
Introduction

Functions of bounded variation of a single variable, or short BV -functions, were first
introduced in 1881 by Camille Jordan [74]. He extended a result about the pointwise
convergence of Fourier series of periodic and piecewise monotone functions proven
around 50 years earlier by Johann Peter Gustav Lejeune Dirichlet [52] who gave the
first rigorous proof of a conjecture on the representability of functions by means of
trigonometric series originally raised in 1808 by Jean Baptiste Joseph Fourier [62].
Jordan proved that the Fourier series of any 2π-periodic function x : R → R of bounded
variation converges at each point to the arithmetic mean of the right and left sided
limits of x; in particular, if x is continuous, then its Fourier series converges even
uniformly to x. This is nowadays known as the Dirichlet-Jordan-Theorem. In the same
paper, Jordan also proved that any function of bounded variation may be written as
a difference of two monotonically increasing functions. In this sense, the class BV of
all real-valued functions of bounded variation defined on the real interval [0, 1] is the
linear hull of the set of monotone functions on that interval which do not form a linear
space on their own.

The class BV has also been extended in many interesting directions. For instance,
in the early 1920s, Norbert Wiener made the first noteworthy extension to Jordan’s
bounded variation concept by introducing the space WBV2 of functions of bounded
quadratic variation [154]. He proved that the Dirichlet-Jordan-Theorem still holds for
functions of this type. In 1937, Laurence Chisholm Young showed that this theorem
could be further extended to higher exponents and introduced the class WBVp of
functions of bounded p-variation for arbitrary p ≥ 1 [159]. Together with Eric Russel
Love, Young gave a comprehensive study of these functions [92] and finally went on
to generalize Wiener’s ideas by replacing the exponentiation by p by a composition
with a suitable convex and increasing “gauge function” ϕ : [0, ∞) → [0, ∞) [160]. By
doing so, he was hoping to extend the Dirichlet-Jordan-Theorem beyond the result he
already proved for functions in WBVp. In 1940, Raphaël Salem found a condition on ϕ

ensuring that the Dirichlet-Jordan-Theorem holds for functions in the resulting more
general space Y BVϕ [139]. Moreover, in 1972, Albert Baernstein showed that among
the Y BVϕ-spaces, Salem’s result concerning Fourier series is the best possible [19].
Also in 1972, Daniel Waterman extended the class of BV -functions in another direction
by weighting the summands in Jordan’s definition not by a composition but by a
multiplication with a decreasing sequence Λ of positive numbers instead [151]. The
resulting class ΛBV of such functions is of particular interest if one takes Λ to be
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the harmonic sequence Λ = (1/n)n∈N; in this case, ΛBV is denoted by HBV , and
functions in this spaces are called “of bounded harmonic variation”. Waterman showed
not only that the Dirichlet-Jordan-Theorem about Fourier series holds for functions
in HBV , he also pointed out that his result is best possible among all ΛBV -spaces.
Moreover, he showed that for any Young function ϕ satisfying Salem’s condition, the
inclusion Y BVϕ ⊆ HBV holds. Consequently, among all the generalizations of the
Dirichlet-Jordan-Theorem mentioned here, Waterman’s version is the strongest.
Another notion of “bounded variation” has been introduced by Frigyes Riesz in 1910
[135, 136]. His type of variation seems very natural from a functional analytic point
of view. In fact, an important result states that for fixed p ∈ (1, ∞) a function
x : [0, 1] → R is of bounded p-variation in the sense of Riesz if and only if x is
absolutely continuous and its derivative x′ belongs to the Lebesgue space Lp. In this
case, we write x ∈ RBVp, and the Riesz variation of x may be calculated explicitly by
an integral over x′. Clearly, such a formula cannot be true for p = 1, because functions
in RBV1 = BV are in general not continuous, let alone absolutely continuous.
Remarkably, any function x ∈ RBVp belongs to the Sobolev space W 1,p, and any
function in W 1,p in turn agrees almost everywhere with a function in RBVp [56]. This
means that RBVp consists precisely of the continuous representatives of W 1,p. In this
sense Riesz introduced Sobolev spaces, at least in the scalar case, around 25 years prior
to Sobolev.
A very comprehensive overview about properties of functions of bounded variation and
their various generalizations may be found in the monograph [6].
Besides the development of the theory of Fourier series, BV -type functions have been
extensively studied also in other fields of mathematics, for instance, in geometric mea-
sure theory, calculus of variations, and mathematical physics. Renato Caccioppoli
and Ennio de Giorgi used them to define measures of nonsmooth boundaries of sets
[34, 35, 48]. Olga Arsenievna Oleinik introduced her view of generalized solutions for
nonlinear partial differential equations as functions from the space BV [125], and was
able to construct a generalized solution of bounded variation of a first order partial
differential equation [126]. A few years later, Edward D. Conway and Joel A. Smoller
applied BV -functions to the study of a single nonlinear hyperbolic partial differential
equation of first order [44], proving that the solution of the Cauchy problem for such
equations is a function of bounded variation, provided the initial value belongs to the
same class.
But functions of bounded variation turn out to be useful even when it comes to ques-
tions from the very foundations of analysis. For instance, it is clear that the sum of
two functions with primitive again has a primitive, but this is wrong when “sum” is
replaced by “product”. This raises the question what the multipliers of the set Δ of
functions with primitive are, that is, how the functions g : [0, 1] → R look like such
that xg belongs to Δ whenever x belongs to Δ. A discussion of these and more gen-
eral questions will be the starting point of this thesis: We will discuss some natural
“habitats” of functions of bounded variation and how they are related to other function
classes.
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This thesis is organized in seven chapters. The first chapter will be introductory
in which we collect basic definitions, notations and function classes that we use the
most. To be a little more precise we introduce in Section 1.1 the class C of continuous
functions, the class B of bounded functions as well as the class D of Darboux functions
(that is, functions with the intermediate value property) and discuss their relation to
BV and to each other. For instance, the inclusions BV ∩ D ⊆ C ⊆ D ∩ B hold, but
none of these inclusions may be inverted. We also consider Lebesgue measurable and
integrable functions, regular functions, absolutely and Lipschitz continuous functions
and summarize how these classes are related to the class BV .

Section 1.2 is then devoted to functions of generalized bounded variation. We formally
introduce the Wiener spaces WBVp, the Young spaces Y BVϕ, the Waterman spaces
ΛBV and the Riesz spaces RBVp. Equipped with a suitable norm building upon the
corresponding type of variation, all these spaces become Banach spaces. Since functions
which are zero everywhere except on a countable set become very important throughout
this thesis, a major part of Section 1.2 is reserved for this kind of functions and how
they behave in the various BV -type spaces. At the end of Section 1.2 we quickly
discuss Helly’s Selection Principle which provides a certain type of compactness in
BV -spaces: Accordingly, every sequence in one of the BV -spaces that is bounded in
its norm possesses a pointwise convergent subsequence.

The class Δ of derivatives to which we will give our main attention in Chapter 2 is situ-
ated between the classes C and D. From Lebesgue’s and Riemann’s integration theory
it is well known that there are functions with primitive which are neither Lebesgue nor
Riemann integrable. Consequently, in order to characterize the functions in Δ we need
to pass in Section 2.1 to another notion of integration which will be functions that are
integrable in the sense of Kurzweil and Henstock (KH-integrable). Every derivative is
KH-integrable automatically and fulfills the Fundamental Theorem of Calculus. We
also discuss another stronger form of integrability which enshrines both being KH-
integrable and having a primitive. We then move on to other attempts that have been
made in order to find integral free characterizations of the functions in Δ. However, it
turns out that even if these attempts pretend to be integral free, they are in fact not.
Nowadays, it is still not clear whether functions in Δ can be characterized without any
kind of integration process; most mathematicians believe that this is impossible.

Moving on to more algebraic questions we discuss what happens when derivatives are
multiplied or composed; we will do this in the Sections 2.2 and 2.3, where Section 2.2
is the largest part of this chapter. Therein we slowly approach a full discussion of the
set Δ/Δ of multipliers of the class Δ as described above which simultaneously serves
as a bridge to the class BV . Indeed, being continuous and of bounded variation is
sufficient but not necessary to be a member of Δ/Δ, while there are functions in Δ/Δ
that are bounded but neither continuous nor of bounded variation. In fact, functions
in Δ/Δ turn out to be those functions that have a primitive and are in a certain sense
of “local” bounded variation [59, 111].
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Besides multipliers of the class Δ we also consider multipliers in other function spaces
X and Y of real-valued functions on [0, 1]. We denote by

Y/X :=
{
g : [0, 1] → R | xg ∈ Y for all x ∈ X

}

the multiplier set of Y over X. While we identify multiplier sets for some classical
function spaces only in case X = Y in Section 2.2 we pass in Section 3.1 to other
combinations, where we also allow X �= Y . Some of these combinations are easy
to find. For instance, it is straightforward to show that BV/BV = BV , and that
D/B = C/B = C/BV contains only the zero function �. However, other combinations
are very difficult to find or even unknown, especially when Y = D. Here, the three
classes D/C, D/Δ and D/D will be of particular importance for us. Some authors
claim without proof that the class D/D is easily deduced from the following result due
to Radakovič [133]: If a function g has the property that x + g is a Darboux function
whenever x is a Darboux function, then g is constant. We show in Section 3.1 that
D/D may indeed be deduced from Radakovič’s result, but this deduction is by far not
so easy, especially when g has zeros. Moreover, since we do not know how the classes
D/C and D/Δ look like, we give only partial results and show how they are related to
other multiplier classes and function spaces.
Section 3.2 is then dedicated to multipliers of spaces of functions of generalized varia-
tion. Conveniently, the results are quite similar for all such spaces. Since all BV -type
spaces considered in this thesis are algebras, we have X/X = X whenever X is one of
these spaces. On the other hand, if X and Y are two Wiener spaces, then Y/X = Y for
X ⊆ Y . If X �⊆ Y , then Y/X contains only functions from Y with countable support.
The same is true if X and Y are two Young spaces or two Waterman spaces. We will
also see that for two Riesz spaces X and Y the condition X �⊆ Y yields the strong
degeneracy Y/X = {�}.

Especially for applications it is quite handy that many differential equations may be
solved by rewriting them into integral equations. Those can then often be handled with
fixed point theory, even in the space BV and its various generalizations. In order to use
classical fixed point theorems like those named after Stefan Banach, Juliusz Schauder,
Gabriele Darbo or Mark Alexandrovich Krasnoselskii, one has to check several some-
times complicated conditions on the linear and nonlinear operators involved. This has
been done many times in the BV -type spaces mentioned above; we refer the reader
to the work of the Polish mathematicians Daria Bugajewska, Dariusz Bugajewski and
their colleagues [25, 26, 27, 29, 30, 31, 32, 33, 46].
However, many analytic and set theoretic properties of such operators are either ex-
tremely complicated to characterize or just unknown. While linear operators such as
multiplication, substitution or integral operators are mostly relatively easy to handle,
nonlinear operators like composition or superposition operators behave sometimes in
a rather strange way. The aim of the Chapters 4 and 5 of this thesis is to extend the
theory concerning properties of these operators in the various BV -spaces.
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Here, we consider the following three linear operators in Chapter 4 on two function
spaces X and Y of real-valued functions on [0, 1]. The multiplication operator

Mg : X → Y, Mgx(t) = x(t)g(t)

for a generating function g : [0, 1] → R in Section 4.1, the substitution operator

Sg : X → Y, Sgx(t) = x
(
g(t)

)

for a generating function g : [0, 1] → [0, 1] in Section 4.2, and the integral operator

Ig : X → Y, Igx(t) =
∫ 1

0
g(t, s)x(s) ds

for a generating function g : [0, 1] × [0, 1] → R in Section 4.3. For all three operators
we are particularly interested in analytic properties like acting conditions for various
BV -spaces X and Y , as well as continuity (which is for linear operators equivalent to
boundedness) and compactness. Especially for the multiplication operator the results
of Chapter 3 will be useful: Indeed, a multiplication operator Mg : X → Y is well-
defined if and only if its generator g belongs to the multiplier space Y/X. In particular,
recalling the sample results from above, the operator Mg maps BV into itself if and
only if g ∈ BV . Moreover, regarding compactness the operator Mg : BV → BV is
compact if and only if the support of g is countable, while Sg : BV → BV is compact
if and only if g has finite range. We show these and similar results for other BV -type
spaces in the Sections 4.1 and 4.2 for the multiplication and substitution operator,
respectively. But we also give some remarks on set theoretic properties like injectivity,
surjectivity and bijectivity. For instance, Mg : BV → BV is injective, if and only if
g has no zeros, while Sg : BV → BV is injective if and only if g is surjective. Thus,
mapping properties of Mg may often be described in terms of the support of g, while
mapping properties of Sg can often be characterized in terms of the image of g.
Especially for integral equations a comprehensive investigation of the integral operator
Ig is of particular importance for us. Therefore, Section 4.3 is by far the largest section
of Chapter 4. Our main concern is analytic properties, and from the aforementioned
cited papers of the Polish mathematicians Bugajewska, Bugajewski and colleagues
many sometimes quite technical conditions are known guaranteeing that the integral
operator maps a BV -space into itself and is bounded or compact. For instance, if
g(t, ·) ∈ L1 for any t ∈ [0, 1] and the variation of the function g(·, s) is almost every-
where bounded with respect to s by some L1-function, then Ig maps BV into itself
and is bounded and compact. Similar results are known for a few other BV -spaces.
We generalize the known results in two directions: The first is that we give a unified
approach to tackle all BV -spaces at once. The second is that we also consider the op-
erator Ig from L∞ into a BV -space X and give conditions under which such operators
are well-defined, bounded and compact. This will be one of our main ingredients in
the investigation of integral equations.
In Chapter 5 we discuss mapping properties of the following two nonlinear operators
on two function spaces X and Y of real-valued functions on [0, 1]. The (autonomous)
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composition operator
Cg : X → Y, Cgx(t) = g

(
x(t)

)
for a generating function g : R → R in Section 5.1, and the (nonautonomous) super-
position operator

Ng : X → Y, Ngx(t) = g
(
t, x(t)

)
for a generating function g : [0, 1] × R → R in Section 5.2. As for the composition
operator Cg it is well known that Cg maps BV into itself if and only if g is locally
Lipschitz continuous [75]. Similar results are also known for the other BV -spaces. We
then give some remarks about injectivity and surjectivity in X = Y = BV and other
BV -spaces. Here, Cg : BV → BV is injective if and only if g is injective. However,
surjectivity is not so easy to describe. We give a sufficient condition which states
that Cg : BV → BV is surjective if the slope of g is at suitable points in a certain
sense bounded away from zero; unfortunately, we were not able to decide whether this
condition is also necessary, but we give some indication why we think that it is. We
then move on to different types of continuity. In summary, one can say that the more
regular g is, the more “continuous” Cg is in BV and other spaces. For instance, Cg

is uniformly continuous on bounded sets if and only if g is continuously differentiable,
locally Lipschitz continuous if and only if g is continuously differentiable with locally
Lipschitz continuous derivative, globally uniformly continuous if and only if g is affine,
and compact if and only if g is constant. Similar results hold also in other BV -spaces,
where the Riesz spaces have to be treated separately. We prove all these results using
a unified approach. Surprisingly, the question of whether Cg is automatically pointwise
continuous in BV if g meets the acting condition has an interesting history. The first
proof given in [118] is very long and complicated, the second was given only recently
in [96]. We give a third proof, but for this purpose we develop some new theory in
Chapter 6 and therefore present the proof there also. Nonetheless, all proofs cannot
be generalized to other BV -spaces, at least to the best of our knowledge.
Section 5.2 is dedicated to the superposition operator, and we only focus on analytic
properties. Although both operators Cg and Ng are defined by an outer composition,
the additional dependence of t allows Ng to behave rather chaotic and complicated
compared to Cg. Again, many conditions guaranteeing analytic properties are known,
but the behavior of the operator Ng even in the space BV is by far not fully understood.
For instance, there is no (useful) criterion for the pointwise continuity of Ng in BV .
Again, we provide a unified approach to handle all BV -spaces at once. The aim of
Section 5.2 is to discuss the weird properties of Ng and reveal disparities between Ng and
Cg. For instance, in contrast to Cg too weak kinds of regularity of g seem not directly
connected to any kind of regularity of Ng. It is possible to find a discontinuous function
g : [0, 1] ×R → R that generates a constant and therefore utmost regular operator Ng,
while it is also possible to construct a globally Lipschitz continuous generator g that
induces a discontinuous operator Ng : BV → BV ; we give a general technique on
how to construct such examples. Also, in contrast to Cg, there are compact operators
Ng : BV → BV generated by nonconstant functions g. Our main result, however, is
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Theorem 5.2.31. It provides for the first time a sufficient condition on g guaranteeing
that Ng maps any of our BV -spaces into itself and is locally Lipschitz continuous. We
show that our condition also covers the corresponding results for multiplication and
composition operators which can be seen as special superposition operators. Theorem
5.2.31 will also serve as one of the main ingredients in the theory of integral equations
in Chapter 7.
As mentioned before, the aim of Chapter 6 is to provide a new proof for the fact that
Cg is continuous in BV if g is locally Lipschitz continuous. In order to do that we
approximate Cg by other composition operator Cgn for sufficiently smooth generators
gn : R → R, where n ∈ N. This approximation has to be done in such a way that
the continuity of each Cgn carries over to Cg. Therefore, we investigate in Section 6.1
on the abstract level of metric spaces the following four types of convergence: Quasi
uniform, semi uniform, continuously uniform and locally uniform convergence. All of
these are able to transmit continuity to the limit function. Historically, quasi uniformly
convergence was introduced by Cesare Arzelà [14, 15], who answered the question what
on top of pointwise convergence has to be assumed in order to guarantee that the limit
function of a sequence of continuous functions is again continuous. Moreover, we
give criteria on such sequences and their underlying spaces under which convergent
subsequences can be extracted and recall that several types of convergence can even
be used to characterize compactness of the domains the functions under consideration
live in. Eventually, we compare all five types of convergence (pointwise convergence
included) with each other.
In Section 6.2 we then pass to the proof of the fact that Cg is continuous in BV provided
that it is well-defined. For this we first develop some theory and introduce the restricted
variation, another more general type of variation measuring the variation of that part
of a function that falls into a given set. The main result in this section is Theorem
6.2.7. It states that a sequence (Cgn) converges in BV locally semi uniformly to a given
composition operator Cg if and only if the corresponding generators gn converge in BV

to g and locally have a uniformly bounded Lipschitz constant. The continuity of Cg is
then a simple consequence.
As for applications Chapter 7 will probably be the most relevant. Here, we consider
Hammerstein and Volterra integral equations, where the latter are only special cases
of the former. A starting point of our considerations in Section 7.1 is the Hammerstein
integral equation

x(t) = h(t) + λ
∫ 1

0
k(t, s)g

(
x(s)

)
ds

and some slight modifications that have already been studied in some BV -spaces,
where h, k and g are given and x is unknown. Building on our results presented in the
Chapters 4 and 5 we investigate the much more general equation

x(t) = h
(
t, x(t)

)
+ λf

(
t, x(t)

) ∫ 1

0
k(t, s)g

(
s, x(s)

)
ds

for given data h, f , k and g and prove existence and sometimes also uniqueness for
solutions in BV -spaces. Again, we use a unified approach in order to handle all our
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BV -spaces simultaneously. To get uniqueness of solutions we mostly use the fixed
point theorem of Banach and Caccioppoli which requires strong conditions on the data
involved. We also use other fixed point theorems that require less restrictive conditions
on the data for the price that they guarantee only existence of solutions. Especially for
boundary and initial value problems we investigate the Hammerstein integral equation

x(t) = Ax(t) + λ
∫ 1

0
k(t, s)g

(
x(s)

)
ds,

where A is a linear operator from one BV -space into itself and provide some existence
results building on Schauder’s fixed point theorem. In the short Section 7.2 we refor-
mulate all results about Hammerstein integral equation to the corresponding Volterra
integral equations, where the upper limit of integration is replaced by the variable t.
The final Section 7.3 is then dedicated to boundary and initial value problems. In [27]
the boundary value problem

x′′(t) = −λg
(
t, x(t)

)

subject to the nonclassical boundary conditions

x(0) = A0x, x(1) = A1x

are solved, where A0 and A1 are linear functionals on BV . Two results are presented in
this paper each of which giving conditions under which the boundary value problem has
a solution. We generalize the ideas, simplify the conditions and summarize everything
in one stronger result that is even able to handle cases that have not been covered
yet. We also give some remarks on how the theory may be applied to other similar
boundary value problems. We end the section with initial value problems

x′′(t) = −λg
(
t, x(t)

)

subject to the nonclassical initial conditions

x(0) = A0x, x′(0) = A1x.

we present very similar results and conditions guaranteeing the existence of solutions.

Throughout this thesis we give a lot of estimates, proofs and results, and many of them
are quite technical. Therefore, it is of particular concern to us to illustrate most results
by special cases, remarks, comparisons and summaries to make the presentation as
clear as possible. This will be done by a total of 14 figures, 20 tables and 166 examples
and counterexamples.


