
CHAPTER 1

INTRODUCTION

1.1 COMPLEXITY THEORY

Suppose that you are given a set of villages connected via dirt roads and are asked
to tarmac a set of streets such that each pair of villages is connected via asphalted
roads. Your budget is limited, hence you want to know whether this task can
be solved with a given amount of money. This problem is fairly easy to solve:
starting from an arbitrary village v1, tarmac the shortest dirt road connecting v1
to some not yet accessible village v2. Now again choose the shortest dirt road as
above starting from either v1 or v2, and so forth until all villages are connected.

This algorithm, also known as Prim’s algorithm [Jar30, Pri57], will provide you
with a minimal cost solution which you can compare to your budget. Moreover,
the resources required to solve the problem are quite limited: one only needs
to keep track of the set of villages already connected to each other and find the
shortest dirt road leading from these to some not yet accessible village. But what
if you are instead asked to tarmac a round trip that visits each village exactly
once rather than an arbitrary set of streets. For this modification, the above
strategy will no longer work. Indeed, no one has yet found an algorithm running
in subexponential-time that answers the question whether you can tarmac a
round trip. But can we be sure that no such algorithm exists? And in which
way does the additional restriction make the problem computationally more
involved?

These questions are typically studied in an area of theoretical computer science
called (computational) complexity theory. This area analyzes the resources required
to solve a computational problem and classifies these according to their inherent
difficulty. One of the main goals of this area is to understand which problems
are easy to solve, which problems are computationally hard, and of course,
why. The class of easy decision problems is denoted by P and comprises those
problems that are efficiently (that is, polynomial-time) solvable. The first of the
above problems belongs to this class. For the second problem no polynomial-
time algorithm is known; however, given a solution we can easily verify its
correctness. Such problems are called efficiently verifiable, and the class of all such
problems is denoted NP. As any efficiently solvable problem is also efficiently
verifiable, we have P ⊆ NP. And while the question whether P = NP or P � NP
is one of the most important open problems in computer science, the inability to
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prove or refute P = NP led to the development of a rich theory of computational
complexity.

An important role in this context play the hardest problems in NP in the sense
that an algorithm for any such problem can be transformed into one for any
problem in NP. These problems are called NP-complete. An efficient algorithm
for an NP-complete problem would thus allow for the efficient solution of all
problems in NP, that is, P = NP. The first problem shown to be NP-complete
was SAT, the satisfiability problem for propositional formulae [Coo71].

In this thesis, we will encounter problems that do not fall into the classes P or
NP, for example, problems whose complement lies in NP. This class of problems
for which the absence of solutions can be verified in polynomial-time, is known
as coNP. We also require classes for problems that are harder to solve than SAT in
the sense that they are only known to be efficiently verifiable if provided with an
oracle that is able to instantaneously answer queries to a language in NP. These
problems are called efficient verifiable relative to an NP-oracle. For example,
the problem to determine whether the lexicographic smallest assignment of a
formula sets to true a certain proposition is known to be efficiently verifiable
relative to an NP-oracle but not known to be in NP or coNP. One can now
consider problems that are efficiently verifiable relative to such problems, and
so on. The concept of efficient verification relative to an oracle thus naturally
leads to a hierarchy of complexity classes known as the polynomial hierarchy. The
(i + 1)th level of this hierarchy comprises the class Σp

i+1 of problems known to
be efficiently verifiable given an oracle for the ith level and the class Πp

i+1 of their
complements, where the Σp

0 and Πp
0 are defined as P.

We will use this rich framework of complexity theory to classify the complexity
of computational problems connected to logics for knowledge representation
and commonsense reasoning.

1.2 NONMONOTONIC LOGIC

One of the most intriguing aspects of human reasoning is its flexibility and speed.
Despite the fact that in most situations we do not have all relevant knowledge
at hand, commonsense enables one to draw conclusions by virtue of plausible
assumptions. These assumptions might be invalidated by new information about
the world; therefore human reasoning is said to be nonmonotonic.

For example, suppose that you need some advice from a colleague. As his
office is empty and it is noon, you conclude that he is gone for lunch; a conclusion
derived from an assumption about his usual behaviour. Learning that he is on a
business trip now invalidates your old conclusion.

From the very beginning of knowledge representation and reasoning, it has
been argued that classical logic is not suited to formalize the process of human
reasoning, mainly for its inherent monotonicity: once a statement is derivable
it may never be invalidated regardless of whatever knowledge one might gain.
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To overcome this deficiency, nonmonotonic logics have been introduced around
1980 [McC80, MD80, Rei80]. These logic can be distinguished by the way they
facilitate nonmonotonic behaviour:

1. by extension with new inference rules,

2. by extension with modal operators,

3. by modification of the semantics.

In this thesis, we will examine one logic from each of the above approaches and
study the complexity of natural problems arising in these. In particular, we focus
on the following well-known logics.

Default logic has been introduced by Reiter [Rei80] and extends classical (first-
order or propositional) logic with inference rules of the form α:β

γ , called

default rules. The default rule α:β
γ allows to conclude γ if the premise α is

derivable and the justification β can consistently be assumed.

Autoepistemic logic has been introduced by Moore [Moo85] and extends clas-
sical logic with a unary “introspective” operator L expressing belief. For a
formula ϕ, Lϕ states that an ideally rational agent can derive ϕ.

Circumscription has been introduced by McCarthy [McC80]. Rather than ex-
tending classical logic, it restricts the notion of satisfiability and inference
to consider the minimal model of a formula only. It has been shown that
circumscription as defined by Lifschitz [Lif85] is equivalent to reasoning
under the extended closed world assumption, which for a designated set P
allows to assume ¬p whenever p ∈ P is not derivable [GPP89].

The extensions introduced by default or autoepistemic logic condition the deriv-
able knowledge on a set of beliefs. Therefore maximal stable sets of knowledge
supersede the traditional deductive closure. For default logic these are called
stable extensions; for autoepistemic logic, stable expansions. A default or an au-
toepistemic theory may possess multiple or no such maximal stable sets of
knowledge. Thus the following questions naturally arise: Does a given set of
formulae admit a maximal stable set of knowledge? A lack thereof would cor-
respond to the case that for all possible sets of beliefs one eventually arrives
at contradictory information. The problem hence asks whether one can obtain
consistent knowledge of the world. This problem is a rough analogue of the
satisfiability problem in propositional logics and will henceforth be referred to
as the extension (respectively expansion) existence problem.

Beyond, the potential presence of multiple maximal stable sets of knowledge
leads to two different interpretations for the question whether a certain informa-
tion is derivable: the first, credulous reasoning (also referred to as brave reasoning),
asks whether a formula is contained in at least one stable extension (respectively
expansion) of the knowledge base; the second, skeptical reasoning (also referred



4 Chapter 1 Introduction

to as cautious reasoning), asks whether the formula is contained in all stable ex-
tensions (respectively expansions). On an intuitive level, credulously entailed
knowledge can be considered “possible”, while skeptically entailed knowledge
is “certain” in the sense that any possible interpretation of the world entails it.
The associated decision problems are natural generalizations of the propositional
implication problem and will henceforth be referred to as the credulous reasoning
problem and the skeptical reasoning problem.

In the restricted semantics of minimal models no corresponding notion of
maximal stable sets of knowledge exists. The corresponding notion in circum-
scription are minimal (or circumscriptive) models, which exist if and only if the
given knowledge base is satisfiable. Therefore the problem of determining their
existence of is equal to SAT. For circumscription we are hence restricted to the
study of the skeptical reasoning problem, that is, to decide whether for a given
set of formulae Γ and a formula ϕ, whether ϕ is true in all minimal models of Γ.

1.3 RESULTS

While for extensions of first-order logic all of the above decision problems
are undecidable, they are decidable for extensions of propositional logic—but
presumably harder than the traditional satisfiability or implication problem:
they are known to be complete for the second level of the polynomial hierar-
chy [Nie90, CL90, Got92, EG93]. For this reason, several semantic restrictions
and parameterizations of these problems have been studied in the literature (see
[CL90, KS91, NR94, KK03, Nor04, CHS07], amongst others).

In this thesis, we take a different approach and perform a systematic study
of the complexity of the above extension (respectively expansion) existence and
reasoning problems obtained by restricting the set of allowed Boolean connec-
tives. To this end, we generalize the underlying problems to allow for arbitrary
Boolean connectives rather than the Boolean standard base {∧,∨,¬} and classify
the complexity of these problems parameterized by the set of allowed Boolean
connectives for all possible finite sets of Boolean connectives.

This approach has first been taken by Lewis [Lew79], who showed that the
satisfiability problem is NP-complete if and only if the negation of the impli-
cation (x� y) can be composed from the given Boolean connectives. Such a
dichotomous behaviour cannot be taken for granted due to Ladner’s theorem:
if P �= NP then there exists infinitely many degrees of complexity between
P and NP-completeness [Lad75]. Since then, Lewis’ approach has been ap-
plied to a wide range of problems including equivalence and implication prob-
lems [Rei03, BMTV09a], satisfiability and model checking in modal and temporal
logics [BHSS06, BSS+08, BMS+09, MMTV09, MMS+09], and abduction [CST10].

Herein we study whether a similarly polytomous complexity classification
is possible for the extension (respectively expansion) existence and reasoning
problems mentioned above. Our goal is to exhibit fragments of lower complexity



1.3 Results 5

which might lead to better algorithms for cases in which the set of Boolean
connectives can be restricted. Furthermore we aim to understand the sources
of hardness and to provide an understanding which connectives take the role
of x� y in the context of the nonmonotonic logics mentioned above, that is,
which connectives account for jumps in the complexity of the problems. These
connectives may help to identify candidates for parameters in the study of
parameterized complexity of nonmonotonic logics.

To be more precise, let B denote the finite set of available Boolean connec-
tives. Although at first sight, an infinite number of sets B of allowed Boolean
connectives has to be examined, we prove, making use of results from universal
algebra, that for all considered problems the complexity does not depend on the
particular set but rather on the clone [B] of B, that is, the set of functions which
can be implemented from B using projections and arbitrary composition.

DECISION PROBLEMS

We show that both the complexity of the extension existence problem in default
logic and the complexity of the expansion existence problem in autoepistemic
logic are polytomous (see Theorems 4.1.1 and 4.2.1):

the extension existence problem remains Σp
2 -complete for all sets B such that

[B ∪ {1}] = BF; becomes Δp
2 -complete for monotone sets B that contain conjunc-

tions, disjunctions and the constant 0; is NP-complete if [B ∪ {1}] contains ¬ and
comprises affine functions only; and becomes tractable in all other cases (with
this case splitting into P-complete, NL-complete, and trivial sub-cases). The
expansion existence problem for autoepistemic logic, on the other hand, remains
Σp

2 -complete for all B such that [B ∪ {0, 1}] includes the Boolean functions ∧ and
∨, is NP-complete if [B] contains ∨ and the Boolean constants only, and becomes
polynomial-time decidable in all other cases (with this case splitting into three
different complexity degrees inside P).

For the credulous and skeptical reasoning problems in default logic and au-
toepistemic logic, the situation is more diverse as there are two sources for the
complexity: On the one hand, we need to determine a finite characterization of
a candidate for a stable extension (respectively expansion). And, on the other
hand, we have to verify that this candidate is indeed a finite characterization as
desired—a task that requires to test for formula implication. Depending on the
Boolean connectives allowed, one or both tasks can be performed in polynomial
time or even become trivial. In principle, this yields five possible cases for the
complexity of the problems, and we will see that all five cases actually occur. In
principle, this yields five possible cases for the complexity of the problems, and
we will see that all four cases actually occur.

We obtain Σp
2 -completeness for the skeptical reasoning problems and Πp

2 -
completeness for the credulous reasoning problems for all clones where both
the stable extension and the implication problem attain their highest complexity.
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For default logic, the complexity of the reasoning problems reduces to Δp
2 for

clones that allow for an efficient computation of stable extensions but whose
implication problem remains coNP-complete. More precisely, these problems
are Δp

2 -complete if a stable extension may not exist and becomes coNP-complete
otherwise. Conversely, if the implication problem becomes easy but determining
an extension candidate is hard, then the credulous reasoning problem is NP-
complete, while the skeptical reasoning problems is coNP-complete. Similarly
for autoepistemic logic, the credulous and skeptical reasoning problems become
complete for respectively NP and coNP if the implication problem is tractable
but determining an expansion candidate is hard. Finally, for clones that allow for
solving both tasks in polynomial time all reasoning problems become tractable
(with these cases splitting up into different complexity degrees ranging from
membership in AC0 to completeness for P). We hence obtain polytomous classifi-
cations of the computational complexity of the problems, where for the credulous
reasoning problem in default logic, notably, complete fragments for all classes
of the polynomial hierarchy below Σp

2 occur. In contrast to this, the complexity
of credulous and skeptical reasoning in autoepistemic logic decreases in coarser
steps. These results are presented in Theorems 5.1.1, 5.1.5, 5.2.1 and 5.2.4.

As for circumscription, the complexity of the skeptical reasoning problem is
Πp

2 -complete for all clones such that the implication problem and the problem
to determine the minimality of models are intractable. If all available func-
tions are affine or monotone, then the complexity of the problem is contained
in coNP, where it is coNP-complete in the former case as long as ∨ remains
expressible using the available functions and the constant 1. This decrease in
the complexity comes from different sources: for monotone functions the test for
minimality of models becomes tractable, while for affine functions the implica-
tion problem becomes tractable. Finally, if the set of available functions is further
restricted to contain either only negations or only conjunctions, then the problem
becomes polynomial-time solvable (its complexity drops to respectively AC0[2]-
completeness or membership in AC0). This is summarized in Theorem 5.3.1.
We point out that the implication problem and the problem to determine the
minimality of models do not completely determine the complexity of the skep-
tical reasoning problem: for all sets B such that [B ∪ {0, 1}] contains ∨ and the
Boolean constants only, the latter problem remains coNP-complete whereas the
implication problem and minimality of models can be decided in polynomial
time.

COUNTING PROBLEMS

Besides the decision variants, another natural question is concerned with the
number of stable extensions (respectively expansions) or the number of minimal
models. This question refers to counting problems. Recently, counting problems
have gained quite a lot of attention in nonmonotonic logics. For circumscrip-
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tion, the counting problem (that is, determining the number of minimal models
of a propositional formula) has been studied in [DHK05, DH08]. For proposi-
tional abduction, a nonmonotonic formalism for computing explanations, some
complexity results on the problem of counting the number of “solutions” to a
propositional abduction problem were presented in [HP07, CST10]. Algorithms
based on bounded treewidth have been proposed in [JPRW08] for the counting
problems in abduction and circumscription. Here, we consider the complexity
of the problem to count the number of stable extensions, stable expansions and
minimal models of a given knowledge base. To the best of our knowledge, the
first problem is addressed here for the first time.

In particular, we show in Theorem 6.1.1 that for sets B of Boolean connec-
tives such that [B ∪ {1}] is functional complete counting the number of stable
extensions is complete for the second level of the counting hierarchy; becomes
Δp

2 -complete for all monotone sets B such that [B ∪ {1}] = M; is #P-complete
for affine sets B such that ¬ can be implemented from B ∪ {1}; and becomes
efficiently computable in all other cases. In autoepistemic logic, the complexity
of counting the number of stable expansions is trichotomous and decreases anal-
ogously to the complexity of the stable expansion problem, see Theorem 6.2.1.

We think it is important to note that for our classification of the two counting
problems above the conceptually simple parsimonious reductions are sufficient,
while for related classifications in the literature less restrictive (and more com-
plicated) reductions such as subtractive or complementive reductions had to
be used (see, for example, [DHK05, DH08, BBC+09] and some of the results
of [HP07]). Parsimonious reductions are not only the conceptually simplest
ones since they are direct analogues of the usual many-one reductions among
languages. They also form the strongest (or strictest) type of reduction with a
number of good properties, for example, all relevant counting classes are closed
under parsimonious reductions.

Lastly, the complexity of counting the number of minimal models is classified
in Theorem 6.3.1. Unlike the preceding counting problems, here we have sets of
Boolean functions for which the problem to decide whether a given assignment
is a circumscriptive model is tractable while the corresponding counting problem
is #P-complete (namely affine sets of Boolean functions that implement the
ternary exclusive-or). In all remaining cases, its complexity can be derived
from the complexity of the skeptical reasoning problem in circumscription in
the way that completeness for the second level of the polynomial hierarchy
translates to #·coNP-completeness, completeness for the first level translates to
#P-completeness, and membership in P translates to membership in FP. However,
mind that the decision problem underlying the circumscriptive model counting
problem is the question whether there exists a minimal model for the given
formula—a problem equivalent to the satisfiability problem for propositional
formulae. It thus represents a counting problem whose underlying decision
problem is, though intractable, supposedly easier to solve than the decision
problems underlying the generic complete problem for #·coNP.


