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Introduction

Consider manufactured parts, such as screws, car doors, lenses, or mirrors for lasers, for ex-
ample. All these manufactured parts have to go through quality inspections checking if there
are unwanted bumps or scratches that should not be there. There are different methods to
measure the manufactured parts. One that we will consider in this thesis is a deflectometric
measurement process that deals with the measurement of specular objects. The output of such
measurement processes is given in some raw data depending on the process. The goal is to
describe the measured object exactly by the data. This is one example for a so-called inverse
problem.

Another example that we want to consider are images. These images can be photographies
or MRI scans, for example. A photography can be corrupted by noise. For example these
unwanted signals can occur in images where the photo was taken in a too dark environment
without a flash light. That can look like the image in Figure 1.1.

(a) Noise-free image. (b) Image corrupted by noise.

Figure 1.1: Comparison of a noise-free image and an image corrupted by noise.

In general, in inverse problems an operator equation modeling a specific process is given.
These processes are physical processes and applications include e.g. tomography, medical imag-
ing, or object measurements. The aim is to find an input argument that provides the given
results. To this end, an inversion of the operator equation is desired. However, these operators
are usually not invertible. Additionally, inverse problems are highly sensitive to errors in the
measurement data.

To overcome this issue, mathematical tools are needed to approximate an inversion of the
problem. One approach is to construct functionals for which the minimization problem is well-
posed in the sense that unique minimizers exist and are close to the unknown solution within a
tolerance range. These functionals consist of two parts. The first part is a fidelity term which
controls the deviation between the given output data and the data produced by the model for
some input data. The second term is a regularization that gives the option to force the input
parameters to fulfill certain properties such as how much an image resembles a “natural image”.
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The application that we consider in the first part of the thesis is a data fusion process. The
given dataset is a result of a deflectometric measurement process [Pet04, Pet06] and is provided
by the Institute of Production Measurement Technology (IPROM) at the Technical University
Braunschweig.

Deflectometric measurement processes deal with object measurements of specular objects,
such as lenses or mirrors. The aim is to calculate a dataset that describes the measured object
exactly. The output data consists of two sets of separately measured types of data. There
are the measured surface points and the measured surface orientation given by three spatial
coordinates and by normal vectors, respectively. Since the direct measurement of the points is
more sensitive to noise than the measurement of the normal vectors, the accuracy of data is
inconsistent. In detail, the accuracy of the normal vectors is three orders of magnitude higher
than the accuracy of the surface points. We resolve this issue with a data fusion process by
solving a minimization problem which uses the normal vectors as a reference value. By doing
so the accuracy of the surface points is increased.

Taking the gained insights we are able to develop new theories for image denoising. Image
denoising, as we realized, is a problem similar to the data fusion process.

In imaging there are different methods to denoise an image. In 1992, Rudin, Osher and
Fatemi introduced the total variation as a regularizer [ROF92],

min
u

1
2

∫
Ω

|u − u0|2 dx + λ

∫
Ω

|∇ u| dx.

One problem in the resulting denoised images is the occurring staircasing effect, i.e. the
creation of flat areas separated by jumps. One way to overcome this staircasing was proposed
by Lysaker et al. in 2004 [LOT04]. The technique they proposed was a denoising of the image
in two separate steps. In a first step, a total variation filter was used to smooth the normal
vectors of the level sets of a given noisy image and then, as a second step, a surface was fitted
to the resulting normal vectors. The method was designed in a dynamic way, i.e. by solving a
certain partial differential equation to steady state.

A similar approach is taken in data fusion process. The measurement device does not only
produce approximate point coordinates but also approximate surface normals. It turned out
that the incorporation of the surface normals results in an effective, but fairly complicated and
non-linear problem. In our approach we switch from surface normals to image gradients which
leads to an effective method.

For image denoising we follow the idea of introducing additional information, e.g. gradient
information, into the above ROF-model.

We formulate certain minimization problems in which use suitable reference values. In
image denoising the reference value we want to use is an approximation of the image gradient
vectors. Consequently, our approaches calculate such an approximation and use it as a reference
value. Hence, our approaches are two-stage methods.

Another approach to prevent the staircasing effect is to go to higher orders of differenti-
ation within the regularization term. One approach was proposed in 2010 namely the total
generalized variation (TGV) functional [BKP10, KBPS11].

We propose different kinds of combinations of these functionals, since we can use the func-
tionals as constraints or penalties. In this way we are able to formulate different minimization
problems that are in some sense equivalent to the TGV problem. One advantage of some of
these problems lies in the easy parameter choice rules that perform equally well as the TGV
problem. Additionally, the duality gaps of these new problems are finite instead of infinite as
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it is usually the case in the primal-dual gap for the TGV problem. Hence, these can be used to
create a reasonable stopping criterion for the optimization process. An additional advantage is
the decreased runtime of the two-stage methods, since the problem is divided into two smaller
problems.

1.1 Organization of the thesis
Chapter 2 provides underlying theory and notation that is used throughout this thesis. These
preliminaries include notions of functional analysis such as functional spaces, e.g., spaces of
bounded total variation and bounded total generalized variation, norms and seminorms, and
different types of derivatives. Furthermore, the chapter contains some convex analysis, in-
cluding illustrations of terms that are necessary for the solution theory of convex optimization
problems. It also includes a brief overview of inverse problems in general and the direct method
of the calculus of variations. The chapter concludes with solution methods for convex opti-
mization problems that are based on [CNCP10]. Chambolle-Pock’s primal-dual algorithm for
solving minimization problems of the type

min
x∈X

F (x) + G(Kx)

for functionals F , G (e.g. representing the fidelity and the regularization term) with certain
properties and a linear and continuous operator K closes this chapter.

The first of the two main parts of this thesis is Chapter 3. This chapter describes an
inverse problem for an application in deflectometric measurements. The given data are sets of
measured point coordinates and measured normal vectors of an object. These are provided by
the same measurement setup but are determined independently. Because of the architecture
of the measurement process and the different sensitivity to noise, the types of measured data
do not have the same accuracy. In the chapter the geometry of the measurement setup is
explained alongside the structure of the measured dataset. Moreover, different approaches to
increase the accuracy to a higher order of magnitude which we call data fusion are discussed.
Algorithms are proposed and tested on real datasets provided by the Institute of Production
Measurement Technology (IPROM) at the Technical University Braunschweig.

The other part of the thesis, Chapters 4 to 6, uses the insights of the previous chapter and
applies these to mathematical image denoising.

In Chapter 4 an idea of a two-stage image denoising method is proposed which is inspired
by the fact that measured surface orientation is a powerful tool to lift the accuracy of measured
surface point coordinates in the data fusion process. Consequently, a two-stage image denoising
method is proposed which, in a first step, denoises the image gradients and takes these gradients
into a second step as prior information where the image is denoised with respect to the solution
from the gradient denoising step. Here, we propose two methods building on the same idea.
Within each step the minimization functionals can be formulated via penalization or with
constraints. Later on, the advantages and disadvantages of using one or the other formulation
will be discussed.

Chapter 5 gives variants of total generalized variation image denoising. Taking the two-stage
methods of Chapter 4, both steps can be combined into one optimization problem in various
ways. The particular functionals considered in the two-stage methods can be combined into
one optimization problem by pure penalization within the minimization functional, resulting in
the total generalized variation problem [BKP10, KBPS11], or they can be combined in a mixed
type using one or two of the particular functionals as constraints. In Chapter 5 the resulting
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combined methods are discussed. We investigate advantages and disadvantages of the problem
formulation especially with respect to parameter choices.

In Chapter 6, the proposed methods for image denoising are experimentally tested on
various images and different noise levels. Not all of the proposed combined methods come with
an simple or clear parameter choice rule.The numerical experiments are restricted to those
methods that do. Thus, first all methods are evaluated separately according to performance
and quality and after that the methods are compared with one another.
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Preliminaries

This chapter introduces the mathematical background needed for this work and fixes the no-
tation. We give a brief overview over Banach and dual spaces with examples and look into
function spaces appropriate for solving minimization problems. Afterwards, we will recall con-
vex analysis, inverse problems with variational calculus, and conclude with solving methods
for convex optimization problems.

2.1 Functional analysis
In this section we will collect basic results and concepts. For more details and proofs the reader
is referred to standard literature such as [Rud91, Bre].

In the following we denote by X a vector space over a field K (R or C). A mapping
‖ · ‖X : X → [0, ∞) is called norm, if the following holds:

1. ‖λx‖X = |λ| ‖x‖X ∀λ ∈ K, ∀x ∈ X,
2. ‖x + y‖X ≤ ‖x‖X + ‖y‖X ∀x, y ∈ X,
3. ‖x‖X = 0 ⇒ x = 0.

If only 1. and 2. holds, the mapping is called a seminorm. Since we will work with norms
coming from different vector spaces, lets review a few in the following example:

Example 2.1

1. Let X = Rd. The following mappings define norms on Rd:

‖x‖p =
(

d∑
k=1

|xk|p
)1/p

, 1 ≤ p < ∞,

‖x‖∞ = max
k=1,...,d

|xk| .

2. Let X = �p, i.e. the space of real-valued sequences for which the norm mappings are
finite:

‖x‖p =
( ∞∑

k=1
|xk|p

)1/p

, 1 ≤ p < ∞,

‖x‖∞ = sup
k=1,...,∞

|xk| .
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Two norms ‖ · ‖ , ‖ · ‖′ are called equivalent on X, if there are constants c1, c2 > 0 such that

c1 ‖x‖ ≤ ‖x‖′ ≤ c2 ‖x‖

for all x ∈ X. If X is finite-dimensional, all norms on X are equivalent.

A normed (real) vector space (X, ‖ · ‖X) is called (real) Banach space, if it is complete. That
means that every Cauchy sequence (un)n∈N converges, i.e. there exists an u ∈ X such that
limn→∞ ‖un − u‖X = 0. We will write “normed vector space X” instead of the tuple above.

Definition 2.2 (Operator, Functional)
Let X, Y be normed vector spaces. A continuous linear mapping K : X → Y is called operator .
If Y = K, the mapping is called functional.

Definition 2.3 (Space of linear mappings)
Let X and Y be normed spaces. The space of continuous linear mappings is

L(X, Y ) := {K : X → Y | K is a linear and continuous operator} .

The operator is bounded by

‖K‖X→Y := sup
‖x‖X≤1

‖Kx‖Y < ∞. (2.1)

L(X, Y ) is a normed space with operator norm ‖ · ‖X→Y .

Theorem 2.4
Let Y be a Banach space. Then L(X, Y ) is a Banach space, independently of the completeness
of X.

Definition 2.5 (Lebesgue space Lp(Ω))
Let ν be the Lebesgue measure in Rd, and Ω ⊆ Rd open and nonempty. Then for 1 ≤ p ≤ ∞

Lp(Ω) :=
{

u : Ω → C, ν-measurable
∣∣∣∣ ‖u‖Lp(Ω) < ∞

}
equipped with the norm

‖u‖Lp(Ω) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝∫
Ω

|u(x)|p dν(x)

⎞⎠1/p

, p ∈ [1, ∞),

ess sup
x∈Ω

|u(x)| := inf {α ≥ 0 | ν({|u| > α}) = 0} , p = ∞

is a Banach space. Functions u ∈ Lp(Ω) are called p-integrable functions and u ∈ L∞(Ω) are
essentially bounded measurable functions.

Per se the Lebesgue spaces (actually written as Lp(Ω)) are not normed vector spaces, since
it is only equipped with a seminorm ‖ · ‖∗

Lp(Ω). But by considering Np = {u | u = 0 ν-a.e.}, the
kernel of ‖ · ‖∗

Lp(Ω), and identifying functions which are equal ν-a.e., i.e. considering equivalence
classes [u] instead of u, we obtain

Lp(Ω) = Lp(Ω)
/

Np .
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These are the Banach spaces in Definition 2.5. We write u instead of [u], and when there are no
misunderstandings within the context, we will write ‖ · ‖p instead of ‖ · ‖Lp(Ω), for 1 ≤ p ≤ ∞.
If K : X → Y is linear, then continuity of K is equivalent to

‖Kx‖Y ≤ c ‖x‖X

for all x ∈ X and a constant c > 0. Due to this, a linear continuous operator is also called a
bounded linear operator. The operator norm ‖K‖X→Y defined in Equation (2.1) is the smallest
possible constant c to satisfy this inequality.

Definition 2.6 (Dual space, duality pairing)
Let X be a Banach space. The space X∗ := L(X,K) of linear continuous functionals on a
normed space X is called dual space of X. It is equipped with the dual norm

‖x∗‖X∗ := sup
‖x‖X=1

|x∗(x)| = sup
‖x‖X≤1

|x∗(x)| = sup
x∈X\{0}

|x∗(x)|
‖x‖X

(2.2)

where

〈x∗ , x〉X∗×X = x∗(x). (2.3)

The functional (2.3) is called the duality pairing. X∗ also is a Banach space (which is a direct
consequence of Theorem 2.4).

This definition immediately implies

〈x∗ , x〉X∗×X ≤ ‖x∗‖X∗ ‖x‖X for all x ∈ X, x∗ ∈ X∗. (2.4)

Definition 2.7 (Adjoint Operator)
Let X and Y be Banach spaces, and K ∈ L(X, Y ). The adjoint operator K∗ ∈ L(Y ∗, X∗) is
defined by the relation

〈K∗y , x〉X = 〈y , Kx〉Y (2.5)

for all x ∈ X and y ∈ Y ∗. Further, it holds that ‖K∗‖Y ∗→X∗ = ‖K‖X→Y .

Example 2.8 (Dual spaces, dual pairs)

1. Let X = �p, 1 < p < ∞, then the dual space can be identified with X∗ ∼= �q, where
1
p + 1

q = 1. The duality pairing is given by

〈x∗ , x〉X∗×X =
∞∑

k=1
x∗

kxk.

For p = 1 it is (�1)∗ = �∞, but (�∞)∗ is not a sequence space.
2. Let X = Lp(Ω), 1 < p < ∞, then (Lp(Ω))∗ ∼= Lq(Ω) for 1

p + 1
q = 1. The duality pairing

is given by

〈u∗ , u〉Lq(Ω)×Lp(Ω) =
∫

Ω
u∗(x)u(x) dx.

Similar to the sequence space cases above, (L1(Ω))∗ ∼= L∞(Ω), but (L∞(Ω))∗ cannot be
identified with L1(Ω).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.
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Definition 2.9 (Topological terms)
Let X be a normed vector space. U ⊂ X is called

1. closed, if for every convergent sequence (xn)n∈N ⊂ U it holds that limn→∞ xn = x ∈ U ,
2. compact, if every sequence (xn)n∈N ⊂ U contains a convergent subsequence (xnk

)k∈N with
limk→∞ xnk

= x ∈ U .

Further, the open ball on X is defined as BX,r(x) := {y ∈ X | ‖x − y‖X < r} and the closed ball
is BX,r(x) := {y ∈ X | ‖x − y‖X ≤ r}. (We will drop the “X” in the subscript, if the according
space is clear, i.e. we write Br(x).) With this U ⊂ X is called

3. open, if for all x ∈ U there exists an r > 0 with Br(x) ⊂ U . Therefore, all x ∈ U are
interior points of U and U = U◦, where U◦ are all interior points of U ,

4. bounded, if U is contained in Br(x) for an r > 0,
5. convex, if for all x, y ∈ U and λ ∈ [0, 1] it holds that λx + (1 − λ)y ∈ U .

The definition of the norm directly gives us the property that open and closed balls are
convex sets. In normed vector spaces it also holds that the complement of a closed set is open
and vice versa.

Definition 2.10 (Weak(-*) convergence)
Let X be a normed vector space. A sequence (xn)n∈N ⊂ X is said to converge weakly to x ∈ X,
if

lim
n→∞ 〈x∗ , xn〉X∗×X = 〈x∗ , x〉X∗×X

for all x∗ ∈ X∗; we write xn ⇀ x.
A sequence (x∗

n)n∈N ⊂ X∗ converges weak-* to a x∗ ∈ X∗, if

lim
n→∞ 〈x∗

n , x〉X∗×X = 〈x∗ , x〉X∗×X

for all x ∈ X; we write x∗
n ⇀∗ x∗.

Note, that the convergence xn → x is also called strong convergence in X. Further, it holds
that if xn → x and x∗

n ⇀∗ x∗ or xn ⇀ x and x∗
n → x∗, then 〈x∗

n , xn〉X∗×X → 〈x∗ , x〉X∗×X .
The duality pairing, however, does not converge in general, i.e. not for x∗

n ⇀∗ x∗ and xn ⇀ x.
Terms like continuity, closedness of mappings and topological terms like closedness of sets and
compactness in case of strong convergence transfer directly to weak(-*) continuity, etc.

Definition 2.11 (Separable, reflexive)
A normed vector space X is called

1. separable, if it contains a countable dense subset,
2. reflexive, if the canonical linear isometric mapping i : X → X∗∗, (i(x))(x∗) = x∗(x) is

surjective.

By the Weierstraß approximation theorem, the spaces Lp(Ω), for 1 < p < ∞, and C(Ω) are
separable. For reflexive spaces it holds that X ∼= X∗∗, but this property is not sufficient. The
spaces �p and Lp for 1 < p < ∞ are reflexive, but �1 is not.

Theorem 2.12 (Eberlein-S̆mulyan)
Let X be a normed vector space. Then X is reflexive if and only if B1(0) is weakly compact.
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Theorem 2.13 (Banach-Alaoglu)
If X is a separable normed vector space, BX∗,1(0) is weakly-* compact.

Definition 2.14 (Hilbert space)
Let X be a K-vector space. A normed vector space X is called a pre-Hilbert space, if there is
an inner product 〈 · , · 〉X defined on X × X with 〈x , x〉1/2

X = ‖x‖X for all x ∈ X. If (X, ‖ · ‖X)
is complete, the space is called a Hilbert space.

We will drop the “X” if the context is clear. Inner products satisfy the Cauchy-Schwarz
inequality:

|〈x , y〉X | ≤ ‖x‖X ‖y‖X . (2.6)

Remark 2.15. For p = 2 the space L2(Ω) equipped with the inner product

〈u , v〉L2(Ω) =
∫

Ω
u(x) v(x) dν(x)

is a Hilbert space.

Theorem 2.16 (Fréchet-Riesz)
Let X be a Hilbert space and x∗ ∈ X∗. Then there exists a unique y ∈ X with x∗(x) = x∗

y(x) =
〈x∗ , x〉X∗×X = 〈x , y〉X for all x ∈ X. Further, ‖x∗‖X∗ = ‖y‖X .

Definition 2.17 (Directional derivative)
Let F : X → Y be an operator or functional. The directional derivative at x ∈ X in direction
h ∈ X is defined as

DhF (x) := lim
t↘0

F (x + th) − F (x)
t

∈ Y,

if the limit exists.

Definition 2.18 (Gâteaux derivative)
Let X, Y be normed vector spaces. A mapping F : X → Y is called Gâteaux-differentiable at
x ∈ X, if DhF (x) exists for all h ∈ X and

DF (x) : X → Y, h �→ DhF (x)

is a linear and bounded operator. DF ∈ L(X, Y ) is its Gâteaux-derivative. Further, F is called
Gâteaux-differentiable, if it is at every x ∈ X.

Definition 2.19 (Fréchet derivative)
Let X and Y be normed vector spaces. F : X → Y is called Fréchet-differentiable at x ∈ X, if
there is DF ∈ L(X, Y ) with

lim
‖h‖X→0

‖F (x + h) − F (x) − DF (x)h‖Y

‖h‖X

= 0.

The (Fréchet-)derivative of F (at x) is F ′(x) = DF (x) and if F is Fréchet-differentiable in
every x ∈ X, F is called Fréchet-differentiable.

Note, that if F : X → R then F ′(x) ∈ L(X,R) = X∗, hence, for functionals the derivative is
an element of the dual space. Another class of function vector spaces we will need are Sobolev
spaces and the associated notions.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



10 2.1. FUNCTIONAL ANALYSIS

Definition 2.20 (Spaces of test functions)
Let Ω ⊂ Rd be non-empty and open. The space D(Ω) is called space of test functions and is
defined by

D(Ω) = {f ∈ C∞(Ω) | suppf ⊂ Ω compact} .

Definition 2.21 (Weak derivative)
Let Ω ⊂ Rd be non-empty, open and connected, u ∈ L1

loc(Ω), and α ∈ Nd a multiindex. A
function v ∈ L1

loc(Ω) is called the α-th weak derivative of u if for every test function ϕ ∈ D(Ω)
it holds that ∫

Ω
v(x)ϕ(x) dx = (−1)|α|

∫
Ω

u(x)∂αϕ(x) dx.

If all weak derivatives with |α| ≤ m exist, u is said to be m times weakly differentiable.

Derivatives in the classic way are also weak derivatives.

Example 2.22

1. Let Ω = R and u(x) = |x|. If we define the sign function as

sign(x) =

⎧⎪⎪⎨⎪⎪⎩
−1, x < 0,

0, x = 0,

1, x > 0

it is clear that v(x) = sign(x) satisfies∫
Ω

|x| ϕ′(x) dx = −
∫

Ω
sign(x)ϕ(x) dx

with integration by parts.
2. Now, we want to differentiate the sign function, i.e. u(x) = sign(x). For x �= 0 the

derivative is 0. But the constant zero function is not a good candidate as the derivative
of sign, since the fundamental theorem of calculus is not satisfied for all x ∈ R. For
a, b ∈ R with a < 0 and b > 0 it is∫ b

a
sign′(x) dx = 0 �= 2 = sign(b) − sign(a).

However, we can calculate the following with integration by parts and ϕ(x) → 0, |x| → ∞:∫
R

v(x)ϕ(x) = −
∫
R

sign(x)ϕ′(x) dx = 2ϕ(0) = 2δ0(x),

where δ0 = δ is the delta distribution in 0.

Definition 2.23 (Sobolev spaces)
For 1 ≤ p ≤ ∞ and m ∈ N

W m,p(Ω) = {u ∈ Lp(Ω) | Dα ∈ Lp(Ω), 0 ≤ |α| ≤ m}

is a Sobolev space of order m, p. Equipped with the norm

‖u‖W m,p(Ω) =

⎧⎪⎪⎨⎪⎪⎩
( ∑

|α|≤m
‖Dαu‖p

Lp(Ω)

)1/p

, 1 ≤ p < ∞,

max|α|≤m ‖Dαu‖L∞(Ω) , p = ∞,
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