Introduction

Modern software engineering increasingly involves formal methods
to implement security properties. These have to be integrated with
traditional software engineering methods, tools, and models, such as
process models, programming paradigms (e. g. object-oriented pro-
gramming (OOP) or aspect-oriented programming (AOP)), or model-
ing languages (e. g. Unified Modeling Language (UML)). While these
techniques are also used to engineer systems in security-critical appli-
cation domains [Ray et al., 2004; Nguyen et al., 2014, 2015], their major
goal is still to ensure the correctness of implementation with respect
to functional and non-functional requirements. As a consequence,
software specification to some degree always relates to concepts of
the implementation environment, be it the type of hardware, the pro-

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



2 1 INTRODUCTION

gramming language or the communication interfaces. Specification
of security requirements, on the other hand, is based on a seman-
tically different class of abstractions, such as accesses, information
flows, isolated domains or authentic messages. To concentrate such
security requirements as a specific family of non-functional proper-
ties, the term security policy is normally used. In its most general
sense, it describes a set of rules that stipulate how security mecha-
nisms should be implemented and configured in the final system.

While the concept of security policies is long since in use, inconsis-
tent terminology often leads to a rather wide range of possible mean-
ings: It may denote security-related organization and operation of an
IT system (security management), a network security policy, or rules
for the design and configuration of mechanisms in applications and
operating systems, which enforce security properties at runtime. For
the scope of this work, we use the latter definition.

Even in this narrower sense, there are two possible dimensions of
the term: A security policy may describe the functionality of security
mechanisms, but also their individual configuration for a particular
application domain and a particular system.

Just as with non-security related requirements, security policies
must be gradually refined in a manner of increasing formalism to
finally yield an unambiguous software specification to implement,
a process which is referred to as modeling. As already mentioned,
general-purpose modeling paradigms and tools (such as those of
UML) do not generally correspond to the semantical concepts of secu-
rity requirements — which leads to semantical gaps, which again in-
troduce room for human interpretation. This in turn leads to a depar-
ture from specified security properties, crucial for security-critical ap-
plication domains such as public infrastructure, financial and health
service providers, or state institutions. To close such gaps, security en-
gineering provides a process orthogonal to software engineering, in-
cluding specialized formal methods, tools, and models [Sandhu, 1988;
Sandhu et al., 2000; Li and Winsborough, 2003; Li et al., 2009; Hicks
etal., 2010; Stoller et al., 2011; Ray et al., 2013; Ranise et al., 2014; Sha-
hen et al., 2015], whose goals are to (1.) gradually formalize a security

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



1.1 Motivation 3

policy on the semantical level of the application-specific security re-
quirements it should enforce, (2.) verify a security policy against for-
mal security properties. To achieve both goals, formal security models
are used. In this work, we will use the term model for a formalism de-
scribing the functionality of security mechanisms, and model instance
for a description of their configuration (based on a model).

We have illustrated the security engineering process in Fig. 1.1:
It starts with security requirements that have resulted from a por-
tion of common software requirements engineering, which we have
called security requirements engineering. This results in an informal
set of rules stipulated to meet these requirements, the informal secu-
rity policy. Based on this, the actual modeling steps are conducted:
first, a formal representation of security policy semantics is created
(a security model), which is then analyzed using a plethora of formal
methods [Harrison and Ruzzo, 1978; Sandhu et al., 2000; Li and Wins-
borough, 2003; Stoller et al., 2007; Naldurg and Raghavendra, 2011;
Stoller et al., 2011; Ray et al.,, 2013; Ranise et al., 2014; Shahen et al.,
2015; Jha et al., 2008; Jayaraman et al., 2011]. Goal of the model anal-
ysis step is to verify the security policy against security properties
which define its correctness (in an application-specific sense of, e. g.,
security goals such as confidentiality or integrity).

We call this phase, which represents the closer context of this
work, model-based security engineering. Its result is a specification
of security-related software functionality in some specification lan-
guage, such as Z [International Organization for Standardization,
2002], B [Abrial, 1988, 2006], or Event-B [Abrial, 2010] (Polck [2014]
shows an example). This software specification is then, in a traditional
software engineering process, foundation for the actual implementa-
tion of the security policy.

1.1 Motivation

The general motivation of this work is to methodologically support
model-based security engineering. This motivation is based on the

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



4 1 INTRODUCTION

%]
(9]
Q
<
3
<
g
Q
S
3
3
[}
3
2]
o
g
=)
(0]
]
Q.
S
Q

Model-based Security Engineering
Security Model
: Model Analysis :

, N
H i Process Phase
., .

l © Process Step

Implementation
P Artifact

Figure 1.1: General security engineering process.

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fir den personlichen Gebrauch.



1.2 Aspect-oriented Engineering 5

criticality of the results of model-based security engineering, com-
bined with (very similar to general software engineering) the het-
erogeneous group of stakeholders involved, all with their own lan-
guage and understanding of formal modeling: security managers and
technology consultants during requirements engineering and policy
authoring, model engineers and analysts during policy formalization
and verification, security architects during specification engineering
and architecture integration, and of course software developers, ad-
ministrators and future users (clients). In case of security engineer-
ing, the different views and languages are critical because of the in-
herently high potential of human error in the transition between pro-
cess steps on different levels of abstraction (as an example, take the
different meanings of the terms “access control”, “security policy”,
and “safety” in the vocabulary of administrators, model analysts, and
security managers).

We are trying to mitigate the inevitable influence of human errors
on two paths: First, any formalism to express parts of a security policy
should be as precise as necessary, given its use in the current process
step it is applied in, and as intuitive as possible, given the level of
abstraction of that step. Second, transforming results of one process
step to the next should be subject to automatic tool support as far
as possible. Both paths have the goal to restrict human engineering
decisions in a meaningful way, that helps to recognize and correct
faulty or contradictory design decisions on any level of abstraction
as early as possible.

1.2 Aspect-oriented Engineering

A strategy to achieve this is to tailor each step in model-based se-
curity engineering to either the requirements of a specific family of
policy semantics that should be modeled, or of a family of security
goals that should be analyzed, which we call aspects of security en-
gineering. The point here is that the process itself is adapted to a
non-functional property, such as representing operating system or

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



6 1 INTRODUCTION

database management system policies, or analyzing consistency or
runtime behavior of a security policy. The idea behind such an aspect
is to keep each successive step and partial step of model-based secu-
rity engineering well-defined, small, and monotonic in terms of the
degree of formalism.

Fig. 1.2 depicts an aspect-oriented security engineering (AOSE)
process. It shows the following steps:

Model Engineering Creating a formal, aspect-oriented model, tai-
lored to the goal of that aspect.

Model Analysis Analyzing the security model, where goal and anal-
ysis methods are based on its aspect.

Specification Engineering Creating a formal software specification
of the security model, from which a policy implementation may be
generated.

Each of these steps may be covered by some aspect of model-based
security engineering, to a different extent. In this work we will focus
on two examples for such aspects: (1.) the Entity labeling (EL) aspect,
that represents typical security policy semantics in the application
domains of operating system and middleware systems, and (2.) the
model core aspect, that represents model semantics typically needed
to analyzed dynamic safety properties (which will be discussed in
Chapter 3). Note the dashed areas, which include artifacts of process
steps outside of model-based security engineering. Given an aspect
is tailored to their respective semantics, interpretation and creation
of these artifacts, respectively, can be streamlined. We will not cover
specification engineering, which we consider out of scope of the two
aspects presented and which we leave to future work.

1.3 Contributions

The goal of this work is to substantiate the claim that tailoring of
model-based security engineering methods and tools based on as-

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



1.3 Contributions

Security
Model

Specification
Engineering

degree of formalism
restrictiveness of engineering decisions

Model-based Security
Engineering

Software Specification

Implementation

Aspect-oriented
Engineering Methods

Aspect-oriented
Process Interfaces

Process Phase

Process Step

Artifact

Figure 1.2: Aspect-oriented security engineering process.

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.

Es gilt nur fir den personlichen Gebrauch.



8 1 INTRODUCTION

pects, which represent non-functional requirements toward the en-
gineering process, reduces the impact of human errors. We try to
show this based on two exemplary aspects, covering both classes of
non-functional requirements mentioned above, in the following way.

Entity Labeling Aspect To design an aspect that represents a spe-
cific family of policy semantics, we have chosen the family of oper-
ating system (OS) and middleware (MW) security policies. In con-
trast to application-level security policies, these system-level poli-
cies typically share similar semantical traits that make them predes-
tined for aspect-oriented modeling; as an essential property, they are
based on labels on one or more levels of indirection, which are as-
signed to active or passive entities (such as processes or resources
like database tables). These semantics have arisen from deficiencies
in traditional OS access control policies, related to their enforcement
concept (DAC, cf. Sec. 3.4.1) as well as their policy semantics (no ap-
propriate security-related OS abstractions). As a reaction to this, the
paradigm of policy-controlled operating systems has become increas-
ingly widespread in all types of application domains [Spencer et al.,
1999; Loscocco and Smalley, 2001a; Watson and Vance, 2003; Smal-
ley and Craig, 2013; Russello et al., 2012; Bugiel et al., 2013; Faden,
2007; Grimes and Johansson, 2007], which motivates our choice from
a practical standpoint.

The first result of this work is the EL aspect that represents seman-
tical requirements of the family of OS and MW security policies.

Model Core Aspect As an analysis goal to represent, we focus
on model safety, a well-investigated and still highly practical fam-
ily of security properties [Li and Winsborough, 2003; Naldurg and
Raghavendra, 2011; Stoller et al., 2011; Ranise et al.,, 2014; Shahen
et al., 2015; Jha et al., 2008; Jayaraman et al., 2011, 2013]. As a formal
basis, we build on previous work by Amthor et al. [2011, 2013, 2014];
Amthor [2016, 2017]; Kihnhauser and Pélck [2011]; Polck [2014]: a
uniform, state-machine-based formal calculus to represent dynamic

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



1.3 Contributions 9

access control (AC) models (“security model core”) and a heuristic
safety analysis strategy, implemented for the classical HRU security
model. After rewriting the security model core as an aspect, we define
patterns that may be used for a more structured and thus less error-
prone specification of (potentially complex) model dynamics. These
patterns, despite describing model components in the model core as-
pect, rely on semantics of a model in the EL aspect — which is why
we believe these two aspects demonstrate potential synergies of com-
bining aspects for both non-functional classes. A resulting core-based
model may then be used for heuristic safety analysis.

The second result of this work is the model core aspect and a pattern
for synergetic model specification, using both EL and model core in
combination.

Heuristic Safety Analysis As a consequence from the motivation
of these two aspects, we also describe their usage in model analysis.
To this end, we have generalized a heuristic safety analysis algorithm
from our previous work [Fischer and Kithnhauser, 2010; Amthor et al.,
2013, 2014; Amthor, 2017] and show how it may be tailored to a par-
ticular policy, modeled in both the model core and the EL aspects.
Moreover, while using the original algorithm in practice, we made a
number of observations regarding efficiency and effectivity of safety
analysis, which we incorporated into an optimized version of the gen-
eral framework.

Our third result is a generic, optimized algorithmic framework for
heuristic safety analysis, that may be tailored to a core-based model
combined with EL semantics.

Application to Security-Enhanced Linux As described so far,
the AOSE process only relates to a-priori engineering, i.e. realizing
a security-critical system from scratch. As an application of our ap-
proach to a practical system, we will demonstrate an alternative use
case for AOSE: reverse-security-engineering of an existing, policy-

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.



10 1 INTRODUCTION

controlled system, with the goal of analyzing its security policy. We
will term this approach a-posteriori engineering,.

We use the Security-Enhanced Linux (SELinux) OS [Loscocco and
Smalley, 2001a,b], as an established modern policy-controlled oper-
ating system. We create a formal model of the SELinux AC system,
called SELX, and show how it can be used to analyze an actual policy.
This is also our practical evaluation of feasibility of both streamlined
model engineering by the use of EL, and practical tailoring of heuristic
safety analysis. We embed our results in a discussion of tool support
for each engineering step, which is also ongoing work in line with an
integrated model-based security engineering toolkit (WorSE [Amthor
et al,, 2014]).

Our practical results are an SELinux AC model, a family of mean-
ingful safety definitions for SELinux, a heuristical analysis algorithm
tailored to SELinux policies and any of these definitions as a falsifica-
tion goal.

1.4 Organization

This dissertation is organized in seven chapters:

Following this introduction (Chapter 1), we will discuss the state
of the art in model-based security engineering in Chapter 2. We will
focus on unified modeling approaches for security policies and the
integration and interoperation of the general engineering phases (as
depicted in Fig. 1.1) based on a paradigm of rigorous formalization.

After this, Chapter 3 surveys the foundations of a modern, model-
based security engineering process: Model classes, implementations
of AC systems, and model analysis problems. We give an overview
of the most important policy semantics and their different semantic
paradigms, which motivates the importance of a uniform formaliza-
tion approach that is useful throughout the whole engineering pro-
cess.

Chapter 4 will cover the main idea of this dissertation: an aspect-
oriented view on security models and their usage. After introducing

Dieses Werk ist copyrightgeschiitzt und darf in keiner Form vervielféltigt werden noch an Dritte weitergegeben werden.
Es gilt nur fiir den persénlichen Gebrauch.





