
Chapter 1

Introduction

In order to achieve large scale energy production from fusion reactions, plas-
mas with a mix of deuterium and tritium are heated to temperatures of
100 million degrees. These temperatures are needed for the particle to over-
come the Coulomb barrier. Such fusion plasmas are confined by strong
magnetic fields, build in toroidal geometry in order to avoid losses parallel
to the magnetic field lines. Important for a fusion reactor is the confinement
of the energy measured with the confinement time τE , which, together with
plasma density n and temperature T , forms the triple product. For igni-
tion, where a self-sustained burning fusion plasma is reached, this quantity
has to fulfil the Lawson criterion nTτE > 4 · 1021 m−3 keV s [1]. However,
achieving ignition has been proven to be a quite challenging task. Increased
heating power leads to higher temperatures but it also entails turbulent fluc-
tuations and turbulent transport. Turbulence reduces the confinement time
and severely limits the performance of a future reactor.1

The search for improved confinement regimes, which will bring the plasma
closer to ignition, has long been subject to fusion research [3, 4]. Enhanced
performance modes can be achieved due to specific heating or fuelling scen-
arios and careful wall preparation [5]. With peaked density profiles the dens-
ity gradient decay length is reduced below a critical value which can stabilise
ion temperate gradient instabilities. In 1982 a new type of improved con-
finement was discovered at the ASDEX tokamak where the transition to a
high confinement regime (H-mode) appeared spontaneously [6–8]. Due to a
transport barrier in the edge of the confined plasma [9], the turbulent trans-
port was strongly reduced and the energy confinement time doubled. The
transport reduction can be explained by a flow shear layer which hinders
turbulent outward transport due to the decorrelation of turbulent struc-

1The confinement time scales negative with heating power (P−0.5) [2] which results in
a low confinement regime (L-mode) and leaves the triple product mostly unchanged.
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tures (BDT-criterion) [10–13].2 But the mechanism behind the occurrence of
the bifurcation in the confinement time is still not fully understood. Turbu-
lence self-generated zonal flows might play an important role in this H-mode
transition [14–18]. These transient shear flows can partially suppress turbu-
lent transport which would in turn increase the ion pressure gradient and
thus the background shear flow connected with it. Such behaviour, with a
limit cycle oscillation in the intermediate phase between the low and high
confinement modes, was indeed confirmed by many experiments [17, 19–25].
However, the physics behind the LH-transition remains a controversial is-
sue as it was found in [26, 27] that the measured turbulent drive was too
small to accelerate a zonal flow. And a more resent study suggests that the
turbulence zonal flow interaction might not substantially contribute to the
LH-transition [28]. Owing to these contrary positions a deeper understand-
ing of the physics related to the drive of zonal flows is highly desirable.

Zonal flows are a phenomenon known before from fluid turbulence [29–
31]. The band like structures on Jupiter are probably the most prominent
example, but zonal flows also appear in the earth’s atmosphere (jet streams)
and oceans. On Venus such jets can exhibit velocities faster than the rotation
of the planet (super-rotation), and the zonal flows in the interior of the sun
are linked to the solar dynamo. Their existence in various physical systems
shows that they are a rather universal phenomenon of 2D turbulence.
In toroidal fusion experiments the plasma is confined with an axial (tor-
oidal) magnetic field where the turbulent fluctuations extent far along the
field lines and the plasma turbulence is thus quasi two-dimensional. With
the additional poloidal magnetic field component, which is needed for stable
confinement, the field lines and the elongated turbulent structures are twis-
ted around the torus. The present studies are carried out on a stellarator
device where the magnetic field is entirely generated by external field coils
and the plasma has a three-dimensional shape. It has been shown that the
turbulence in this device resembles that expected in tokamaks, which, in
contrast to stellarators, are axisymmetric but need a strong externally in-
duced plasma current to generate part of the field. An illustration of these
two confinement concepts is shown in figure 1.1.

Zonal flows exhibit unique properties compared to other turbulent modes.
With a homogeneous potential structure along the flux surfaces (called zonal
potential) and a finite radial extent zonal flows are intrinsically connected to

2Turbulent transport is effectively reduced when the shearing rate ωE×B is larger than
the maximal linear growth rate γmax: |ωE×B | > γmax.
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Figure 1.1: Illustration of the two major toroidal magnetic confinement concepts.
The combination of toroidal and poloidal magnetic field results in twisted field
lines which span the flux surfaces, enclosing volumes of constant magnetic flux.
Closed flux surfaces, which do not touch the wall, constitute the confinement region,
otherwise the scrape-off layer (SOL). The complex coil geometry of stellarators is
reflected in the shape of the plasma. [32]

a zonal shear flow [33]. Because of their symmetry, these mesoscale turbu-
lent structures do not contribute to turbulent cross-field transport and can
suppress radial transport by shearing off turbulent eddies. Like in a self-
organisation process, the zonal flow is generated by the ambient turbulence
itself with a vortex-thinning mechanism [34, 35]. The vortices are tilted and
drive the shear flow, which leads to a self-amplification of the zonal flow [36–
38]. For tilted vortices the so-called Reynolds stress R = 〈ṽr ṽθ〉 is non-zero
and the radial gradient of this flux surface averaged quantity, as indicated
by the brackets, drives the zonal flow. From a theoretical point of view,
mostly the physical picture known from fluid mechanics can be transferred
to plasma physics. But plasma turbulence, especially in complex geomet-
ries, has its own characteristics and phenomena. In contrast to neutral fluids,
e.g., the zonal flow drive in plasmas should crucially depend on the cross-
coupling of the potential and the density structures. The key parameter in
this system is the collisionality C, defined as the normalised electron collision
frequency [39]. For the adiabatic case (C → 0) both quantities are closely
coupled, while in the hydrodynamic case (C → ∞) density and potential
decouple and the zonal flow growth is broken.
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processes, like Reynolds stress drive, limit cycle oscillations, and transport
suppression, have been demonstrated [40, 41]. However, the experimental
verification remains limited as such measurements were mostly restricted
to single points in the plasma and do not regard the three-dimensional dy-
namic of the zonal flow. The complexity of the magnetic field, especially in
stellarators, with the consequences for the zonal flow are, up to now, rarely
studied in experiment and theory. And a realistic treatment of the geometry
in turbulence simulations poses a challenging task which still cannot fully
be mastered.

The objective of the present thesis is a detailed analysis of the zonal flows
in a toroidally confined plasma with a special focus on the driving mechanism
and its collisional dependence. This includes the direct study of the Reyn-
olds stress, and its gradient, together with the connected energy transfer
between turbulence and zonal flow. The relevant parameters are measured
on the complete poloidal circumference of the confined plasma which allows
studying the complex dependency on the magnetic field.
To investigate turbulence, especially the Reynolds stress, multiple measure-
ment points at high time resolution are required which is beyond the limits
of the actual diagnostic possibilities in fusion plasmas. Toroidal experiments
with low temperature plasmas can fill the gap as their whole confinement
region is accessible to probe diagnostics. Probes posses a very high time
and a relatively high spatial resolution at the same time. The actual plasma
parameters are of course not in the range of those in a fusion plasma, but
operation regimes can be chosen such that the normalised parameters rel-
evant for turbulence are comparable to those in the edge region of large
fusion experiments. With their flexibility such experiments are predestined
for basic research where local magnetic field effects can be very well stud-
ied. The experiments for this work have been conducted at the stellarator
experiment TJ-K where multi-probe configurations have been exploited to
resolve turbulent fluctuations.

This work is organised as follows. The theoretical background of drift
waves, the predominant micro instability in the experiment TJ-K, and zonal
flows is given in chapters 2 and 3, respectively. This is followed by the
description of the techniques of data analysis (Chap. 4), especially the cal-
culation of the energy transfer, and the experimental setup (Chap. 5). All
measurements in this work have been performed with newly constructed lim-
iters which result in well-defined boundary conditions. The characterisation
of the achieved plasma parameters is presented in chapter 6. This is the
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the occurrence of the zonal flow is studied in detail where chapter 7 addresses
basic properties of the zonal flows. With the conditional averaging technique
the temporal evolution can be visualised. In chapter 8 the connection of the
Reynolds stress to the magnetic field geometry is studied in detail. Using
non-linear analyses techniques, the different energy transfer channels con-
nected with the zonal flow development are studied in chapter 9. Finally, in
chapter 10 the results are summarised and discussed with regard to possible
consequences of local measurements and the conclusions are presented.
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foundation for the scaling analysis applied throughout the work. Afterwards
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Chapter 2

Plasma turbulence

Turbulence is ubiquitous in nature with a variety of phenomena. This chap-
ter introduces the basic description and characteristics of fluid (Chap. 2.1)
and plasma turbulence (Chap. 2.2–2.4). The description is mostly limited to
2D turbulence which is the relevant one for turbulence in fusion plasmas. The
fundamental equations introduced here are the basis for the consideration of
large structure formation shown in the following chapter.

2.1 Principles of turbulence

In a first part (Sect. 2.1.1) basic formulas, as the Navier-Stokes equation and
the vorticity equation, are collected. This is followed by the identification
of the conservation laws (Sect. 2.1.2) which entails the turbulent cascades
(Sect. 2.1.3) with completely different manifestations in two and three di-
mensions.

2.1.1 Basic equations

The Navier-Stokes equation [42, 43] is the momentum balance equation for a
Newtonian fluid, which, for a complete description, has to be complemented
by the continuity equation and an equation for the energy. For an incom-
pressible fluid, with constant mass density and viscosity, it is an extension
of the Euler equation by internal friction and describes the evolution of a
fluid element in a divergence free velocity field v,

Dtv ≡
∂

∂t
v + v · ∇v = −∇p+ µ∇2

v , (2.1)

∇ · v = 0 . (2.2)

The mass density ρm is thereby included in the pressure p and in the (kin-
ematic) viscosity µ. The differential operator Dt is the hydrodynamic de-
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rivative, or material derivative, and describes the rate of change in the co-
moving frame of reference. This system of second order nonlinear partial
differential equations has to be supplemented by appropriate boundary and
initial conditions for the velocity and pressure field, which, at least for two
dimensions [44], determine a unique solution.1 If the nonlinear convective
term (second term on the left hand side) can be neglected, e.g. if the vis-
cosity is very high, equation (2.1) reduces to a simple diffusion equation
(Stokes equation) and a number of special solutions can be obtained (Stokes
or creeping flow [45]). But for the majority of more general flows the non-
linear term is essential to the dynamics of the flow. The relative strength
of this convective term in comparison to the viscous term finally determines
the state (laminar or turbulent) of the flow. As only a dimensionless control
parameter can be of fundamental significance, the viscosity has to be nor-
malised to a typical length L and velocity V of the system, leading to the
Reynolds number

Re =
LV

µ
. (2.3)

For low Reynolds numbers momentum diffusion by viscosity dominates and
the flow is laminar. With increasing Reynolds number the momentum con-
vection gains importance, which leads to the excitation of a few unstable
modes with specific flow pattern like, e.g., a Kármán vortex street of al-
ternating vortices. The number of excited modes gets larger with increased
control parameter. Eventually, they get nonlinearly unstable and will finally
lead to chaotic behaviour and turbulence.2

The parameters used in the definition of the Reynolds number (2.3) also
define the possible scales of the turbulence. For large structures the typical
geometrical size L defines the integral scale where energy is introduced into
the system. On the other hand, the viscosity sets a limit for the size of the
small structures, i.e. the Kolmogorov dissipation scale. Due to the Laplace
operator in the viscous term, viscous diffusion strongly gains influence for
smaller structure sizes where the energy is then dissipated into heat.

A characteristic of turbulent flows is that they are rotational. Therefore,

1For three dimensions, the existence and smoothness of a solution is not yet proven and
is one of the ’Millennium Problems’ announced by the Clay Mathematics Institute.

2Different mechanisms for the onset of turbulence are known but the exact route is yet
unclear. In the development of drift-wave turbulence the Ruelle-Takens scenario [46]
was confirmed [47–49].
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the vorticity Ω, defined as rotation of the velocity field,
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2.1 Principles of turbulence

Ω = ∇× v , (2.4)

plays an important role in the study of turbulence and describes the rotation
of fluid elements about their centroid. An evolution equation for the vorticity
can be deduced from the Navier-Stokes equation by taking the curl of (2.1).
With the vector identity for the convective term,

(v · ∇)v = ∇v2

2
− v × (∇× v) = ∇v2

2
− v ×Ω , (2.5)

equation (2.1) leads to

∂

∂t
Ω = ∇× (v ×Ω) + µ∇×∆v . (2.6)

Because of ∇ × (∇(v2/2 + p)) = 0, the pressure has been eliminated from
the equation. The first term on the right hand side can be simplified with
∇ · (∇× v) = 0 and the incompressibility condition (2.2) to

∇× (v ×Ω) = v(∇ ·Ω)−Ω(∇ · v) + (Ω · ∇)v − (v · ∇)Ω
= (Ω · ∇)v − (v · ∇)Ω .

(2.7)

Also the third term of equation (2.6) (with the viscosity µ) can be reformu-
lated, using incompressibility, ∇ · v = 0, to

∇×∆v = ∇× (∇(∇ · v))−∇× (∇× (∇× v))

= −∇× (∇×Ω) = ∆Ω .
(2.8)

With both rearranged terms (Eqs. (2.7) and (2.8)), equation (2.6) results in
the vorticity equation in three dimensions

∂

∂t
Ω+ v · ∇Ω = (Ω · ∇)v + µ∆Ω , (2.9)

describing the time evolution of the vector Ω. Two terms are originating from
the nonlinearity of the Navier-Stokes equation, cf. equation (2.5) and (2.7),
which exist also in the absence of viscosity (ideal fluid). The second term of
equation (2.9) is the convection of vorticity, and the third term describes the
stretching of a vortex line3, leading to an amplification of the vorticity. This

3Curves defined as everywhere tangential to the vorticity vector.
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vorticity amplification is a consequence of the conservation of circulation Z
(Helmholtz’s theorem [50]) for ideal fluids,

Z =

∮
v · dl =

∫
∇× v dS = const . (2.10)

Thereby, the integration path of the line integral follows a closed vortex
line moving with the fluid. The second part of the equation, after Stokes’
law is applied, motivates the use of the vorticity, originally defined in (2.4).
From equation (2.10) it is now clear that if the cross section of a vortex S

is reduced through convection of the flow, the vorticity has to increase in
order to keep the circulation constant. This mechanism produces intense,
fine-scale structures as indeed observed in turbulence [51, 52].4 But also in
the vorticity equation, the viscous diffusion term (last term in Eq. (2.9)) is
present, which counteracts the vorticity amplification and sets a limit to the
structure size. For sufficiently small scales the viscosity becomes important,
leading to a diffusion which smoothes out the vorticity field and stops the
amplification.

For a two-dimensional flow, i.e. v = (vx, vy, 0), the vorticity has only
a component perpendicular to the plane Ω = ∇ × v = Ωez. Since the
derivative of the flow velocity parallel to the vorticity vector is always zero,
the first term on the right hand side of equation (2.9) vanishes, and the
vorticity equation reduces to

∂

∂t
Ω+ v · ∇Ω = µ∆Ω . (2.11)

In two dimensions, the vorticity equation has reduced to a simple advection-
diffusion equation where the vorticity does not act back on the turbulent
flow. The missing vorticity stretching is the main difference between two- and
three-dimensional turbulence and has, as will be shown later (Sect. 2.1.3),
far reaching consequences for the turbulent system.5

2.1.2 Conservation laws

Dynamical systems described by the Navier-Stokes equation exhibit determ-
inistic chaos which, in some sense, can be referred to as being sensitive
4The funnel of a tornado or the vortex above the outlet of a bathtub, also it is a laminar

flow, arises due to the same principle.
5Some authors suggest that, because of the missing vortex stretching, flows in two

dimensions cannot be seen as turbulent systems, and turbulence is intrinsically three-
dimensional.
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