
Chapter 1

Introduction

This PhD thesis treats of the prototype of a hard x-ray high resolution scanning micro-
scope using nanofocusing refractive lenses. The scanning microscope (synonymously called
“nanoprobe”) was developed, built and operated by our study group in Dresden in the course
of a project supported by the German Department of Education and Research (Bundesminis-
terium für Bildung und Forschung, BMBF). The main goal of the project was to demonstrate
the possibility to generate a small intense x-ray focus with a full width at half maximum size
below 100 nm, which can be employed for spatially resolved x-ray analysis. In a follow-up
venture, we are currently assembling an upgraded version of a hard x-ray scanning micro-
scope to be installed at the PETRA III beamline P06, bringing in the experiences we made
with the prototype version.

Hard x rays are capable of pervading matter and, therefore, x rays — in contrast to
visible light, soft x rays, or electron beams — are capable of revealing the interior properties
of specimens without destructive sample preparation. Since their discovery by W. C. Röntgen
in 1895 [Rön95, Rön98], a large variety of x-ray analytical techniques have been developed
and successfully applied. Among others, there are x-ray crystallography, x-ray reflectometry,
x-ray fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering,
and grazing incidence small angle x-ray scattering. For years, these methods were performed
with large (unfocused) x-ray beams, illuminating the complete sample or at least large
areas of the specimen, and for this reason, these methods were insensitive to the spatial
Distribution of the investigated properties. In order to retrieve the local distribution of the
observed property rather than just an average over the complete object, the sample has to be
scanned by a small x-ray beam. Generating small and intense x-ray beams requires highly
brilliant x-ray sources and high quality focusing optics. Compared with visible light available
x-ray sources are comparably weak and focusing optics quite inefficient. Thus, the generation
of highly intense and small sized x-ray beams is difficult, and it was not until the advent
of third generation synchrotron radiation facilities, that hard x-ray scanning microscopy has
begun to emerge as a beneficial tool for sample investigations.

The hard x-ray scanning microscope makes use of nanofocusing refractive x-ray lenses
made of silicon (NFLs) [SKH+03, SKP+05a] and of compound parabolic refractive lenses
made of beryllium (CRLs) [LST+99]. The NFLs provide a sub-100 nm focal spot by in-
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ducing a demagnified image of the x-ray source, while the CRLs are employed as part of
a prefocusing device, which adapts the transverse coherence length to the aperture of the
NFL. The nanofocusing lenses are developed by our study group in Dresden, and the com-
pound parabolic refractive lenses are manufactured in cooperation with Prof. Lengeler at
the RWTH Aachen. In fact, the evolution of the hard x-ray scanning microscope and the
development of the nanofocusing lenses are interdependent. The NFLs provide the focal spot
which is used by the scanning microscope for sample investigation, while, as a side effect,
the NFLs are additionally characterized. The characterization delivers valuable information
about aberrations from the ideal lens shape, and this information is incorporated in the
design and manufacturing process of improved NFLs, pushing forward the performance of
the nanoprobe.

The prototype was built in Dresden, but since it requires the highly brilliance of an undu-
lator x-ray source, it was installed at the ESRF beamline ID 13. A long-term collaboration
with the beamline ID 13 offered the possibility to regularly test the instrument and to carry
out a lot of experiments, verifying the performance of the nanoprobe and offer its possibil-
ities to other research groups. Based on the experiences with that prototype, the beamline
ID 13 has implemented its own nanoprobe setup, for which we provided an interface module
in order to mount NFLs developed by our research group in Dresden.

The remainder of this document is organized as follows. Chapter 2 gives a general intro-
duction to the properties of hard x rays, dealing with the subject of free-space propagation
and the interaction of x rays with matter. The properties of x-ray sources are discussed in
chapter 3. After identifying the demands on the source, the most important characteristics
of synchrotron radiation produced by undulators are highlighted. Focusing x-ray optics are
treated in chapter 4. Besides NFLs and CRLs, which are the core of the scanning microscope,
I also touch on adiabatically focusing lenses (AFLs). The basic properties of the nano beam,
which is generated by NFLs, are discussed, and a two-stage focusing scheme is presented.
The conceptual design and the realization of the hard x-ray scanning microscope are given
in chapter 5. The layout of the ESRF beamline ID 13 is shown as well as the hardware
components of the instrument, including optics, stages, and detectors. Finally, in chapter 6
a selection of experiments will give evidence of the performance of the hard x-ray scanning
microscope. This work is completed by a conclusion and an outlook on prospective plans in
implementing an improved version of the prototype instrument.



Chapter 2

Basic Properties of Hard X Rays

Like visible light, x-ray radiation is part of the electromagnetic spectrum but with a wave-
length much shorter than that of visible light. Whereas the wavelength of visible light is
in the range between 380 nm snd 780 nm, the wavelength of x rays is shorter than 1 nm.
The corresponding photon energies Eph = hc0/λ (h the Planck number, c0 the speed of
light in vacuum) are in the order of 1 eV for visible light, but higher than 200 eV for x rays.
As a common convention, there is the distinction between soft x rays with photon energies
of several 100 eV up to about several keV on the one hand, and hard x rays with photon
energies larger than a few keV on the other hand. In contrast to hard x rays, soft x rays
do not penetrate very deeply into matter, they are even absorbed significantly in the air
for short propagation distances. The phenomenological difference between the properties of
soft and hard x rays is quite significant, the experimental handling of soft x rays as well
as their potential applications are much different from that of hard x rays and, therefore,
different scientific communities for soft x-ray physics and hard x-ray physics have emerged.
The scanning microscope treated in this thesis is intended to be employed for hard x rays,
allowing to investigate the inner structure of objects. For this reason, the emphasis is laid
on hard x rays, even though some of the properties discussed in this chapter are also valid
for soft x rays.

2.1 Free Propagation of X Rays

In the scanning microscope x rays propagate from the source to several optical elements, then
they propagate to the sample (which hopefully is located in the focal plane of the focusing
lens), and finally — after interacting with the sample — x rays propagate from the sample
to the detector. Obviously, knowledge about free propagation of x rays is critical in order to
understand the scanning microscope. In this section, I provide the theoretical basis that is
needed to quantitively treat the propagation of light, and consequently of hard x rays.

The question to be treated in this section will be the following. Given the electromag-
netic field amplitudes of the x rays within a certain plane perpendicular to the optical axis,
what are the field amplitudes within a plane at some distance further in the direction of
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4 2.1. FREE PROPAGATION OF X RAYS

propagation, if there is only free space between the two planes? This question will be an-
swered by classic electrodynamics, using Maxwell’s equations. In a first step I will introduce
the Helmholtz equation, a scalar wave function for monochromatic waves. The Helmholtz
equation will be used to deduce the integral theorem of Helmholtz and Kirchhoff, which
will be adapted to a physical situation which conforms with the needs of simulating free
propagation of x rays in the scanning microscope, leading to the Fresnel-Kirchhoff diffrac-
tion formula. In a last step I will discuss some approximations being of special relevance in
practical situations.

2.1.1 The Helmholtz Equation

We start with Maxwell’s equations

∂

∂r
× E(r, t) = − ∂

∂t
B(r, t), (2.1)

∂

∂r
E(r, t) =

1

ε0

ρ(r, t), (2.2)

∂

∂r
× B(r, t) = μ0 j(r, t) + ε0 μ0

∂

∂t
E(r, t), (2.3)

∂

∂r
B(r, t) = 0. (2.4)

This set of partial differential equations describes the fields E(r, t) and B(r, t) and forms
the fundament of classic electrodynamics. Applying some mathematical manipulations on
these equations leads to wave equations for the electromagnetic fields. With 1/c2 = μ0ε0 the
wave equations read

∂2

∂r2
E − 1

c2

∂2

∂t2
E =

1

ε0

∂

∂r
ρ + μ0

∂

∂t
j,

∂2

∂r2
B − 1

c2

∂2

∂t2
B = −μ0

∂

∂r
× j. (2.5)

If we consider a region far away from any charged particles, the charge density ρ and the
current density j are zero and the inhomogeneous wave equations become homogeneous

∂2

∂r2
E − 1

c2

∂2

∂t2
E = 0,

∂2

∂r2
B − 1

c2

∂2

∂t2
B = 0. (2.6)

It can be shown that plane waves

E(r, t) = E0 f(nr − ct),

B(r, t) = B0 f(nr − ct) (2.7)
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with |n| = 1 are valid solutions of the wave equations. For each given point in time the
field values are constant over planes orthogonal to n. These planes of constant field values
propagate in time along the direction given by n. Since we consider regions free of electric
charges (ρ = 0), it follows from equations (2.2) and (2.4) that

nE = 0,

nB = 0

and, therefore, the field vectors E and B are both orthogonal to the direction of propagation.
Furthermore, on applying equation (2.1), the expression

n
∂

∂r
× E0 = cB0 (2.8)

can be deduced, showing that the three vectors n, E and B are all perpendicular to each
other and form in this order an orthogonal right-handed tripod. If one neglects polariza-
tion effects, the electric and the magnetic field amplitudes maybe written in a scalar form.
Following the convention in [BW99], I use V (r, t) to represent the scalar electric field ampli-
tude. This is possible without loss of information, since equation (2.8) allows to determine
the magnetic field, once the electric field is known, or vice versa.

A special class of solutions of the homogeneous wave equation (2.6) is that for which
the space-dependence separates from the time-dependence, i. e., which can be written in the
form

V (r, t) = U(r) T (t). (2.9)

Inserting this ansatz into (2.6) one retrieves(
∂2

∂r2
+ k2

)
U(r) = 0, (2.10)

(
∂2

∂t2
+ k2/c2

)
T (t) = 0. (2.11)

Equation (2.11) has time harmonic solutions

T (t) = T0 ei ω t (2.12)

with ω = k/c. The time-independent wave equation (2.10) is called Helmholtz equation and
delivers solutions Uω(r), which, together with (2.12), solve equation (2.9)

Vω(r, t) = T0 ei ω t Uω(r). (2.13)

If Uω(r) solves the Helmholtz equation (2.10), then T0 Uω(r) is also a solution and, therefore,
instead of (2.13), one can also write

Vω(r, t) = Uω(r) ei ω t. (2.14)
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These solutions are called monochromatic waves, and each general solution of the general
homogeneous wave equation (2.6) can be written as a linear superposition of such monochro-
matic waves

V (r, t) =

∫
dω Vω(r, t)

=

∫
dω Uω(r) ei ω t. (2.15)

To go a step forward, we display Uω(r) as a linear combination of plane waves

V (r, t) =

∫
dω

∫
d3k Ũk,ω ei kr ei ω t. (2.16)

In order to be a solution of (2.6), the relation k = |k| = ω/c is required, and after integration
over dω one obtains

V (r, t) =

∫
d3k

(
Ũ1(k) ei( kr−c k t) + Ũ2(k) ei( kr+c k t)

)
(2.17)

with k = |k|. From these considerations it becomes obvious, that the Helmholtz equation
(2.10), together with appropriate boundary conditions, completely describes the propagation
of x rays in vacuum.

2.1.2 Integral Theorem of Helmholtz and Kirchhoff

Now, we will apply the Helmholtz equation to calculate the amplitude U(P0) of the x-ray
field in a point P0 = r0 with the assumption that the amplitude and its derivative are known
on an arbitrary surface S which surrounds the point P0 (Figure 2.1). We start with a small
sphere Sε with radius ε centered around P0 and examine the following integral

ISε =

∫∫
Sε

ds

(
U(s)

∂G(s)

∂n
− G(s)

∂U(s)

∂n

)
(2.18)

with

G(s) =
eik0r(s)

r(s)
. (2.19)

r(s) = |s − r0| is the distance from the observation point P0, and ∂/∂n = n∂ denotes the
directional derivative along the inward facing surface normal n. We evaluate the integral for
the limit ε → 0

ISε =

∫∫
Sε

ds

(
−U(s)

[
1

ε
− ik0

]
eik0ε

ε
− eik0ε

ε

∂U(s)

∂n

)

= eik0ε

[∫ 2π

φ=0

dφ

∫ π

θ=0

dθ sin θ (−U + ε i k0 U − ε n ∂U)

]
= −4π U(P0) as ε→0
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Figure 2.1: Derivation of the Integral Theorem of Helmholtz and Kirchhoff. The field U is known on
the surface S. Since U is a solution of the Helmholtz equation, the field on the surface Sε is completely
determined by the field on S. Computing the limit for ε → 0, the field amplitude in the observation point
P0 can be deduced.

and thus

U(P0) =
1

4π

∫∫
Sε

ds

(
G

∂U

∂n
− U

∂G

∂n

)
. (2.20)

This expression relates the field amplitude U(P0) observed at location P0 with the integral
over the infinitesimal spherical surface Sε around P0. Now we use Green’s theorem together
with the Helmoltz equation to connect the field amplitude at the observation point P0 with
the field on the surface S. In contrast to Sε the surface S needs neither to be spherical nor
to be infinitesimal small. Shall V denote the volume which is surrounded from outside by
the surface S and from inside by the surface Sε. If the partial derivatives of the functions
U and G exist and are continuous everywhere on S, on Sε, and within the volume V , then
Green’s theorem states

∫∫
S∪Sε

ds

(
G

∂U

∂n
− U

∂G

∂n

)
=

∫∫∫
V

dv

(
G

∂2

∂r2
U − U

∂2

∂r2
G

)
(2.21)

Here, the surface normal n is chosen to face away from the volume V , which conforms with
the convention used in the derivation of (2.20). The function G = exp(ik0r)/r has been
chosen such that it is a solution of the Helmholtz equation (2.10) with the wave number
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k = k0. If U satisfies the Helmholtz equation with the same wave number k0, i. e.,

∂2

∂r2
U = −k2

0 U,

∂2

∂r2
G = −k2

0 G,

then the integrand of the volume integral vanishes and Green’s theorem (2.21) simplifies to∫∫
S∪Sε

ds

(
G

∂U

∂n
− U

∂G

∂n

)
= 0

or ∫∫
Sε

ds

(
G

∂U

∂n
− U

∂G

∂n

)
=

∫∫
S

ds

(
U

∂G

∂n
− G

∂U

∂n

)
.

This expression can be inserted into equation (2.20), and finally one gets the relation between
the wave field on the surface S and the amplitude at the observed point P0

U(P0) =
1

4π

∫∫
S

ds

(
U

∂

∂n
G − G

∂U

∂n

)
(2.22)

with

G =
ei k0 r

r
. (2.23)

This formula is a special version of the integral theorem of Helmholtz and Kirchhoff and will
be used in the next subsection to derive Fresnel-Kirchhoff’s diffraction formula.

2.1.3 Fresnel-Kirchhoff’s Diffraction Formula

In the preceding subsection the integral theorem of Helmholtz and Kirchhoff was presented.
This theorem admits the calculation of the scalar field amplitude in an observation point
from the knowledge of the field and its derivatives on a surface which encloses this point.
Now, we will apply this theorem to manage the following situation, which is illustrated in
Figure 2.2. X rays, which have been emitted from a source, are propagating from the left to
the right along the optical axis and arrive at an open aperture within an opaque screen. The
source distance shall be large compared to the transverse dimensions of the open aperture.
Knowing the wave field in the aperture plane, one would like to estimate the field amplitude
U(P0) in a point P0 behind the aperture plane. In order to apply the integral theorem from
the previous subsection, we introduce an imaginary surface S, which encloses P0 as shown
in Figure 2.2. The enclosing surface shall be composed of three disjoint parts S1, S2 and S3

with S1 matching the opening aperture, S2 conforming a part of the opaque screen and S3

being the surface of a large sphere with radius R centered around P0 and cutting the opaque
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Figure 2.2: Illustrating the derivation of Fresnel-Kirchhoff’s Diffraction Formula. A source radiates a wave-
field which propagates to an opaque screen with an open aperture S1. Knowing the wavefield on S1 is
sufficient to compute the amplitude in the observation point P0, because the contributions from S2 and S3

can be neglected.

screen in a way that the opening aperture lies within the cutting circle. Due to (2.22) it
follows for the field amplitude in P0

U(P0) =
1

4π

∫∫
S1∪S2∪S3

ds

(
U

∂

∂n
G − G

∂U

∂n

)

=
∑

i∈{1,2,3}
Ui (2.24)

with

Ui =
1

4π

∫∫
Si

ds

(
U

∂

∂n
G − G

∂U

∂n

)
, i ∈ {1, 2, 3}. (2.25)

The contributions from the three surfaces Si can be evaluated separately, but it will be
necessary to establish some boundary conditions for the field and its derivative on these
surfaces. For the open aperture S1 it is reasonable to assume that U and its derivative
should be the same as without the opaque screen around, even though there may be some
deviations near the edge of the aperture. The influence of the field, that is generated by the
illuminated opaque screen, on the field in the aperture S1, is very low and can be neglected,
which is especially true for the hard x-ray regime of the electromagnetic spectrum. In the
shadow just behind the opaque screen the field and its derivative can be expected to be zero,
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since the opaque screen absorbs all illuminating radiation, and again, the influence of the
field, which is generated by the presence of the screen, can be neglected in comparison with
the incident wavefront. It remains to show that the field and its derivatives on the spheric
surface S3 vanish for a radius R which is sufficiently large. The argumentat is not as obvious
as it seems, because, even if the field U falls with increasing radius, the area of S3 increases
beyond all limits and the contribution of U3 would not vanish. Instead, as suggested in
[BW99], one can presume that the source of the incident wavefront has been switched on
at a certain point in time t0 and that there was no electromagnetic field before. Thus, at
the time t1 for which we evaluate the amplitude in P0, no photon has reached S3 if only
the radius R is sufficiently large (R > c(t1 − t0)). Of course this argumentation contradicts
with the use of the Helmholtz equation which assumes a stationary situation with strictly
monochromatic waves. A more rigorous argumentation avoiding this difficulty can be found
in [Bor06] or [BC03]. As a summary, the following boundary conditions are encountered:

• on S1: U = U (i), ∂U
∂n

= ∂U(i)

∂n
,

• on S2: U = 0, ∂U
∂n

= 0,

• on S3: U = 0, ∂U
∂n

= 0,

from which it follows that U2 and U3 do not contribute to the amplitude U(P0) and, therefore,

U(P0) = U1 =
1

4π

∫∫
S1

ds

(
U

∂

∂n
G − G

∂U

∂n

)
.

The Green function G is given by (2.23) and the wavefront U must obey the Helmholtz
equation with the wavenumber k0. I start with a special solution given by a spherical wave
emitted from a point source at PS and deduce the general case by a linear superposition of
many spherical wavelets. With

U = U0
eik0r1

r1

,

G =
eik0r2

r2

(2.26)

one gets

U(P0) =
1

4π

∫∫
S1

ds

(
U0

eik0r1

r1

∂

∂n

eik0r2

r2

− eik0r2

r2

∂U0
eik0r1

r1

∂n

)

=
1

4π

∫∫
S1

ds U0
eik0(r1+r2)

r1 r2

([
ik0 cos β +

1

r2

]
+

[
ik0 cos α +

1

r1

])

=
1

4π

∫∫
S1

ds U(r1) G(r2)

(
ik0 [cos α + cos β] +

1

r1

+
1

r2

)
.


