1 Introduction

Simulations using partial differential equations (PDE) and PDE-constrained opti-
mizations are employed to attack real-world problems in scientific computing. In both
areas, solving systems of linear equations with Jacobian matrices as coefficient matri-
ces is mandatory. To solve these linear systems, sparse Jacobian matrices demand a
matrix-free iterative solver with access to (transposed) Jacobian matrix-vector prod-
ucts. Automatic differentiation is a technique to provide not only Jacobian matrices
but also these products. The great benefit of these Jacobian matrix-vector products
is that there is no need to store the nonzero elements of the Jacobian matrix. If a
Jacobian matrix exceeds the main memory, it is essential to use matrix-free itera-
tive solvers. Memory consumption and computational effort are restricting resources
in simulation and optimization. In this thesis, the sparsity of Jacobian matrices is
exploited to decrease both resources.

Exploiting the sparsity of Jacobian matrices is important to decrease the compu-
tational effort. Determining all nonzero elements is denoted as full Jacobian com-
putation, opposed to the partial Jacobian computation where only a subset of the
nonzero elements is computed. Determining such a subset is important for employing
the preconditioning techniques in the second part of this thesis.

Nonzero elements may be determined row- or column-wise with automatic differ-
entiation. Either rows or columns can be combined to linear combinations to reduce
the computational effort. There are special classes of matrices for which the number
of linear combinations can be reduced further. Therefore, the nonzero elements can
be determined by rows and columns. These rows and columns are combined to linear
combinations of rows and linear combinations of columns. The arrow-shaped matrix
is a good example for this matrix class. These reductions of linear combinations can
be modeled as combinatorial optimization problems, in particular, graph coloring
problems. That is, each linear combination is associated to a color. Combining ei-
ther rows or columns is denoted as one-sided coloring, whereas combining rows and
columns is denoted as two-sided coloring.

Reducing the number of colors for full and partial Jacobian computation is stud-
ied in the first main part of this thesis. In particular, algorithms to solve the re-
sulting graph coloring problems are developed. Regular Cartesian grids are a graph
class occurring in stencil-based computations. A sub-exponential exact coloring al-
gorithm is introduced to determine minimal colorings for full and partial Jacobian
computation. This algorithm takes advantage of the grid and stencil properties by
employing a divide-and-conquer scheme and separators derived from Lipton-Tarjan
separators. Thereafter, since the runtime depends directly on the grid size, a grid
size-independent approach with linear time complexity is invented. A small grid is

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



1 Introduction

colored and, then, a coloring information—if available—is extracted which is suf-
ficient to color a larger grid of arbitrary size with the smallest number of colors.
Although this approach is not universal, it works for all considered stencils. Follow-
ing one-sided colorings to exploit Jacobian matrices in stencil-based computations,
the next topic is two-sided colorings for general graphs. An algorithm for partial
Jacobian computation is introduced. Thereafter, several classes of Jacobian matrices
are considered to assess whether there is a two-sided coloring with less colors than a
minimal one-sided coloring.

For matrix-free iterative solvers, the access to Jacobian matrix-vector products is
sufficient without assembling the full matrix. Unfortunately, standard precondition-
ing techniques expect that all nonzero elements of a Jacobian matrix are available.
Using preconditioners increases the convergence behavior and speeds up solving sys-
tems of linear equations. If the available memory is a limiting resource, storing all
these elements is often impossible. Cullum and Tuma [21] proposed to restrict the
input for the preconditioning method to a subset of the nonzero elements of a Jaco-
bian matrix. However, they do not address how to choose this subset. Gebremedhin,
Pothen, and Manne [27] introduced the coloring definition for the partial Jacobian
computation and mentioned its usage for preconditioning. When a subset of the Ja-
cobian elements—solely for preconditioning purposes—is determined, these nonzero
elements may be stored and, afterwards, the preconditioning techniques are restricted
to these elements.

Combining preconditioning techniques with the partial Jacobian computation is
the topic of the second half of this thesis. It is assumed that the sparsity pattern
of the Jacobian matrix is available. This information is employed to determine a
preconditioner. A set of nonzero elements is suggested by domain experts and, then,
additional nonzero elements are chosen to speed up solving systems of linear equa-
tions. When these elements are chosen, the limited memory and the computational
effort must be taken into account. To determine the initial nonzero elements, a col-
oring with a specific number of colors is needed. Additional nonzero elements are
chosen without increasing this number of colors and without exceeding the available
memory. The nonzero elements are categorized to different classes. Several algorithms
are developed to choose nonzero elements. At the end, a couple of additional nonzero
elements are omitted to obtain a structure which is beneficial for solving the precon-
ditioned system of linear equations in parallel. The aim is to reduce the degree of
dependence between the employed processors.

The main contributions of this thesis are in the fields of coloring algorithms for
sparsity exploitation of Jacobian matrices as well as the combination of precondi-
tioning and partial Jacobian computation. In the first part, a sub-exponential exact
coloring algorithm and a linear-time algorithm which is independent of the original
grid size are introduced for full and partial Jacobian computation in stencil-based
computations. For general graphs, a two-sided coloring algorithm for partial Jacobian
computation is given. Thereafter, several classes of Jacobian matrices are considered
to assess whether there is a two-sided coloring with less colors than a minimal one-
sided coloring. In the second part, the combination of preconditioning and the partial

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



Jacobian computation is a completely new approach. It includes the categorization
of nonzero elements and choosing specific nonzero elements for preconditioning.

This thesis is structured as follows: Already known graph models associated to
sparse Jacobian matrices are described in Chap. 2. These models comprise a bi-
partite graph model for general Jacobian matrices and a regular Cartesian grid for
Jacobian matrices arising from stencil-based computations. Furthermore, the opti-
mization problems concerning the exploitation of Jacobian matrices and a first in-
troduction to graph coloring algorithms is given. Moreover a consistent notation for
the thesis is introduced. In Chap. 3, an exact sub-exponential coloring algorithm on
regular grids for full and partial Jacobian computation in stencil-based computation
is presented. Another new coloring algorithm to compute minimal colorings is pre-
sented to reduce the complexity of the previous algorithm. The determination of the
coloring information is independent of the original grid size. For general graphs, a
coloring algorithm for the partial Jacobian computation is described which is also
applicable for the full Jacobian computation. Thereafter, for some matrix classes,
the reduction in the number of colors by using two-sided colorings compared to one-
sided colorings is evaluated. In the following chapter, a preconditioning technique
is combined with the partial Jacobian computation. The preconditioning for solving
systems of linear equations is introduced and motivated. Afterwards, the nonzero el-
ements of Jacobian matrices are classified. For every class, algorithms are introduced
to determine different subsets of required nonzero elements. At the end, solving pre-
conditioned systems of linear equations in parallel is considered. The usage of the
required elements for preconditioning is evaluated by the number of matrix-vector
products, number of nonzero elements, and number of colors. In Chap. 5, several
applications from science and engineering are considered to show the practical rele-
vance for using the previously described techniques, in particular, the graph coloring
and preconditioning. This thesis closes with a concluding summary.

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



2 Exploiting sparsity in Jacobian
computation

Before describing the progress in coloring algorithms and partial Jacobian computa-
tion for preconditioning, we give a short survey of the state of the art in exploiting
the sparsity of Jacobian matrices. After presenting the Jacobian computation for all
nonzero elements, we explain how to reduce the computational effort when only a
subset of these nonzero elements is determined. Thereafter, these exploitation tech-
niques are modeled as graph coloring problems. Finally, the focus is on Jacobian
matrices occurring from discretizing domains with stencil-based methods. In con-
trast to general graphs, regular grids are employed.

2.1 Full Jacobian computation
Given a program implementing some mathematical function
f(z):R" — R™, (2.1)

the derivative of the vector-valued function f with respect to some vector x € R" in
the direction of a vector s € R" is defined by
of f(z+hs) — f(x)

905 = i h

(2.2)

Let A := 0f/0x denote the m x n Jacobian matrix whose columns are given by
A = [araq - - - ay).

Then, by choosing s € {0,1}" as a binary vector, any sum of columns a; can be
computed where the jth entry of s is nonzero, i.e.,

As = Z Qj.

j with s;=1

Moreover, the product of the Jacobian matrix A and some n x p seed matriz S can
be approximated by p + 1 evaluations of the function f using divided differencing.
Similarly, the forward mode of automatic differentiation is capable of computing that
product, A-S, without truncation error using p+ 1 times the time needed to evaluate
f. Therefore, p indicates a rough measure of the time needed to compute the Jacobian
matrix.

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



2 Exploiting sparsity in Jacobian computation

1 2 3 4 5 6 1 2 3 4 5 6
1 X 1
5 = (1 0 0 0 0] 5
; B 01000 )
) B 01000 )
00100
5 00010 J
6 00 0 0 1} 6

(a) (b) (c)

Figure 2.1: (a) Sparsity pattern of Jacobian matrix A with p = 5 column groups
({1}, {2,3}, {4}, {5}, {6}). (b) Seed matrix S corresponding to column
groups in (a). (¢) Bidirectional partition of A with p = 4 groups (row:

{1}, column: {1}, {2,...,5}, {6}).

Automatic differentiation (AD) [31,55] comprises a set of techniques to transform
the function f into another function which computes the derivative. The two major
modes of AD are the forward mode to compute linear combinations of the columns
of a Jacobian matrix and the reverse mode to compute linear combinations of the
rows. Using AD in a naive way in the forward or reverse mode, we need p = n or
p = m directional derivatives, respectively.

The sparsity pattern of a Jacobian matrix A can be determined beforehand or is
known due to the discretization of the underlying physical model. This information
can be used to decrease the number of directional derivatives p by combining several
columns to a linear combination without losing values. This technique is called column
compression. The idea to reduce p—and hence the time to compute all nonzero
elements of a sparse Jacobian matrix—consists of partitioning the columns of the
Jacobian matrix into groups of those columns whose sum contains all the nonzero
elements of the columns in that group [22]. The definition and the corresponding
problem for row groups is straightforward. The property characterizing such a column
group is introduced in the following definition:

Definition 2.1. Two columns a; and a; are structurally orthogonal if and only if
they do not have any nonzero element in the same row, i.e.,

a, La; = Ak - ag; 70 N apj # 0.

In the example given in Fig. 2.1(a), the columns ay and a3 are structurally orthog-
onal since there is no row in which both columns have a nonzero element. So, the sum
as + az contains all nonzero elements of these two columns. The columns a; and as
are not structurally orthogonal, so-called structurally non-orthogonal, because both
have nonzero elements in rows 1 and 2. The combinatorial optimization problem to
find a minimal p is formulated as follows:

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



2.2 Partial Jacobian computation

Problem 2.2. Given a Jacobian matriz A, partition its columns into a minimal
number of groups of structurally orthogonal columns. More precisely, find a binary
nxp matriz S such that all nonzero elements of A are contained in the matriz-matriz
product A - S and the number of columns p, representing the number of groups, is
minimaized.

A solution to that problem, a so-called unidirectional partition, may not be unique.
For the illustrating example in Fig. 2.1(a), a solution is indicated by using different
colors. This unidirectional partition consists of p = 5 column groups {1}, {2,3},
{4}, {5}, and {6}. Compared to the naive way, this is a reduction of one directional
derivative. The corresponding seed matrix is given in Fig. 2.1(b).

A further reduction is possible using a combination of rows and columns, a so-
called bidirectional partition. This is beneficial if there is at least one column and
one row which are pretty dense, i.e., there are a lot of nonzero elements in this
column or row, respectively. An obvious example for the bidirectional partitioning is
the arrow shaped matrix with one full row, one full column, and a full diagonal. The
combinatorial optimization problem to find a minimal number of groups is formulated
as follows:

Problem 2.3. Given a Jacobian matriz A, find a binary p, X m matriz S, and
a binary n x p. matriz S. such that all nonzero elements of A are contained in
the matriz-matriz products S, - A and A - S., and the number of rows and columns
P = pr + pe, TEPrEsenting the number of groups, is minimized.

An illustrating example for the bidirectional partitioning is depicted in Fig. 2.1(c).
All nonzero elements in the first row are covered by the row group {1}. Now, the
column groups can be determined without taking the nonzero elements of the first
row into account. The columns as and as can be part of the same column group,
although the values of the elements a; 2 and a; 4 are destroyed. The reason is that
these elements are determined by the row group {1}. The bidirectional partition
consists of the row group {1} and the column groups {1}, {2,...,5}, and {6}. That
is, the bidirectional partition consists of p = p,.+p. = 143 groups. This is a reduction
of one group compared to the unidirectional partition.

2.2 Partial Jacobian computation

Rather than computing all nonzero elements of the Jacobian matrix A, only a proper
subset of the nonzero elements should be determined. Computing such a set of
required nonzero elements R is called partial Jacobian computation as opposed to
full Jacobian computation where all nonzero elements are computed. The remain-
ing nonzero elements are called non-required elements. Gebremedhin, Manne, and
Pothen [27] introduced the rules for the partial Jacobian computation. In [40-42],
the assumption was validated that the partial Jacobian computation reduces the
number of groups p compared to the full Jacobian computation.

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



2 Exploiting sparsity in Jacobian computation

1 2 3 4 5 6

S Ut e W N =
S Ut e W N

(a) (b)

Figure 2.2: (a) Full Jacobian computation for Jacobian matrix with p = 6 column
groups. (b) Partial Jacobian computation for Jacobian matrix from (a)
with p = 4 column groups with required elements denoted by symbol ®
and non-required elements by symbol x.

For the unidirectional partitioning, the property how to combine columns is intro-
duced in the following definition:

Definition 2.4. Two columns a; and a; are partially structurally orthogonal with
respect to the required elements R if and only if they do not have a nonzero element
in the same row where at least one nonzero element is required, i.e.,

a; Lgr a; = ﬂk) DAk 7é 0A Ak, ; 7é 0A (akyi € R\/Gk’j S R)

We consider the following Jacobian matrix to explain the column compression in
partial Jacobian computation: Let the sparsity pattern of the 6 x 6 Jacobian matrix A
be given by an arrow-shaped structure with an additional nonzero element ag 5. This
pattern is depicted in Fig. 2.2(a). All columns of this Jacobian matrix are struc-
turally non-orthogonal due to row 1 which is full of nonzero elements. Six column
groups are needed for the full Jacobian computation. This changes when we define a
subset R with the required elements indicated by the symbol ® in Fig. 2.2(b). The
required elements in the first row are a; 1, a3, and a; 5. The non-required elements
are indicated by the symbol x. Due to the fact that we are not interested in the
non-required elements a; 5 and a; 4, the columns ay and a4 are partially structurally
orthogonal and can be combined into one column group. The column ag does not
contain a required element and therefore is not part of any column group.

The adaption of the optimization problems 2.2 and 2.3 for the full Jacobian compu-
tation to the partial Jacobian computation is straightforward regarding the modified
definition of partial structural orthogonality. We skip the definition of the bidirec-
tional partitioning for partial Jacobian computation in this section and refer to the
explanation in the next section with the corresponding graph model.

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



2.3 Graph representation

1 Ccy 1 C1

T2 C2 T2 C2

3 C3 3 C3

T4 Cq T4 Cq

rs Cs 5 Cs

76 O O ¢ 76 O O ¢
(c) (d)

Figure 2.3: (a) Unidirectional partition and (b) bidirectional partition of the bipar-
tite graph associated to Jacobian matrix in Fig. 2.2 for full Jacobian
computation. (¢) Unidirectional partition and (d) bidirectional partition
for partial Jacobian computation with required edges indicated in black
and non-required edges in gray.

2.3 Graph representation

Coleman and Moré [18] were the first authors who modeled the computation of
sparse Jacobian matrices by graphs. In particular, they introduced the column inter-
section graph. Since then, various graph models have been used to describe different
sparsity-exploiting derivative computations [16,17,33-35]. Coleman and Verma [19]
introduced a bipartite graph model. In contrast to the other graph models, this model
is sufficient for the bidirectional partitioning in full and partial Jacobian computa-
tion. Therefore, we mainly consider the bipartite graph throughout this thesis.

The sparsity pattern of a Jacobian matrix A can be represented as an undirected
bipartite graph G = (V. W V., E') which consists of m vertices in V. to represent the
rows and n vertices in V. to represent the columns. The symbol W indicates that
the sets V, and V. are disjoint. The vertex r; € V,. corresponds to row ¢ and the
vertex ¢; € V. to column j. There is an edge (i,5) € E if and only if a nonzero
element a; ; # 0 exists. The bipartite graph G associated to the matrix in Fig. 2.2(a)
consists of 6 vertices in V, to represent the rows, 6 vertices in V. to represent the
columns, and 17 edges connecting vertices from V. and V, representing the nonzero
elements. The graph G is depicted in Fig. 2.3.

The unidirectional partitioning of columns can be modeled as a graph coloring
problem on the bipartite graph. The following definition is used to partition the
column vertices into different groups.

Definition 2.5. Two column vertices ¢; and ¢; are structurally orthogonal if and
only if they are not connected by a path of length 2, i.e.,

¢ lc = ﬂrkEVTZ(Tk,Ci)EE/\O"k,Cj)GE'

Two vertices are distance-k neighbors, if they are connected by a path of length k.
For column compression, all column vertices have to be colored so that different colors
are assigned to any pair of distance-2 neighbors. This rule is given more precisely in
the following definition:

Dieses Werk ist copyrightgeschutzt und darf in keiner Form vervielfaltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den persénlichen Gebrauch.



