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Chapter 1

Motivation

1.1 Turbulence in fluid motion

Most of the fluid motions in nature like rivers, oceans or the atmosphere, and in technol-
ogy as the flow around cars, ships or airplanes are turbulent. Turbulence is characterized
by strong spatial and temporal fluctuations of the velocity along with eddies of many
scales. Thus, the flow field appears irregular and chaotic, which is why the turbulent
fluid motion is hard to predict [93, 102]. These properties induced the physicist Sir Ho-
race Lamb to make the following statement:

"I am an old man now, and when I die and go to heaven, there are two matters on
which I hope for enlightenment. One is quantum electrodynamics and the other is the
turbulent motion of fluids. About the former, I am really rather optimistic."

A flow becomes turbulent when the inertia forces sufficiently exceed the viscous forces.
Their ratio yields the so-called Reynolds number Re = UL/ν, where U and L are, respec-
tively, a characteristic velocity and length scale of the flow, and ν is the kinematic viscosity
of the fluid [101]. When Re is small, velocity fluctuations are damped by viscosity, and the
fluid moves unidirectional without notable mixing between adjacent fluid layers. Above
a critical Reynolds number, the flow transitions to a turbulent state, including complex
vortical fluid motion. Two well-known instability mechanisms driving a transition are the
shear instability [107], where the velocity difference of neighboring fluid layers reaches a
critical value, and the centrifugal instability [121], where the centrifugal force sufficiently
exceeds the counter-acting pressure gradient.

Turbulent flows are of special interest for engineers, as they transport and mix mat-
ter, momentum and heat much more effectively than laminar flows. This characteristic
is of great importance for flows in the vicinity of solid walls, where the fluid velocity
vanishes. Due to turbulent mixing, the momentum of the free stream velocity is strongly
transported into the near-wall region, the so-called boundary layer (BL), and the result-
ing large velocity gradient at the wall causes an enhanced drag force [93]. Accordingly,
the understanding of turbulence can help to reduce friction losses and therefore fuel con-
sumption of cars, airplanes or turbomachines.

Beside inertia and viscosity, other forcing like stratification [9, 142] or magnetic fields
[103] can have an impact on the flow stability. Therefore, complex turbulent flows are
often investigated in simple geometries, where the influence of only a few driving pa-
rameters can be analyzed separately. Such a geometry is the so-called Taylor-Couette
flow, which is the subject of this thesis.
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2 Chapter 1. Motivation

1.2 Taylor-Couette (TC) flow

The flow in the gap between two coaxial and independently rotating cylinders is called
the Taylor-Couette (TC) flow (see Figure 1.1(a)). It is a widely used setup in fluid dy-
namics research as a model for wall-bounded rotating shear flows and has many tech-
nical applications as rotating machinery, journal bearings or centrifuges [67, 108, 119],
and also has astrophysical relevance concerning accretion discs [6, 31]. In the classical
approach, two Reynolds numbers are defined for the inner (IC, index 1) and outer cylin-
der (OC, index 2). Using the cylinder radii r1,2, the cylinder angular velocities ω1,2 and
the gap width d = r2 − r1, these Reynolds numbers are defined by Re1,2 = r1,2ω1,2d/ν.
Dubrulle et al. [31] proposed two alternative dimensionless parameters from a dynamical
point of view, leading to the shear Reynolds number ReS = 2|Re1 − ηRe2|/(1 + η) and
the rotation number RΩ = (1 − η)(Re1 + Re2)/(ηRe2 − Re1), which is a function of the
ratio of angular velocities μ = ω2/ω1. This choice of parameters enables to investigate
the influence of shear and rotation separately. In addition, the fluid moves along curvilin-
ear cylinder surfaces, which introduces curvature effects. As a measure for the curvature,
the ratio of the cylinder radii is used: η = r1/r2. When η approaches to 1, no curvature
is experienced by the flow [17]. Furthermore, the gap is enclosed by two endplates at the
length �, which translates into an aspect ratio of Γ = �/d.
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FIGURE 1.1: (a) Sketch of a Taylor-Couette system, consisting of an inner (1) and outer cylinder (2).
r represents the radius, d the gap width, � the length and ω the angular velocity of the cylinders.
(b) Snapshots of the supercritical Taylor vortex flow and (c) wavy Taylor vortex flow, taken from
Fardin et al. [39]. (d) Snapshot of a subcritical turbulent spiral arm, taken from Avila and Hof [4]

The popularity of the TC setup has many reasons [51]. It is a closed system, where
the global energy input due to the cylinder rotation and the energy dissipation inside the
gap are exactly balanced [32]. Moreover, the geometry is simple and periodic into the
azimuthal flow direction. If stable flow features like coherent structures exist in the gap,
they are not carried away downstream and can be observed for infinite time. Besides,
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1.2. Taylor-Couette (TC) flow 3

the cylinder speeds are precisely controllable, and the system features two boundary lay-
ers of different size when η < 1 [33]. The latter fact makes the TC flow appropriate to
investigate the interaction of boundary layers and the bulk flow.

A unique feature of TC flows is the existence of two different transition scenarios to
turbulence. The laminar baseflow, which is purely azimuthal, is called Couette flow.
When only the inner cylinder rotates and reaches a critical value, the Couette flow be-
comes centrifugally unstable, and axially regular spaced, toroidal vortices are formed,
the so-called Taylor vortices (Taylor [121], see Figure 1.1(b)). The axial number of these
vortices is non-unique and depends on the initial flow conditions and the acceleration
rate of the cylinder [116]. At even higher cylinder speeds, two further instabilities with
modulations of the flow in space and time appear before the flow becomes fully turbulent
(Fenstermacher et al. [40], see Figure 1.1(c)). This route into chaos is called a supercritical
transition, that is similar to the one found in the Rayleigh-Bénard (RB) flow [21]. There, a
fluid layer is heated from below and cooled from above.

When the outer cylinder rotation is dominant, the flow directly transitions to turbu-
lence at a sufficiently high Reynolds number due to a formation of turbulent spots or
spirals [23, 48]. These localized turbulent regions exist next to the laminar baseflow (see
Figure 1.1(d)) and grow with increasing Reynolds number until the whole gap becomes
turbulent. Such a scenario with spatio-temporal intermittency is called subcritical tran-
sition and is also observable in pipe flow, the pressure-driven flow through a circular
tube [34, 54]. Moreover, multiple different flow states are adjustable in the transitional
Reynolds number regime for independently rotating cylinders [3, 23]. Similarly, Ostilla-
Mónico et al. [86] reported manifold flow states also in the turbulent regime. Prescribing
ReS and μ, turbulent Taylor vortices either capture the whole gap, are restricted to an
inner gap region with an intermittent outer region, or vanish leading to featureless tur-
bulence. Furthermore, a strong connection between large-scale turbulent Taylor rolls and
small-scale structures, which are emitted from the cylinder walls, has been identified by
Ostilla-Mónico et al. [83, 86]. These small-scale structures, namely hairpin vortices or
plumes in the context of RB flows, transport angular momentum and contribute to the
large-scale circulation in the gap. The variety of transitional and turbulent flow states,
occurring in TC geometry and including large- and small-scale flow patterns, make the
TC flow a paradigmatic system in fluid dynamics research to investigate flow instabilities
[23, 26, 121], pattern formation [3, 12] and turbulence [51, 60, 66, 130].

In between the cylinder walls, the radial transport of angular momentum Jω is con-
served [33]. This quantity is proportional to the torque T and therefore to the drag force
the fluid is acting on the cylinder walls, and to the energy dissipation rate ε. Accord-
ingly, Jω is the most important response parameter in TC flows, as it is a measure for
friction losses inside the gap. In the 18th century, Couette [24] and Mallock [70] measured
the torque in a TC apparatus adjusting a laminar flow to quantify the viscosity of flu-
ids. Henceforth, the momentum transport has been widely investigated experimentally
[66, 68, 78, 132] as well as numerically [14, 15, 28, 29, 83, 86, 87] as a function of shear
(ReS), rotation (μ) and curvature (η) in the fully turbulent regime. Jω scales nearly ex-
ponentially with ReS for pure inner cylinder rotation and depicts a maximum for slight
counter-rotation. The maximum location μmax depends on η and is caused by strength-
ened turbulent Taylor vortices [15]. In addition, these large-scale vortices consist and are
driven by the small-scale plumes [83, 86]. This interaction between structures of different
scales, that highly influence the momentum transport, makes a detailed analysis of Jω
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4 Chapter 1. Motivation

very hard to realize. The aim of the current thesis is to provide novel insights into the
momentum transport and the underlying flow structure.

1.3 Aim and outline of the thesis

The investigation of the radial angular momentum transport in the presence of turbu-
lent Taylor vortices and small-scale plumes is a challenge for numerical simulations as
well as for experiments. Due to the existence of large-scale coherent structures in the
fully turbulent regime, the flow statistics clearly depend on all three coordinate directions
[60, 128]. Numerical simulations provide the torque at the cylinder wall and the three-
dimensional flow field, which enables a combined analysis of momentum transport and
the local flow organization. However, the computational costs strongly increase with the
Reynolds number as ≈ Re4 [93], which limits the maximum achievable forcing to rela-
tively low Re, with only a few exceptional studies reaching Re = O(104 − 105) [15, 17, 86,
88]. Aside, experiments in TC flows can achieve Reynolds numbers up to Re = O(106)
and precisely determine the torque [66, 78, 132], but quantitative measurements of the
full velocity field are difficult to realize. Mostly, particle-based optical measurement tech-
niques like laser Doppler velocimetry (LDV) or particle image velocimetry (PIV) are used
[55, 139, 140]. While LDV only provides point-wise velocity information, PIV can capture
the velocity field within sheets [133] or in a volume [123, 124]. However, optical distor-
tions due to the curved rotating cylinder surfaces and changes in the refractive index com-
plicate the measurements. Further, volumetric PIV is strongly limited in the achievable
spatial resolution, as shown by Tokgoz et al. [124]. This fact is especially important due to
the pronounced interaction of the large-scale rolls with small-scale plumes. To overcome
these experimental limitations within this thesis, the velocity field is measured through a
plane top plate in horizontal sheets at different cylinder heights, which was successfully
used already by van der Veen et al. [128]. This configuration prevents refraction on the
curved OC and offers a sufficient spatial resolution as well as quasi-three-dimensional
velocity data. However, the proposed PIV technique is restricted to the analysis of sta-
tistical quantities without instantaneous information on coherent structures, concerning
the axial coordinate direction. In combination with direct torque measurements and flow
visualizations, the momentum transport and the underlying flow structures can be inves-
tigated. Further, within the literature, most of TC studies concentrate on wide, medium
and narrow gaps (η ≥ 0.5), while investigations for even wider gaps (η < 0.5) are very
rare. As the momentum transport and especially its maximum location strongly depend
on η, the parameter space of torque measurements is extended within this thesis to the
unexplored regime of η = 0.357. Further, for η = 0.5 and η = 0.714, where the angu-
lar momentum transport has already been investigated, the velocity field is analyzed in
detail to uncover the contribution of large-scale Taylor rolls to Jω and their interaction
with small-scale plumes at high Reynolds numbers. In summary, the following scientific
questions are addressed within this thesis: (i) How does the angular momentum scales
with shear and rotation for a wide gap of η = 0.357, (ii) to what extent do the large-scale
Taylor rolls contribute to the overall momentum transport in the fully turbulent regime,
(iii) how do the large-scale Taylor rolls influence the characteristics of the mean velocity
field and (iv) what role does the interaction of small-scale plumes and large-scale Taylor
rolls play for the momentum transport.
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The thesis is organized as follows. The fundamental equations of motion are sum-
marized in Chapter 2. Therefore, the Navier-Stokes equation with TC specific boundary
conditions is introduced to derive the dimensionless key parameters. In addition, the
laminar Couette baseflow, the centrifugal instability leading to the Taylor vortex flow
and the exact relation of the angular momentum transport are deduced. In the end, the
analogy between TC flow, pipe flow and RB flow, as well as the main parameters used
throughout the thesis are highlighted.

Chapter 3 provides an overview of the current state of research in turbulent TC flow
with the main focus on the angular momentum transport in medium and wide gaps. In
the beginning, the effective scaling of the torque with the shear Reynolds number is dis-
cussed, where no pure power-law scaling is found. Subsequently, the dependence of T
on the rotation ratio is described, and two predictions for the torque maximum location
are reviewed. Further, velocity field properties, characteristics of turbulent Taylor vor-
tices and their contribution to the global momentum transport are presented. Finally, the
interaction of large-scale turbulent Taylor vortices and small-scale plumes, as well as the
influence of curvature on TC flows are discussed.

The experimental facilities used within this thesis are described in Chapter 4. The
setup of the top-view Taylor-Couette Cottbus experiment (TvTCC), its control and the
used working fluids are specified in detail. Moreover, the boiling Twente Taylor-Couette
facility (BTTC) from the University of Twente is roughly outlined, where a measurement
campaign took place within the framework of an European High-Performance Infrastruc-
tures in Turbulence (EuHIT) project.

Chapter 5 focuses on the measurement techniques used for the investigations. Qual-
itative information on the flow organization are captured with a particle-based global
flow visualization method. The radial transport of angular momentum is determined by
direct torque measurements over the whole length of the inner cylinder. To validate the
torque signal, measurements for the well-known radius ratio of η = 0.5 are compared
with existing numerical and experimental data. To analyze the velocity field, planar PIV
is performed in horizontal planes at different cylinder heights. Special attention is paid
to the calibration of this technique, and possible measurement errors are discussed.

The Chapters 6,7 and 8 contain the experimental results of this thesis. In Chapter 6,
direct torque measurements and flow visualizations are performed for a radius ratio of
η = 0.357, which are unique in such a wide-gap configuration. The effective scaling of
the torque with ReS, the location of the torque maximum and the underlying flow orga-
nization are analyzed. To strengthen the findings, the experimental results are compared
to direct numerical simulations (DNSs), provided by Rodolfo Ostilla-Mónico.

In Chapter 7 height dependent PIV measurements are shown for a radius ratio of
η = 0.5. Mean flow statistics concerning the radial profiles of angular velocity, the en-
ergy distribution and the strength of the secondary flow are analyzed in the region of the
torque maximum and for different shear rates. Further, the contribution of the large-scale
turbulent Taylor vortices to the overall angular momentum transport is worked out. Note
that in this and in the next chapter no direct torque measurements were performed and
the transport-related findings are purely based on velocity data.

In Chapter 8 small-scale statistics of TC flows for η = 0.714 are investigated, again
using height dependent PIV. The flow field for pure inner cylinder rotation (μ = 0) with
featureless turbulence and for μmax with pronounced turbulent Taylor vortices are com-
pared. The contribution of the vortex in- and outflow to the momentum transport and
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6 Chapter 1. Motivation

the interaction of the large-scale vortices and small-scale structures are analyzed based
on mean field statistics, probability density functions (PDFs), velocity spectra and two-
point correlations. Further, azimuthally traveling waves superimposed on the turbulent
Taylor vortices are analyzed using a complex proper orthogonal decomposition (CPOD).
In the end, the findings of the current study are summarized and an outlook is given in
Chapter 9.

The results of this thesis are mainly based on three papers: (i) A. Froitzheim, S. Mer-
bold, R. Ostilla-Mónico and C. Egbers (2019), Angular momentum transport and flow organi-
zation in Taylor-Couette flow at radius ratio of η = 0.357, Phys. Rev. Fluids 4 (2019), 084605
[41]; (ii) A. Froitzheim, S. Merbold and C. Egbers, Velocity profiles, flow structures and scal-
ings in a wide-gap turbulent Taylor-Couette flow, J. Fluid Mech. 831 (2017), 330-357 [45]; and
(iii) A. Froitzheim, R. Ezeta, S.G. Huisman, S. Merbold, C. Sun, D. Lohse and C. Egbers,
Statistics, plumes and azimuthally traveling waves in ultimate Taylor-Couette turbulent vortices,
J. Fluid Mech. 876 (2019), 733-765 [43].
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Chapter 2

Fundamentals

2.1 Cylindrical coordinate system

The Taylor-Couette geometry consists of two coaxial cylinders. Thus, the motion of the
flow is naturally described in the cylindrical instead of Cartesian coordinates. The corre-
sponding transformation is shown in Figure 2.1 [113]. Bold symbols represent vectors.

unit vectors: er = + cos(ϕ)ex + sin(ϕ)ey
eϕ = − sin(ϕ)ex + cos(ϕ)ey
ez = ez

position vector: x = rer + zez
velocity vector: u = urer + uϕeϕ + uzez
line element: dx = drer + rdϕeϕ + dzez

ey

ez
ex

eϕ

er ez

P

FIGURE 2.1: Sketch of transformation from cylindrical to Cartesian coordinates, adopted from
Spurk and Aksel [113]. Corresponding equations are depicted on the right-hand side.

Of special interest is the conversion of the Cartesian velocity components into the cylin-
drical ones, which becomes based on the above-mentioned transformation:

ur = +ux cos(ϕ) + uy sin(ϕ), (2.1)
uϕ = −ux sin(ϕ) + uy cos(ϕ). (2.2)

In the following, these cylindrical coordinates and velocities are used for the equations of
motion.

2.2 Equations of motion

To derive the equations of motion of a fluid, the continuum hypothesis has to be intro-
duced. In general, it is not possible to follow the motion of individual molecules due to
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8 Chapter 2. Fundamentals

Heisenberg’s Uncertainty Principle. Instead, an infinitely small cluster of molecules is as-
sumed as the smallest part of the material, whose occupied volume is small compared to
the macroscopic length of interest. This cluster is called fluid particle [113]. In addition,
its volume has to be large enough, that its properties can be averaged over the volume,
independent on the number of molecules inside the volume. If this assumption holds,
the properties of the fluid become a continuous function of space and time and the fluid
itself can be treated as a continuum. The fluid particle is further considered as a material
point. The following explanations are based on Spurk and Aksel [113].

2.2.1 Kinematics of a fluid particle

The acceleration, a fluid particle encounters, when passing through a point x at time t,
consists of a local and a convective change on its way from x to x + dx. Therefore, the
acceleration is

Dtu = ∂tu + (u · ∇) u, ∇ =

⎡
⎢⎢⎢⎣

∂r

1
r

∂ϕ

∂z

⎤
⎥⎥⎥⎦ . (2.3)

The velocity vector u(x, t) is a function of space x and time t and the operator Dt is called
material derivative with Dt = ∂t + u · ∇. It is important to note that the convective
term in equation (2.3) is non-linear, as the products of the velocity with its first derivative
appear. If the velocity at the position x is known, the velocity at a nearby position x + dx
can be calculated using the Taylor expansion:

u (x + dx, t) = u (x, t) + dx · ∇u. (2.4)

∇u is the velocity gradient tensor, which is a second order tensor:

∇u =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂rur
1
r
(
∂ϕur − uϕ

)
∂zur

∂ruϕ
1
r
(
∂ϕuϕ + ur

)
∂zuϕ

∂ruz
1
r

∂ϕuz ∂zuz

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.5)

The velocity gradient tensor can be decomposed into a symmetric and an anti-symmetric
tensor in such a way, that equation (2.4) becomes

u (x + dx, t) = u (x, t) + dx · E + dx · Ω, (2.6)

E =
1
2

(
∇u + (∇u)T

)
, (2.7)

Ω =
1
2

(
∇u − (∇u)T

)
. (2.8)

The first term on the right-hand side of equation (2.6) denotes a translation, the second
term a deformation and the third one a solid body rotation. Therefore, E is called rate of
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deformation tensor or velocity strain tensor and Ω spin tensor. As friction stresses in a
fluid do only arise in the presence of a deformation, they just depend on E and not on
Ω. Therefore, the diagonal elements of the velocity strain tensor can be interpreted as
stretching velocities parallel to the axis of a fluid element and the non-diagonal elements
as shear velocities [113].

2.2.2 The continuity equation

The continuity equation is based on the conservation of mass [113]. In a fluid volume,
the sum of all positive and negative mass fluxes has to be equal to the local change of the
density ρ(x, t):

Dtρ + ρ∇ · u = 0. (2.9)

If the density of a fluid particle is constant along its path of motion, the flow is preserving
its volume and is called incompressible. Most fluids satisfy this assumption, which means
that Dtρ = 0. Therefore, equation (2.9) simplifies to

∇ · u = 0. (2.10)

2.2.3 The Navier-Stokes equation in an inertial frame

According to the first axiom of classical mechanics, the change of momentum of a body
is equal to the force acting on this body [113]. Here, the body is a fluid particle with the
specific momentum ρu. The forces acting on the body can be of two kinds, namely body
forces and contact forces. If only the gravitational force g = gez is assumed as a body
force, which is valid in an inertial frame of reference without other external forces, the
balance of momentum of a fluid particle is given by

ρDtu = ρg +∇ · T. (2.11)

Equation (2.11) is known as Cauchy’s first law of motion and is valid for each kind of
continuum. T represents the stress tensor (second order) containing normal stresses as
diagonal elements and shear stresses as non-diagonal elements. To solve equation (2.11),
a material law of the fluid is needed. If a linear relationship between the components of
the stress tensor T and the velocity strain tensor E as well as an incompressible fluid are
assumed, the stress tensor becomes

T = −pI + 2ηνE. (2.12)

p(x, t) represents the dynamic pressure, which is in case of an incompressible fluid in-
dependent on the thermodynamic state of the fluid. I is the unit tensor and ην the dy-
namic viscosity of the fluid, which is related to the kinematic viscosity ν by ν = ην/ρ.
The linear relationship shown in equation (2.12) is valid for so-called Newtonian fluids,
which includes most of the gases and liquids of low molecular weight as air or water.
Inserting the material law of Newtonian incompressible fluids into Cauchy’s first law of
motion yields the Navier-Stokes equation. If further the gravitational force is neglected,
the Navier-Stokes equation writes as
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10 Chapter 2. Fundamentals

∂tu + (u · ∇) u = −1
ρ
∇p + ν∇2u. (2.13)

Concerning the Taylor-Couette geometry, the boundary conditions of the velocity are de-
fined as u (r1) = [0, r1ω1, 0]T and u (r2) = [0, r2ω2, 0]T. The exponent T represents the
transpose of the vector. Using the gap width d = r2 − r1 as characteristic length scale and
τν = d2/ν, the so-called viscous time, as characteristic time scale (see Dubrulle et al. [31]),
equation (2.13) becomes for the dimensionless velocity u∗

∂tu
∗ + (u∗ · ∇) u∗ = −∇p∗ +∇2u∗, (2.14)

with the boundary conditions u∗ (r1) = [0, Re1, 0]T and u∗ (r2) = [0, Re2, 0]T. Here, the
classical inner and outer cylinder Reynolds number come into play:

Re1 =
r1ω1d

ν
, Re2 =

r2ω2d
ν

. (2.15)

2.2.4 The Navier-Stokes equation in a rotating frame

When the axes of the cylindrical coordinate system are accelerated and not fixed in space,
equation (2.13) is not valid anymore. Within this section, a relative system is considered,
whose origin is at rest and rotates with a constant angular velocity Ωr f = Ωr f ez according
to Figure 2.2. With the absolute velocity u in the inertial frame (index I) and the relative
velocity w in the rotating frame (index R), their dependency is given by

u = w + Ωr f × x. (2.16)

Thus, the acceleration in the rotating frame is related to the acceleration in the inertial
frame as

[Dtu]I = [Dtw]R + 2Ωr f × w + Ωr f ×
(
Ωr f × x

)
. (2.17)

The two additional terms, which appear in equation (2.17), are the Coriolis force and the
centrifugal force. As these forces are only felt by a body in the rotating frame, they are
called apparent forces and can be classified as body forces. When the centrifugal force
is formulated as Ωr f ×

(
Ωr f × x

)
= −0.5∇

(
Ωr f × x

)2, it becomes obvious, that this ap-
parent force only shifts the pressure in the system and can be included into p. Further,
an incompressible, Newtonian fluid is assumed and the gravitational force is neglected,
which leads to the Navier-Stokes equation in a rotating frame [31]

∂tw + (w · ∇)w = −1
ρ
∇p + ν∇2w − 2Ωr f × w, (2.18)

with the Taylor-Couette specific boundary conditions w(r1) = [0, r1(ω1 − Ωr f ), 0]T and
w(r2) = [0, r2(ω2 − Ωr f ), 0]T. Here, the question arises how to properly choose the an-
gular velocity Ωr f in TC geometry. To rebuild the symmetry between the inner and outer
cylinder wall velocities, Ωr f is set to fulfill the equation wϕ(r1) = −wϕ(r2) in the rotating
frame, according to Dubrulle et al. [31]. Thus, it follows
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