
Chapter 2. Fundamentals

2.1 Optical and Thermal Properties of Gold

Nanoparticles

The Romans were known for their many inventions and were in fact among the

first to use metallic nanoparticles, although unknowingly37. The Lycurgus Cup,

depicting the Greek king Lycurgus being dragged to the underworld, is one of the

first examples of how gold nanoparticles, typically 5 − 60 nm in size, can be used

to colour glass in an extraordinary way (Figure 2.1). In ordinary daylight the cup

has a predominantly green color; however it appears red when illuminated from

the inside. This amazing effect results from the characteristic properties of metallic

nanoparticles and the way they interact with light.

(a) (b)
Figure 2.1 | The Lycurgus

Cup is an excellent example of

the optical properties of gold.

(a) When illuminated from the

outside, the gold nanoparticles

inside the glass cup scatter the

light, making the cup appear

green. (b) However, when

a light is placed inside the

cup, the absorption of the

gold nanoparticles changes the

cup’s apparent color to red.

2.1.1 Optical Properties

The noble metals copper (Cu), silver (Ag) and gold (Au) are all elements belonging to

the 11th group of the periodic table. The electron configurations of these elements

are exceptions to the Madelung rule, which describes the filling order of the atomic

subshells. All of these elements have completely filled d-subshells (respectively 3d,

4d and 5d); their core electrons are in the so called inert gas configuration. Their

metallic properties result from the lone valence electron in the half-filled s-subshells

(4s, 5s and 6s respectively). The band structure of gold displays five comparatively

flat d-bands, lying 1− 3 eV below the Fermi energy, EF , in which the ten d-electrons

are located (Figure 2.2). The lone s-electron forms an sp-hybridised band, which is
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2.1. Optical and Thermal Properties of Gold Nanoparticles

filled up to EF . Electrons in this band can move quasi-free due to the near parabolic

form of the band. This band structure defines the characteristic properties of these

metals, such as their thermal and electrical conductivity.
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Figure 2.2 | The band structure of gold. (a) The sp-band has a nearly parabolic form leading

to quasi-free electrons. (b) Interband transitions in gold occur near the X- and L- points in

the first Brillouin zone. (Taken from38,39)

2.1.1.1 Dielectric Properties of Gold

The electrons in this band can be seen as free electrons because of the near-parabolic

sp-band of gold. An accurate description is given by theDrude-Sommerfield theory40.

This model depicts the electrons as a gas of independent,quasi-free point-shaped

particles that are accelerated by an external electric field and slowed down after a

mean free time, τ = Γ−1, through collisions with metal ions (for gold41: τ = 30 fs

at 273K). Scattering processes are the reason that the electrons are called quasi-

free and not free. The Drude-Sommerfield model determines the response function

or dielectric function, ε (ω), of a macroscopic metal by calculating the behavior of a

single conduction electron and multiplying this behavior by the number of electrons

present. This is only valid when assuming the independence of the single electrons,

as stated above. The equation of motion for an electron of mass, me, and charge, e,

in an external electric field �E = �E0e
−iωt is given by:

me
∂2�r

∂t2
+meΓ

∂�r

∂t
= e �E0e

−iωt (2.1)

with the damping constant, Γ. This differential equation is valid for a model system

without eigenfrequencies for ω > 0 and only takes into account the effect on
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the conduction band electrons. In order to incorporate bound electrons, a linear

restoring force, determining the eigenfrequency of the oscillating electrons, would

have to be added to the equation. Solving equation 2.1 leads to the dipole moment

of a single electron, �p = e�r0, and the polarization, �P = n�p, with the number of

electrons per unit volume, n . The dielectric function, ε(ω) = ε1(ω) + iε2(ω), is

related to the polarization via the definition ε = 1 + P/(ε0E) and to the complex

refractive index via n+ ik =
√
ε. This leads to the dielectric function of a system of

n free electrons per unit volume:

ε(ω) = 1− ω2
p

ω2 + iΓω
= 1− ω2

p

ω2 + Γ2
+ i

ω2
pΓ

ω(ω2 + Γ2)
(2.2)

which is only determined by the plasma frequency, ωp =
√
ne2/ε0m∗, and the

relaxation constant, Γ. This can be determined from the electron mean free path,

l by Γ = vF/l, where vF is the Fermi velocity. If the damping is much smaller than

the frequency, the real and imaginary parts of the dielectric function can be written

as:

ε1(ω) ≈ 1− ω2
p

ω2
, ε2(ω) ≈ 1− ω2

p

ω3
Γ. (2.3)

This equation shows that for ε1(ω) = 0 the frequency, ω, equals the plasma

frequency, ωp. The dielectric function, ε(ω), is commonly expressed in terms of the

electric susceptibility, χ. Then equation 2.2 becomes:

ε(ω) = 1 + χDS(ω) (2.4)

where χDS is the free-electron Drude-Sommerfield susceptibility. Electrons in a real

metallic lattice are only quasi-free due to the lattice periodicity. The coupling of the

free electrons to the ion core is taken into consideration by replacing the electron

mass,me, with an effective electron mass,m∗, effectively altering ωp.

Not only the conduction band electrons but also electrons from deeper levels

contribute to the dielectric function. Direct excitations of electrons from the 5d-band

to vacant states above EF in the 6sp-band can take place near the X- and L- points
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Figure 2.3 | Extinction spectrum of a colloidal

suspension of 40nm gold nanoparticles. The

plasmon resonance is centered at 528 nm. The

contribution of intraband excitations is clearly seen

for wavelengths below 520 nm.

in the first Brillouin zone (Fig-

ure 2.2a). These optical excitations

exist both in gold nanoparticles as

well as in bulk gold and begin at

the inter-band gap E = 1.7 eV39,42

(Figure 2.2b). However, the os-

cillator strength of this transition

near the X-point is so low that in

measurements of the optical den-

sity of gold colloidal solutions this

transition can not be seen. Instead,

the transition near the L-Point with

E = 2.38 eV becomes visible as a

constantly increasing background,

independent of nanoparticle size

(Figure 2.3). This effect leads to an

additional term in the susceptibility and equation 2.2 becomes:

ε(ω) = 1 + χDS + χIB (2.5)

with the interband susceptibility, χIB = χIB, 1 + iχIB, 2. The imaginary part describes

the direct energy dissipation and is thus only large for frequencies at which

interband transitions occur. The real part however is also important for smaller

frequencies40.

The dielectric functions of nanoparticles with a diameter that is larger than

approximately 10 nm are size-independent and become like those of bulk-gold.

Smaller nanoparticles are considerably smaller than the electron mean free path,

l = vF τ = 42 nm. In these, the electrons cannot cover this distance without

scattering at the nanoparticle surface. This reduced mean free path has been

confirmed experimentally43,44 and causes the homogeneous linewidth of the plasmon

resonance to greatly increase for these nanoparticles. As stated before, bound

electrons (e.g. the d-band electrons) have not been accounted for yet as the Drude-
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Sommerfield model only considers free-electrons45. Modeling these electrons is

extremely difficult46. Normally, instead of using corrected values for the dielectric

function, experimental ones are used. The main source for these values comes from

the work of Johnson and Christie, who measured the optical properties of bulk gold

in 197247. In all calculations conducted within this thesis these values were used.

This is valid, because all of the nanoparticles used were larger than 10 nm.

Due to the energy dissipation of electromagnetic waves impinging on a metal

surface, these only have a limited penetration depth which can be calculated from

the optical functions. Assuming a plane wave incident in the z-direction and

expressing the wave vector, �k, as
∣∣∣�k∣∣∣ = (ω/c)(n + ik), the electric field within the

metal can be expressed as:

�E(�r, t) = �E0(�r, t)e
iω(zn/c−t)e−z/d (2.6)

with the attenuation of the field determined by the skin depth, d = c
ωk

= λ
2πk

, and the

optical function, n + ik =
√
ε1 + iε2. The skin depth is wavelength dependent and

assumes values for gold between 31 nm at 620 nm incident wavelength and 37 nm at

413 nm.

2.1.1.2 Electrodynamic Calculations of Spherical Particles (Mie Theory)

In order to calculate the response of a metal nanoparticle to an external electro-

magnetic field, one must solve Maxwell’s equations. Fortunately, an analytical

solution already exists. Danish physicist Ludvik Lorenz first published this in 1890,

however only in Danish. Later, Gustav Mie "rediscovered" it in 1908, wherefore it

is generally known as Mie-Theory. The theory is valid for all nanoparticle sizes and

optical wavelengths in contrast to Rayleigh’s scattering theory, which is limited to

nanoparticles much smaller than the wavelength of the incident radiation. In fact,

Rayleigh scattering is a first-order approximation of Mie-Theory.

In his solution of the Maxwell equations, Mie describes the interaction between

a plane wave and uncharged homogeneous particles. This allows the precise

calculation of the electromagnetic fields within and surrounding the particle. The
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2.1. Optical and Thermal Properties of Gold Nanoparticles

spherically symmetrical geometry suggests a multipole expansion of the fields. The

resulting surface harmonics enable the calculation of the extinction, scattering and

absorption cross-sections of the particles:

σext =
2π

|k|2
∞∑
n=1

(2n+ 1)Re[an + bn] (2.7)

σsca =
2π

|k|2
∞∑
n=1

(2n+ 1)[|an|2 + |bn|2] (2.8)

σabs = σext − σsca (2.9)

with the Mie-coefficients from the multipole expansion, an and bn, the multipole

order, n, (n = 1 corresponds to the dipole mode) and the wave vector of the incident

electromagnetic wave, �k. "Re" signifies that only the real part of the bracket is taken.

The Mie-coefficients are:

an =
mψn (mx)ψ

′
n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)η
′
n(x)− ηn(x)ψ

′
n(mx)

(2.10)

bn =
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)η
′
n(x)−mηn(x)ψ

′
n(mx)

(2.11)

with the Riccarti-Bessel functions, ψn and ηn , the ratio of the complex refractive

indices of the particle and the surrounding medium,m = npart/nmedium =
√
εr, and

the ratio of the particle radius, r, to the wavelength of the scattered light, λ, being

x = 2πr/λ. In this work, calculations of the cross sections of gold nanoparticles

were carried out with the program MQMie48. With this program it is also possible

to account for core-shell particles or uncharged surface ligand molecules.

2.1.1.3 Electrostatic and Quasi-Static Modeling

Mie theory is excellent for calculating scattering and absorption by spheres because

it is an exact theory. However, calculating the exact results for geometries more

complex than spheres can be extremely time consuming and is not always necessary.

Furthermore, Mie theory is not always the best choice when one wants to acquire

some intuitive feeling for how a sphere of a given size and optical properties absorbs
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and scatters light. This is facilitated by applying electrostatics. Here the electric-

magnetic field imposing on the metal nanoparticles is both spatially and temporally

constant. Considering the boundary-conditions that the tangential components of

the electric and magnetic fields must be continuous at the particle surface49, one

obtains the electric field inside the nanoparticle:

Ei = E0
3εm

ε+ 2εm
(2.12)

with the dielectric constant of the surrounding medium, εm. The internal field

directly supplies the static polarizability of the sphere, α = p/εmE0:

α = 4πε0R
3 ε− εm
ε+ 2εm

(2.13)

This electrostatic approach can be extended even further to the quasi-static regime

in which the electromagnetic field is still spatially constant but now has a time

dependence ( �E → �E(t)). To account for this, ε and εm in equations 2.12 and

2.13 must be replaced by their frequency dependent functions, ε(ω) and εm(ω);

excitations induced by the magnetic field are neglected. Resonances then occur for

both the internal electric field and the polarizability, when the denominator becomes

minimal:

[ε1(ω) + 2εm]
2 + [ε2(ω)]

2 → minimal (2.14)

Thus a negative ε1 is necessary, or in the special case of a small ε2 << 1, or a small

frequency dependency ∂ε2/∂ω, the resonance condition becomes:

ε1 = −2εm (2.15)

This then leads to the position of the resonance using the approximative equation

2.3 for free-electron metals and εm = 1:

ω1 =
ωp√
3

(2.16)

What has been done here in basic terms is to use a simple oscillator model to

calculate the Drude eigenfrequency for free electron nanoparticles. In this model
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the free electrons from the sp-band are displaced by an incoming electric field,

Ein, (Figure 2.4). The Coulomb interaction between the displaced electrons and the
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Figure 2.4 | Formation of a surface plasmon

in a gold nanoparticle. An electro-

magnetic wave penetrates the nanoparticle

completely and induces the conduction band

electrons to oscillate. This induced Hertz-

dipole produces radiation.

positive charges left behind by the

stationary atomic cores serves as a

restoring force with the surface polar-

ization supplying the majority of this

force. The electrons oscillate collectively

and the oscillation is allocated with a

bosonic quasiparticle, the surface plas-

mon. Its frequency, ω1, was derived

in equation 2.16. This theory can

easily be extended to metal spheroids

or ellipsoids, in which case the eigen-

frequency, ω1, depends on the spatial

orientation, resulting in a seperate eigen-

frequency for each independent spatial

direction.

The resonance wavelengths or frequencies of plasma resonances of metal nanopar-

ticles can be easily analyzed in the quasi-static regime. As stated previously, this

is only valid for very small nanoparticles (2r � λ). In this case, phase retardation

and effects of higher multipoles are neglected and the Mie formula is drastically

simplified. Using k = ω/c as the lowest order term, equation 2.7 becomes40,50:

σext(ω) = 9
ω

c
ε3/2m Vnp

ε2
(ε1(ω) + 2εm)2 + (ε2(ω))2

(2.17)

with the nanoparticle volume, Vnp = 4/3πr3, the dielectric function of the medium

,εm, and the complex dielectric function of the nanoparticle, εnp(ω) = ε1(ω)+iε2(ω).

This extinction cross section describes only dipolar absorption. The scattering

cross section (equation 2.8), proportional to R6 and higher multipolar contributions

(σext,quadrupol ∝ R5, σsca,quadrupol ∝ R10) are highly suppressed at 2r << λ. The

resonance condition ε1(ω) = −2εm is well met by alkali metals, but not by free

electron metals such as gold. Here, where ω >> Γ, the shape and position of the
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resonance can be estimated by inserting equation 2.3 into equation 2.17. This results

in an extinction coefficient of:

σext(ω) = σ0
1

(ω − ω1)2 + (Γ/2)2
(2.18)

The shape of the extinction is thus Lorentzian in the vicinity of the resonance, whose

position can be calculated directly from the plasma frequency:

ω1 =
ωp√

1 + 2εm
(2.19)

2.1.1.4 Damping Mechanisms of the Surface Plasmon

The damping in the system is due to scattering of the electrons at other electrons,

phonons, lattice defects, the particle surface, etc. such that the damping constant,

Γ, results from the average of the collision frequencies of the electrons. For

independent collision processes, i, the Matheisen rule applies and Γ is the result

of the summation of all collisional frequencies:

Γ = τ−1 =
∑
i

τ−1
i = τ−1

e−e + τ−1
e−phonon + τ−1

impurities + ... (2.20)

Experimentally, Γ is determined by measuring the macroscopically available electri-

cal conductivity, ρel, and inserting this into Γ = ρelne
2/m∗.

As stated before, the collective oscillation of the sp-electrons can be described as

a bosonic quasiparticle, the plasmon. An excited plasmon can decay through a

multitude of channels. These are divided into two main groups, radiative and non-

radiative decay processes (Figure 2.5). The radiative decay occurs via emission of

photons, which can be seen in the far-field as scattered light. This is described in

the classical picture of a Hertz dipole via the periodical acceleration of electrons

away from their equilibrium positions. This leads to the emission of energy via

radiation by the nanoparticle. According to the Abraham-Lorentz equations of

motion, which are extensions of the Drude-Sommerfield theory, the radiative decay
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Rrad ∝ V ∝ r3 (2.21)

Thus, the probability that the plasmon decays radiatively is directly proportional to

the nanoparticle volume, i.e. to the cube of the nanoparticle radius. The plasmon

resonance becomes very clear in the scattering spectrum of gold nanoparticles. Even

40 nm nanoparticles can be seen easily in a dark field microscope52,53.
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Figure 2.5 | Surface plasmons can decay either via radiative (left) or non-radiative processes

(right). The fluorescence emission of gold is negligible, however19.

The non-radiative decay of the surface plasmon leads to the nanoparticle absorbing

the incident light, which is converted efficiently into heat. This process is essential

for the work done here and will be described in more detail in section 2.1.2. The most

important damping mechanism for the optothermal properties of gold nanoparticles

is Landau damping. Here the plasmon decays non-radiatively by creating electron-

hole pairs. One must distinguish between excitation of electron-hole pairs inside the

sp-band (intraband excitation) and the excitation of electrons from the energetically

deeper d-band into the sp-band (interband excitation). A further decay channel is

the elastic scattering of the oscillating electrons. These can scatter from each other,

from phonons, lattice defects, impurities or from the particle surface and thus come

out of synchrony with each other. This leads to a dephasing of the electrons.
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