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1 INTRODUCTION 

Carbon dioxide (CO2) emissions in Europe are required to be reduced from 130 to 95 g/km in 

the period from 2015 to 2020 in accordance with the objectives of the European Commission. 

[1] Statistics show that the average emission level of a new car sold in 2014 was 123.4 g/km. 

[1] To meet the regulations by 2020, 24% of CO2 has to be reduced in five years; this is a 

challenging target for car manufacturers.  

Rolling resistance contributes to 25% of the total fuel consumption in automobiles, which 

indicates that there exists considerable potential for the reduction of CO2 emissions by 

reducing the rolling resistance of a tire. [2] A consideration of the properties of a chassis 

reveals that a reduction in the rolling resistance of a tire is important for reducing CO2 

emissions.  

Several tire properties such as traction or grip, longevity, fuel efficiency, handling, comfort, 

noise, and robustness have to be considered for the purpose of attempting to reduce the rolling 

resistance of a tire. A tire is a complex system in which the characteristics of each of the 

abovementioned properties can be varied depending on the designer’s intention. If one 

property is significantly improved or changed, then a trade-off takes place with other 

properties. This means that the reduction in the rolling resistance of a tire may result in some 

disadvantageous tire characteristics, such as lower cornering stiffness and longer relaxation 

length. Irrespective of the changes in the properties of the tires, the overall characteristics of 

the vehicle should be maintained based on predefined requirements. 

Different cornering stiffnesses and relaxation lengths lead to different lateral dynamics in a 

vehicle. From the handling point of view, a vehicle with a lower cornering stiffness at the 

front and rear tends to exhibit sluggish lateral dynamics. Therefore, this effect should be 

compensated for through chassis optimization, and thus, the aim of this study is to obtain the 

optimum configuration of the chassis. For instance, a lower cornering stiffness of the tire can 

be compensated for with more roll steer or greater lateral compliance steer, which enables the 

buildup of a larger sideslip angle of nearly the same extent of side forces as in a reference 

vehicle. To some extent, some characteristics of the tire can be compensated for through 

chassis manipulation, and the corresponding extent of alteration in the cornering stiffness and 

relaxation length under realistic boundary conditions is discussed in detail. This chassis 
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optimization process can be treated as a special case involving rolling-resistance optimized 

tires (RR tires). 

For the chassis optimization process, the characteristic-curve-based double-track model has 

been used. Using these characteristic curves, the number of parameters required to define a 

chassis configuration can be minimized. Certain characteristic curves can be altered without 

modifying the other characteristic curves. The influence of each characteristic curve on the 

vehicle dynamics can be better understood. In addition, all possible chassis design variables, 

not only kinematics but compliance also, can be considered with fewer optimization 

parameters. Regardless of this advantage, there exists a problem of whether the obtained 

chassis configurations can be realized by varying the actual chassis setup, e.g., the position of 

the hardpoints and stiffness of the bushings. In order to eliminate unrealistic chassis 

configurations, boundary conditions have been considered during the optimization process.  

The main focus is on which characteristic values should be used to evaluate the lateral 

dynamics of a vehicle. In this study, an overshoot and a peak time of the sideslip angle for a 

step steer maneuver at 150 km/h with two yaw gains at 80 and 150 km/h has been used for the 

evaluation. The objective functions are applied for the evaluation of the vehicle, and each sub-

objective function is multiplied by its corresponding weighting factors. It is also explained 

how the weighting factors have been objectified to realize certain characteristic values. The 

relevant lateral dynamics characteristic values must achieve the target on priority in 

comparison to the other characteristic values, and therefore, it is very important to use 

objectified weighting factors. 

In Chapter 2, the modeling used for the simulation is introduced. In Chapter 3, the applied 

method and boundary conditions, the formulation of the objective functions, the modifications 

of the chassis considered for the optimization, and the driving maneuvers to be used are 

presented. In Chapter 4, the characteristic values to be considered for evaluating the lateral 

dynamics of the vehicle are discussed. In Chapter 5, the results of the design of experiments 

are presented to define a correlation between the chassis configurations and the characteristic 

values. Chapter 6 describes how the weighting factors are derived in order to realize the 

relevant characteristic values for the lateral dynamics while minimizing the worsening of the 

other characteristic values. The optimization results are presented in Chapter 7, and they 

provide an overview of whether the lower cornering stiffness and longer relaxation length can 

be thoroughly compensated for.  

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



 
 

3 

1.1 STATE OF THE ART 

With respect to the handling characteristics of a vehicle, there are various handling objectives 

that are evaluated as characteristic values based on driving maneuvers. These handling 

objectives can be treated in a manner similar to multi-objective optimization problems. The 

methodologies used to solve such a multi-objective optimization problem differ based on the 

variations in the chassis system, formulation of the sub-objective function, distribution of the 

weighting factors, and whether an additional model such as neural network (NN) is used for 

estimating the result.  

Focusing on single multi-criteria optimization, Gobbi et al. [3] dealt with ride and handling 

optimization using two different mathematical models. The first mathematical model is a 

physical model that is strictly related to the actual vehicle, and the second model is an 

approximation model that is just a set of mathematical functions that are capable of 

approximating the different relationships existing between the design variables and the 

characteristic values. “Global approximation” is the substitution of a physical model for a 

numerical model and allows a quick computation of the Pareto-optimal set. [4] A genetic 

algorithm is used to obtain a direct computation of the Pareto-optimal set and a trained 

artificial neural network (ANN) is used during the search procedure. However, this 

methodology requires an extensive number of function evaluations to obtain a sufficiently 

trained representative ANN. Secondly, the kinematic and compliance of the suspension were 

not considered but only simple parameters such as the stiffness and damping of the 

suspension, stiffness of the anti-roll bar, and toe and camber angles are considered for the 

optimization in the paper. 

Schuller et al. [5] carried out an optimization of vehicle-handling behavior using a simulation; 

the characteristic-curve-based double-track model and a genetic algorithm were used for the 

optimization. In comparison to Gobbi et al., the kinematic and compliance of the suspension 

are considered as the optimizing parameters. Nevertheless, no restrictions are made with 

respect to the suspension design, i.e., the characteristic curves of the suspension were 

optimized without considering their feasibility in real conditions. A coupling between the 

suspension variables is neglected, and this leads to restricted reliability of the optimization 

results.  

Benedetti et al. [6] presented a method of fuzzy optimality and ݇ optimality, that dealt with a 

large number of design variables and objectives. This methodology requires differential 
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modeling, NN modeling, design of experiments, statistical correlation analysis, and 

evolutionary multi-objective optimization. The number of objective functions is reduced by 

carrying out a correlation analysis of the objective functions, while excluding objective 

functions that correlate the other objective functions that are already in consideration. Because 

NN modeling is used, this methodology also requires extensive training to improve the 

accuracy of the NN model. The kinematic and compliance characteristic curves were not 

considered as design parameters for the optimization, which simplifies the optimization 

problem. Nevertheless, this study presents a method for reducing the number of required 

objective functions by means of correlation analysis. 

 

Figure 1.1  Block diagram of ݇ optimality. [6] 

Thoresson et al. [7], [8] compared the gradient-based optimization results regarding handling 

and ride comfort using a multibody simulation model and a simplified model in MATLAB. 

They concluded that using the simplified model in MATLAB facilitates lower computational 

cost and numerical noise.  

Angrosch et al. [9] aimed to determine whether the numerical optimization and design of 

experiments are applicable to the design of suspension systems. A multibody simulation 

model is used in this study, and it shows a direct relation between the position of the 

hardpoints and the values of the vehicle handling characteristics. For the analysis, a 

McPherson suspension was used for the front and a multi-link suspension was used for the 

rear. In this study, only the variations in the hardpoints have been considered. When 

considering the stiffness of the bushings, the number of design parameters increases 

dramatically, which makes the optimization more difficult. 
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Figure 1.2  Variation of the hardpoints at front suspension. [9] 

In all the aforementioned studies, either the chassis variation was not detailed enough to 

consider all possible chassis configurations or an additional model such as an NN model was 

considered, for which a large number of simulations are required for improved the accuracy. 

Moreover, the main problem of neural networking is that it is just a high probability 

estimation and optimization result, and using such a model does not guarantee the same result 

in the real physical model.  

1.1.1 Optimization Algorithms 

There are several different optimization algorithms [10]–[13] available and they can be 

categorized as gradient-based or non-gradient-based algorithms. An example of a non-

gradient-based optimization algorithm is a genetic algorithm, which is commonly used to 

solve nonlinear problems. Only objective function evaluations are used to find the global 

optimum, and therefore, more time is required to solve the problem. In contrast, gradient-

based optimization algorithms require the existence of continuous first derivatives of the 

objective function and possibly higher derivatives as well. Such algorithms converge to the 

optimum relatively quickly, but only the convergence to local minimum is guaranteed. 

Methods that are frequently used for gradient-based algorithms are as follows: 
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 Trust-region-reflective algorithm [14], [15] 

 Sequential quadratic programming algorithm [16], [17] 

Consider a constrained optimization problem such as   

 
minimize ݂(ܺ) ܺ ∊ ࡾ  

(1.1) 

with the boundary condition of ݈ ≤ ܺ ≤ ;ݑ where ݑ and ݈ are respectively the vectors of the 

upper and lower boundary conditions of a vehicle.  

Trust Region Methods for Nonlinear Minimization  

This is a simple but powerful algorithm. In the problem mentioned in Equation (1.1), where 

the function takes vector arguments (ܺ) and returns scalars, the basic idea is to approximate ݂ 

with a simpler function ݍ, which reflects the behavior of function ݂ in a neighborhood N 

around the point ܺ . This neighborhood is the trust region. A trial step ݏ  is computed by 

minimizing the simpler function ݍ over the region of trust (N).  

 min ,(ݏ)ݍ} ݏ ∈ N}  (1.2) 

The current point (ܺ) is to be updated if ݂(ܺ + (ݏ < ݂(ܺ) is fulfilled; otherwise, the current 

point remains the same, the region of trust (N) becomes smaller, and the trial step is repeated. 

The main problem would be how to choose and compute the approximation (defined at 

current point ݔ), how to choose and modify the trust region N, and how to accurately solve 

the trust region sub-problem depicted in Equation (1.2). In a standard trust region method, ݍ is 

defined as the first two terms of the Taylor approximation of ݂ at ܺ. The sub-problem can 

then be formulated as follows: [18] 

 min ൜12 ݏܪ்ݏ + ்݃ݏ such that ∥ ݏܦ ∥ ≤ Δൠ,  (1.3) 

where ݃ is the gradient of ݂ at the current point ܺ, ܪ is the Hessian matrix, ܦ is a diagonal 

scaling matrix, Δ is a positive scalar, and ∥. ∥ is the 2-norm. Solving Equation (1.2) using 

algorithms employing the computation of a full eigensystem requires time proportional to the 

factorization of ܪ. In order to simplify the problem, the trust region sub-problem is treated as 

a two-dimensional subspace S. S is the linear space spanned by ݏଵ and ݏଶ, where ݏଵ is in the 

direction of the gradient g, and ݏଶ  is either an approximate Newton direction (solution to 
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ܪ ∙ ଶݏ = −݃ ) or a direction of negative curvature (solution to ݏଶ் ∙ ܪ ∙ ଶݏ < 0 ). [19] 

Unconstrained minimization can be performed by formulating the two-dimensional trust 

region sub-problem (S), solving Equation (1.2) to determine the trial step s if ݂(ܺ + (ݏ <݂(ܺ), then ܺ = ܺ +   .and, finally, adjusting ∆. These steps are repeated until convergence ,ݏ

Sequential Quadratic Programming (SQP)  

A quadratic programming (QP) sub-problem based on a quadratic approximation of the 

Lagrangian function (ܮ) should be formulated.  

,x)ܮ  λ) = ݂(x) +  ߣ ∙ ݃(ݔ)
ୀଵ  (1.4) 

The QP sub-problem is defined as follows:  

 
min ൬12 ݀ܪ்݀ + ൰்݀(݇ݔ)݂ߘ ்݀(ݔ)݃ߘ  + ݃(ݔ) = 0, ݅ = 1, … ݉ ݃ߘ(ݔ)்݀ + ݃(ݔ) ≤ 0, ݅ = ݉, … , ݉. (1.5) 

This sub-problem can be solved using a QP algorithm and its solution forms a new iterate:  

ାଵݔ  = ݔ +  ݀ (1.6)ߙ

The step length parameter (ߙ) is determined by an appropriate line search procedure such 

that a sufficient decrease in a merit function can be obtained, where ݀ is the search direction, 

and ߣ is the Lagrange multiplier. The matrix ܪ is a positive definite approximation of the 

Hessian matrix of the Lagrangian function. ܪ can be updated using the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method.[20] Studies [21]–[26] have investigated how the global 

convergence can be pursued. 
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Genetic Algorithm 

A genetic algorithm [27]–[34] is commonly used to find a global minimum in highly 

nonlinear problems; only the objective function evaluations are considered to find the 

optimum point. The algorithm repeatedly modifies a population of individual solutions. At 

each step, the genetic algorithm randomly selects individuals from the current population and 

uses them as parents to produce the children for the next generation. A genetic algorithm 

works using the following sequence: [35], [36] 

1. The algorithm begins by creating a random initial population. 

2. The algorithm then creates a sequence of new populations. At each step, the algorithm 

uses the individuals in the current generation to create the next population. To create 

the new population, the algorithm performs the following steps: 

a. The objective function value of each individual in the current population is 

evaluated by computing its multi-objective function value. 

b. The raw objective function evaluation is scaled to obtain a more usable range 

of values. 

c. Members, called parents, are selected based on their objective function value. 

d. Some of the individuals in the current population that have a lower objective 

function value are chosen as elite. These elite individuals are passed to the next 

population. 

e. Children are produced from the parents either by making random changes to a 

single parent (called mutation) or by combining the vector entries of a pair of 

parents (called crossover). 

f. The current population is replaced with the children to form the next 

generation. 

3. The algorithm stops when one of the stopping criteria is met.  

1.2 REQUIREMENTS FOR THE NEW METHODOLOGY  

In summary, the following are the requirements for the chassis optimization.  

1. To avoid conflicts between objective functions as much as possible, the number of 

optimization criteria should be kept to a minimum.  
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2. The optimization result should reflect the reality regarding the boundary conditions. In 

other words, feasible boundary conditions should be considered during the 

optimization. 

3. It would be preferable to deal with multi-objective functions without using an NN.  

4. All possible chassis design variables, not only kinematic but also compliance, should 

be considered during the optimization. 

5. The optimum obtained using an optimizer should be a global optimum. 

An optimization of the characteristic curves of the double-track model is presented in this 

study. The characteristic curves to be manipulated with a constant parameter are required to 

be predefined. Each chassis design parameter represents a certain modification of the chassis, 

and a set of these parameters produce a vector. With this vector regarded as an input and the 

corresponding value from the objective function regarded as an output, the genetic algorithm 

is used to perform the optimization, and its results are dependent on the following factors: 

 chassis modifications (what is modified) and their limits  

 driving maneuvers and their characteristic values  

 weighting factors in objective functions  

 selected optimization algorithm: genetic algorithm  

All possible chassis modifications are considered, and the boundary conditions of each 

measure are maintained as broad as possible to take all possible configurations into account. 

The boundary conditions are decided based on the feasibility of the subsystem and the 

component levels. The optimization is conducted such that each set of vectors within the 

predefined boundary conditions can always be realized at the subsystem and component 

levels. The optimization in this study mainly focuses on the entire vehicle and system levels. 

Selecting an appropriate optimization engine to obtain a global minimum of the objective 

function is a subject of considerable debate in the field of optimization. Angrosch et al. [9] 

presented a table that compares different algorithms in terms of duration and objective 

function; this table indicates that a genetic algorithm shows the best result with a longer 

duration in comparison with SPQ, the method of feasible directions, and the adapted response 

surface method. However, it should be kept in mind that none of the aforementioned 

algorithms guarantee that a global optimum will be obtained. 
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The duration of an optimization and its accuracy in using the genetic algorithm varies  

depending on the settings of convergence termination, population size, initial population, and 

mutation rate of the genetic algorithm. The time required for the optimization using a genetic 

algorithm has been shortened using parallel computing. Using eight multiple processors in 

parallel, the vehicle maneuver of eight individuals can be evaluated simultaneously.  

1.3 V-MODEL AND TARGET CASCADING 

 

Figure 1.3 Application of V-model in the vehicle development process. [37] 

Figure 1.3 shows a V-model and provides an overview of the vehicle development process. 

Starting with the requirements of the desired full vehicle characteristics, the downward 

movement in the left side of the ‘V’ represents decomposition and specification from the 

requirements of the full vehicle to the design and simulation of the system and finally to the 

design and evaluation of the components and parts. The systems that are created using the 

designed components are tested and validated against their specifications in hierarchical 

order, i.e., from components over subsystems to the full vehicle. The system design and 

validation takes place at the same level in the V-model. [37] 

Target cascading in product development consists of a systematic effort to propagate the 

desired top-level system design to appropriate specifications for subsystems and components 

in a consistent and efficient manner. The target cascading process attempts to achieve this 

consistency and concurrency early in the development process. The important specifications 

or “targets” for the entire system (as well as for each subsystem and component), specifically 

those that will influence other parts of the system, are identified first. [38] 
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