2016c). All these flow features can be caused by pure rotational effects, without applying

an external heating or cooling. To drive them in our spherical-gap apparatus, we use two main

forcing mechanisms. The first is libration of the inner sphere, which is a superposed sinusoidal

oscillation on the mean rotation rate of the inner sphere. This is called periodic mechanical

forcing, such as precessional or tidal forcing. The second is differential rotation for which the

inner and outer sphere rotation rates are different. In contrast to libration, differential rotation is

a rather steady forcing. However, it is able to drive significant shear flows which might become

unstable, leading to inertial oscillations in the fluid. The flowchart in Fig. 1.2 illustrates the

addressed flow features and how they are related to the rotational forcings.

The storyline of the thesis is as follows:

This thesis begins with the theoretical background in Chapter 2. The content of this chapter is

mainly taken from textbooks and builds the basis of understanding the investigated flow phe-

nomena from a theoretical point of view. We examine the underlying basic equations and derive

relevant properties of inertial waves, like the group and phase velocity, as well as their reflection

behaviour. We further discuss limiting cases of inertial waves with high and low frequencies.

Especially low-frequency inertial waves play a significant role in a spherical-gap flow.

The second part of Chapter 2 focuses on contained inertial waves in spheres and spherical gaps.

If no external forcing is applied, contained inertial waves, so-called inertial modes, are the eigen-

modes of the system. We summarise the inviscid theory of inertial modes in a full sphere from

Greenspan (1968), since it has recently been shown that inertial modes also exist in a spherical

gap (Kelley et al., 2007, 2010, Triana, 2011). If external periodic forcing is applied, inertial

waves in a spherical gap consist of distinct shear layers. From all past studies, a huge variety
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Systems of rotation in the isothermal spherical gap

differential rotation longitudinal libration

both spheres at different speeds mean rotation + oscillation of inner sphere

Ωi �= Ωo, Ωo �= 0 Ωi(t) = Ω0 + εlib cos(ωlibt)

classical

Stewartson layers
inertial modes

Ro < 0

jet-like

Stewartson layers
forced

inertial waves

Stewartson layer

instabilities

prograde

Ro > 0
retrograde

Ro < 0

(Hoff and Harlander, 2017)

inertial mode

instability,

transition to

turbulence

(Hoff et al., 2016c)

Stewartson layer

instabilities

prograde & retrograde

−1 ≤ Ro(t) ≤ 1

(Hoff et al., 2016a)

reflection, focusing

attractors

(Hoff et al., 2016a)

FIGURE 1.2: Flow chart illustrating the two different rotational systems investigated in this

thesis.

of scaling laws arose about the width of the shear layers, the velocity magnitude and several

transitional effects (instabilities). We extract the most important scalings which are helpful to

classify our experimentally observed phenomena.

The experimental setup is described in Chapter 3. Since detailed technical information about

the device is given in Dahley (2016), we will only briefly recall the most important features.

Instead, we focus on the efficiency of the implemented libration mechanism, since this is helpful

in understanding the dependency of inertial wave shear layers on the libration parameters. Also

part of this chapter is the description of a thorough calibration of all the rotational systems, i.e.

inner and outer sphere rotation rate, solid-body rotation, differential rotation, as well as inner

sphere libration. This helps not only to determine the exact rotation rates, but also to deeply

understand how the applied background rotations operate.

The next chapter concerns the visualisation of the flow in the spherical gap. Since the working

fluid is transparent, and we are operating in a closed system, it is profitable to inject tracer parti-

cles into the fluid, which can then be illuminated using a laser-light-sheet technique. Chapter 4

describes two measurement techniques. In the meridional plane, we measure the flow qualita-

tively to get a rough picture of the flow phenomena. This method has been used in several studies

(e.g. Koch et al., 2013, Klein et al., 2014, Seelig, 2014). The new contribution to the present

spherical-gap experiment is the design of a small co-rotational particle-image-velocimetry (PIV)

system to extract a two-dimensional and two-component (2D2C) velocity field in the horizon-

tal plane. From this, we can derive plenty of dynamical features, like divergence, vorticity or
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Reynolds-stresses. Therefore, we will describe in detail the setup of this PIV system and the

equipment used, as well as its processing via the Matlab toolbox MatPIV (Sveen, 2004, Sveen

and Cowen, 2004), followed by a detailed error estimation.

It is very difficult to extract key-dynamical features of the visualised flow without applying

statistical post-processing tools. In Chapter 5, we describe the theoretical background of all

relevant statistical methods, as well as the application of these methods to our data. All described

methods need a sufficiently long time-series to give qualitatively reliable results. In detail, the

fast Fourier transform (FFT) can be used to detect significant frequencies time series. The

harmonic analysis is a least-square technique for which known frequencies in a time series can

be used to derive the corresponding amplitude and phase information, i.e. a harmonic oscillation.

It has successfully been applied to similar data in Klein et al. (2014) and Seelig (2014). However,

the harmonic analysis is not the most appropriate choice if one is interested in normal modes

of the system. The empirical orthogonal function (EOF) analysis is a tool to derive ‘statistical

modes’ of the system, which are often similar to normal modes (Hoff et al., 2015). Further,

we describe how to estimate principle oscillation patterns (POPs), and singular vectors (SVs)

since they are useful to determine pattern growth. All these methods have been improved for the

application to experimental geophysical data (Hoff et al., 2015) and they give a decisive access

into the dynamics of a system, which cannot be detected by other methods.

A new method applied to data where many wave interactions are assumed, is the so-called bis-

pectral analysis. With the help of this statistical tool, nonlinear wave couplings can qualitatively

be detected. Bispectral analysis has a long list of applications since the 1970s, however, it re-

ceives increasing attention in geophysically related laboratory experiments, especially where

internal waves in rotating or stratified fluids are investigated. We outline its theory in Chapter 5.

In Chapter 6, 7 and 8, we present the experimental results. Chapter 6 focuses on Stewartson

layers (SL) and their instabilities. Two different structures of SL’s could be noticed (see 1st

and 3rd branch of the flowchart in Fig. 1.2): The classical SL excited by differential rotation

and a jet-like SL excited by inner sphere libration. There is a huge amount of numerical and

experimental studies concerning SL’s in different geometries, for example in cylinders with ro-

tating disks (Hide and Titman, 1967, Früh and Read, 1999), spheres with polar ‘caps’ (Schaeffer

and Cardin, 2005a,b). However, quantitative experimental studies with full optical access are

scarce. Therefore, we extensively discuss the structure of both SL’s in our spherical gap. Due to

increasing shear rate, the SL can become unstable. We found that a large set of low-frequency

waves, so-called Rossby waves, get excited. Their dependency on the dimensionless parame-

ters, their structure, their mutual interaction, as well as their interaction with the mean flow could

be derived. This offers a new contribution on understanding these features and their existence.

Herewith, we could answer some open questions, however, other questions cannot be answered
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by performing laboratory experiments only. This concerns especially physical mechanisms,

which can be extracted easier from numerical simulations.

Chapter 7 deals with plane inertial waves directly forced by inner sphere libration (4th branch

of the flow chart in Fig. 1.2). This was also the topic of Koch et al. (2013) and Dahley (2016),

but using a larger radius ratio, ri/ro = 1/2. We made a similar study to highlight the key facts

about inertial wave shear layers and their reflection in a spherical gap. For comparison, we make

use of a geometrical two-dimensional ray-tracing model in the meridional plane. The focus in

this chapter, however, lies on quantitative results. From an energetic point of view, we discuss

inertial wave shear layers in the gap and possible influences from the background flow. Once

the flow is supercritical, i.e. SL instabilities occur, plane inertial waves interact nonlinearly with

the low-frequency Rossby waves, leading to a subset of secondary waves induced by triadic

resonances.

Inertial modes driven by differential rotation (2nd branch of the flow chart in Fig. 1.2) are dis-

cussed in Chapter 8. Since the last decade it is known that some of those inertial modes get

excited in a spherical gap when the inner sphere rotates slower than the outer shell (Kelley et al.,

2007, 2010, Triana, 2011, Rieutord et al., 2012). Surprisingly, despite the strong background

flow, their structure agreed well with analytical full-sphere modes (Zhang et al., 2001). How-

ever, a comprehensive quantitative survey of the modes was technically impossible since those

previous spherical-gap flow experiments have been performed in opaque shells. Therefore, not

much is known about the underlying dynamics, especially how and under which conditions

they get excited and how they interact with the background flow. For these reasons, we give a

comprehensive view on the interior structure of the detected inertial modes and compare them

qualitatively with reports from the literature. Another important question concerns the Ekman

number dependency. The Ekman number, E = ν/(Ωo d
2), where ν is the viscosity, Ωo the outer

shell rotation rate and d the gap width, describes the ratio between viscous and Coriolis forces.

In this context, we should pre-empt that our experiment runs at much larger Ekman numbers

than the other spherical gap experiments (O(10−5) in our study compared toO(10−7) in Kelley

et al. (2007, 2010), Triana (2011) or Rieutord et al. (2012)). Due to this, we enter a completely

different regime which predominantly leads to different results. A lucky coincidence of per-

forming at these smaller Ekman numbers is that we observed a remarkable and sharp transition

from a more regular regime (with many discrete wave events) to a weakly turbulent regime (with

a more continuous wave spectrum and less discrete peaks). Before and beyond this transition,

the flow exhibits remarkable properties. Since such a transition could not be observed in previ-

ous differentially rotating spherical gap flows, the second and largest part of Chapter 8 largely

focuses on related flows features from an energetic point of view. We further suggest possible

mechanisms which can cause such a transition to turbulence. However, a definite statement can

only be made with the help of numerical simulations, which are planned for future work. To

confirm, at least, some of our observations, preliminary results of numerical simulations from
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A. Barik Barik et al. (2017), a Ph.D. student at the Max Planck Institute of Solar System Re-

search (MPS) in Göttingen and S. A. Triana from the Royal Observatory of Belgium will be

presented.

Finally, a conclusion will be made in Chapter 9. We summarise the results and revisit the

most important, newly acquired findings of the present work and set them in the latest scientific

context. An outlook with suggestions for future investigations completes this thesis.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 2

Fundamentals

2.1 Equations of motion

Consider a fluid parcel which moves with a velocity �v = �v(�x, t), where �x = (x, y, z) is the space

vector in a Cartesian coordinate system and t is the time. Such a moving parcel can be described

by the three Newton’s laws of motion. For every force acting on a fluid parcel additionally holds

the superposition principle,
d�v

dt
=

1

m

∑
i

�Fi =
∑
i

�ai. (2.1)

In (2.1), �Fi and �ai are the individual forces and accelerations acting on a fluid parcel, and d/dt

is the total (individual) temporal derivative, given by

d

dt
=

∂

∂t

dt

dt
+

∂

∂x

dx

dt︸︷︷︸
u

+
∂

∂y

dy

dt︸︷︷︸
v

+
∂

∂z

dz

dt︸︷︷︸
w

, (2.2)

where ∂ denotes the partial derivative. Reshaping (2.2) leads to

d

dt︸︷︷︸
total

=
∂

∂t︸︷︷︸
local

+ �v · ∇︸ ︷︷ ︸
advection

. (2.3)

Possible forces (or accelerations) which can act on a fluid parcel are, among others, pressure

gradient forces, gravitational forces and viscosity forces. In a rotating frame of reference, there

are also acting apparent forces, like Coriolis force or centrifugal forces. In the following, we

describe the forces which are important for this thesis and build our particular equations of

motions. For detailed information, the reader is referred to Greenspan (1968), Pedlosky (1987,

2003) or Holton (2004).

11
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Chapter 2. Fundamentals 12

2.1.1 Pressure gradient acceleration

The pressure gradient acceleration is denoted by �apre. Whenever a pressure gradient ∇p is

present, an acceleration will act on a particular fluid parcel in the direction of −∇p, i.e. from

high to low pressure. Consider a fluid volume δ3V = δxδyδz, the pressure along the x-axis

acting from left is given by Fpre = pA = p δyδz and the pressure acting from right is given by

Fpre = (p+ ∂p
∂xδx) δyδz. The net force acting on the fluid volume along the x-direction is given

by

δF = −∂p

∂x
δV. (2.4)

Dividing (2.4) by δm and using of ρ = δm/δV , where ρ is the density, we obtain

apre =
δFpre

δm
= −∂p

∂x

δV

δm
= −1

ρ

∂p

∂x
. (2.5)

Considering all three dimensions, we get

�apre = −1

ρ
∇p. (2.6)

The gradient always points towards the direction of the strongest increase. The minus sign in

(2.6) implies that the pressure gradient force is directed to lower pressure. Thus, a fluid parcel

is accelerated along the direction of the strongest pressure decrease.

2.1.2 Gravitational acceleration

The general form of Newton’s gravitational acceleration is given by �agra with

�agra = −GM

r2
�r

r
≡ �gN , (2.7)

with M as the Earth’s mass and G the gravitational constant and r ≈ R = 6371 km the radius

of the Earth. Usually, �gN depends on the height z in the atmosphere, however, z mostly small

compared to the Earth’s radius. Further, �gN can be written in terms of the gravitational potential

φgra = GM/r, via its gradient

∇φgra = GM ∇1

r
= −GM

1

r2
· �r
r
= �gN . (2.8)

2.1.3 Friction acceleration

The friction acceleration is denoted by �afri. Friction always acts opposite to the motion of a fluid

parcel and is a measure of the resistance of the motion. The most common source of friction
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acceleration in fluid dynamics is due to viscosity of the fluid. The following statements are

captured from Holton (2004).

In a Newtonian fluid, the viscous force in x-direction per unit area, or shearing stress, in an

incompressible fluid can be defined as (Holton, 2004)

τzx = lim
δz→0

μ
δu

δz
= μ

∂u

∂z
. (2.9)

In a more general case, we consider a small but finite fluid volume element with lengths δxδyδz.

The shearing stress in x-direction acts through the centre of the element and is designated τzx.

The stress acting across the upper boundary on the fluid below can be written approximately as

τzx +
∂τzx
∂z

δz

2
(2.10)

and the stress acting across the lower boundary on the fluid above is

−
[
τzx − ∂τzx

∂z

δz

2

]
. (2.11)

The net viscous force on the volume element acting in x-direction is then given by

[
τzx +

∂τzx
∂z

δz

2

]
δxδy −

[
τzx − ∂τzx

∂z

δz

2

]
δxδy. (2.12)

Dividing by ρ δxδyδz gives the viscous force per unit mass due to vertical shear of the compo-

nent of motion in x-direction
1

ρ

∂τzx
∂z

=
1

ρ

∂

∂z

(
μ
∂u

∂z

)
. (2.13)

Considering the stress acting in all other directions and assuming μ to be constant (which is

approximately the case in this thesis), we get

�afri = ν∇2�v, (2.14)

where ν = μ/ρ is the kinematic viscosity with [ν] = m2 s−1.

2.1.4 Apparent accelerations

In an absolute (inertial) reference frame, the above described Newton’s laws of motion are valid.

However, when rotation comes into play, a relative (rotating) coordinate system is considered

and additional forces are acting. Thus, to obtain the absolute acceleration of the fluid velocity

in a rotating coordinate system, the basis vectors (̂i, ĵ, k̂) are moving and their derivative is

non-zero. On the Earth, for example, the time-variation of the basis vectors is a function of the

Earth’s rotation �ΩE with
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d�r

dt
= �vr = �ΩE × �r. (2.15)

After some rearrangements, we obtain for the velocity �va in the absolute coordinate system (e.g.

Pedlosky, 1987)

�va = �v + �ΩE × �r. (2.16)

After some algebraic rearrangements (see, e.g. Pedlosky (1987) for detailed information) we

get for the absolute acceleration of the velocity

d�va
dt

=
d�v

dt
+ 2�Ω× �v︸ ︷︷ ︸

I

+ �Ω× (�Ω× �r)︸ ︷︷ ︸
II

+
d�Ω

dt
× �r︸ ︷︷ ︸

III

, (2.17)

where �Ω is the rotation vector of the system considered. From (2.17), it is obvious that three

additional forces are acting in a rotating system: the Coriolis force (I), the centrifugal (or cen-

tripetal) force (II) and variations in the rotation rate itself (III).

I. The Coriolis acceleration is denoted by�acor = −2�Ω×�v. This apparent force is responsible

for the deflection of moving fluid particles (or objects) due to rotation. In case of the

Earth, objects will be deflected to the right in the northern hemisphere and to the left in

the southern hemisphere. Further simplifications can be made when aligning the x-axis

of the local coordinate system with the longitudinal direction. Then the x-component of

the rotation vector is zero and we get

�acor = −2�Ω× �v = −

⎛
⎜⎜⎝
f�w − f v

f u

−f� u

⎞
⎟⎟⎠ , (2.18)

where f = 2Ω sinϕ and f� = 2Ωcosϕ and ϕ being the latitude. In the mid-latitudes, the

vertical component of the velocity, w, is small compared to the horizontal components.

Then, (2.18) can be further simplified. This assumption can be made, for example, when

horizontal wind models are considered (Pedlosky, 1987, Holton, 2004).

II. The centrifugal acceleration is denoted by �acen = −�Ω × (�Ω × �r). With a geometric

interpretation (see Pedlosky, 1987, Fig.1.6.1), �acen can be rewritten and considered in

terms of a potential function, φcen, with

�acen = −�Ω× (�Ω× �r) = |�Ω|2�r⊥ = ∇φcen, with φcen =
|�r⊥|2|�Ω|2

2
. (2.19)
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Hence, we can summarise the potential force due to centrifugal forces and the potential

due to gravity forces, mentioned in (2.8), to a total potential force,

∇Φ = ∇φgra +∇φcen. (2.20)

III. The variation of the rotation rate itself is negligible for most oceanographic or atmospheric

phenomena except for those whose time scales are unusually long (Pedlosky, 1987). For

our experiments, Ω is a constant.

2.1.5 The Navier-Stokes equation

The first basic equations which are needed for the mathematical description of our fluid flow are

the equations of motion, i.e. the Navier-Stokes equations. They represent the conservation of

momentum in a fluid. The classical form of the Navier-Stokes equation for an incompressible

fluid in an inertial frame of reference (without rotation) reads

d�v

dt
=

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p+ �gN + ν∇2�v. (2.21)

A particular feature in (2.21) is the nonlinear term, the advection of the velocity vector. This

term has the form

(�v · ∇)�v =

⎛
⎜⎜⎝
u∂u
∂x + v ∂u

∂y + w ∂u
∂z

u ∂v
∂x + v ∂v

∂y + w ∂v
∂z

u∂w
∂x + v ∂w

∂y + w ∂w
∂z

⎞
⎟⎟⎠ , (2.22)

or can be reshaped via a vector rule (Weber-transformation)

(�v · ∇)�v =
1

2
∇(�v · �v)− �v × (∇× �v). (2.23)

If rotation, and hence apparent forces, come into play, the equations of motion change to

d�v

dt
=

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p+∇Φ− 2�Ω× �v + ν∇2�v. (2.24)

Often, for simplicity, in fluid dynamics the pressure and the potential forces are summarised in

the so-called modified pressure gradient ∇p′ = ∇p+∇φgra +∇φcen.

2.2 The continuity equation

The second basic equation which is needed for the mathematical description of our fluid flow is

the continuity equation. The continuity equation is based on the conservation of mass, dm/dt =

0. It says that the net mass flux density through a volume element, δ3V = δx δy δz, i.e. the
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