
1 Introduction

1.1 Motivation

The prediction and prevention of fouling is a crucial problem in many industrial processes,
such as chemical and process industry, including oil refineries, power generation, energy
recovering etc. Fouling, generally defined as the unwanted accumulation of various
materials on solid surfaces of processing equipment, causes tremendous problems such
as production loss, fuel and maintenance costs [139, 108]. Besides crystallization fouling,
particulate fouling due to the deposition of small suspended particles (e.g., clay or iron
oxide) and gravitational settling of larger particles is the most important and frequent
fouling phenomena [17]. This is especially typical for heat exchangers, shown in Fig. 1.1,
illustrating structured surfaces as rib turbulators, pin-fins arrays, protrusions or dimples
extensively used to enhance the convective heat transfer [84]. The intensification of heat
transfer is achieved by generating secondary flows which interfere the boundary layer
growth as well as cause flow recirculation and shear-layer reattachment, promoting mixing
and an increase of the turbulence intensity. On the other hand, besides the additional
hydraulic losses due to the surface structuring, one of the major disadvantages of structured
heat transfer surfaces is the susceptibility for particulate fouling, resulting in a significant
reduction of the thermo-hydraulic performance over time.

Fig. 1.1: Formation of fouling deposits inside a shell and tube heat exchanger (left) [109];
particulate fouling in a compact heat exchanger for automotive applications
(right). Printed by permission from the ICTV, TU Braunschweig.

Various types of structured heat transfer surfaces have been thoroughly investigated
with the objective to promote the heat transfer with a minimum hydraulic pressure loss.
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Since the application of dimpled surfaces is a very efficient technique to enhance the
thermo-hydraulic performance, as shown in Fig. 1.2, they are still primary subject of many
experimental and numerical investigations in the field of thermo-fluid dynamics.
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Fig. 1.2: Comparison of the globally averaged thermo-hydraulic performance dependent
upon friction factor ratios for various heat transfer enhancement techniques
[83].

Experimental studies were performed by Afanasyev et al. [2], who observed a maximum
heat transfer augmentation of about 40% accompanied by a low increase of hydraulic losses
for a plate with dimples in the turbulent regime, and by Chyu et al. [23], who evaluated the
hydraulic losses and heat transfer enhancement for surfaces with an array of hemisphere
and tear-drop shaped cavities in the range of Reynolds number, based on the hydraulic
diameter of the channel, of 10,000 ≤ ReDh

≤ 50,000. The results showed that both kinds
of concavity configurations induce a heat transfer enhancement up to 2.5 in contrast to
the opposite smooth wall whereas the flow resistance was half of that for rib tabulators.
The effect of the channel height and dimple depth on heat transfer within the turbulent
flow regime has been studied by Mahmood [95] and Ligrani et al. [85, 84]. Comprehensive
numerical investigations regarding dimpled surfaces were published by Isaev et al. [62],
who performed a study on the influence of the Reynolds number and dimple depth on the
turbulent heat transfer and hydraulic loss in a narrow channel using URANS (unsteady
Reynolds-averaged Navier-Stokes equations), by Elyyan et al. [42] as well as by Turnow
et al. [148, 149]. Especially the numerical study of Turnow [146] and the experimental
investigation of Kozlov and Chudnovsky [75] are very interesting, since they mention
not merely the superior thermo-hydraulic performance of dimpled surfaces compared
to other heat transfer enhancement techniques, but also a possible fouling-mitigation
potential or self-cleaning process due to dimples. Kozlov and Chudnovsky explain the
fouling mitigation with a tornado-like flow inside the dimple, as illustrated in Fig. 1.3,
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which directly transports or evacuates approaching fouling particulates out of the dimple
back into the core flow. However, it could be shown later by Turnow et al. [148, 146]
that tornado-like spatial flow structures can be revealed by the spatial eigenmodes of the
velocity field obtained from proper orthogonal decomposition (POD), but they do not exist
as pure coherent flow structures. Further current experimental [155, 72, 9] and numerical
results [88, 147, 87] show present significance of fundamental studies exploring advantages
and disadvantages of dimpled surfaces.

u

(a) Approach

u

(b) Involve

u

(c) Evacuation

Fig. 1.3: Mechanism of fouling mitigation through dimpled surfaces, according to Kozlov
and Chudnovsky [75].

In contrast to this, investigations of structured heat transfer surfaces considering particulate
fouling are relatively seldom. Available studies of particle-laden flows over non-flat surfaces,
which emphasize the influence of surfaces curvature on the particle statistics as well as on
particle accumulation and deposition, are presented by Marchioli et al. [97], Milici et al.
[105] or De Marchis et al. [29], who investigated the influence of corrugated surfaces or
roughnesses on particle dynamics in turbulent channel flows. A recent study is presented
by Luo et al. [92], who analyzed effect of staggered arranged hemispherical roughness
elements on a turbulent particle-laden flow. The most fundamental fouling modeling
approach was proposed by Kern and Seaton [69], modeling the fouling processes as a
balance between deposition and removal process. Further fouling models are described by
Suitor et al. [141], Epstein [43], Bohnet [15] and Bott [17], but they allow only an integral
fouling evaluation without accounting for local flow features and critical flow conditions
(e.g., hot spots or low velocity zones). Latest numerical contributions are from Tong et al.
[144], who simulated two-dimensional particle deposition and removal processes on tubes
by coupling a multiple-relaxation-time lattice Boltzmann method with a finite volume
procedure, and Wang et al. [159, 160] with a parameter study on the fouling characteristic
of H-type finned heat exchanger using a two-dimensional RANS approach.

1.2 Fouling of heat transfer surfaces

The reasons and mechanisms of deposition formations on heat transferring surfaces are
extremely manifold. Thus, the different types of fouling are usually subdivided into five
main categories based on the underlying key physical/chemical processes [44, 15, 17, 108]:
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Crystallization fouling Precipitation and deposition of dissolved salts, which at process
conditions become supersaturated at the heat transfer surface or solidification fouling
due to the shortfall of the solidification temperature of a dissolved component (e.g.,
solidification of wax from crude oil streams).

Particulate fouling Deposition of small suspended particles on heat transfer surfaces
of any orientation and/or gravitational settling of larger particles onto horizontal
surfaces.

Chemical reaction fouling Deposition formations at heat transfer surfaces by a chemi-
cal reaction, whereby the surface material itself is not part of the chemical reaction.

Corrosion fouling Formation of a corrosion layer on heat transfer surfaces which usu-
ally causes a low (additional) thermal resistance due the relatively high thermal
conductivity of oxides. However, the enhanced surface roughness may promote other
kinds of fouling.

Biological fouling Development and deposition of organic films consisting of microor-
ganisms and their products such as bacteria and the attachment and growth of
macroorganisms (e.g., mussels, algae) on heat transfer surfaces.

In practice or rather under real conditions several fouling mechanisms appear simulta-
neously, nearly always being mutually reinforcing. One exception is the combination of
particulate and crystallization fouling, where particles of the crystallizing matter accelerate
fouling, whereas particles from the other material may lead to reduced fouling due to a
weakening of the deposit formation [108]. All mentioned fouling mechanisms occur in the
following five consecutive steps [44, 15, 108]:

Initiation period The initially high overall heat transfer coefficient of a new or cleaned
heat exchanger often remains unchanged for a certain time (i.e., no fouling oc-
curs). The duration of this initiation period depends on various parameters, e.g.,
temperature and surface roughness.

Mass transport Transport of at least one (fouling) key component to the heat transfer
surface through the fluid bulk, which is mostly achieved by diffusion. In case of
particle transport to the surface, the consideration of inertia effects as well as
thermophoretic and turbophoretic (only for turbulent carrier flows) forces is required.

Attachment and formation As soon as the transport to the heat transfer surface is
completed, the foulant must stick to the heat transfer surface (for particulate fouling)
or react to the deposit forming substance (e.g., CaCO3).

Removal Depending on the strength of the deposit, erosion or removal due to the fluid
flow (i.e., shear stresses acting on the surface of the fouling layer) occurs immediately
after the first formation of deposits.

Aging The strength of the fouling layer can change in time. This aging process is referred
to as aging and can either increase or decrease the strength of the deposits.
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1.2.1 Fouling resistance and fouling curves

Fouling on heat transfer surfaces is generally considered in the design process of heat
exchangers by using the so-called thermal fouling resistance Rf,th in the evaluation of the
overall heat transfer coefficient U [109]. For a clean heat transfer surface, the heat flow
resistance is defined as:
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in which h1 and h2 are the corresponding heat transfer coefficients of both heat exchanging
fluids, xw and kw is the thickness and the thermal conductivity of the heat transfer surface
(or wall), respectively, and Rw is the thermal resistance of the separating wall. Assuming
that fouling occurs only on one side of the heat transfer wall, which is valid for many
industrial applications, the overall heat flow resistance of the fouled surfaces is [110]:
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where xf is the thickness of the fouling layer, kf is the thermal conductivity of the foulant
material and Rf,th is the fouling resistance, which can be interpreted as additional thermal
resistance due to fouling. For constant flow rates, the fouling resistance at any time is the
difference between the actual heat transfer resistance and the initial (clean) heat transfer
resistance:

Rf,th =
1

Uf (t)
− 1

U0
. (1.3)

The time-dependent overall heat transfer coefficient is calculated from

U(t) =
Q(t)

A ·ΔTlm(t)
, (1.4)

with the logarithmic mean temperature difference ΔTlm (see e.g., Incropera et al. [61])
and the heat flow rate Q, which is given by:

Q = ṁ · cp ·ΔT, (1.5)

where ΔT is the temperature difference of either the heating or cooling fluid, ṁ is the
mass flow rate and cp is the corresponding heat transfer capacity. The thermal fouling
resistance can be easily monitored without any interruption of the process but allows only
an assessment of the integral fouling behavior, since the temperatures are only measured
at the inlet and outlet for the heat exchanging fluids. However, investigations of operating
industrial heat exchanger have shown that fouling often follows a decreasing or even
asymptotic trend. Based on this observation, Kern and Seaton suggested modeling the
fouling process as a balance between competing transport processes to and from the heat
transfer surface, namely, deposition and removal [109]. Therefore, the accumulation of the
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deposited fouling mass mf per unit area1 in time t is expressed as [69]:

dmf

dt
= ṁd − ṁr =

dRf,th

dt
ρfkf , (1.6)

assuming that the thermal conductivity kf and the density ρf of the fouling material
remain constant with time and deposit thickness. Based on the Kern and Seaton model,
Eq. (1.6), the fouling curves for three essentially different cases are shown in Fig. (1.4).
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Fig. 1.4: Possible dependence of the fouling resistance Rf,th on time t: idealized thermal
fouling curves for a linear, falling and asymptotic growth rate.

Curve A shows a linear increase of the fouling resistance with time. This behavior is
mainly observed when no removal of solids (i.e., ṁr = 0kg/m2s) takes place. For curve
B, a slowing down (or falling rate) of the solids increase with increasing fouling layer
thickness is observed, but without reaching a maximum. Curve C shows the characteristic
asymptotic fouling behavior, which is , after a certain time, the solid removed per unit
time and surface area is equal to the deposited solid (i.e., ṁd− ṁr = 0kg/m2s). Moreover,
the mass of the fouling layer per unit area and thus also the fouling resistance reach
limiting values, the so-called asymptotic fouling resistance R∗

f,th. Thereby, it is possible
that, during the initial phase of fouling, the fouling resistance shows a linear increase [15].

1.2.2 Modeling of particulate fouling

Existing physically based models for the prediction of particulate fouling (see e.g., Müller-
Steinhagen [109] or Bohnet [15]) are usually derived under the assumption that the growth
of the fouling layer is leveled after a certain time. Following the pioneering work of Kern
and Seaton [69], the progression of the fouling resistance with time can be expressed as:

dRf,th

dt
ρfkf = ṁd − ṁr. (1.7)

1Please note that the fouling mass mf , the deposition rate ṁd as well as the removal rate ṁr

are expressed as mass or mass flow rate per unit area (i.e., in kg/m2 and kg/m2s).
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According to Müller-Steinhagen [109], the deposition rate ṁd can be modeled through a
simplified mass transfer correlation as being proportional to the bulk flow velocity u and
the foulant concentration c:

ṁd = K1uc, (1.8)

where K1 is a (proportionality) model constant. Since the removal of deposited fouling
material is mainly caused by shear forces from the bulk flow, the removal rate ṁr is derived
under the assumption that it is proportional to the shear stress τf acting on the surface of
the fouling layer and to the thickness xf of the fouling layer:

ṁr = K2τfxf , (1.9)

with model constant K2. Both modeling approaches are based on simplistic assumptions
and ignore several mechanism that may be responsible for accumulation of fouling deposits
on heat transfer surfaces and have therefore been frequently criticized, extended and
improved. However, combining Eqs. (1.8) and (1.9) and integration with respect to time
yields:

Rf,th(t) =
K1uc

ρfkfK2τf

(
1− e−K2τf t

)
= R∗

f,th

(
1− e−bt

)
, (1.10)

which includes the asymptotic fouling resistance R∗
f,th. This fundamental relationship

describes the increase of the fouling resistance in time, which approaches the limiting value
asymptotically. It is obvious that the final value of the fouling resistance increases with
the foulant concentration in the carrier flow and decreases with the flow velocity, since the
shear stress acting on the surface of the fouling layer is proportional to the square of the
bulk flow velocity (i.e., τf ∝ ρu2). Moreover, Eq. (1.10) states that until the asymptotic
fouling resistance is attained, the increase of the fouling resistance depends only on the
bulk flow velocity as shown in Fig. 1.5.
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Fig. 1.5: Fouling resistance Rf,th/R
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Eq. (1.10), according to the Kern and Seaton model [69].
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Although the presented modeling approach, Eq. (1.10), provides essential information
regarding the fouling process and reveals fundamental physical dependencies, it suffers from
the drawback that it allows only a pure integral evaluation and assessment of particulate
fouling without accounting for local flow features, e.g., switching vortices caused by dimples.
Furthermore, a precise calibration of the model constants, which is based on experimental
fouling investigations, is necessary to achieve reliable results.

1.3 Objectives and thesis outline

A careful review of the available literature has shown, that no numerical investigations
of dimpled heat transfer surfaces regarding the interaction between local flow structures,
convective heat transfer and fouling deposits using transient large-scale resolving numerical
methods (e.g., LES or IDDES) exist at this moment. Moreover, the supposed fouling-
mitigation potential of dimpled surfaces is still not confirmed numerically. This work is
aimed to fill up this lack of knowledge by introducing a new multiphase Eulerian-Lagrangian
approach which is suitable for CFD studies of heat transfer enhancement methods under
consideration of particulate fouling using large-scale resolving methods, providing the
opportunity to analyze the interaction between local flow structures and different fouling
processes in a more comprehensive way. Thus, the two main objectives of this thesis are:

1. Development of a novel numerical approach for spatial- and time-resolved simula-
tions of particulate fouling on structured heat transfer surfaces, based on Eulerian-
Lagrangian LES. Extensive validation of the presented multiphase Eulerian-Lagrangian
approach for canonical test cases (e.g., particle-laden backward-facing step flow,
particle-laden channel flow).

2. Investigation of dimpled heat transfer surfaces regarding their ability to mitigate
particulate fouling, while varying the dimple geometry (depth-to-dimple diameter
ratio) and dimple arrangement (single spherical dimple and spherical dimples in a
staggered arrangement, i.e., dimple package) as well as the carrier flow conditions
(bulk flow velocity and mass loading of the dispersed phase).

This dissertation is divided into two parts. The first part contains the theoretical back-
ground including the derivation of the governing equations for the continuous phase (carrier
flow) and the dispersed phase (foulant material), the numerical methodology as well as a
description of the implemented fouling model. The second part presents the validation of
the numerical methods and the results of the performed numerical fouling investigations
for dimpled heat transfer surfaces followed by a conclusion.
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In this chapter, the fundamental equations of fluid motions and heat transfer are derived,
allowing a full description of the investigated incompressible carrier flows (i.e., continuous
phase). Additionally, a condensed introduction into turbulent wall-bounded flows and
different mathematical turbulence modeling approaches, with emphasis on the large-
eddy simulation (LES), is given. More information and detailed discussions on fluid
dynamics, turbulence, and modeling approaches for turbulent flows can be found in
[89, 116, 123, 82, 124, 10].

2.1 Governing equations of fluid motion

The governing equations of fluid dynamics are derived under continuum assumption, which
means that the considered fluid is a continuum state of matter and all flow variables can
be defined at any point. This assumption holds for very small Knudsen numbers

Kn =
λ

L
� 1, (2.1)

or more precisely, if the characteristic length scale of the flow L is much larger than the
mean free path of the flow particles λ. In this case, the fluid motion is described through
the principle of conservation of mass, momentum and energy expressed in a continuous
way in space x and time t.

2.1.1 Continuity equation

Mass conservation implies that the mass of a fluid flow remains constant. Hence, for a
fixed fluid-containing control volume dV , the difference of the mass flow, which enters and
leaves the considered control volume through its boundaries, is zero. This relation can be
formulated using the following integral equation:

∂

∂t

∫
V

ρ dV +

∫
S

ρu · n dS = 0, (2.2)

where ρ is the fluid density, u is the fluid velocity, dS is the infinitesimally small surface
area and n is the unit vector orthogonal to dS. The integral mass conservation, Eq. (2.2),
can be transformed into the differential vector form by applying Gauss’ divergence theorem,



10 2 Description of the continuous phase

see Eq. (4.6), to the convection term and introducing the del operator ∇:

∂ρ

∂t
+∇ · (ρu) = 0. (2.3)

For incompressible or density-constant flows (i.e., flows in which ρ is independent both of
space and time), as considered in this work, this equation reduces to:

∇ · u = 0. (2.4)

Thus, the mass conservation is satisfied for incompressible flows with solenoidal (source-
and sink-free) or divergence-free velocity fields.

2.1.2 Momentum equation

The momentum balance equation is based on Newtons second law of motion, stating that
the temporal change of momentum inside a fixed fluid-containing volume of space dV is
equal to the sum of all surface forces (e.g., pressure, normal and shear stresses) and body
forces (e.g., gravity, centrifugal and Coriolis force) acting on the fluid in the considered
control volume [46]. Thus, the integral form of the momentum equation becomes:

∂

∂t

∫
V

ρu dV +

∫
S

ρuu · n dS =

∫
S

T · n dS +

∫
V

ρB dV , (2.5)

with the stress tensor T, which is the molecular rate of transport of momentum, and
vector B, including the body forces (per unit mass). The surface integrals (convective and
diffusive fluxes) need to be converted into volume integrals by applying Gauss’ divergence
theorem, which leads to following differential vector form of the momentum balance
equation (Euler’s first law of motion):

∂ρu

∂t
+∇ · (ρuu) = ∇ ·T+ ρB. (2.6)

For Newtonian fluids the general stress tensor T is expressed by the static pressure and
shear stresses, which results in:

T = −
(
p+

2

3
μ∇ · u

)
I+ 2μS, (2.7)

where μ is the dynamic viscosity, I is the identity tensor, p is the static pressure and S is
the strain rate tensor:

S =
1

2

(∇u+∇uT
)
. (2.8)




