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Introduction

1.1 Wetting fundamentals

The wetting of solid surfaces by a liquid plays a considerable role in biology, daily life

and industry (Marmur, 1992b). In many processes and applications, which are applied

in chemical, metallurgy, ceramic, petrochemical, pharmaceutical and food industry, the

wettability decides about the quality or the success of the outcome. For instance, in the

field of solids process engineering, the wettability of a particulate system is an important

step during agglomeration, granulation or coating processes which can decide about the

product quality (Charles-Williams et al., 2013, Hapgood et al., 2003, Iveson et al., 2001).

Hence, an overview about fundamentals of wetting of a flat surface, a single capillary

and a porous system is provided in this chapter.

1.1.1 Droplet spreading

When a liquid droplet gets in contact with a flat solid surface, two cases can be distin-

guished: total wetting and partial wetting. Sometimes even a third case is described,

the partial nonwetting (Masoodi and Pillai, 2012). The three different wetting cases are

presented in Figure 1.1.
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Figure 1.1: Three wetting cases: spreading, partial wetting and partial nonwetting.
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Chapter 1. Introduction 2

In order to characterize the wettability, the spreading parameter Sp, which measures the

difference between the surface energies of the substrate in a dry Edry and in a wetted

state Ewet (Eq. 1.1), is consulted. It can also be expressed by the surface tensions at

the solid/air σs,g, solid/liquid σs,l and liquid/air interfaces σ (Eq. 1.2) (de Gennes et al.,

2004):

Sp = Edry − Ewet, (1.1)

Sp = σs,g − (σs,l + σ). (1.2)

Sp > 0 means that the liquid spreads over the solid surface due to a strong affinity and

to lower its surface energy. The resulting contact angle θ which forms at the three-phase

boundary point is zero. The partial wetting is expressed by Sp < 0 and θ < 90◦ whereas

the partial nonwetting is defined as Sp < 0 and θ > 90◦. Thus, besides the spreading

parameter, the contact angle provides an opportunity to express the interactions between

a solid and a liquid. Young (1805) defined the intrinsic contact angle on a molecular

level which is based on a force balance (Eq. 1.3):

σ · cos θ = σs,g − σs,l. (1.3)

Since this contact angle can be only measured on ideal, flat, smooth and homogeneous

surfaces, the apparent contact angle is observable on a microscopic level due to surface

imperfections, reactions between fluid and solid material, roughness or chemical het-

erogeneity (Marmur, 1992a, Palzer et al., 2001, Reinke et al., 2015). These chemical

and physical irregularities form non-ideal surfaces resulting in the fact that the static

contact angle is not longer unique for the dynamic case (de Gennes et al., 2004, Li and

Neumann, 1992). When a liquid droplet moves along a real solid surface, the contact

angle varies between a maximum and a minimum value, which are termed as advancing

θad and receding contact angel θrec, respectively. The advancing contact angle is larger

than the static value and occurs when a droplet is inflated and advances across a dry

solid surface. On the contrary, when deflating a droplet the liquid recedes from the

surface resulting in the smaller receding contact angle (de Gennes et al., 2004, Li and

Neumann, 1992). The difference between the maximum and minimum contact angles is

called the contact angle hysteresis. On clean and smooth surfaces, the hysteresis can be

smaller than 5◦, while rough and dirty surfaces can extend the hysteresis to more than

50◦ (de Gennes et al., 2004). The dynamic contact angle depends on the velocity of

the contact line, but is indenpendent of the fact if it is a two-dimensional meniscus or a

axisymmetric droplet (Katoh et al., 2010, 2015). In literature, different correlations are
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available to describe the velocity dependence of the contact angle. Cox (1986) derived

the following equation (Eq. 1.4), where θd is the dynamic contact angle, G is an experi-

mental constant, Ca is the capillary number, L is the typical lengthscale of the system,

Lslip is the slip length, η is the viscosity, u is the velocity and σ is the surface tension:

θd =
(
θ3 + 9 ·G · Ca

)1/3
, (1.4)

with

G = ln

(
L

Lslip

)
,

Ca =
η · u
σ

.

Katoh et al. (2010) presented another approach (Eq.1.5) to express the dynamic contact

angle, where e is the ratio occupied by defects:

| cos θd − cos θ| = 3 · (1− e)

e · tan θd · Ca. (1.5)

As already mentioned above, surface heterogeneities are generally divided into two

groups, physical and chemical heterogeneities. Contact angles on chemically hetero-

geneous, but smooth surfaces can be expressed by an approach presented by Cassie and

Baxter (1944). Assuming the surface consists of two components, component 1 and 2,

Figure 1.2 presents the composition of the Cassie-Baxter contact angle.
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Figure 1.2: Cassie-Baxter contact angle θCB on chemical heterogeneous surface con-
sisting of component 1 with θ1 and component 2 with θ2.

Eq.(1.6) can be applied to calculate the Cassie-Baxter contact angle θCB of two com-

ponents. θ1 and f1 are the contact angle and the area surface fraction of component 1
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and θ2 and f2 are the contact angle and the area surface fraction of component 2. The

angle θCB appears as the apparent contact angle on the heterogeneous surface:

cos θCB = f1 · cos θ1 + f2 · cos θ2. (1.6)

Physical heterogeneity on surfaces occurs due to geometric roughness which also influ-

ences the contact angle. This phenomenon of contact angles on rough, but chemical

homogeneous surfaces was explained by Wenzel (1936, 1949). Eq. (1.7) presents the re-

lation between the apparent contact angle, the roughness parameter R and the intrinsic

contact angle:

cos θa = R · cos θi, (1.7)

with

R =
actual surface area

geometric surface area
.

Wenzel’s relation describes the effect that roughness decreases the apparent contact

angles if it is below 90◦ and increases the apparent contact angle if it is above 90◦ which

can be seen in Figure 1.3.
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Figure 1.3: Effect of surface roughness on apparent contact angle θa for the two cases
for the intrinsic contact angle θi: θi > 90◦ and θi > 90◦, modified from (Dullien, 1992).

This effect was experimentally confirmed by other authors (Busscher et al., 1984, Palzer

et al., 2001) for the static case. Furthermore, Busscher et al. (1984) figured out that

there is no influence of surface roughness on the contact angle as long as the roughness

is below 0.1 �m. For the dynamic case, Palzer et al. (2001) generally observed higher

contact angles with an increased surface roughness independent of the magnitude of the

contact angle.
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1.1.2 Liquid imbibition into single pore

Capillarity describes the behaviour of liquids in small tubes, called capillaries, due to

interfacial forces. The capillary pressure Pcap is the driving force which pulls the liquid

into the tubes (Masoodi and Pillai, 2012). rp is the radius of the pore. Generally, it

can be distinguished between two cases. If adhesion forces between liquid and capillary

wall are larger than cohesion forces within the liquid, capillary rise can be observed. In

the opposite case, capillary depression occurs (Dobrinski et al., 2010). A critical contact

angle of 90◦ is the limiting case. Solid-liquid systems, which form contact angles below

90◦ result in capillary rise:

Pcap =
2 · σ cos θ

rp
. (1.8)

During the penetration of liquid into a single capillary, different forces act in different

directions and decide about the dynamics of the rise. The overall force balance is de-

scribed by several authors in literature (Marmur, 1992a, Martic et al., 2002, Zhmud

et al., 2000) and includes the capillary force Fcap, the viscous force Fvis, the gravity

force Fgr and the inertial force Fin (Eq.(1.9):

Fcap = Fvis + Fgr + Fin. (1.9)

Converting the force balance into a pressure balance by relating the forces to the cross-

sectional area of the capillary or pore, Eq. (1.10) is obtained. The equation consists of

four pressure terms, the capillary pressure, the hydrostatic pressure, the viscous pressure

loss which is expressed in the Hagen-Poiseuille equation and the inertia term. rp is the

radius of the capillary or pore, ρl is the density of the liquid, g is the gravitational

acceleration, h is the height and t is the time. In order to describe the rise into inclined

capillaries as well, Fries and Dreyer (2008a) added the term sinχ to the hydrostatic

pressure where χ is the angle which forms between inclined capillary and free liquid

surface:

2 · σ · cos θ
rp

=
8 · η · h

r2p
· dh
dt

+ ρl · g · h · sinχ+ ρl ·
[
h · d

2h

dt2
+

(
dh

dt

)2
]
. (1.10)

During the penetration of a liquid into a capillary, different effects are dominant depend-

ing on the time stage. Four cases can be distinguished (Fries and Dreyer, 2008b): the

purely inertial time stage, the visco-inertial time stage, the purely viscous time stage

and the viscous and gravitational time stage. A final stage is added, which describes the

equilibrium state of liquid in a capillary.
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Inertial time stage

Quéré (1997) presented the following approach for the very first moments when the

liquid gets in contact with the capillary. During this time stage, the viscous and the

gravity term can be neglected. Eq. (1.11) is the simplified version of Eq. (1.10):

2 · σ · cos θ
rp · ρl = h · d

2h

dt2
+

(
dh

dt

)2

. (1.11)

The differential equation was solved by Quéré (1997) leading to a linear law for the

meniscus height in a capillary versus time (Eq. 1.12):

h = t ·
√

2 · σ · cos θ
ρl · rp . (1.12)

Visco-inertial time stage

Is the penetration dominated by viscous and inertial forces, Bosanquet (1923) derived

the following simplification to express the behaviour of the flow (Eq.1.13):

h2 =
2b

a
·
[
t− 1

a
· (1− e−at

)]
, (1.13)

with

a =
8 · η
r2p · ρl

,

b =
2 · σ · cos θ

rp · ρl .

Eq. (1.13) transforms into the Washburn equation for t → ∞. Ichikawa and Satoda

(1994) studied the same case, but expressed the equation in a dimensionless form.

Viscous time stage

The viscous time stage during capillary rise is the most known and discussed case in

literature. Neglecting the inertial and gravity forces Eq. (1.10) can be simplified and

written as:
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2 · σ · cos θ
rp

=
8 · η · h

r2p
· dh
dt

. (1.14)

Solving Eq. (1.14) by inserting the initial condition h(t = 0) = 0 results in Eq. (1.15).

This equation was derived by Washburn (1921) and Lucas (1918) independently from

each other. But in the following the equation is titled as the Washburn equation:

h(t) =

√
rp · σ · cos θ

2 · η · t. (1.15)

The Washburn equation provides a basis for many modelling approaches of capillary rise

phenomena in literature. This aspect is discussed more detailed in subsection 1.3.1.

Viscous and gravitational time stage

In the fourth stage, the penetration flow starts to be influenced by the gravity. Fries and

Dreyer (2008a) figured out that the critical height when gravity has to be considered

is at h > 0.1 · heq, where heq is the equilibrium height in a capillary. Only the inertia

effects can be neglected during this stage. An analytical solution is provided by using the

Lambert function W for mathematical rearrangement (Eq. 1.16). a and b are constant

factors including all solid and liquid properties and the gravity:

h(t) =
a

b

[
1 +W

(
−e−1− b2·t

a

)]
. (1.16)

Equilibrium stage

The equilibrium state is reached when the capillary pressure is balanced by the hydro-

static pressure (Eq. 1.18):

2 · σ · cos θ
rp

= ρl · g · h · sinψ. (1.17)

Assuming a vertical capillary (ψ = 0), the equilibrium height can be calculated with the

following equation:

heq =
2 · σ · cos θ
ρl · g · rp . (1.18)
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Several other approaches are available in literature dealing for instance with short and

long term solutions for the prediction of capillary rise (Chebbi, 2007, Zhmud et al., 2000)

or with the influence of dynamic contact angles on the penetration behaviour (Chebbi,

2007, Hamraoui et al., 2000, Siebold et al., 2000).

Another influencing factor is the shape of the pore. Most studies assume cylindrical pores

in which the liquid is imbibed. Birdi et al. (1988) and Wu et al. (2016) derived empirical

equations for calculating the equilibrium height in rectangular capillaries. While the

equation of Birdi et al. (1988) can be only applied for solid-liquid systems forming a

contact angle of 0, Wu et al. (2016) included a term for the contact angle. Liquid

penetration in angular gaps was studied by Bico and Quere (2002) for homogeneous

square tubes and by O’Brien et al. (1968) for dissimilar walls with an angle.

O’Brien et al. (1968) developed a mathematical model to predict the capillary pene-

tration between dissimilar plates (Eq. 1.19). The equation was evaluated with experi-

ments which were conducted for different liquids between heterogeneous systems, such

as glass-Teflon and glass-acrylic resin. The advancing contact angles of the materials

were measured to be 14◦, 74◦ and 110◦ for glass, acrylic and Teflon, respectively:

heq =
σ · (cos θ1 + cos θ2)

ρl · g · w . (1.19)

In order to compare their measured data with the modelled rise, they used the factor

w · heq, which is the product of the gap width w multiplied by the equilibrium height.

The deviation of the mean observed values from the predicted values is 2% for the

glass-acrylic system and 21% for the glass-Teflon system.

1.1.3 Penetration into pore network

Capillary penetration into a pore network within a powder bed is based on the same

physical fundamentals as the wicking into a single pore, however, the shape and the

orientation of pores changes dramatically in these pore networks. Thus, significant

differences in the behaviour are the consequences. Raux et al. (2013) compared the

wicking of water into a capillary glass tube and into a porous media made of glass

beads. For three different wettabilities, the glass tubes and beads were treated equally

to modify the surface resulting in contact angles of 35◦, 70◦ and 105◦. For the contact

angle of 35◦, a wicking could be observed into both systems and for the angle of 105◦, no

wicking occurred. While the water penetrated into the 70◦-glass tube, no penetration

happened in the bed of glass beads, even if the contact angle was below 90◦. This
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phenomenon was explained by geometrical reasons, since the pores within a powder bed

are not cylindrical.

Nevertheless, a pore network within a powder bed is often described as a bundle of paral-

lel cylinders with identical pore radii in literature which is also attributable to Washburn

(1921). Therefore, in order to apply the Washburn equation for porous systems the pore

radius rp is replaced by an effective radius rp,eff of the parallel, cylindrical pores in

Eq.(1.15). The following assumptions have to be made: 1. stationary, laminar flow, 2.

no external pressure, 3. neglection of gravity force, 4. neglection of inertial force, 5.

no-slip condition at the wall, 6. constant capillary pressure. Figure 1.4 presents a real

powder bed and its model system.

The pore network can also be expressed as the product k · rp, where k is a constant to

describe the randomly oriented capillaries (Bruil and van Aartsen, 1974). This product

is determined by passing an ideal spreading liquid (θ = 0) with known liquid parameters

σ and η through the powder. Assuming a constant bed independent of the passing liquid

this method is applicable (Rosen, 1978).

real system model system

liquid

particle pore

Figure 1.4: Real pore network (left) and model system (right) assuming a bundel of
parallel, cylindrical pores (modified from Palzer (2000)).

Since the measurement of the liquid height for the Washburn approach is challenging,

Murata and Naka (1983) and Kilau and Pahlman (1987) replaced the height by the

penetration weight Ml of the liquid and used a modified equation (Eq. 1.20). An

advantage of this modification is that the weight of the liquid uptake within the tube

can be measured precisely, while the height of the liquid front is only visible at the glass

wall of the tube but not in the interior. Therefore, the weight of the liquid within the

tube is expressed by the height, the porosity ε of the powder bed, the cross sectional

area of the tube A and the liquid density:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 1. Introduction 10

M(t) = ε ·A · ρl ·
√

k · rp · σ cos θ

2 · η · t. (1.20)

The mass related Washburn equation can be also formulated differently (Eq. 1.21).

Siebold et al. (1997) summarized the pore network parameters rp, ε, A in the geometric

factor K which is also obtained by using an ideal spreading liquid forming a contact

angle of 0 on the solid. K is also called the capillary constant:

M(t) =

√
K · ρ2l · σ cos θ

η
· t, (1.21)

with

K =
rp,eff ·A2 · ε2

2
. (1.22)

A critical step for this method is the creation of reproducible powder packings for the

determination of K and the actual penetration experiment using the desired wetting

liquid (Galet et al., 2010). Secondly, the correct choice of an ideal wetting liquid is

decisive for this method (Prestidge and Ralston, 1995). Commonly used ideal wetting

liquids are hexane, cyclohexane, heptane or octane (Chau, 2009, Galet et al., 2010,

Iveson et al., 2000, Siebold et al., 1997, Susana et al., 2012).

Palzer (2000) presented another modified Washburn approach to describe the capillary

wetting into a porous system. He suggested to use mercury porosimetry to get informa-

tion about the real pore structure in the powder. Eq. (1.23) can be derived using the

mean pore radius rp,50 from the pore size distribution and introducing a shape factor

ψ. This shape factor converts the real pore radius into an equivalent pore radius of the

porous system by considering the deviation of the pore shape from the cylindrical shape

and the alteration of the pore length due to curvature:

h(t) =

√
rp,50 · ψ · σ · cos θ

2 · η · t. (1.23)

If there is no possibility to measure the pore size distribution of a powder system, two

further alternatives to determine pore radii in powder beds are proposed by Hapgood

et al. (2002). The first approach was defined byWhite (1982) and contains the porosity ε,

the mass specific surface area Sm and the solid density ρs (Eq. 1.24). A second approach

(Eq. 1.25) is traced to Kozeny (1927) and Carman (1956) assuming approximately

spherical particles with the Sauter diameter d32 and a shape factor ψ. The Wadell

shape factor ψWa can be inserted for ψ:
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