
1 Introduction
It has been proclaimed that ’data are the resource of the 21st century’ 1. Looking back in history,
most people can agree on that oil was the most important natural resource in the 20th century.
However, if we take a closer look at oil, we see that it is not very useful on its own. Surely, oil is
flammable, but things like cars, planes, or chemical industry plants are needed tomake oil the useful
resource we know and therefore, tomake it an important resource. Hence, tools and equipments are
needed to create a benefit using the natural resource. The same situation applies to data. Without
adequate tools data is nothing more than ones and zeroes. However, with the right methods data
can be analyzed to extract useful information to gain new insights. Like diesel needs a different
consumption engine than gasoline some type of data requires different methods than other types.
This work focuses on time series data. In almost all everyday life situations time series data can
occur. For instance, sensors monitoring the weather and collecting the air and ground temperature
or the amount of rainfall, sensors monitoring vital parameters like the heart rate of a person, or
smartphones counting a person’s steps, all results in time series data. Time series data is also given
by financial markets, e.g. stock market prices, or by social-economical data, e.g. unemployment
rates or gross national products.

An important characteristic of time series data is that different data points are usually not inde-
pendent from each other. That is why such a type of data requires special treatment. An example
for this situation is the bootstrap method, see section 1.2 for an introduction. If this method is
applied in the same manner as it is applied for data which consists of independent data points, the
bootstrap method would give in general not the answer it should. Or one may even say, it could
give a wrong answer. This problem is tackled in chapter 2.

An important question in the time series setting is the question of forecast; given data up to today
what can be predicted for the future. For a specific class of time series chapter 3 gives insights how
a good prediction can be achieved.

1.1 Time Series Fundamentals
A stochastic process is a family of random variables {Xt, t ∈ T}, where T is some index set, defined
on a probability space (Ω,F , P), c.f. (Brockwell and Davis, 1991, Chapter 1). In time series analysis

1Angela Merkel (Chancellor of Germany), Hanover, 2016: http://www.cebit.de/de/news-trends/news/
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the index set is usually given by Z, hence {Xt, t ∈ Z}. We distinguish here between univariate
time series, where the stochastic process is C-valued, and multivariate time series, where a vector-
valued process is considered, Cd, d ≥ 1. chapter 2 deals mainly with univariate time series, whereas
multivariate time series are in focus of chapter 3. Throughout this workwe concentrate on stationary
time series. A time series X = {Xt, t ∈ Z} is said to be stationary if E|X2

t | < ∞, EXt = μ for all
t ∈ Z, and for all t, h ∈ Z we have

Cov(Xt+h, Xt) = E[(Xt+h − EXt+h)(Xt − E(Xt))
�] = E[(Xh − EXh)(X0 − E(X0))

�] =: γ(h).

(1.1.1)

The function γ(h), h ∈ Z, defined by (1.1.1) is called the autocovariance function of time series X.
Furthermore, a time series {Xt, t ∈ Z} is said to be strictly stationary if PXt1 ,...,Xtk = PXt1+h,...,Xtk+h

for all t1, . . . , tk ∈ Z and h ∈ Z, where PXt1 ,...,Xtk denotes the joint distribution of Xt1 , . . . , Xtk .

A simple example for a stationary time series is white noise. It is given by an uncorrelated time
series {εt, t ∈ Z} with Eεt = 0 and Varεt = Σ2

ε < ∞ for all t ∈ Z. Furthermore, we introduce here
two important time series models: moving average (MA) models and autoregressive (AR) models.
Based on some white noise {εt, t ∈ Z} a moving average process {Xt, t ∈ Z} of order q is defined
by

Xt =
q

∑
j=0

Bjεt−j, t ∈ Z, (1.1.2)

where B0, . . . , Bq ∈ Cd×d, B0 is usually normalized to the identity matrix and Bq �= 0. An autore-
gressive process {Xt, t ∈ Z} of order p is defined by

Xt =
p

∑
j=1

AjXt−j + εt, t ∈ Z, (1.1.3)

where A1, . . . , Ap ∈ Cd×d and Ap �= 0. Both models are special cases of autoregressive moving
average (ARMA) models of order (p, q) which are given by

Xt −
p

∑
j=1

AjXt−j =
q

∑
j=1

Bjεt−j + εt, t ∈ Z, (1.1.4)

where A1, . . . , Ap, B1, . . . , Bq ∈ Cd×d and Ap, Bq �= 0.

A stationary time series and its properties can be expressed either in the time domain or in the
frequency domain. The frequency domain is only used in chapter 2, hence in the univariate case.
In order to simplify notation it is described here for the univariate case. However, the results given
here can be transfered to the multivariate case. The autocovariance function describes the second-
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order properties of a time series in time domain. Herglotz’s Theorem, c.f. (Brockwell and Davis,
1991, Theorem 4.3.1) gives the corresponding representation in the frequency domain: A function
γ : Z → C is non-negative definite (hence, an autocovariance function) if and only if

γ(h) =
∫
(−π,π]

exp(ihν)dF(ν), for all h ∈ Z,

where F(·) is a right-continuous, non-decreasing, bounded function on [−π, π] and F(−π) = 0.
The function F is called the spectral distribution function of γ and if F(λ) =

∫ λ
−π f (ν)dν,−π ≤

λ ≤ π, then f is called a spectral density of γ. Furthermore, we have, c.f. (Brockwell and Davis, 1991,
Theorem 4.3.2), that if ∑h∈Z |γ(h)| < ∞ then

γ(h) =
∫ π

−π
exp(ihν) f (ν)dν, h ∈ Z,

where
f (λ) =

1
2π ∑

h∈Z
exp(−ihλ)γ(h).

Throughout this work, we denote by second-order properties of a time series the properties de-
fined by the entire autocovariance function in time domain or by the spectral density in frequency
domain, respectively.

For a stationary ARMA model given by (1.1.4), the spectral density can be directly derived by
using the corresponding AR and MA polynomials. The following theorem, c.f. (Brockwell and
Davis, 1991, Theorem 4.4.2), gives insight: Let X = {Xt, t ∈ Z} be an ARMA(p, q) process satisfying
A(L)Xt = B(L)εt, {εt, t ∈ Z} is some white noise with variance σ2, L is the lag-operator, and
A(z) = 1 − ∑

p
j=1 ajzj, B(z) = 1 + ∑

q
j=1 bj. If the polynomials A(z) and B(z) have no common

zeroes and A(z) �= 0 for |z| = 1, then X has spectral density

f (λ) =
σ2

2π

A (exp(−iλ))
B (exp(−iλ))

,−π ≤ λ ≤ π.

Besides the autocovariance, the time series itself can be expressed in frequency domain by using
an orthogonal increment process. Since it is not used in this work, we are not going into detail
here. It is more important that both domains contain the same amount of information. The only
difference is the way this information is given. This different point of view can be enlightening for
some applications, see section 1.5 in Brillinger (2001) for applications of the frequency domain. The
autocovariance as well as the spectral density can be estimated with some observations X1, . . . , Xn.
An estimator for the autocovariance is the sample autocovariance given by

γ̂n(h) =
1
n

n−h

∑
t=1

(
Xt+h − 1

n

n

∑
s=1

Xs

)(
Xt − 1

n

n

∑
s=1

Xs

)
, 0 ≤ h ≤ n − 1, (1.1.5)
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γ̂n(h) = 0, h ≥ n, γ̂n(h) = γ̂n(−h). The corresponding spectral density is given by

In(λ) =
1

2π ∑
h∈Z

γ̂n(h) exp(−ihλ) =
1

2πn

∣∣∣∣∣ n

∑
t=1

(
Xt − 1

n

n

∑
s=1

Xs

)
exp(−itλ)

∣∣∣∣∣
2

,−π ≤ λ ≤ π,

and In is called the Peridogram. Point-wise consistency of γ̂n, hence, for a given h, can be es-
tablished, c.f. (Brockwell and Davis, 1991, Section 7.2). However, the periodogram In is incon-
sistent, c.f. (Kreiss and Neuhaus, 2006, Satz 12.7), which also implies that the absolute error for
all sample autocovariance do not vanish, hence ∑∞

h=0 |γ(h) − γ̂n(h)| �= oP(1). This also implies
that Σ̂n = [γ̂n(i − j)]i,j=1,...,n is not a consistent estimator of the autocovariance matrix Σn =

[γ(i − j)]i,j=1,...,n, c.f. McMurry and Politis (2010). Additional smoothing is required to get con-
sistent estimators of the second-order properties. This can be achieved by using a truncated au-
tocovariance estimator such as γ̃n(h) = k(h/M(n))γ̂n(h), where k is some kernel with support
[−1, 1] and M(n) < n such that γ̃n(h) = 0 for h > M(n). The resulting spectral density estimators
f̂ (λ) = 1/(2π)∑h∈Z γ̃n(h) exp(−ihλ) are denoted as lag-window estimators and give consistent
results, see Jentsch and Subba Rao (2015) as well as section 2.2.3 for details. Since the spectral density
and the autocovariance describe the same information, only in different domains, such a trunca-
tion leads also to consistent estimators Σ̃n = [γ̃n(i − j)]i,j=1,...,n for the autocovariance matrix Σn,
see Wu and Pourahmadi (2009) and McMurry and Politis (2010) for details. The spectral density
plays a major role in chapter 2.

1.2 Overview of Bootstrap Methods for Time Series
In statistics when a certain quantity is estimated with a given statistic often the questions occurs
how precise the estimation is and what deviation can be expected in x out of 100 cases. To answer
such questions it is helpful to derive the distribution of the statistic. However, it is usually the case
that it is not possible to derive the exact distribution. Instead, a consistent approximation is used.
Bootstrap methods can be used to estimate the distribution of a given statistic. In its basic form
the bootstrap method was introduced by Efron (1979). For a given statistic T the idea is as follows;
Based on a sample X = (X1, . . . , Xn) new samples (X∗,j

1 , . . . , X∗,j
n ), j = 1, . . . , N are created by using

the empirical distribution function given by the sample X. Then the statistic is evaluated for each
new sample, hence, we obtain T∗

1 = T(X∗,1
1 , . . . , X∗,1

n ), . . . , T∗
N . The empirical distribution function

of T∗
1 , . . . , T∗

N is then used as an approximation of the distribution function of T. N is the number
of bootstrap samples and is similar to the number of trials in a Monte Carlo simulation. However,
nothing is said about the performance of this approximation. We say that a bootstrap method is
valid if cn(Tn − ETn) and cn(T∗

n − E∗T∗
n ) have the same limiting distribution, where cn is such that

cn(Tn − ETn) converges to a non-degenerate distribution. Or more precisely, (Kreiss and Paparodi-
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tis, 2017, Definition 1.41), let (Ωn,An, Pn), n ∈ N, be a sequence of statistical experiments and Ln a
sequence of random variables on Ωn. Given xn ∈ Ωn, let (Ω∗

n,A∗
n, P∗

n ), n ∈ N, be a corresponding
bootstrap statistical experiment and L∗

n bootstrap random variables. Denote by Ln the distribu-
tion of Ln and by L∗

n(xn) the distribution of L∗
n given xn. We denote the bootstrap proposal L∗

n as
valid ( or consistent, respectively) for Ln if and only if limn→∞ d(Ln,L∗

n(xn)) = 0, in Pn-probability,
where d is some distance measure between distributions. For features in probability see section
1.3.1 and especially Definition 1.7 in Kreiss and Paparoditis (2017). Possible distance measures are
the Kolmogorov’s distance, c.f. section 1.4.2 in Kreiss and Paparoditis (2017), and the Mallow’s dis-
tance, c.f. section 1.4.3 in Kreiss and Paparoditis (2017). In this work the Mallow’s distance is mainly
considered. If the data consists of independent and identically distributed data points the boot-
strap proposal of Efron (1979) is valid for most statistics and settings. However, time series data is
considered here, hence the data points are dependent. In this case, the classical bootstrap proposal
is not even valid for the sample mean 1/n ∑n

t=1 Xt. That is why several new bootstrap ideas have
been proposed to overcome this shortcoming of the classical bootstrap proposal. These ideas can
be grouped and in the following only the basic concepts of the three most important groups are
presented. The review paper by Kreiss and Paparoditis (2011) is recommended for a more exhaus-
tive overview of the several bootstrap ideas. Further details can be found in Kreiss and Paparoditis
(2017) and Lahiri (2003).

An intuitive extension of the classical proposal is the block bootstrap. In the classical proposal
new samples are generated by drawing with replacement from the original sample. However, this
destroys the dependent structure. In order to retain the dependent structure, the idea is to generate
new samples by drawing with replacement from blocks of data points. Hence, within such a block
a fraction of the dependence structure of the data is kept. In order to fully capture the dependence
structure of the underlying process it is necessary that the block length increases to infinity as the
sample size increases to infinity. For a valid approximation it is also necessary that the number of
blocks increases as well. Many authors have adapted this idea. Some work with non-overlapping
blocks has been done by Carlstein (1986) or Hall (1985), with overlapping blocks by Künsch (1989)
or even overlapping blocks with random block length by Politis and Romano (1994). Furthermore,
it is possible to taper the block-ends to get a smoother transition between blocks, c.f. Paparoditis
and Politis (2001). The block bootstrap idea does not require that the underlying process follows
some parametric structure. However, all block bootstrap variations have in common that they are
in general very sensitive regarding the choice of the block length.

The setting of the residual bootstrap is that the underlying process X = {Xt, t ∈ Z} possesses
some structure which can be expressed by Xt = f (εt, . . . ), where f is some unknown function
and {εt, t ∈ Z} is a process which is less dependent than X. The ε’s are denoted as the residuals.

1.2 Overview of Bootstrap Methods for Time Series
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The residuals are often uncorrelated, in some cases they are even independent. Based on a sample
X1, . . . , Xn the idea of the residual bootstrap is to estimate f and the residuals. Afterwards the
classical bootstrap approach on the residuals is being used. Hence, a new bootstrap observation
of Xt is given by X∗

t = f̂ (ε∗t , . . . ), where (ε∗t ) is sampled by the empirical distribution function
given by ε̂t, t = 1, . . . , n. A classical example here is the case when Xt is an AR(p) process. Hence,
Xt = ∑

p
j=1 ajXt−j + εt.However, this bootstrap idea is not restricted to finite models. The AR-sieve

bootstrap has the idea of approximating the dependence structure with AR-models of increasing
order, see Kreiss (1992), Bühlmann (1997), Paparoditis and Streitberg (1991), and Kreiss et al. (2011).
The linear process bootstrap by McMurry and Politis (2010) is another bootstrap proposal which
does not require a specific finite model. This method is described in more detail in section 2.8.

A special form of the residual bootstrap is the frequency domain bootstrap, c.f. Franke andHardle
(1992), Hurvich and Zeger (1987) or Dahlhaus et al. (1996). For a time series Xt = ∑j∈Z φjεt−j, t ∈
Z, such bootstrap methods use the following approximation of the periodogram for linear pro-
cesses at Fourier frequencies λj, In(λj) ≈ f (λj)In,ε(λj), where f is the spectral density of X and
In,ε = (2πn)−1|∑n

t=1 εt exp(itλj)|2 is the periodogram of the residuals εt. Furthermore, we have
under some conditions that the periodogram is asymptotically independent for different Fourier
frequencies, c.f. (Brillinger, 2001, Theorem 5.2.6) or (Brockwell and Davis, 1991, Theorem 10.3.2).
Hence, given some spectral density estimator f̂n residuals ε̃k can be obtained by ε̃k = In(λk)/ f̂n(λk).
After normalization, those residuals can be resampled i.i.d. to obtain bootstrap values for the pe-
riodogram. Statistics as the sample autocovariance, sample autocorrelation, or spectral density es-
timators can be expressed by the integrated periodogram given by

∫ 2π
0 W(λ)In(λ)dλ), for some

function W : [0, 2π] → R, see section 12.7 in Kreiss and Neuhaus (2006) for details. Therefore, the
frequency domain bootstrap can be applied to those statistics. This bootstrap scheme creates new
samples in the frequency domain. Some authors, c.f. Jentsch and Kreiss (2010) or Kirch et al. (2011),
extended the idea of the frequency domain bootstrap to create also samples in the time domain.

The residuals used within such a residual bootstrap procedure can be bootstrapped wild. Hence,
instead of using the estimated residuals some predefined distribution is used to sample residuals.
Usually the residuals are sampled i.i.d., however it is possible to give these residuals also a prede-
fined dependent structure.

1.3 Network Fundamentals
In its most general form a network denotes simply a collection of interconnected things, see (Ko-
laczyk, 2009, Chapter 1). Network data occur inmany different fields such as social sciences, biology,
physics or logistics. For instance, a social network of friendships between 34 members of a karate
club, Zachary (1977), a network representing the topology of the western states power grid of the

1 Introduction

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



7

United States, Watts and Strogatz (1998), or a network of human contact which could help to under-
stand epidemics, Rocha et al. (2011).

A graph structure is used to describe this mathematically. A graph G = (V, E) is a mathematical
structure consisting of a set V of vertices and a set E of edges. In this work the vertices are labeled
by 1, . . . , n such that V = {1, . . . , n}. Here, we consider directed edges. Consequently, E consists
of ordered pairs {u, v}, u, v ∈ V. In the undirected case there is no distinction between {u, v} and
{v, u}. An edge {u, u} is denoted as a loop and it is also possible that an edge {u, v} is contained
multiple times in E. Such edges are denoted as multi-edges. Graphs with directed edges andmulti-
edges are also denoted as multi-digraphs, see (Kolaczyk, 2009, Chapter 2). The connectivity of a
graph G can be captured in an n × n matrix A with entries Aij = |{e ∈ E : e = (i, j)}|. The matrix
A is called the adjacency matrix and entry i, j gives the number of edges from vertex i to vertex j.
The row sum douti = Ai+ = ∑n

j=1 Aij gives the number of edges which are going out from vertex
i and douti is denoted as the out-degree. The number of edges going into vertex i is given by the
column sum dini = A+i = ∑n

j=1 Aji and is denoted as the in-degree. A graph with no multi-edges
can contain at most n2 edges. Hence, the density of a graph with no multiple edges can be defined
by den(G) = |E|/(n2). We denoted a network as sparse if |E| = O(n) and dense if |E| = O(n2).

In the example of the karate club, Zachary (1977), a vertex represents a person and an edge between
two vertices represents friendship between the corresponding persons.

In this work a dynamic network is given by a family of graphs {Gt = (Vt, Et), t ∈ Z} and a
static network is given by a single graph G. That is why often the terms ’graph’ and ’network’ are
used inter-changeably. If a static number of vertices is considered, then a dynamic network can be
described by a time-dependent adjacency matrix Ad = {Adt, t ∈ Z}.
Several statisticalmodels have been developed to describe such network data. An importantmodel
class is the exponential random graph model (ERGM), see section 6.5 in Kolaczyk (2009). We denote
that a random vector Z belongs to an exponential family if its probability function can be expressed
in the form PΘ(Z = z) = exp(Θ�g(z) − φ(Θ)), where Θ ∈ Rp is a vector of parameters, g is
a p-dimensional function of z, and φ(Θ) is a normalization term, c.f. equation (6.23) in Kolaczyk
(2009) or section 4.4 inMood (1970). LetYij, i, j = 1, . . . , n be a binary random variable indicating the
presence or absence of an edge from vertex i to vertex j. Then, an exponential random graph model
is amodel for which the joint distribution of elements inY is specified in exponential family form. A
special case of the ERGMs is the Bernoulli random graph model. For these models, it is considered
that the edges are independent to each other, hence, Yi,j is independent to Ys,k for any i, j �= s, k.
Furthermore, Yi,j, i, j = 1 . . . , n is Bernoulli distributed and often it is further simplified that all
edges share one common parameter. An ERGM describes a static network, however, Hanneke and
Xing (2007) have extended these models to dynamic networks. In the dynamic setting, a common
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assumption is that the network possesses some form of Markov property, c.f. Crane (2015). Hence,
for a dynamic network with a static number of vertices this means that Ad = {Adt, t ∈ Z} is a
Markov process.

1 Introduction
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