Optimization of broad-area GaAs diode lasers for high powers and high efficiencies in the temperature range 200-220 K
Contents

1 Introduction 1

2 Theoretical background of high power, high efficiency diode lasers 7
 2.1 Basic principles of AlGaAs / InGaAs based diode lasers 7
 2.1.1 Lasing threshold 10
 2.1.2 Optical output power 12
 2.1.3 Electro-optical conversion efficiency 13
 2.1.4 Waste heat .. 14
 2.1.5 Influence of laser parameters on output power and efficiency 15
 2.2 Semiconductor properties at reduced temperatures 19
 2.2.1 Bulk conductivity at lower temperatures 20

3 Measurement Setup 23
 3.1 Room temperature measurement setups 23
 3.1.1 Electro-optical and spectral characterization 24
 3.1.2 Histogram of diode laser bars 26
 3.1.3 Low temperature prototype setup 27
 3.2 Low temperature measurement setup: first generation 29
 3.2.1 Physical setup of low temperature measurement station 29
 3.2.2 Power calibration 31
 3.3 Final Cryo-measurement setup 33
 3.3.1 Changes to the physical setup 33
 3.3.2 QCW power calibration by pulse shape analysis 33

4 Benchmark Designs (Iteration 0) 37
 4.1 Performance of established vertical designs 37
 4.1.1 High power room temperature optimized designs 38
 4.1.2 Performance of thick waveguide Asloc configuration at decreasing
 temperature .. 39
 4.1.3 Performance of Asloc configuration with changing waveguide comp-
 osition at decreasing temperature 43
 4.1.4 Performance of Edas configuration at decreasing temperature ... 46
 4.1.5 Selection of benchmark designs 49
 4.2 Low temperature performance of benchmark designs 50
 4.2.1 Fabrication of high power, high efficiency single emitters and bars . 50
CONTENTS

4.2.2 Design1: Impact of lateral layout and length on performance . . . 51
4.2.3 Design2: Performance up to high currents 57
4.3 Conclusions from Iteration 0 ... 62

5 Low Al-content Structures (Iteration 1) 65
5.1 Design and Optimization of Low Resistance Structures 66
5.1.1 Options to reduce series resistance 66
5.1.2 Vertical design of low resistance structures 68
5.1.3 Short pulse measurements of designs with low Al-content in the waveguide ... 71
5.1.4 Low Temperature Length-Dependent Measurements 73
5.1.5 Measurement of Al-content Matrix 77
5.2 High power operation of low series resistance designs 84
5.2.1 Selection of promising designs 84
5.2.2 Fabrication of low operation temperature lasers 85
5.2.3 Characterization of single emitters 87
5.2.4 Characterization of bars .. 93
5.2.5 Estimation of loss mechanisms 103
5.3 Conclusions from Iteration 1 .. 105

6 Low Al-content, thin waveguide designs (iteration 2) 107
6.1 Al-variation in thin waveguide designs 108
6.1.1 Vertical design of thin WG structures 108
6.1.2 Internal parameters at room temperature 111
6.1.3 Electrical properties and behavior at low temperatures 113
6.2 High power operation of bars and single emitters 117
6.2.1 Fabrication of high power bars and single emitters 117
6.2.2 Comparison of short loop and fully processed diodes 119
6.2.3 Temperature dependent performance of bars and single emitters 120
6.2.4 High power performance of bars with thin, asymmetric wave-guide designs ... 123
6.2.5 Estimation of loss mechanisms 128
6.3 Conclusions from iteration 2 .. 130

7 Summary and Outlook 131

Appendix 135

List of figures 137

List of tables 139

Bibliography 140

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.