Contents

Abstract, Zusammenfassung						
A	cknov	wledge	ements	iv		
C	onter	nts		vi		
Li	st of	Figur	es	ix		
Li	st of	Table	s xx	viii		
1	Intr	oduct	ion	1		
	1.1	Turbu	lence	1		
	1.2	Outlin	e of the thesis	4		
2	Theoretical background and theoretical approach					
	2.1	Fluid	in motion	5		
	2.2	Taylor	r-Couette flow	6		
		2.2.1	Transport of angular motion	7		
3	The Cottbus Taylor-Couette experiments: Experimental setup and measurement techniques					
	3.1	Turbu	lent Taylor Couette Cottbus	10		
		3.1.1	Geometry and materials	10		
		3.1.2	Torque measurements	12		
		3.1.3	Sytem control	13		
		3.1.4	Implementation of an artificial wall surface structure	15		
	3.2	Top v	iew Taylor-Couette Cottbus	17		
		3.2.1	Geometry and materials	17		
		3.2.2	System control	19		
		3.2.3	Torque measurement	20		
	3.3	Measu	irement Techniques	21		
		3.3.1	Access for Optical measurement techniques	21		
		3.3.2	Visualisation methods	22		
		3.3.3	Laser Doppler Velocimetry	23		
		3.3.4	Particle Image Velocimetry	24		

4	Experimental determination and empirical prediction of torque					
	4.1 Torque measurements	26				
	4.2 Torque prediction	32				
	4.2.1 Conclusion	35				
	4.3 Torque for Co-Rotating Flow	35				
	4.4 Surface structure	37				
5	Velocity measurements	39				
	5.1 Angular velocity profiles at mid hight	39				
	5.2 Velocity field measurements: flow structures and plumes	42				
	5.2.1 Setup & explored parameter space	43				
	5.2.2 Results \ldots	44				
	5.2.2.1 Azimuthal and angular velocity profiles	44				
	5.2.2.2 Wind Reynolds number and turbulence intensity	48				
	5.2.2.3 Roll structures	48				
c		F 1				
6	Flow Visualisation	51				
	6.1 Flow structures and its behaviour	51				
	6.1.1 Space-Time diagrams using visualisation techniques	51				
	6.1.2 Flow patterns for $Re_S = 5000$	53				
	6.1.3 Flow Patterns for $Re_S = 26000$ and $52000 \dots \dots \dots \dots \dots \dots$	61				
	6.1.4 Summary of flow patterns	65				
7	Particle Image Velocimetry of near-wall azimuthal-axial flow					
	7.1 Introduction to near-wall Particle Image Velocimetry	68				
	7.2 Experimental procedure	68				
	7.3 Results from Particle Image Velocimetry of near-wall azimuthal-axial flow	70				
	7.3.1 Results for shear Reynolds number 52,000 and 78,000	74				
	7.3.2 Energy contributions to the transport process	70				
	1.5.2 Energy contributions to the transport process	10				
8	Particle Image Velocimetry of Azimuthal-Radial flow 81					
	8.1 Experimental setup of the PIV in azimuthal-radial planes	81				
	8.2 Uncertainties of the Velocimetry	84				
	8.3 Flow fields and velocity profiles	85				
	8.4 Influence of the shear Reynolds number for pure inner cylinder rotation .	87				
	8.5 Influence of the shear Reynolds number at the torque maximum	90				
	8.6 Influence of the rotation ratio for constant shear Reynolds number	95				
	8.7 Energy distribution	105				
	8.8 Nusselt number from flow fields	108				
9	Conclusion 1	.13				
	9.1 General Conclusion	113				
	9.2 Outlook	119				
۸	Appendix A. Flow Visualisation	21				
л		. 4 1				
в	Appendix B: Particle Image Velocimetry 133					

C Appendix C: PIV: Flow stru	uctures 1	56

Bibliography

170