Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Doktorand in der Brennstoffzellenforschung der Volkswagen AG in Isenbüttel. Meiner Doktormutter Frau Prof. Dr.-Ing. Ulrike Krewer, Leiterin des Instituts für Energie- und Systemverfahrenstechnik der Technischen Universität Braunschweig, danke ich für die Betreuung meiner Arbeit und den wissenschaftlichen Austausch. Herrn Prof. Dr.-Ing. Thomas von Unwerth, Leiter der Professur für Alternative Fahrzeugantriebe der Technischen Universität Chemnitz, danke ich für die Übernahme des Koreferats. Weiterhin danke ich Herrn Prof. Dr.-Ing. Peter Eilts, Leiter des Instituts für Verbrennungskraftmaschinen der Technischen Universität Braunschweig, für die Übernahme des Prüfungsvorsitzes.

Mein besonderer Dank gilt Herrn Dr.-Ing. Oliver Berger für die Anregungen und den Freiraum, die zum Vollenden dieser Arbeit geführt haben.

Den Mitarbeitern der Brennstoffzellenforschung der Volkswagen AG danke ich für die sehr gute Atmosphäre und das familiäre Verhältnis. Meiner Freundin Denise danke ich für die Unterstützung und Motivation

in der letzten Phase dieser Arbeit.

Am Ende danke ich meinen Eltern Dieter und Ute Jenssen sowie meinem Bruder Jörg-Christian Jenssen für jegliche Unterstützung und Rückhalt auf dem Weg zur Anfertigung dieser Dissertation.

Braunschweig, Oktober 2018

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Kurzfassung

Die Brennstoffzelle im Fahrzeug bietet eine aussichtsreiche Möglichkeit, die Elektromobilität für die Langstrecke ohne Nachteile bezüglich Reichweite und Betankungsdauer darzustellen. Für eine erfolgreiche Einführung dieser Technologie gilt es, die Wasserstoffinfrastruktur auszubauen und die derzeit noch hohen Kosten zu senken. Die Verfahrenstechnik zum Betreiben des Brennstoffzellenstapels erzeugt mehr als 50 % der Kosten des Brennstoffzellensystems.

Das Ziel der vorliegenden Arbeit ist die Vereinfachung des Anodensystems ohne die Betriebsgrenzen des Brennstoffzellenstapels zu vernachlässigen. Das Anodenwassermanagement hat dabei einen entscheidenden Einfluss auf die Betriebsstabilität und Lebensdauer des Brennstoffzellenstapels. Experimentelle Untersuchungen und Simulationen zeigen die Betriebsgrenzen des Brennstoffzellenstapels auf. Ein Stabilitätskriterium zur Beschreibung eines effektiven anodenseitigen Flüssigwasseraustrags auf Basis der dimensionslosen Reynoldszahl wird identifiziert und validiert.

Die Anodenkaskadierung dient dazu, die rezirkulierte Wasserstoffmenge absenken zu können ohne die Betriebsgrenzen des Brennstoffzellenstapels zu missachten. Dabei haben die Art der Teilung und die Anzahl der Stufen einen Einfluss auf die rezirkulierte Wasserstoffmenge und bieten somit Potential für eine Anodensystemvereinfachung. Es wird eine Methode zur Berechnung und Auslegung von Anodenkaskaden entwickelt und angewendet. Experimentelle Untersuchungen an einem kaskadierten Stapel dienen der Validierung der Berechnungen und bestätigen die Effektivität der Kaskadierung. Es stellte sich heraus, dass ein Stapel mit einer Teilung von 0,5:0,5 Vorteile im unteren Lastbereich für die Anodensystemauslegung hat.

Für eine Rezirkulation des Wasserstoffs werden meist elektrische Gebläse verwendet, welche unter anderem die Systemkomplexität und damit die Kosten erhöhen. Strahlpumpen können zur Vereinfachung des Anodensystems verwendet werden. Auf Basis der Erkenntnisse der Brennstoffzellenuntersuchungen werden neuartige Anodensystemkonzepte simuliert und deren Betriebsgrenzen ermittelt. Die Simulationen zeigten, dass eine Kombination aus geregelter Strahlpumpe und kaskadiertem Stapel mit einer Teilung von 0,5:0,5 den gesamten Betriebsbereich des untersuchten Brennstoffzellenstapels abdeckt. Mit dieser Kombination kann ein vereinfachteres Anodensystem gegenüber dem

Stand der Technik dargestellt werden.

Abstract

Fuel cells in vehicles are a promising option for long range emobility without drawbacks in range and refueling times. For a successful introduction the infrastucture for hydrogen has to be roled out and the high costs of the technology has to be lowered. Process technology for operating the fuel cell stack produces more than 50 % of the costs of the fuel cell system.

The aim of this thesis is the simplification of the anode system without neglecting the operating boundaries of the fuel cell stack. Anode water management has strong influence on stability and lifetime of the fuel cell stack. Experimental work and simulations describe the operating boundaries of the fuel cell stack. A stability criterion for effective water removal based on the dimensionless Reynolds number is identified and validated.

Anode cascading is used for lowering the amount of recirculated hydrogen without neglecting the boundaries of the fuel cell stack. The number and location of stages influence the amount of recirculated hydrogen and thus have potential for simplification of the anode system. A method for design suitable anode cascades is developed and analysed. Experimental work on a fuel cell stack with anode cascade is used for validation und confirms the effectiveness of cascading. It is shown, that a cascaded stack with a division of 0.5:0.5 has advantages for anode system design at low fuel cell power output.

For anode recirculation, usually electrical blowers are used, which increase complexity and thereby the costs of the system. For system simplification ejectors can be used. Based on results of fuel cell analysis anode system concepts are simulated and their operational boundaries evaluated. Simulations show, that a combination of controlled ejector and anode cascaded fuel cell stack cover the whole operating boundaries of this stack. Using this combination a simplified anode system can be demonstrated.

Inhaltsverzeichnis

Vo	rwort			iii	
Ku	rzfass	sung		v	
Ab	stract	t		vi	
Ab	kürzu	ings- un	nd Symbolverzeichnis	xi	
1	Einle	eitung			
2	Stan	d der T	echnik	3	
	2.1 2.2	Autom PEM-I 2.2.1 2.2.2	Nobile Brennstoffzellensysteme Brennstoffzelle Brennstoffzelle Thermodynamik und Aufbau Wasserstoffunterversorgung und elektrochemi-	3 8 9	
		0.0.0	sche Betriebsgrenzen	13	
	0.0	2.2.3	Flussigwassermanagement und Analyse	10	
	2.3 2.4	Motivation und Ziele der Arbeit			
3	Wassermanagement der Anode				
	3.1	Motivation			
	3.2	Model	lbildung	28	
		3.2.1	Stoffmengenbilanzen	29	
		3.2.2	Druckverlust	32	
		3.2.3	Zellspannung	34	
		3.2.4	Flüssigwasseraustrag	36	
	3.3	Experi	mentelles	39	
		3.3.1	Brennstoffzelle und Prüfvorrichtung	40	
		3.3.2	Durchführung der Messungen und Simulation .	42	

	3.4	Ergebnisse und Diskussion	44
		3.4.1 Druckverlust und Zellspannung	44
		3.4.2 Feuchteeinfluss auf die Stromdichteverteilung	49
		3.4.3 Flussigwasseraustrag und Stabilität	52
		3.4.3.1 Einzelzelle	52
		3.4.3.2 Brennstoffzeilenstapel	62
4	Ano	denkaskadierung	69
	4.1	Motivation und Konzeptbeschreibung	69
	4.2	Modellbildung	71
	4.3	Experimentelle Untersuchungen	75
	4.4	Ergebnisse und Diskussion	77
5	Ano	densystemkonzepte	87
Ū	5.1	Motivation	87
	5.2	Aktive Rezirkulation	88
		5.2.1 Modellierung	89
		5.2.2 Ergebnisse und Diskussion	91
	5.3	Passive Strahlpumpe	94
		5.3.1 Modellierung	95
		5.3.2 Ergebnisse und Diskussion	99
	5.4	Regelbare Strahlpumpe	104
		5.4.1 Auslegung und Modellierung	105
		5.4.2 Ergebnisse und Diskussion	107
		5.4.2.1 Kombination mit klassischem Stapel .	108
		5.4.2.2 Kombination mit kaskadiertem Stapel	110
	5.5	Bewertung der Anodenkonzepte	113
6	Zusa	ammenfassung & Ausblick	115
Lit	eratu	r	119
۸ ۱	hildu	ngwarzeichnie	100
AU	obliqu	ngsverzeichnis	129
Ta	beller	iverzeichnis	135
A	Anh A.1	ang Physikalische Grundgleichungen	137 137

A.2	Messungen zum Wasseraustrag	139
A.3	Navier-Stokes-Gleichungen	140
A.4	Veröffentlichungen	141

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Abkürzungs- und Symbolverzeichnis

Abkürzungen und Indizes

Symbol	Einheit	Beschreibung
А		Antrieb
an		Anode
akt		Aktivierung
AR		Aktive Rezirkulation
aus		Austritt
BPP		Bipolarplatte
CL		Katalysatorschicht (engl.: catalyst layer)
diff		Diffusor
DC		Gleichstrom-Wandler
ein		Eintritt
el		elektrisch
Fara		Faraday
fl		flüssig
Fluid		Fluidisches Medium
g		gasförmig
GDL		Gasdiffusionslage (engl.: gas diffusion layer)
glob		global
H_2		Wasserstoff
H_2O		Wasser
i, j		Zählvariable
ka		Kathode
Kap		Kapillare
konz		Konzentration
L		Laufrad
max		maximal

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden Xi Es gilt nur für den persönlichen Gebrauch.

Symbol	Einheit	Beschreibung
MEE		 Membran-Elektroden-Einheit
Mem		Membran
min		minimal
mit		mittel
MPL		Mikroporöse Schicht (engl.: microporous
		layer)
nb		Düsenkörper
ni		Düseneingang
nt		Treibdüse
N_2		Stickstoff
O_2		Sauerstoff
Ohm		Ohmsch
OCV		Open Circuit Voltage
Р		Primär
PEM		Polymer-Elektrolyt-Membran
prod		produziert
Re		Reynoldszahl
reak		Reaktion
rez		rezirkuliert
S		Stufengröße
SP		Strahlpumpe
sat		Sättigung
t		Mischrohr
theo		theoretisch
tr		trocken
trans		transferiert
Tropf		Tropfen
Verd		Verdichter
W		Widerstand
ZGI		Zellgüteindex

Symbol	Einheit	Beschreibung
a		Aktivität des Wassers
A_{C}	mm ²	Seitenkanalfläche des Gebläses
A	mm ²	Fläche
b		Koeffizient für Membranfeuchte
c		Geometriefaktor
c_{i}	mol/m^3	Konzentration des Stoffes i
c_{W}		Widerstandsbeiwert
d_{Mem}	μm	Membrandicke
D	mm	Durchmesser
D_{W}		Diffusionskoeffzient für Wasser
e^-		Elektron
F	96 485,3 C/mol	Faraday Konstante
f		Rollreibungsfaktor
F_{i}	Ν	Kraft i
g	$9,81 m/s^2$	Erdbeschleunigung
G		Freie Gibb'sche Energie
H		Enthalpie
i	A/cm^2	Stromdichte
Ι	A	Stromstärke
m	kg	Masse
\dot{m}	kg/s	Massenstrom
M	g/mol	Molare Masse
Ma		Mach Zahl
n	1/min	Drehzahl
n_{Zell}		Zellanzahl
K		Durchflusskoeffizient
$K_{\rm P}$		Verlustkoeffizient
l	m	Länge
P	W	Leistung
p_{j}	Pa	Druck
\dot{Q}	W	Wärmestrom
r	m	Radius
r_{C}	m	Radius des Seitenkanals des Gebläses

Lateinische Symbole

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Symbol	Einheit	Beschreibung
R	$J/(mol\cdotK)$	allgemeine Gaskonstante
$R_{\sf s}$	$J/(kg\cdotK)$	spezifische Gaskonstante
r.F.	%	relative Feuchte
t	S	Zeit
T	K	Temperatur
u	m/s	Geschwindigkeit
\dot{u}	m/s^2	Beschleunigung
U	V	Spannung
\dot{V}	m ³ /s	Volumenstrom
x		Molanteil
y		Massenanteil
z		an Reaktion beteiligte Elektronen

Symbol	Einheit	Beschreibung
α	0	Winkel
η	Pas	dynamische Viskosität
η		Wirkungsgrad
κ		lsentropenkoeffizient
λ_{Mem}		Membranfeuchte
λ		Überschussrate
Λ		Beschleunigungsfaktor
$ u_{krit}$		kritisches Druckverhältnis
ρ	kg/m^3	Dichte
σ	N/m	Oberflächenspannung
φ		Durchflusszahl
ϕ	0	Kontaktwinkel
ϕ_{P}		Isentropenkoeffizient des Primärstroms
ϕ_{W}		Dimensionslose Zahl nach Wilke
ψ		Druckzahl
ψ_{P}		Isentropenkoeffizient des Primärstroms

Griechische Symbole

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.