
1. Introduction

1.1 Motivation

Safety-critical and dependable embedded systems play an important role in
our daily life. For example, modern vehicles integrate over 100 electronic
control units (ECUs). Due to the ever-increasing demand for high perfor-
mance together with low energy consumption and size, multicore systems,
as known from general-purpose computing, are adopted by the safety-critical
embedded market. The integration of multiple cores in a chip to a multipro-
cessor system on chip (MPSoC) offers the possibility to consolidate multiple
functions or ECUs, which previously had been distributed and isolated by
external buses. This consolidation of functions with different overall im-
portance leads to mixed-criticality multicore systems [28]. In this context,
a critical function is essential for the safety of the system. Therefore, this
function is developed with high diligence and so the behaviour (e.g. timing)
is well specified and tested. For non-critical functions the confidence in the
characteristics is lower, e.g., the possibility that the function deviates from
the specification is higher. Additionally, non-critical functions might be user
provided and the risk of malicious functions trying to endanger system safety,
e.g., through denial-of-service attacks, increases.

Figure 1.1 presents an example for typical features in a modern car. These
include classical applications, such as engine control or entertainment func-
tions, but also new complex functions for highly automated and autonomous
driving, which all have different requirements. To provide all these features,
a system must offer high performance and parallel processing, as well as
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efficient communication and synchronization between different, possibly
heterogeneous processing units. Figure 1.2 shows the functions of a vision
based driver assistance system with the different processing needs of the
functions. It consists of functions running well on classical CPUs, as e.g. the
feedback loop or standard processing, which require complex computations
but work on a small data set. But also of more advanced functions suited for
processing on a DSP or GPU based system, as these need to process huge
data sets but require less complex computations. Hence, heterogeneous and
interconnected systems are needed to efficiently handle the workload.

Figure 1.1: Electronic features used pervasively in automobiles.

To cope with the increasing complexity of interconnected functions and
to reduce the cost and power consumption of a system, multicore systems are
used to efficiently integrate different processing units in the same chip. This
leads to a transition from many distributed (low performance) ECUs, which
require massive wiring and have a high synchronization and communication
overhead, over a domain centralized architecture to a software defined vehicle,
as shown in Figure 1.3. In a domain centralized architecture or software
defined vehicle, high-performance multicore ECUs are used to provide the
functionalities, which were previously distributed. And while the domain
centralized architecture tries to provide one ECU for each domain for domain-
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Figure 1.2: Vehicle computing evolution (based on [1])

common processing and domain isolation, the software defined approach
processes the workload of different domains on the same ECU. Such an
approach improves the synchronization and communication between the
processing units and hence the performance. At the same time it reduces
the isolation properties as functions of different domains with diverse safety
requirements are now using the same MPSoCs and network connections,
leading to mixed-criticality systems.

Figure 1.3: Vehicle computing evolution.

Especially with the upcoming autonomous driving, the correct function-
ing of the system must be guaranteed. With the transition of the responsibility
from the human to the machine, there will be no driver supervising the de-
cisions and actions of the system, cf. Figure 1.4. Hence, as sketched in
Figure 1.5, there will be no driver overtaking in case of errors (as e.g. in-
duced by interferences in mixed criticality systems) and the system must
provide a technical fallback. Such technical fallback requires to prove the
correct functioning under all cases.
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Safety standards explicitly mention this problem in context of mix-
ing different criticalities and, for example, require sufficient independence
(IEC 61508-2, 2010 [15]):

7.4.2.3: Where an E/E/PE safety-related system is to implement
both safety and non-safety functions, then all the hardware and
software shall be treated as safety-related unless it can be shown
that the implementation of the safety and non-safety functions is
sufficiently independent (i.e. that the failure of any non-safety-
related functions does not cause a dangerous failure of the safety-
related functions).

R Sufficient independence of implementation in a mixed-criticality
system is established by proving that timing interference or the proba-
bility of a dependent failure between the non-safety and safety-related
parts is sufficiently low in comparison with the highest safety integrity
level associated with the safety functions [15]. While a failure can
result from, for example, a fault, wilful timing attack, or wilful mem-
ory manipulation and influence timing, data consistency, or other
parameters of the system.
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Networks-on-chip (NoCs), as a scalable and modular interconnect, are
used as a promising solution for MPSoCs, due to their performance, power,
and size benefits [31]. In a NoC resources, such as the output ports of the
routers, are shared among the different functions and safety classes [126;
216]. Hence, applications of different safety levels will inevitably compete
with each other in a NoC for resources (cf. Section 4.1). This resource
sharing couples the execution behaviour across cores and, thus, impacts
non-functional properties like timing, which are of particular interest in
safety-critical environments (as discussed above).

One approach to solve the problem of mixed-criticality is to develop all
functions to the highest relevant safety level (cf. IEC 61508-2, 2010 [15]).
This leads to higher development costs and lower system utilization. Another
approach is to provide sufficient independence through quality-of-service
(QoS) mechanisms. The challenging part of the latter approach is to ef-
ficiently utilize system resources while providing a bounded and feasible
interference. This typically leads to a trade-off between providing real-time
guarantees for certain applications and performance for the others, as well as
the introduced overhead by the quality-of-service mechanisms.

1.2 Standards for Safety

The safety of the public is a major driver of the automotive, railway, industry
automation and aviation industry. Based on Part 4 of the IEC 61508, safety
can be defined as “freedom from unacceptable risk of physical injury or of
damage to the health of people, either directly, or indirectly as a result of
damage to property or to the environment” [15]. To ensure the safety of
a system there are industrial and research efforts towards standardization
of the safety life cycle for electronic products. To reach a safety level and
certify or qualify a system, several standards and guidelines must be fol-
lowed depending on the field of application. There are many national and
international organizations, which publish design guidelines and regulations
for different domains. Some of these are the International Standards Orga-
nization (ISO), the International Electrotechnical Commission (IEC), the
Radio Technical Commission for Aeronautics (RTCA) and the Society of
Automotive Engineers (SAE). Furthermore, there exist national restrictions
by law. Several of the domain specific safety standards are based on the
IEC 61508 as sketched in Figure 1.6. This chapter gives a summary of some
safety standards relevant for the on-chip network architecture.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6 Chapter 1. Introduction

IEC 61508
Generic

ISO 26262
Automotive

ISO 25119
Agriculture

ISO 13849/
IEC 62061
Machinery

ISO 15998
Earth Moving M.

IEC 60335
Household
Appliances

IEC 50156
Furnaces

IEC 61513
Nuclear Power

EN 50129
IEC 62279

Railway

IEC 61511
Process Ind.

DO-178B
Aviation

IEC 60601
Medical

...

Figure 1.6: IEC 61508 as the root of several safety standards.

The IEC 61508 defines design and verification requirements to establish
safety in systems that incorporate electronic/electrical components and their
communication [15].

For the avionics, the DO-178B, DO-254, and DO-297 handle respec-
tively the development and validation of software, hardware, and integrated
modular avionics [2; 5; 6]. Together these include design considerations
on system, hardware, and software level. The ARP-4754 and ARP-4761
describe methods and considerations to get through the certification process
of a complex highly-integrated avionics system [13; 14].

Similarly, standards and approaches exist for the development of heavy
machinery (IEC 62061), systems for process industries (IEC 61511), railway
(IEC 62279), and power plants (IEC 61513).

For the automotive domain so far no necessity for certification exists.
However, qualification approaches are used to ensure the correct functioning
of the system. The ISO 26262, for example, states that “If the embedded
software has to implement software components of different ASILs, or safety-
related and non-safety-related software components, then all of the embedded
software shall be treated in accordance with the highest ASIL, unless the
software components meet the criteria for coexistence in accordance with
ISO 26262-9:2011, Clause 6.”, where Clause 6 proposes “In the case of
the coexistence of sub-elements that have different ASILs assigned or the
coexistence of sub-elements that have no ASIL assigned with safety-related
ones, it can be beneficial to avoid raising the ASIL for some of them to
the ASIL of the element. When determining the ASIL of sub-elements of
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an element, the rationale for freedom from interference is supported by
analyses of dependent failures focused on cascading failures”. The freedom
of interference is later defined as “absence of cascading failures between two
or more elements that could lead to the violation of a safety requirement”.

Besides the ISO 26262, other standards exists, which can influence the
design of an automotive system. The ISO 15005 describes constraints to
ensure the safe operation of a road vehicle while it is in motion. This concerns
especially the interaction of the user and the vehicle’s information and control
system [3]. The ISO 16951 handles the prioritized presentation of messages
and windows to the user by the vehicle’s information and control system [4].
Hence, if such applications use components of an interconnected system,
they can influence the design of the network architecture.

By applying these rules to a system-on-chip, the parts of the hardware
and runtime environment (RTE), which are always used, must be certified
to the highest relevant safety level. For all other components “sufficient
independence” must be implemented. Therefore, NoCs, whenever used
for communication between safety critical components such as automotive
functions, are or will be, depending on the safety-critical domain, the subject
of regulation through standards and certification procedures to ensure their
correct functioning. In this context, not only the possibly high average
performance and low costs play a critical role but also the ability to prove
adherence to the safety requirements. This adds another complexity layer
to the design process and requires traceability with respect to real-time
properties, e.g., application of formal analysis methods such as Real-Time
Calculus [213], Network Calculus [134], or Compositional Performance
Analysis [99].

1.3 Real-Time Traffic Properties
Modern safety- or mixed-critical embedded systems host heterogeneous
applications, with different requirements and behaviour (cf. Section 1.1).
This includes applications with different safety-criticality as well as differ-
ent real-time requirements. An example for the automotive domain is the
integration of pedestrian detection in advanced driver assistance systems and
entertainment applications. In this sense, criticality can be broken down into
at least two orthogonal aspects as shown in Figure 1.7: safety criticality and
time criticality.

For real-time (time-critical) applications the correctness of the system
function depends not only on functional but also on temporal aspects. That
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Figure 1.7: Two dimensions of mixed-criticality [24].

is, these applications should always finish computations before a given time
or receive a certain minimum throughput to ensure correctness or safety. The
time by which a specific result must be produced is called deadline. Typical
examples for such applications without safety requirements are embedded
mobile communication (e.g. UMTS or LTE) or entertainment applications.

For purely safety critical systems the integrity of computation needs to be
preserved. An example are traffic lights that are controlled by a centralized
controller. A failure might lead to catastrophic consequences, e.g., pedestri-
ans or car passengers can be injured or killed. However, it is not important if
the (correct) computation result is achieved within milliseconds or seconds.
A non-switching traffic light is more acceptable as a wrong state.

Domains with both safety and real-time requirements are of special inter-
est, as they cover many of the important future scenarios like advanced driver
assistance system (ADAS) or autonomous driving (cf. Figure 1.7). In these
domains, the failure of the function (e.g. violation of a real-time requirement)
can have catastrophic effects. While this domain is already challenging, as
techniques from real-time and dependability (e.g. predictability) need to be
combined, the demands for lower energy consumption and higher efficiency
of systems lead to the integration of different domains on the same MPSoC
(cf. Section 1.1). In such mixed-critical systems, applications with safety
and real-time requirements (e.g. engine control, ADAS) are running together
with applications with purely real-time requirements (e.g. entertainment) or
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no strict requirements at all. Hence, the system must efficiently combine
real-time, dependability, and high performance mechanisms.

The timing properties can be further divided into best-effort, throughput
bound, soft real-time, and hard real-time [71; 114; 142]. Figure 1.8 shows an
example for possible timing requirements for some automotive applications.

General Purpose Throughput Bound Soft Real-Time Hard Real-Time

Route Planning Voice Control Traffic Sign Recognition Autonomous Local Navigation

Data Encryption Intelligent Cruise Control
Emergency

Collision Avoidance

Driver Display Automatic Lane Following

Movie Player
Backup Camera
Warning System

Eye Tracking Autonomous Control

Speculative Evasion Pre-Planning

Figure 1.8: Exemplary timing requirements for some automotive applica-
tions [71; 114].

Hard real-time applications have firm deadlines, i.e., the utility of the
produced result is zero or even renders the whole system as unfeasible when
the deadline is crossed. For safety-critical real-time applications, any delay
in their execution beyond their deadline, including high latencies of on-chip
transmissions, may have severe consequences for the whole system, i.e., fatal
failures and prohibitive degradation of service. Hence, these applications
are usually not allowed to miss any deadline. That is, for example, the
worst-case latency must stay below an assumed upper limit, which is derived
from the deadline. For purely hard real-time applications, the functionality
does not directly affect user safety but is, for example, important for the user
experience. Hence, a deadline violation can cause client loss or substantial
financial penalty. To achieve the needed performance for hard real-time
applications, the system is typically dimensioned for the worst-case behaviour.
Additionally, for safety-critical systems, the correctness of the behaviour,
even in the worst-case, must be verified according to safety standards. Due to
these requirements the characteristics of safety-critical hard real-time senders
and their network traffic are usually well specified and tested and hence
known at design time.

Soft real-time applications, on the other hand, may tolerate occasional
deadline misses. The main difference, when compared to hard real-time
senders, is that these applications are rarely required to rigorously meet all
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their deadlines, i.e., the produced results have some utility after the deadline
or are not affecting the safety (e.g. can safely be discarded) [142; 201]. An
example are control algorithms based on a feedback loop or video analysis
for night vision in a car. The algorithms in such systems may tolerate a
limited number of cases when instead of new sampling data old values are
used. Thus, it can compensate occasional deadline misses without any severe
consequences for the system [193; 218; 239].

Similar to soft real-time, there are throughput bound applications, which
must comply to overall real-time performance objectives in terms of a min-
imum achieved throughput over a given period. Again, these applications
are rarely required to rigorously meet all their deadlines, i.e., the short term
throughput can underrun the required throughput as long as the long-term
throughput is acceptable. For instance, video streaming done as a part of an
infotainment function in a car does not influence vehicle safety, but video
frames must still arrive with a certain latency to prevent quality drops and
glitches. Still, for a producer of an infotainment system the quality of user
experience may play a critical role in the market success of a product. Con-
sequently, a producer may accept sporadic drop of the video quality but may
lose clients whenever it happens too often.

The last category of general purpose or best-effort (BE) does not have
strict temporal requirements, e.g, a deadline miss will not endanger system
safety. However, this typically also means that such application are less
tested with respect to temporal properties and only designed targeting average
performance metrics. For example, the frequency and size of accesses to
the (on chip) network are not known. Still, the system should provide
sufficient resources to process such applications (e.g. be work conserving),
as they can, for example, be used to increase the long-term efficiency or user
experience (e.g. diagnosis functions or route planning). Hence, achieving
high performance and low latency is a common design goal, as long as all
guarantees for safety- or time-critical applications can be delivered.

1.4 Requirements of Safety-critical Embedded Systems
As shown in the sections before, the communication of safety-related data
must be protected at run-time against effects of faults, which may lead
to failures of the system. These faults include transient faults, physical
damage as well as lack of sufficient independence between tasks (e.g. timing
interference or data corruption). For example, the ISO 26262 provides a list
of faults, presented in Table 1.1 regarding the exchange of information, which
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must be considered in case of an interconnect for certification purposes. An
end-to-end protection defines a set of mechanisms, which avoid these faults
or allow a reliable detection and appropriate countermeasures.

Some of these faults directly relate to real-time metrics for the on-chip
interconnect, e.g., a delay of information or blocking access to the communi-
cation channel. Others relate to consistency and the protection of packets
done directly in the interconnect. For example, without a proper flow control
in the network, packets might be dropped or overwritten leading to corruption
of information. Other faults, although not directly related to the temporal
metrics, can influence the predictability indirectly. Transient errors, mal-
functioning, or malicious senders, for example, can introduce uncertainty
and dynamics to the system, e.g., sporadic overloads due to re-transmissions
or babbling idiots. Such dynamics hinder predictability or even render it
impossible.

These faults can be detected and partly avoided in the software layer of
a system. For example, AUTOSAR provides several mechanisms to cope
with these faults (cf. Table 1.2), as e.g., CRC, Data ID, Counter, Regular
transmission + timeout monitoring [10; 77]. The Data ID is a unique identi-
fier to verify the identity of each transmitted (safety-related) data element.
The Counter is a simple counter that is incremented on every send request. It
can be used to implement an alive counter and a sequence counter. For the
sequence counter, the value is checked at receiver side for correct incremen-
tation, while for the alive counter it is only checked whether is changes at all.
Based on these mechanisms receiver communication and sender acknowl-
edgement timeouts can be implemented. For this, a receiver is executed
independently of the data transmission (e.g. periodic activation and checking
for new data) and checks the validity of the received data (based on CRC,
counter, and Data ID). With this, a wrong counter detects a duplication of
previous data, loss of communication, or timeouts. Table 1.2 shows the fault
coverage of different mechanisms. These mechanisms can be realized in
software (cf. AUTOSAR E2E Protocol Specification [10]), hardware, or a
hybrid solution. To increase the efficiency of a system, the hardware can
provide support to detect and avoid such faults, e.g., hardware CRC checking
or quality of service (QoS) mechanisms to limit interference. The latter are
of special interest, as such mechanisms change the timing and behaviour
of the system. Additionally, they can drastically degrade the performance,
utilization, or adaptability of a system. For the other mechanisms (and faults),
the influence on the system design and behaviour can be straightforwardly
derived.
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Table 1.1: Summary of communication faults in the design of the automotive
systems according to ISO 26262 [7; 10].

Fault Type Description

Repetition of information
A type of communication fault,
where information is received
more than once.

Loss of information

A type of communication fault,
where information or parts of information
are removed from a stream of
transmitted information.

Delay of information
A type of communication fault,
where information is received later than
expected.

Insertion of information
A type of communication fault, where
additional information is inserted into
a stream of transmitted information.

Masquerading
A type of communication fault, where
non-authentic information is accepted
as authentic information by a receiver.

Incorrect addressing

A type of communication fault, where
information is accepted
from an incorrect sender
or by an incorrect receiver.

Incorrect sequence of information
A type of communication fault,
where information is accepted from an
incorrect sender or by an incorrect receiver.

Corruption of information
A type of communication fault, which
changes information.

Asymmetric information from
sender to multiple receivers

A type of communication fault, where
receivers do receive different information
from the same sender.

Information from a sender received
by only a subset of the receivers

A type of communication fault, where some
receivers do not receive the information.

Blocking access to
a communication channel

A type of communication fault,
where the access to a communication
channel is blocked.
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Table 1.2: Fault detection coverage for different mechanisms.

Counter Data ID CRC
Transmission on
regular bases and
timeout monitoring

QoS

Repetition of information x — — — —
Loss of information x — — — —
Delay of information x — — x x
Insertion of information x x x — —
Masquerading — x x — —
Incorrect addressing — x — — —
Incorrect sequence
of information x — — — —

Corruption of information — — x — —
Asymmetric information from
sender to multiple receivers — — x — —

Information from a sender
received by only a
subset of the receivers

x — — — —

Blocking access to
a communication channel x — — x x

As discussed in Section 1.1, NoCs are foreseen as a communication
backbone for large systems-on-chip (SoCs) integrating different ECUs. As
a result of such integration, it can happen that different traffic classes, i.e.,
hard real-time tasks, soft-real time, throughput bound, and best-effort (BE),
share the SoC resources. This causes co-dependencies between applications
running on different cores, what may endanger safety. Unpredictable and
bursty accesses from BE senders may lead to contention in network buffers.
In on-chip interconnects without appropriate QoS mechanisms transmissions
are scheduled as soon as they arrive, and all traffic receive equal treatment.
This leads to the possibility of an unbounded timing interference, which
may lead to missed deadlines for real-time traffic. Hence, NoCs for future
safety-critical systems need to provide QoS mechanisms.

NoC architectures are judged by performance (e.g. latency, throughput,
utilization), cost (e.g. design effort, HW overhead), predictability (e.g. formal
analysis; guarantees on performance metrics), and flexibility/adaptability
(e.g. adapt to system internal and external changing conditions; re-use for
different use cases) [24; 54; 69]. The challenge in providing mechanisms
for these is that they can be contradictory. For example, an arbitration based
on a static time-division multiplexing (TDM) achieves a high predictability.
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Under certain conditions, it can even achieve a fair performance, e.g., when
the TDM slots can be fully utilized. However, the design is usually developed
according to the worst-case behaviour, leading to unused slots during normal
operation of the system. Hence, the design is not work-conserving leading
to a low utilization and degradation of performance. Additionally, a TDM
approach can typically not easily adapt to changing conditions. Summarizing,
the most important requirements of a NoC architecture are:
• efficient support of different traffic types

– sufficient independence (limited interference between applications)
– guaranteed worst-case performance for real-time applications (pre-

dictability)
– as good as possible actual-case performance for non-real-time ap-

plications (e.g. high utilization, work conserving, no “second class
citizens”)

• low cost
– low design effort
– low hardware overhead
– reusability: allow the same architecture to be used for different

usecases/domains
– allow efficient verification (bounds on interference)
• flexibility

– allow to adapt to system internal and external changing conditions
– reusability: allow the same architecture to be used for different

usecases/domains
– safety and real-time “as a feature”

1.5 Research Objective and Contribution
For safety-critical systems, a major goal is the avoidance of hazards. For
this, safety-critical systems are qualified or even certified to prove the correct
functionality under all possible cases. A predictable behaviour can help to
ease the qualification process (e.g. analysis) of the system. Thus, achieving a
predictable behaviour is an important goal for these systems. For the inter-
connect (e.g. the NoC) design, this means that providing predictable resource
sharing between concurrent transmissions is a major driver. However, the
support for temporal properties should not cancel out benefits resulting from
the application of NoCs, e.g., high efficiency, scalability, flexibility, and low
production costs. Hence, these other design goals shall also be reached, to
reduce cost, increase efficiency, and market competition.
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