

## Inhaltsverzeichnis

| 1 | Einleitung                                         |                                                                           |                                                            |    |  |  |  |
|---|----------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|----|--|--|--|
|   | 1.1                                                | Motiv                                                                     | ation                                                      | 1  |  |  |  |
|   | 1.2                                                | Was ist eine Personenstromsimulation?                                     |                                                            |    |  |  |  |
|   | 1.3                                                | Problemstellung und Zielsetzung                                           |                                                            |    |  |  |  |
|   | 1.4                                                | Begriffsdefinitionen                                                      |                                                            |    |  |  |  |
|   | 1.5                                                | Strukt                                                                    | ur der Arbeit                                              | 12 |  |  |  |
| 2 | Personenstrommodelle auf unterschiedlichen Skalen  |                                                                           |                                                            |    |  |  |  |
|   | 2.1                                                | Das N                                                                     | lavigationsverhalten von Fußgängern                        | 13 |  |  |  |
|   | 2.2                                                | modelle in der Personenstromsimulation                                    | 16                                                         |    |  |  |  |
|   |                                                    | 2.2.1                                                                     | Makroskopische Modelle                                     | 16 |  |  |  |
|   |                                                    | 2.2.2                                                                     | Mesoskopische Modelle                                      | 18 |  |  |  |
|   |                                                    | 2.2.3                                                                     | Mikroskopische Modelle                                     | 21 |  |  |  |
|   | 2.3 Hybride Ansätze in der Personenstromsimulation |                                                                           |                                                            |    |  |  |  |
|   |                                                    | 2.3.1                                                                     | Typisierung hybrider Personenstrommodelle                  | 22 |  |  |  |
|   |                                                    | 2.3.2                                                                     | Interdisziplinäre Hybridmodelle                            | 23 |  |  |  |
|   |                                                    | 2.3.3                                                                     | Koexistierende Hybridmodelle                               | 23 |  |  |  |
|   |                                                    | 2.3.4                                                                     | Räumlich getrennte Hybridmodelle                           | 24 |  |  |  |
|   | 2.4                                                | Zusan                                                                     | nmenfassung                                                | 25 |  |  |  |
| 3 | Skalenzuordnung in der Personenstromsimulation     |                                                                           |                                                            |    |  |  |  |
|   | 3.1                                                | Charakterisierung der räumlichen Skalen                                   |                                                            |    |  |  |  |
|   | 3.2                                                | Erkennung makroskopischer Szenarien                                       |                                                            |    |  |  |  |
|   | 3.3                                                | $3$ Unterscheidung von mesoskopischen und mikroskopischen Szenarien $\ .$ |                                                            |    |  |  |  |
|   |                                                    | 3.3.1                                                                     | Unterscheidung anhand maximal darstellbarer Personendichte | 35 |  |  |  |
|   |                                                    | 3.3.2                                                                     | Unterscheidung anhand kleinskaliger Hindernisse            | 37 |  |  |  |
|   | 3.4                                                | Zusan                                                                     | nmenfassung                                                | 41 |  |  |  |
| 4 | Allg                                               | gemein                                                                    | e Betrachtung der generischen Transformation               | 43 |  |  |  |
|   | 4.1                                                | Motiv                                                                     | ation und Systemkomponenten                                | 43 |  |  |  |



|   | 4.2  | Sichtbarkeit der Simulationsobjekte                                                                    | 47  |  |  |  |
|---|------|--------------------------------------------------------------------------------------------------------|-----|--|--|--|
|   | 4.3  | Zeitlicher Ablauf bei der dualen Kopplung                                                              | 49  |  |  |  |
|   | 4.4  | Allgemeine Axiome des Skalenübergangs                                                                  | 52  |  |  |  |
|   | 4.5  | Zusammenfassung                                                                                        | 53  |  |  |  |
| 5 | Trar | nsformation zwischen mesoskopischer und mikroskopischer Skala                                          | 55  |  |  |  |
|   | 5.1  | Einleitung                                                                                             | 55  |  |  |  |
|   | 5.2  | Matching der Gitterzellen mit dem kontinuierlichen Raum $\ \ldots \ \ldots$                            | 57  |  |  |  |
|   |      | 5.2.1 Matching quadratischer Gitterzellen                                                              | 57  |  |  |  |
|   |      | 5.2.2 Matching hexagonaler Gitterzellen                                                                | 59  |  |  |  |
|   | 5.3  | Ablauf der Zeitschritte                                                                                | 63  |  |  |  |
|   |      | $5.3.1  \hbox{Zeitschritte bei mesoskopischen und mikroskopischen Modellen}  .$                        | 63  |  |  |  |
|   |      | 5.3.2 Matching der Zeitschritte                                                                        | 65  |  |  |  |
|   | 5.4  | Nutzung statischer Agenten                                                                             | 69  |  |  |  |
|   | 5.5  | Transformation von Mikroskopisch zu Mesoskopisch                                                       | 72  |  |  |  |
|   |      | 5.5.1 Bestimmung möglicher Transformationskandidaten                                                   | 72  |  |  |  |
|   |      | 5.5.2 Durchführung der Transformation                                                                  | 75  |  |  |  |
|   | 5.6  | Transformation von Mesoskopisch zu Mikroskopisch                                                       | 80  |  |  |  |
|   | 5.7  | Zusätzliche Axiome für mesoskopische und mikroskopische Modelle                                        |     |  |  |  |
|   | 5.8  | Grenzen der generischen Übergangsmodellierung 8                                                        |     |  |  |  |
|   | 5.9  | Zusammenfassung                                                                                        | 84  |  |  |  |
| 6 | Dyr  | ynamischer Zoom-Ansatz                                                                                 |     |  |  |  |
|   | 6.1  | Motivation                                                                                             |     |  |  |  |
|   | 6.2  | Bestimmung der lokalen Personendichte                                                                  | 88  |  |  |  |
|   |      | 6.2.1 Dichte in der Personenstromsimulation                                                            | 88  |  |  |  |
|   |      | 6.2.2 Automatische Detektion der Dichte mittels der XT-Methode                                         | 90  |  |  |  |
|   | 6.3  | $\label{prop:com-in} \mbox{Automatischer Zoom-In: Vom Mesoskopischen zum Mikroskopischen} \ \ . \ \ .$ | 92  |  |  |  |
|   | 6.4  | Automatischer Zoom-Out: Vom Mikroskopischen zum Mesoskopischen . 95                                    |     |  |  |  |
|   | 6.5  | Konzeptüberprüfung                                                                                     | 96  |  |  |  |
|   |      | 6.5.1 Simulationsszenario                                                                              | 96  |  |  |  |
|   |      | 6.5.2 Simulationsablauf                                                                                | 98  |  |  |  |
|   |      | 6.5.3 Durchführung der Simulation                                                                      | 99  |  |  |  |
|   |      | 6.5.4 Berechnung der eingesparten Rechenzeit                                                           | 101 |  |  |  |
|   | 6.6  | Zusammenfassung                                                                                        | 103 |  |  |  |
| 7 | Trar | Transformation zwischen makroskopischer und mesoskopischer Skala                                       |     |  |  |  |
|   | 7.1  | Motivation                                                                                             | 105 |  |  |  |
|   | 7.2  | Zusätzliche Axiome für makroskopische und mesoskopische Modelle                                        | 106 |  |  |  |



|                     | 7.3  | ur der Übergangsmodellierung | 108                                                |     |
|---------------------|------|------------------------------|----------------------------------------------------|-----|
|                     | 7.4  | Transf                       | formation von Mesoskopisch zu Makroskopisch        | 110 |
|                     | 7.5  | Transf                       | formation von Makroskopisch zu Mesoskopisch        | 112 |
| 7.6 Zusammenfassung |      |                              | nmenfassung                                        | 114 |
| 8                   | Date | enanaly                      | yse mittels der Oppilatio <sup>+</sup> -Methodik   | 117 |
|                     | 8.1  | Motiv                        | ation und Anwendungsfälle                          | 117 |
|                     | 8.2  | Der O                        | ppilatio <sup>+</sup> -Ansatz                      | 121 |
|                     |      | 8.2.1                        | Überblick der Methodik                             | 121 |
|                     |      | 8.2.2                        | Zuordnung der Startkoordinaten                     | 124 |
|                     |      | 8.2.3                        | Reduktion des Wegenetzwerks und Bewertungsfunktion | 128 |
|                     |      | 8.2.4                        | Präferenz für Orientierung nach der Luftlinie      | 133 |
|                     |      | 8.2.5                        | Präferenz für geringe Richtungsänderungen          | 135 |
|                     |      | 8.2.6                        | Präferenz für lange Streckenabschnitte             | 136 |
|                     |      | 8.2.7                        | Präferenz für kurze Gesamtstrecken                 | 137 |
|                     |      | 8.2.8                        | Präferenzen durch den Herdentrieb                  | 138 |
|                     | 8.3  | Validi                       | Validierung der Oppilatio <sup>+</sup> -Methodik   |     |
|                     |      | 8.3.1                        | Validierung und Bestimmung des Herdenparameters    | 141 |
|                     |      | 8.3.2                        | Untersuchung eines Bahnhofsgebäudes                | 149 |
|                     | 8.4  | Bewei                        | tung der Methode                                   | 154 |
|                     | 8.5  | Zusan                        | nmenfassung                                        | 155 |
| 9                   | Fazi | t und A                      | Ausblick                                           | 159 |
|                     | 9.1  | Gesamtübersicht              |                                                    | 159 |
|                     |      | 9.1.1                        | Hauptergebnisse der Arbeit                         | 159 |
|                     |      | 9.1.2                        | Methodische Zusammenfassung                        | 160 |
|                     | 9.2  | Zuküı                        | nftige Forschungs- und Einsatzmöglichkeiten        | 163 |
|                     | E    | letioner                     | unica das Callulas Stack Madalla                   | 165 |