
1 Introduction
Towards the end of the 19th century there were two events within the same decade
that greatly influenced the way people travel and communicate nowadays. The first
one takes place right at the beginning of 1886 in the city of Mannheim in Germany,
where Karl Benz applied for a patent of his Patent-Motorwagen [Ben86]. The three-
wheeled vehicle powered by an internal combustion engine is now widely regarded to
be the invention of the modern car. Nowadays, motor vehicles play a fundamental role
in modern society from transporting goods to personal travel and recreation. Alone
in Germany, as of 2020 there are round 47.7 million registered passenger cars [Kra20].
Current vehicles are however vastly different to the ones produced at the end of the
1800s. Since then, substantial improvements have been made not only in powertrain
technology and passenger comfort, but also in the safety systems for both passengers
and bystanders. These systems can be generally divided in two categories: passive and
active. The former category aims to minimize the severity of a collision and includes
e.g. the seatbelt, the airbags and crumple zones. Active systems, on the other hand,
are aimed at preventing the collision from happening in the first place. Examples from
this category are the anti-lock braking system (ABS), autonomous emergency braking
(AEB) and adaptive cruise control (ACC).

The second influential event happened a mere 50 kilometers away from the first one,
in the city of Karlsruhe. There, the physicist Heinrich Hertz demonstrated the existence
of electromagnetic waves. While their theory had already been laid out by James Clerk
Maxwell in 1864, it was not until Hertz conducted a series of experiments between 1885
and 1889 that their existence was proven. This event gave birth to radio communications
and its multiple applications, one of them being radar—an acronym for radio detection
and ranging. The proto-radar sensor was introduced at the beginning of the 20th century
by Christian Hülsmeyer. His Telemobiloskop [Chr04], as the sensing device was called,
announced the presence of distant metallic objects within its line of sight and its intended
use was to avoid the collision of ships. The following developments of radar systems
were mainly driven by military necessity, e.g. for surveillance, navigation and weapons
guidance [Ric14, pp. 2]. After World War II, civil applications of radar also started to
emerge, e.g. weather radar, air traffic control, maritime navigation and by the end of
the 20th century in series production cars.

At the beginning, automotive radar systems, such as Distronic on the Mercedes S-
Class and Active Cruise Control on the BMW 7 Series, were used for ACC and were
therefore mainly conceived with the comfort of the driver in mind [Gal16, pp. 296].
Later systems, such as AEB, are more concerned with increasing safety, i.e with the
prevention of collisions. These kind of safety features are of utmost importance, since
there is globally a high number of road traffic casualties. For example, in the EU, where

1



1 Introduction
Le

ve
lo

fa
bs

tr
ac

tio
n

Data layer

Detections

Clusters

t

A

vr

R
0

R
0

vr

vr

R
0

L0 L1 L2 L3 L4

FFT CFAR

DBSCAN

x

y

ID: ...
Class: ...

ID: ...
Class: ...

Tracker
Classifier

Baseband
signal

Signal
spectrum

Object list

Figure 1.1: Abstraction levels at the different data layers of the classical radar signal
processing chain.

the number of road fatalities decreased by around 40% in the span of 10 years, they still
summed up to over 25,000 thousand in 2016 [Eur18a]. From this number, 8% is made up
from bicycle fatalities [Eur18a] and 21% from pedestrian fatalities [Eur18b]. Pedestrians
and cyclists are referred to as vulnerable road users (VRU), since the outcome of an
accident is often more severe for them.

From the 21st century onwards, advanced driver-assistance systems (ADAS)—to
which the previously mentioned active safety systems are part of—have become in-
creasingly widespread and their functions more sophisticated. From automatic parking
systems to blind spot detection and lane departure warning system (LDWS), the list
is ever growing. To perform this tasks, radar sensors have become widespread in the
automotive industry due to their low cost, high precision measurements of range, veloc-
ity and angle, and robustness in adverse weather and lighting conditions. The classical
and simplified radar signal processing chain for automotive applications, divided in data
layers at the crucial stages, is depicted in Fig.1.1. It all begins with the unprocessed
time-domain baseband signal, which contains the information of the targets’ range,
velocity and angle in its frequency and phase components. By performing a fast Fourier
transform (FFT), these frequencies are highlighted and, since the FFT is a linear and
invertible function, no information is lost at this stage. A detection algorithm, e.g.
constant false alarm rate (CFAR) detection, separates targets from noise and clutter.
However, no detection algorithm is perfect, resulting in false positives as well as false
negatives, and the higher level of abstraction at layer L2 comes with information loss.
Detections are then gathered in groups (clusters) at layer L3 using algorithms such as
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Table 1.1: The six levels of driving automation, as defined by the SAE Interna-
tional [J3018].

Level Name Description
0 No driving

automation
All dynamic driving functions are fully performed by
the human driver.

1 Driver assistance Steering or accelerating performed by the driver assis-
tance system under certain traffic situations.

2 Partial driving
automation

Both steering and accelerating performed by the
driver assistance system under certain traffic situa-
tions.

3 Conditional driving
automation

The automated driving system performs all aspects
of the dynamic driving task under certain traffic sit-
uations. The human driver is expected to respond
appropriately to a request to intervene.

4 High driving
automation

The automated driving system performs all aspects
of the dynamic driving task under certain traffic situ-
ations, even when the human driver does not respond
appropriately to a request to intervene.

5 Full driving
automation

The automated driving system performs full-time all
aspects of the dynamic driving task under all traffic
situations and environmental conditions.

DBSCAN [EKS+96]. Some detections may also be discarded as noise during this stage.
Lastly, high level algorithms produce predictions about the targets’ attributes, e.g. their
physical size, trajectories and classes. This is done based on features extracted at the
highest abstraction levels.

For many of the ADAS, the classical radar signal processing suffices. They function
mainly in simple and predictable situations, e.g. during highway drives or parking
maneuvers. Nonetheless, the end goal in the automotive industry with regards to ADAS
is to achieve fully autonomous vehicles. The road to reach this point has been divided
into six levels of automation by the SAE International (Table 1.1). From levels 0 to
2, the human driver fully or partially performs the dynamic driving task. At level 2—
where most modern vehicles are currently at—the automated driving system (ADS) can
control both the steering and accelerating task under certain conditions. With “certain
conditions” the previously mentioned simple situations are usually meant. Starting
at level 3, the ADS is fully responsible for the dynamic driving task while engaged.
Gradually a decreasing readiness of the driver to overtake control is needed until level
5 is reached, where a steering wheel is not even necessary.

With the increasing automation of driving functions comes an increasing demand
for the sensors’ capabilities. In order for autonomous driving to become a reality, the
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vehicle’s sensors must be able to function in all kinds of scenarios, not only simple and
predictable ones. Especially challenging is the situation presented by urban scenarios.
These are more densely populated than motorway scenarios and also contain different
types of road users, making them highly dynamic and more complex. For this reason,
vehicles will have to accurately capture the environment and also understand it on a
semantic level. With the ability to classify the different road users it then becomes pos-
sible to apply class specific prediction models, which outperform more general tracking
approaches [DLS+19].

The last decade has seen an increase of deep learning techniques being applied to
replace established methods across multiple disciplines. For example, in the computer
vision domain, the classical approach of performing classification by extracting hand-
selected features and then using a shallow classifier have been replaced by deep convolu-
tional neural networks such as AlexNet [KSH12], VGGNet [SZ14] or GoogleNet [SLJ+15].
Also for object detection, approaches that combine the detection and classification in a
single step—such as YOLO [RDGF15]—have become prevalent.

The problem of using manually designed features for object detections lies within
finding robust ones that fit all kinds of objects with diverse appearance and in different
illumination conditions and backgrounds [ZZXW19]. The same can be said about the
parametrization of the different algorithms in the classical radar signal processing chain,
e.g. of the detection and clustering algorithms, which must fit small and weak targets,
such as pedestrians, as well as large and strong targets, such as trucks. Additionally, deep
learning algorithms can make use of low-level information, usually discarded by the first
steps in the signal processing chain, to perform high-level tasks, such as classification.
For this reasons, deep learning has gained considerable interest in the automotive radar
signal processing domain. The relevant developments in this area are introduced later
in Chapters 4 and 5.

1.1 Goals and Contents of this Work
The goal of this work is to study the feasibility of using deep learning algorithms to
enhance, or even replace, steps of the classical automotive radar signal processing chain
depicted in Fig. 1.1. To do this, multiple detection and classification approaches, at
different data layers of the radar signal processing chain, are developed and implemented.

First, the fundamentals of radar theory are introduced in Chapter 2. This includes the
signal model, as well as the classical signal processing chain of continuous wave radar
sensors. Additionally, the radar system and its parameters, which are used throughout
this work, are presented at the end of the chapter.

Chapter 3 starts with the general theory and terminology of machine learning. Af-
ter introducing the artificial neuron, deep learning with artificial neural networks and
convolutional neural networks is described. Loss and activation functions, as well as
common metrics used to evaluate the models in the following chapters are presented.

Two systems for the classification of VRUs are the subject of Chapter 4. A fundamental
feature of both systems is the so called micro-Doppler effect, which is described at the
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beginning of the chapter. The first system is a novel—at the time of its publication—
approach, which uses a convolutional neural network to perform classifications based
on single-frame radar measurements. For this, only single-target and relatively simple
scenarios are considered. The second system uses a detection procedure to extract
regions of interest, which are then classified with a deep learning approach. In this case,
the approach is multi-target capable and trained and evaluated with measurement data
from test drives in inner city scenarios.

In Chapter 5, two detection systems, one based on time-domain signals (layer L0)
and one based on radar spectra (layer L1), are presented. The system based on layer L1
employs a state of the art single-shot object detector, known as YOLO, to simultaneously
detect and classify VRUs on 2-dimensional radar spectra. It effectively replaces multiple
steps of the radar signal processing chain with a single network: detection, clustering
and classification. The second detection system is a novel approach, which runs the time-
domain baseband signals through an artificial neural network, which performs detections
on the range dimension, effectively replacing the fast Fourier transform (FFT) and the
CFAR procedures in the classical signal processing chain.

Lastly, a summary of this work, concluding remarks and an outlook on possible future
research are given in Chapter 6.
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2 Radar Fundamentals
In this chapter the necessary theoretical background for radar sensors and radar signal
processing is introduced. The scope of this work encompasses continuous wave (CW)
radars only and for this reason the extent of the theoretical background is also limited
to this class of sensors. Hardware aspects are mostly left out in order to focus on the
signal models, which build the basis for the algorithms introduced in later chapters.

The derivation of the signal model begins with the simple mono-frequent CW radar,
followed by the frequency modulated continuous wave (FMCW) radar and finally the
chirp sequence FMCW radar. Following that, target detection procedures on the 2-
dimensional radar spectrum are briefly described. These sections are mainly based on
Kronauge [Kro14], unless otherwise specified. Furthermore, the signal model for perform-
ing angle measurements utilizing a phased array is derived following Richards [Ric14].

The last section in this chapter presents the chosen radar system, the waveform and
system parameters selected to achieve the necessary performance in automotive urban
scenarios, as well as the hardware modifications needed to integrate it in a test-vehicle.

2.1 Continuous Wave Radar
A radar sensor functions in the broad sense by radiating a high-frequency signal sT(t) and
receiving the backscattered signal sR(t). The shape of sT(t), also known as the waveform,
is determined by the selected modulation scheme. This in turn will determine the
characteristics of the radar system in regards to resolution, unambiguous measurement
range and multi-target capabilities.

Figure 2.1 depicts the generic block diagram of a CW radar. A waveform generator is
used to create a signal, which drives the voltage controlled oscillator (VCO). The VCO
then produces the transmit signal, which can be analytically expressed as

sT(t) = aT(t) · cos(φT(t)), (2.1)

where aT(t) and φT(t) denote the time dependent amplitude and phase of the signal.
In the case of CW radars the amplitude is not modulated, i.e. the time dependent
amplitude aT(t) in Equation 2.1 becomes an arbitrary constant value, which is assumed
to be equal to one (aT(t) = 1) to simplify further considerations. The instantaneous
transmit frequency fT(t) of sT(t) is given by the time derivative of its phase:

fT(t) = 1
2π

dφT(t)
dt

. (2.2)
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Figure 2.1: Block diagram of a CW radar.

The expression for the transmit signal in Equation 2.1 can then be re-written in terms
of fT(t) using Equation 2.2:

sT(t) = cos
(
2π ·

∫ t

0
fT(t′)dt′). (2.3)

If an object is present in the field of view (FOV) of the radar, the receive signal will
constitute of the superposition of the backscattered transmit signal at different points
on the object. In order to simplify the following derivations, it is assumed that only one
point on the object scatters the signal back to the radar. The signal coming from the
so called point-target at the radar receiver can thus be regarded as a time-delayed and
scaled version of the transmit signal:

sR(t) = AR · sT(t − τ), (2.4)

where τ is the round trip delay, i.e. the time that it takes for the signal to travel from
the radar to the target and back again to the radar, and AR is the amplitude of the
signal. If the object is located at a range R0 from the radar, the time delay is

τ = 2 · R0

c
, (2.5)

with the speed of light c ≈ 3·108m s−1. The amplitude AR is proportional to the received
power PR, which can be determined using the mono-static radar equation [Sko01, pp. 6]:

PR = PT · GT · GR · σr · λ2

(4π)3 · R0
4 , (2.6)

8



2.2 Mono-Frequent Continuous Wave Radar

where PT is the transmit power, GT the transmit antenna gain, GR the receive antenna
gain, σr the object’s radar cross section (RCS) and λ the wavelength.

A CW radar simultaneously transmits and receives the backscattered signal. The
receive signal is first amplified by a low noise amplifier (LNA) and then down-converted
by mixing it with the transmit signal, which produces the intermediate frequency, also
known as baseband, radar signal sB(t). The block diagram in Fig. 2.1 contains an I/Q-
mixer, which down-converts the in-phase and quadrature components of the receive
signal separately. To simplify matters, the mixers can be regarded as ideal multipli-
ers [Poz05]. In this case, the complex baseband signal can be expressed as

sB(t) = sI
B(t) − jsQ

B(t)
= AR

[
cos(φT(t)) · cos(φT(t − τ)) − j sin(φT(t)) · cos(φT(t − τ))

]
,

(2.7)

where sI
B and sQ

B are the in-phase and quadrature components of the complex baseband
signal sB. Using the formula for the product of trigonometric functions [BSMM08, pp.
82] the signal can also be written as

sB(t) = AR

2
[

cos
(
φT(t) − φT(t − τ)

)
+ cos

(
φT(t) + φT(t + τ)

)
− j · sin

(
φT(t) − φT(t − τ)

)
+ j · sin

(
φT(t) + φT(t + τ)

)]
(2.8)

The subsequent low-pass filters (LPF) suppress the higher frequency components—
those with φT(t)+φT(t+τ) in the argument—of the signal. Therefore, only the difference
of the transmit and receive phases remains:

sB(t) = AR

2
[

cos
(
φT(t) − φT(t − τ)

)
− j · sin

(
φT(t) − φT(t − τ)

)]
. (2.9)

Equation 2.9 can also be expressed using Euler’s formula:

sB(t) = AR

2 exp
(
j(φT(t − τ) − φT(t))

)
. (2.10)

Finally, the signal gets digitalized by the analog-to-digital converters (ADC) so that
the subsequent signal processing steps, e.g. detection, clustering or tracking, can be
performed.

2.2 Mono-Frequent Continuous Wave Radar
The simplest form of a CW radar is the mono-frequent CW radar. For this kind of
waveform, the transmit frequency remains constant at the center frequency fc for the
whole duration of the measurement. Figure 2.2 illustrates the transmit frequency of the
mono-frequent CW radar for the duration of one measurement frame Tm.

Plugging fT(t) = fc into Equation 2.2 yields the transmit signal for the mono-frequent
continuous wave waveform (assuming a start phase of zero):

sT(t) = cos
(
2π · fc · t

)
. (2.11)
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Figure 2.2: Transmit frequency of a mono-frequent CW radar.

Now, the scenario depicted in Fig. 2.3 is used to derive the range and velocity mea-
surements characteristics of this waveform. Again, a point-shaped target assumption is
made to simplify the derivations. The baseband radar signal originated by the running
person is obtained by substituting φT(t) = 2π · fc · t into Equation 2.10:

sB(t) = AR

2 exp
(
j2π · fc · t − j2π · fc · τ(t) − j2π · fc · t

)

= AR

2 exp
(

− j2π · fc · τ(t)
)
.

(2.12)

Since the person is moving relative to the sensor with a radial velocity vr, the distance
becomes time-dependent and thus the round-trip time τ(t) does too:

τ(t) = 2
c

·
(
R0 + vr · t

)
. (2.13)

The radial velocity’s sign is negative when the target is approaching the sensor (decreas-
ing range and thus round-trip time) and positive when moving away from the sensor
(increasing range and thus round-trip time). If the person’s movement direction is not
radial to the sensor, the radial component of their velocity vector v is given by

vr = |v| · cos(α), (2.14)

where α is the angle between the heading direction of the person and the boresight
direction of the radar.

Using Equations 2.12 and 2.13, the baseband signal can be expressed in terms of the
radial velocity and the distance of the target:

sB(t) = AR

2 exp
(

j2π ·
(

− fc · 2vr

c
· t − fc · 2R0

c

))

= AR

2 exp
(

j2π ·
(
fD · t + φ0

))
,

(2.15)

where
fD = −2vr

c
· fc (2.16)
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