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Machine learning algorithms are being increasingly used in the field of autonomous driving. For

example, generative algorithms can be used to generate time series corresponding to safety-critical

driving scenarios. This paper answers the following scientific question:

Which generative algorithms are particularly suitable for generating time series appropriate for
the study of autonomous driving?
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I. Motivation
Approximately 3700 people die in traffic accidents each day [1] [2] [3] [4] [5]. The most

frequent cause of accidents is human error [6]. Autonomous driving can significantly reduce the

number of traffic accidents. To prepare autonomous vehicles for road traffic, the software and

system components must be thoroughly validated and tested. However, due to their criticality, there

is only a limited amount of data for safety-critical driving scenarios. Such driving scenarios can

be represented in the form of time series. These represent the corresponding kinematic vehicle

movements by including vectors of time, position coordinates, velocities, and accelerations. There

are several ways to provide such data. For example, this can be done in the form of a kinematic

model. Alternatively, methods of artificial intelligence or machine learning can be used. These are

already being widely used in the development of autonomous vehicles. For example, generative

algorithms can be used to generate safety-critical driving data. A novel taxonomy for the generation

of time series and suitable generative algorithms will be described in this paper. In addition, a

generative algorithm will be recommended and used to demonstrate the generation of time series

associated with a typical example of a driving-critical scenario.
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II. Time Series
Sequential data represents an ordered list of events. This type of data can be found in various

use cases, such as in biology (e.g. DNA or protein sequences) or symbolic sequences (e.g. logical

sequences of a customer purchase). Another important type of sequential data are time series. These

contain numerical data, typically with a fixed and discrete time interval. Time series are found in a

wide variety of applications. These occur in nature, in the form of temperature or climate, and in

economics, in the form of stock prices. Sensor data of vehicles are also time series. With the help of

time series analysis, the structure of time series can be understood. [6] [7]

III. Generative Algorithms
Generative algorithms belong to the field ofmachine learning and have gained significant attention

in recent years. This type of algorithm can be understood as the counterpart to discriminative

algorithms. They can, based on a probability distribution, generate new data. For this, information

about the characteristics of the features are needed. In this regard, the characteristics of the different

observations from the original data set, respectively, training data set, are transformed into a

probability model. In the course of a stochastic process, the generative algorithm approximates a

probability distribution of the training data set. The training phase of the probability model can be

considered complete as soon as the generated data hardly differ from the original data set. Classical

generative algorithms do not require labeled data sets (unsupervised learning). However, there are

also mixed forms, which also depend on labels (unsupervised and supervised learning). [8] [9] A

closer look at the literature reveals a higher-level taxonomy of generative algorithms in general. [8]

Fig. 1 Taxonomy of generative models
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As seen in Figure 1, all generative algorithms are derived from the maximum likelihood method.

A basic classification into explicit and implicit densities is made. Here, density refers to the

probability density function (PDF) of the data set. The term ‘explicit density’ refers to an explicit

or a closed expression of such a PDF. The implicit density method, on the other hand, estimates

the PDF during the training phase. The explicit approach distinguishes between tractable densities

and approximate densities. Generative algorithms, which belong to the group of tractable density,

can be executed in polynomial time. These include algorithms such as Fully visible belief nets,

Neural Autoregressive Distribution Estimation (NADE), Masked Autoencoder for Distribution

Estimation (MADE), Pixel Recurrent Neural Networks (PixelRNN) or change of variable models.

With generative algorithms, which instead belong to the group of approximate densities, a known

PDF is approximated during the training phase. In particular, the Variational Autoencoder (VAE) as

well as the Restricted Boltzmann Machine (RBM) are to be mentioned in this regard. VAEs were

one of the first known generative neural networks of their kind. They are used in the field of image

processing and feature reduction. RBMs are an extension of the Boltzmann Machines. They are

used, for example, in the generation of human motion sequences. With the implicit approach, a

subdivision between Generative Stochastic Networks (GSN) and Generative Adversarial Networks

(GAN) takes place. GSNs are Markov chains and mimic the Gipps sampler of a Depp Boltzmann

Machine. They can handle sequential data, but are not suitable for time series. [8] [9]

A. Generative Adversarial Networks
Generative Adversarial Networks (GAN) have gained great popularity in recent years. Moreover,

they have been able to achieve continual improvement in their quality. The range of applications for

GANs is diverse. GANs are used in different domains, such as image, video, audio, text, speech

processing as well as time series. Goodfellow et al. developed the first concept of GAN in 2014.

According to Figure 1, GANs determine a PDF in an implicit-direct manner. In more detail, a

stochastic procedure is defined that is capable of generating synthetic data directly. The generation

of new synthetic data is based on existing data sets. The basic structure of a GAN model consists of

two artificial neural networks (ANNs), the so-called generator (G) and the discriminator (D), which

perform a zero-sum game. [8] [9] The structure of the model is illustrated in Figure 2.

Fig. 2 Structure of a GAN model [8]
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The task of the generator is to generate new synthetic data, whereas these data are evaluated or

criticized by the discriminator. At the beginning, a probability distribution 𝑝𝑥 is generated from
an original data set, respectively, a training data set. It is used for representing the features of the

original data set 𝑥 in a latent space (sub-space). At first, the generator is initialized with a latent
random vector 𝑧. The goal of the generator is to learn to generate synthetic data, according to an
approximate distribution (𝑝𝑔). The discriminator, on the other hand, tries to distinguish between
the generated data and the original data. Here, 𝑦 indicates whether 𝑥 comes from 𝑝𝑥 (with 𝑦 = 1)

or from 𝑝𝑔 (with 𝑦 = 0). GANs include white noise at the beginning of the training exclusively.

Both networks interact with each other until the generator generates synthetic data that cannot be

distinguished by the discriminator from the original data. This process is also known as a minimax

game (also a zero-sum game), where the loss function of the discriminator is maximized and that of

the generator is minimized. The total loss function 𝑉 (𝐺, 𝐷) is defined as follows: [8] [9]

min
𝐺

max
𝐷

𝑉 (𝐺, 𝐷) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥)
[
log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))] (1)

During training, the GAN model is optimized alternately. This involves fixing the weights of one

network while optimizing the weights of the other one, and vice versa. At the beginning of the

training, the generator is fixed first, to adjust the weights of the discriminator. Then, the weights

of the discriminator are fixed, to update those of the generator. This process is repeated at each

training iteration until the distribution of the synthetic data set 𝑝𝑔 resembles the original data set 𝑝𝑥 .
After several training steps, the generator and discriminator reach a state where neither can improve.

In this way, the global optimum is reached as soon as 𝑝𝑔 and 𝑝𝑥 are identical. This means that the
discriminator can no longer distinguish between those two distributions. This is achieved as soon as

𝐷 (𝑥) = 0.5. Afterwards, the training phase is terminated and the discriminator is discarded. The
discriminator has fulfilled its task by helping the generator to reach its target distribution (𝑝𝑔 = 𝑝𝑥)
in order to be able to generate new data based on the approximation 𝑝𝑔. GANs are characterized by
the high quality of the generated data. The diversity of applications is to be emphasized also. Due

to the explosive nature of GANs, it is expected that this type of algorithm will continue to improve.

There are already many publications about GANs. The tendency is still increasing. The training

phase of a GAN is considered as a major challenge. It is mathematically complex and can lead to

consequent numerical instabilities. The reason for this is the already mentioned minimax problem of

the loss function. The evaluation of the generated data of a GAN is difficult to implement. Currently,

expert knowledge (qualitative consideration) is used in this regard, for example. Alternatively,

similarity measures (quantitative consideration) of underlying PDFs can be applied also. [8] [9]

B. Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBM) belong to the group of generative algorithms that

represent an explicit probability model. An RBM is an ANN consisting of a visible layer and

a hidden layer. They have the ability to learn a probability distribution of the original data set.

RBMs were developed in 1985 by Hinton and Sejnowski. They can be used for dimensionality

reduction, classification, regression, collaborative filtering, feature learning, topic modeling, as well

as sequences. They are an extension of Boltzmann machines and are constrained with respect to the

connections between the visible and hidden nodes. [8] The abstract structure of an RBM model is

shown in Figure 3.
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Fig. 3 Structure of an RBM model [8]

The graph illustrates a bipartite undirected graph. This consists of 𝑚 visible units as well as 𝑛
hidden units. Each node in the visible layer is connected to each node in the hidden layer. However,

due to the constraint, nodes in the same layer are not connected to each other. This allows the use of

efficient and numerically more stable training algorithms, such as the gradient-based Contrastive

Divergence (CD) algorithm. RBMs approximate a distribution function stochastically. The joint

probability distribution of the model is given by the Gibbs distribution [8]

𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸 (𝑣,ℎ) (2)

with the loss fuction [8]

𝐸 (𝑣, ℎ) = −

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖 𝑗 ℎ𝑖𝑣 𝑗 −

𝑚∑
𝑗=1

𝑏 𝑗𝑣 𝑗 −

𝑛∑
𝑖=1

𝑐𝑖ℎ𝑖 (3)

Here 𝑤𝑖 𝑗 denotes the weight of the connection between units 𝑣𝑖 and ℎ 𝑗 . The visible units 𝑣𝑖 represent
observable data, whereas the hidden units capture the dependencies between the observed variables.

There are two different bias units (hidden and visible biases). The hidden biases 𝑐𝑖 are used in
the forward pass and the visible biases 𝑏 𝑗 to reconstruct the input during the backward pass. The

variable 𝑍 denotes the distribution function and is given by summing over all possible pairs of

visible and hidden vectors: [8]

𝑍 =
∑
𝑣,ℎ

𝑒−𝐸 (𝑣,ℎ) (4)

The forward pass respectively the training of the network is shown in Figure 4 with several inputs 𝑥.
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Fig. 4 Forward pass of an RBM model [8]

In the first step, the inputs 𝑥 are multiplied by the weights 𝑤𝑖 and then added with the bias 𝑏 𝑗 .

The output is then passed through a sigmoid activation function. The output determines whether the

hidden node is activated or not (binary activation). The weights represent a matrix, with the number

of input nodes (number of rows), and the number of hidden nodes (number of columns). Before the

bias value is added to the first hidden node, a vector multiplication of the inputs multiplied by the

first weight column is applied. [8]

Fig. 5 Backward pass of an RBM model [8]
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Once the training has been completed, the backward pass follows. Figure 5 shows its structure.

While the RBM uses inputs to predict node activations during the forward pass, it tries to estimate the

probability of inputs during the backward pass based on given activations. The difference between

the reconstructions and the original input is due to the random initialization of the weights applied

at the beginning. This is also referred to as reconstruction error, and is the difference between

the reconstructed values 𝑟 and the original input values 𝑥. In an iterative learning process, this
error is used to optimize the weights of the network until a minimum error is reached. To measure

the distance between two PDFs, RBMs use the Kullback–Leibler divergence. The CD is used to

minimize the distance of both probability distributions accordingly. RBMs are more efficient and

numerically stable compared to the unconstrained Boltzmann machine, due to their constraints

as well as in conjunction with the CD algorithm applied. Those RBMs which contain recurrent

nodes use LSTM cells mostly to build-up the recurrent behaviour accordingly. This promotes the

information flow of the hidden units. [8]

IV. Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are known in the modeling of sequence data due to their

recurrent characteristics. By preserving past information over time, RNNs are able to learn the

temporal properties of the original data set. RNNs have applications in language translation, speech

generation, handwriting recognition, image-to-text translation, and machine translation. [8] [9] The

general structures of a standard neural network and those of an RNN model are illustrated in the

following.

Fig. 6 General structures of standard neural network and of an RNN model [8]

In Figure 6 both networks have only one hidden layer. In this simplified representation, not

all units of the input layer 𝑥, hidden layer ℎ, and the output layer 𝑜 are illustrated. In contrast to a
standard feed forward neural network, in an RNN the hidden layer receives two inputs. These include

the values from the current input layer as well as from the hidden layer (from the previous time step

𝑡 − 1). Such an information flow is represented in the model as a loop, which is also referred to as a

recurrent edge. [8] [9] For a closer look at the information flow, an unfolded representation of an

RNN model is illustrated in Figure 7.
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Fig. 7 Unfolded representation of an RNN [8]

At the beginning of the training, the hidden units are initialized with zeros or small random

values. In Figure 8, different weight matrices of a standard RNN are shown.

Fig. 8 Weight matrices of an RNN [8]

The directed edges between units are associated with weights, making up a weight matrix. These

weights are independent of time. There are several different weight matrices in a single-layer RNN,

as listed below: [8] [9]

• 𝑊𝑥ℎ: The weight matrix between the input layer and the hidden layer.

• 𝑊ℎℎ: The weight matrix associated with the recurrent edge.

• 𝑊ℎ𝑜: The weight matrix between the hidden layer and the output layer.

The calculation of the activations of an RNN model is described in more detail below. For the

hidden layer, the network input 𝑧ℎ (pre-activation) is calculated by a linear combination from adding

the sum of the multiplications of the weight matrices with the corresponding vectors to the bias

vector 𝑏ℎ: [8] [9]

𝑧(𝑡)ℎ = 𝑊𝑥ℎ𝑥
(𝑡) +𝑊ℎℎℎ

(𝑡−1) + 𝑏ℎ (5)
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The activations of the hidden units at time step 𝑡 are calculated as follows: [8] [9]

ℎ(𝑡) = 𝜙ℎ

(
𝑧(𝑡)ℎ

)
= 𝜙ℎ

(
𝑊𝑥ℎ𝑥

(𝑡) +𝑊ℎℎℎ
(𝑡−1) + 𝑏ℎ

)
(6)

The size 𝑏ℎ is the bias vector for the hidden units and 𝜙ℎ is the activation function of the hidden

layer. Once the activations of the hidden units at the current time step are calculated, the activations

of the output units are determined as follows: [8] [9]

𝑜(𝑡) = 𝜙𝑜

(
𝑊ℎ𝑜ℎ

(𝑡) + 𝑏𝑜

)
(7)

The variable 𝜙𝑜 is the activation function and 𝑏𝑜 is the bias vector of the output layer. The training
phase of an RNN is a major challenge in general. This refers especially to the recurrent edges.

During the computation of the gradients, the so-called vanishing gradient problem and exploding

gradient occur. These are shown by the examples in Figure 9.

Fig. 9 Vanishing and Exploding problem [8]

Basically, the network has 𝑡 − 𝑘 multiplications. Therefore, multiplying the weight 𝑤 by itself,

results in a factor 𝑤𝑡−𝑘 for 𝑡 − 𝑘 times. When |𝑤 | < 1, this factor takes a very small value (vanishing)

if 𝑡 − 𝑘 is large. On the other hand, in case the weight of the recurrent edge is |𝑤 | > 1, then the factor

𝑤𝑡−𝑘 becomes very large (exploding) if 𝑡 − 𝑘 is large also. Such a high value of 𝑡 − 𝑘 is present in
case the underlying data have larger lengths. A solution to avoid vanishing or exploding gradients

can be achieved by ensuring |𝑤 | = 1. There are at least three different approaches, as listed below:

[8] [9]

• Gradient Clipping (GC)

• Truncated Backpropagation over Time (TBPTT)

• Long Short Term Memory (LSTM)

GC is used to specify a threshold value for the gradients: gradients that exceed this value are

rescaled to produce a more plausible behaviour of the gradient descent. In contrast, TBPTT limits

the number of time steps that the signal can backpropagate after each forward pass. However, such a
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truncation approach limits the number of steps that the gradient can effectively flow back and update

the weights properly. [8] [9]

LSTM cells, on the other hand, are able to successfully counteract such gradient problems

efficiently, also when dealing with larger data sets. The building block of an LSTM include a

memory cell that essentially replaces the hidden layer of a standard RNN. In each memory cell,

there is a recurrent edge that has the desired weight 𝑤 = 1. The values associated with this recurrent

edge are collectively referred to as the cell state. [8] [9] The unfolded structure of a modern LSTM

cell is shown in Figure 10.

Fig. 10 LSTM cell of the hidden unit of an RNN [8]

To obtain the cell state at the time step 𝐶 (𝑡) , the cell state from the previous time step 𝐶 (𝑡−1) ,

without being directly multiplied by a weight factor, is updated. The information flow in this memory

cell is affected by several computational units. In Figure 10, the sign � refers to element-wise

multiplication and ⊕ to element-wise addition. The size 𝑥 (𝑡) refers to the input data at time 𝑡 and
ℎ(𝑡−1) refers to the hidden units at time 𝑡 − 1. The four yellow blocks are each characterized by

either a sigmoid or tanh activation function, as well as a series of weights. These computational

units carry out a linear combination by performing matrix–vector multiplications on their inputs

ℎ(𝑡−1) and 𝑥 (𝑡) . They are likewise referred to as gates. In an LSTM cell, there are three different

types of gates: forget gate, input gate, and output gate. [8] [9]

A forget gate 𝑓𝑡 allows the memory cell to reset the cell state without growing indefinitely.
More specifically, a forget gate decides what kind of information to pass through and what kind of

information to suppress. It is calculated as follows: [8] [9]

𝑓𝑡 = 𝜎
(
𝑊𝑥 𝑓 𝑥

(𝑡) +𝑊ℎ 𝑓 ℎ
(𝑡−1) + 𝑏 𝑓

)
(8)
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