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Chapter 1

Introduction

1.1 Motivation

Turbulence remained as “the last great unsolved problem in classical physics”,
a description attributed to Feynman, Heisenberg and many great scientific
minds. For almost a century, wall bounded turbulent shear flows have been
regarded as an attractive topic for physicists, mathematicians and engineers
and has inspired wide ranges of studies. In most practical and industrial
applications, the Reynolds number acquires very high values. Therefore,
detailed study of this phenomenon at high Reynolds numbers is of
fundamental importance for a realistic prediction of losses, efficient flow
control and reduction of energy consumption.

The present research focuses on fully developed turbulent pipe flow at high
Reynolds numbers as one of the canonical forms of wall turbulence. This
geometry provides homogenous turbulence in streamwise and azimuthal
directions as well as the possibility for more accurate determination of wall
shear stress. In flows at high Reynolds numbers, an appreciable length of
logarithmic behavior is observable in the mean velocity and streamwise
turbulence intensity profiles. In such cases, the logarithmic region contributes
most to the bulk turbulence production as observable in Figure 1.1, where the
area below the premultiplied profiles, represents the overall energy production
(Smits, McKeon, and Marusic (2010)). Furthermore, as highlighted in
Figure 1.2, in such regimes energy containing structures with lower
wavenumbers are clearly distinguished from the small scale structures in the
dissipation range. Therefore, the existence of a wider overlap layer and
sufficient separation between the scales at highly turbulent regimes provides
for a clearer and more distinguished observation of structures with different
length scales.
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2 Chapter 1. Introduction

Figure 1.1: Turbulent kinetic energy production at y+ ≈ 12
for various Reynolds numbers. (Smits, McKeon, and Marusic

(2010))

Figure 1.2: Streamwise velocity spectra at y+ ≈ 12 for various
Reynolds numbers. (Smits, McKeon, and Marusic (2010))

In the past decades three different areas of focus have emerged: structures and
scaling of turbulence; observation and identification of turbulent coherent
structures and more recently large- and very large-scale motions (LSM and
VLSM):

• Almost since the beginning of wall turbulence investigations in the
1950’s, one important focus of research has been on the structure and
scaling of turbulence. Some of the most prominent observations were
done by Coles (1956), Patel and Head (1969a), Perry and Abell (1975),
Barenblatt (1993a), Barenblatt (1993b), Eggels et al. (1994), Zagarola
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and Smits (1998), McKeon et al. (2004a), McKeon et al. (2004b) and
Morrison et al. (2004).

• In the 1970’s a second group of wall bounded turbulence studies were
inspired by observation of coherent structures. Better understanding of
such structures was of interest for a large number of researchers like
Townsend (1961) and more recently Hutchins and Marusic (2007),
Bailey et al. (2008), Monty et al. (2007) and Monty et al. (2009). They
resulted in vital information about flow dynamics and provided good
inputs to flow control methodologies. Furthermore, the interactions
between flow structures and scaling properties of wall-bounded shear
flows has been the subject of major studies including those of Monty
et al. (2007) and Monty et al. (2009).

• During the recent years new observations have been addressed by Kim
and Adrian (1999), Morrison et al. (2004) and Vallikivi,
Ganapathisubramani, and Smits (2015) concerning the existence of very
large-scale motions (VLSM).

Numerical study of fully developed turbulent pipe flow has been treated since
the first simulations by Eggels et al. (1994). In spite of the increased interest
in DNS of this type of flow, the simulations are still limited in Reynolds
numbers and domain size. Recent studies like Feldmann and Wagner (2012)
and El Khoury et al. (2013) have extended the bulk Reynolds number limits
to Reb ≈ 40.000 focusing on the statistical flow properties. Turbulent coherent
structures and their interactions have been the target of many studies like
Wagner and Friedrich (1998), Wu, Baltzer, and Adrian (2012) and Schlatter
et al. (2014). Effects of compressibility on statistics of pipe flow have been
studied by Ghosh, Sesterhenn, and Friedrich (2006). An alternative approach
to study coherent motions is to directly solve for exact solutions of the
Navier-Stokes equations. Relative periodic orbits embedded in turbulence
have been obtained in pipe flow by Avila et al. (2013) and Willis, Cvitanoic,
and Avila (2013). However, this has so far been tested in transitional flows.

One of the recent focuses of wall bounded turbulence studies has been
concentrated on scaling and analysis of turbulence intensity profiles which
represent diagonal components of Reynolds stress tensor. Measurements of
Morrison et al. (2004) and more recently Hultmark, Bailey, and Smits (2010)
in the Superpipe in Princeton revealed the existence of an inner peak in the
mentioned profile at where turbulent kinetic energy production reaches its
maximum as well. These observations have convincingly proven that this inner
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peak does not reflect a strong dependence on Reynolds number in pipe flow as
shown in Figure 1.3 (where uτ corresponds to shear Reynolds number based on
radius and friction velocity). This is contrary to boundary layer flow where the
inner peak grows with increasing Reynolds number indicating a growing outer
layer influence on the near wall motions. The reason for invariance of the
inner peak in pipe flow is still not fully understood. However, considering that
the velocity spectra show Reynolds number variation, one possible explanation
is that interactions between scales continue evolving while the overall energy is
kept constrained by streamwise homogeneity in pipe flow (Smits, McKeon,
and Marusic (2010)). The same experimental data have shown emergence of a
second peak or plateau at higher Reynolds numbers. As proposed by Morrison
et al. (2004) this so called outer peak taking place in the overlap layer may
represent structural changes that can show presence of new outer phenomena.
Nevertheless, such behavior has not been considered in any formulations for
streamwise turbulence intensity so far (Smits, McKeon, and Marusic (2010)).

Figure 1.3: Inner scaled turbulence fluctuations for 2.000 ≤
Re+ ≤ 100.000 in Superpipe. (Hultmark et al. (2012))

1.2 Large-Scale Structures in Wall-Bounded
Turbulence

The character of wall-bounded turbulence with increasing Reynolds number
remains a particular phenomena which reflects its importance to recent studies
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in canonical turbulent flows (boundary layer, pipe, channel). A specific
question is the length of the so-called large- and very large-scale motions
(LSM & VLSM) in the outer layer of fully developed turbulent pipe flow in
terms of their turbulence spectrum at various Reynolds numbers. The inertia
of turbulent motions is dominated far from the wall since the viscosity is
highly affected in the near-wall regions. The flow is dictated by the scales
influenced by viscosity which are labeled as inner scales whereas the outer
scales are effective far from the wall.

In canonical geometries the apparent shear layer scale is considered in flat
plate boundary layers as δ, the boundary layer thickness, in pipe as R, the
pipe radius and in channel as h, the half-width of the channel. The consistent
velocity in the region closest to the wall is the friction velocity uτ =

√
τw/ρ,

where τw is the wall shear stress and ρ the density of the fluid. The viscous
length scale is defined as l∗ = ν/uτ which can also be interpreted as
l∗ = R/Reτ , where ν stands for kinematic viscosity and Reτ for friction
Reynolds number which can be determined as Reτ = uτ R/ν for pipe flow. The
ratio of the inner and outer scales is R+ called the Kármán number or friction
Reynolds number. A large divergence between these length scales observed at
high Reynolds numbers which delivers an additional region, the turbulent wall
region ν/uτ ≤ y ≤ R. This region is divided by three different scale ranges in
terms of the turbulence spectrum (Perry, Henbest, and Chong (1986)): high
wavenumber range corresponds to motions with the Kolmogorov length scale
ηK ; intermediate wavenumbers with wall-normal scale y and low wavenumbers
with R. Spectral characteristics of turbulence have illuminated the relevance
of large-scale motions in the form of long regions of streamwise velocity
fluctuations in the outer layer. Their energetically existence has been first
recognized in turbulent boundary layer by observing a long tail on the
temporal auto-correlation of streamwise velocity (Townsend (1958),Grant
(1958)). They are also identified by detecting a major peak in the spectrum of
instantaneous streamwise velocity component (premultiplied one-dimensional
spectra as function of distance from the wall, Figure 1.6) at various
wavenumbers (Grant (1958),Kim and Adrian (1999)). These motions contain
half of the turbulent kinetic energy of the streamwise velocity component and
more than half of the Reynolds shear stress (Kim and Adrian (1999),Bullock,
Cooper, and Abernathy (1978)).

There are number of existing hypothesis about the length of the energetic
motions and no commonly accepted definition of LSMs and VLSMs. The
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LSMs or turbulent bulges have usually been described as an argument of long
correlation tails related to the “large-eddy hypothesis” proposed by Bullock,
Cooper, and Abernathy (1978), but nevertheless recent studies provide a
wider overview about their interpretation. Kim and Adrian (1999) suggested
with their single-point hot-wire measurements in pipe flow that these motions
with wavelengths of approximately 2R-3R should be linked to the streamwise
alignment of hairpin vortices into hairpin packets and structures longer than
14R can be characterized as VLSM (Figure 1.4 and Figure 1.5). According to
same study, VLSMs are prominent within the logarithmic layer and their
evidence is depending on power spectrum of the streamwise velocity
fluctuations based on Taylor’s hypothesis of frozen turbulence. Pre-multiplied
power spectra is used to indicate the peaks of turbulent motions which was
also preferred by Perry and Abell (1975) for revealing the bi-modal
distribution of wavelengths. Bullock, Cooper, and Abernathy (1978) reported
that these structures should be referred as LSM if their lengths in streamwise
direction are between 0.1πR−πR and structures larger than (≈ 3R) should be
considered as VLSM. To distinguish LSM and VLSM wavenumber ranges the
wavenumber kxR = 2 is taken as boundary. It corresponds to a wavelength of
πR (≈ 3R) which is approximately the size of the accepted mean bulge and at
y/R = 0.5 the longest streamwise wavelength λmax is detected as ≈ 20R. Here
kx is the streamwise wavenumber and kxR is the non-dimensional
wavenumber. kx is derived from Taylor’s hypotesis, so that kx=2πf/U and λx

is determined using the same relation as kx = 2π/λx. The same procedure
with dividing line between LSM and VLSM at kxR=2 is also used by
Balakumar and Adrian (2007).

Figure 1.4: a) Premultiplied spectra as functions of distance
from the wall; b) the dimensionless wavelength of the very large-
scale motion correlates with other experiments in pipe flow.

(Kim and Adrian (1999))

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.2. Large-Scale Structures in Wall-Bounded Turbulence 7

Figure 1.5: Conceptual model proposed by Kim and Adrian
(1999) which describes the alignment of hairpins coherently into

a package to form very large-scale motions.

Regarding to turbulence spectra aspects k−5/3
x and k−1

x laws are widely
discussed. Especially for characterizing the turbulence at high Reynolds
numbers in wall-bounded flows these conditions are considered for the power
spectral density of the streamwise fluctuating velocity component. According
to these laws two overlapping cases of wavenumber ranges have been observed:
overlap of the intermediate and high wavenumber ranges, the so-called k−5/3

x

law, proposed by Kolmogorov (1941); and overlap of low and intermediate
wavenumber ranges, the so-called k−1

x law based on Perry and Abell (1977).
Nickels et al. (2005) reported that the dependence based on k−1

x can be
observed at high Reynolds numbers while k−5/3

x law is a widely familiar
condition in existing experiments. Vallikivi, Ganapathisubramani, and Smits
(2015) concluded that the spectra collapses using both inner and outer scaling
in pipe and boundary layer flows and k−1

x region does not appear in all
scalings, as well as in Zhao and Smits (2007). According to observation of
Rosenberg et al. (2013) the overlap region and bi-modal distribution in energy
spectrum vanishes with increasing Reynolds number. To estimate the
locations of spectral peaks Rosenberg et al. (2013) developed a methodology
where a Gaussian curve in log(kx) is fitted to data to determine the
wavenumber peak location. Morrison et al. (2004), Rosenberg et al. (2013)
and Vallikivi, Ganapathisubramani, and Smits (2015) also observed that no
region exists where the spectra is collapsed using both scalings simultaneously.
Additionally Morrison et al. (2004) suggested that uτ may not be the correct

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



8 Chapter 1. Introduction

velocity scale for obtaining a full overlap. Considering the spectra in
Kolmogorov scaling in Vallikivi, Ganapathisubramani, and Smits (2015) the
power law range with a slope close to k−5/3

x develops as wall-normal position
increases, where the exponent is closer to −1.5 than −5/3.

Figure 1.6: Premultiplied power spectra at Reτ ≈ 70.000
with varying wall-normal locations in Superpipe scaled with
R and wall distance respectively. Arrows indicate arrow in-
dicates increasing y/R. (Vallikivi, Ganapathisubramani, and
Smits (2015)) Red dashed lines proposed by Del Álamo et al.

(2004).

It should also be noted that the flow behavior of various canonical geometries
present different turbulence conditions regarding VLSMs. Balakumar and
Adrian (2007) studied the same phenomena in the zero pressure gradient
boundary layer and found out that with an increasing distance from the wall,
the peak of the long wavelenght is decreasing in magnitude relative to the
shorter wavelength which is the opposite case in channel flow. This gives an
essential outline about bi-modal distribution of energy observing the power
spectra. According to conclusion of Monty et al. (2009) the large-scale peak in
energy spectra of internal flows appear at longer wavelengths than that in
boundary layers. Same study draws an attention that VLSMs in internal flows
should not be confused with superstructures (SS) in boundary layer flows,
however these motions are similar but their energy in internal flows is stored
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at greater wall-normal distances and in larger wavelengths than the structures
in boundary layer flows. Monty et al. (2009) also reported that the diversity
between SS and VLSM may be occured by reason of different boundary
conditions regarding to open and closed geometries. Furthermore Hutchins
and Marusic (2007) observed that SS on flat plate are only present in the
turbulent wall region while VLSM in pipe and channel are stretched to the
outer flow. Considering the recent results of Vallikivi, Ganapathisubramani,
and Smits (2015) on turbulence spectra in pipe and boundary layer, the outer
flow in pipe can be still represented by LSMs and VLSMs which are associated
with two major peaks in pre-multiplied power spectra, but in boundary layer
flow only a single peak can be detected which leads to a sign of LSM. It can
be concluded that the SS is not observable in the wake region at high
Reynolds numbers.

Figure 1.7: Contour maps of premultiplied spectra of stream-
wise velocity fluctuations in pipe flow as a function of outer and
inner scaled wavelength and wall-normal location. (Monty et al.

(2009))

1.3 Theoretical Background

Due to axisymmetry, pipe flow is one of the simplest geometries for
investigating wall-bounded flows. In this section, theoretical background
concerning turbulent pipe flow is presented, along a brief review of
corresponding equations and fundamental explanations.

1.3.1 Pipe Flow Principals

For describing experimental results of pipe flow turbulence, a discussion on
the fundamental equations is needed, which describes the phenomena in a
mathematical way. Generally, Navier-Stokes equations for an incompressible
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flow written in Eulerian form as momentum balance can be used as first step,
where the body forces are neglected (Equation 1.1):

∂U

∂t
+ (U · ∇)U = −1

ρ
∇p + ν∇2U (1.1)

where U is the velocity vector, p is the pressure, ρ is the fluid density and ν is
the kinematic viscosity, which can be determined as μ/ρ. On the other hand
∇ · U = 0 describes the continuity equation for Newtonian and incompressible
flows, which is already implemented in the above mentioned equation. Here
the Reynolds decomposition technique can be applied to split the velocity
parameter into its mean and fluctuating variables to indicate the streamwise
velocity component (Equation 1.2):

U(x, t) = U(x, t) + u(x, t) (1.2)

where x stands for the streamwise direction, t for time, over-bar sign for
averaged quantities and lower case parameter for fluctuations. Reynolds
decomposition can be applied to the Navier-Stokes equations to determine the
RANS - Reynolds averaged Navier-Stokes equations. In pipe flow, a
cylindrical coordinate system (x, r, θ) should be defined to implement these
equations to a circular boundary condition, where x indicates the axial, r the
radial and θ the angular coordinate. In cartesian coordinate system, the
velocity vector U can be written as (U, V, W ), which describes streamwise,
wall-normal and spanwise components respectively. Using the Reynolds
decomposition, the mean variables are defined as (U, V , W ) and fluctuating
variables as (u, v, w). Cartesian coordinate can be transformed to to
cylindrical coordinates using Equation 1.3:

∇(x,r,θ)t =

⎛
⎜⎜⎜⎝

∂t
∂x
∂t
∂r

1
x

∂t
∂θ

⎞
⎟⎟⎟⎠ (1.3)

The resulting continuity equations can be written as following:
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