
Introduction 1
Fluidized bed spray granulation is a process in which particle growth is induced through
the injection of solids in liquid form into a granulator, either as a melt, or suspended
or dissolved in a liquid. The process is illustrated in Fig. 1.1. Here, a particle bed is
fluidized using the inflowing air and thereby mixed. Droplets are injected through a
nozzle and deposited on the particles. After deposition, the liquid interacts with the gas
phase. In the case of melt granulation, the gas acts as a cooling agent and forces the solids
to solidify whereas in the case of solution or suspension granulation, the liquid evaporates.
In this work, the focus is laid on the treatment of solutions or suspension rather than melt
granulation.

Fluidized bed spray granulation is commonly chosen for its consistency in producing
products with sharply defined properties or functionality. It is thus widely used in the food
industry, pharmaceutical industry as well as consumer product and chemical industries.
These resulting product properties are the consequence of the local conditions that particles
experience over the course of the process. Local process conditions include the deposition
of spray droplets onto the particle surface, contact with other particles and evaporation
of liquid on the surface, as well as heat transfer with the gas phase. The fluidization gas
introduces agitation into the system and allows for evaporation of the liquid. The physics
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Fig. 1.1.: Snapshot of a CFD-DEM simulation of the particle and droplet dynamics inside
a Glatt GF3 granulator in operation, with particles clipped away up to the mid-
plane.
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of fluidization allow for excellent heat and mass transfer due the intense interaction of
these two phases.

Depending on the properties and amount of spray liquid applied and the velocities at which
particles collide, they may either grow in layers due to the solids contained in the liquid,
or by particles agglomerating together. Layer growth occurs for high velocity impacts,
spray liquids with a low surface tension and viscosity, and low spray rates (equating to low
local liquid concentrations). Here, contacts of wetted particles will not lead to sticking.
This is both because wetted contacts rare occur, and the contacts endure for durations that
are too short to result in solidification or sintering (Salman et al., 2006).

Hoffmann et al. (2015) and Diez et al. (2018) identified the global drying potential

𝜂 = 𝑌wb
in − 𝑌out𝑌wb
in − 𝑌in

(1.1)

to correlate with a wide range of layering granulation product properties such as porosity,
yield strength and surface roughness when spraying a solution of a salt. 𝑌 is the specific
humidity loading and 𝑌wb

in the wet-bulb humidity that would occur in the granulator if the
enthalpy of the inflowing air is used for evaporation until the saturation point is reached.
Values approaching 𝜂 = 1 indicate low spray rates or high inflowing gas temperatures
because the energy budget of the inflowing air is large compared to rate at which liquid is
evaporated. In contrast, values close to 𝜂 = 0 indicate low gas temperatures and high spray
rates, indicating that the outflowing air already reached its saturation point and no further
evaporation can occur. The drying potential is an indirect descriptor for the rate at which
the droplets and wetted particles dry in the granulator, showing that these are key factors
in granulation. However, correlating the drying potential with product properties fails
when spraying suspensions (Schmidt et al., 2017b). Another important branch of layering
spray granulation is the use of melts, for which no quantitative morphology studies could
be found in literature at the time of this work.

The other process, agglomeration, occurs when the spray liquid and process conditions
are tailored to let particle collisions lead to sticking and solidification. Particular focus
is laid on the strength of liquid bridges between two colliding particles. The stability of
the process is dependent on an equilibrium between solid bridges forming and breaking.
When bridges, that are much stronger than the stresses in the system, form, unbounded
agglomerate growth occurs, causing fluidization to cease. On the other hand, bridges that
are weaker than the stresses in the system would break, leading to the prior case of layer
growth.

Fluidization, the key phenomenon at the heart of fluidized bed granulation, can nowadays
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be accurately described with numerical methods, most notably and suitably the coupled
Computational Fluid Dynamics-Discrete Element Method (CFD-DEM), as described by
Tsuji et al. (1992). The trajectories of up to tens of millions of individual particles (or
parcels) can be resolved with limited effort and their exchange of heat and mass with
the gas phase can be tracked. Despite that, fully space-resolved simulations where the
structure of particles themselves is resolved still pose a substantial challenge. Therefore, a
variety of indirect approaches have been developed to use simulation technologies.

Terrazas-Velarde et al. (2009) used a Monte Carlo approach to describe agglomeration
in fluidized bed spray granulation by tracking discrete, stochastic events. Based on this,
Dadkhah et al. (2012) were able to accurately model agglomerate structure. The weakness
of Monte Carlo approaches lie in the need to provide probabilities for events and other
closures, such as for the collision velocity of particles. Some works, such as those of
Dosta et al. (2013), have developed elaborate ways to bridge length- and time scales
by deriving closures from CFD-DEM simulations. Kafui and Thornton (2008) directly
described agglomerate growth using CFD-DEM simulations with cohesion / surface-
energy modelling, albeit for a very small system. Fries et al. (2014) used the CFD-DEM
method to investigate the resulting properties of fluidized bed spray agglomeration. They
were successful in predicting agglomerate breakage strength by using the aforementioned
growth-breakage equilibrium for a variety of different granulator geometries without
having to rely on a wide variety of closures.

Few studies have been performed with respect to product properties of fluidized bed
layering spray granulation. Hoffmann (2016) used experimental closures based on the
global drying potential to describe the growth of particles using a population balance
model. For the surface structures formed by layering granulation, Jiang et al. (2020)
performed CFD-DEM simulations coupled to a Monte Carlo method with discretized
particle surfaces to characterize the inter-particle homogeneity of layer formation, albeit
with no correlation to the actual particle porosity.

1.1. Aim of this Work

The aim of this work is the maturation of simulation technology for performing predictive
simulations of the fluidized bed spray granulation process at any given apparatus scale.
To this end, two focus points were chosen:

• Simulation of weakly wetted granular matter.

• Prediction of fluidized bed spray layering granulation product properties.
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Both aims are independent of each other for the purpose of this thesis. The ability to
model the influence of liquid distribution on dynamics allows to determine whether
agglomeration or layering granulation will take place. Finding a calibration approach to
describe weakly wetted, sensitive systems is therefore one of the aims of this thesis.

The other focus is the development and application of an approach for the prediction of flu-
idized bed spray layering granulation using CFD-DEM simulations, leveraging knowledge
of the conditions under which drying occurs. To this end, an approach is to be developed
that

• works for spray liquids that are solutions or suspensions and

• can predict deviations in product properties that occur in scale-up.

This is to be done in a manner that is easy and reproducible.

1.2. Structure of this Work

Chapter 2 gives an overview of the classical Discrete Element Method and Computa-
tional Fluid Dynamics techniques and their coupling. This provides the theoretical foun-
dation that is later built upon.

The succeeding content chapters are split into two parts. The first part addresses the aim
of describing weakly wetted granular systems. In chapter 3, an overview of the physics
involved in liquid bridges is given, a model is composed and a new liquid bridge state
model is proposed. The sensitivities of characterization experiments with respect to the
liquid bridge model parameters are analyzed and a calibration workflow is proposed on
the basis of these specific sensitivities. The approach is applied to a real material system
in chapter 4.

For the second part, a product-property prediction approach for fluidized bed layering
spray granulation is devised in chapter 6. The applicability of this approach to the use of
suspensions as the spray liquid is shown in chapter 7 and the applicability to using salt
solutions as the spray liquid is shown in chapter 8. This is done by demonstrating the
ability to find a mapping between the conditions that particles experience and the product
property chosen. Chapter 9 then applies the mapping derived in chapter 8 to a pilot-scale
case and demonstrates the predictiveness of the approach in scale-up by a factor of 8.
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Numerical Simulation of
Particulate Flows using
CFD-DEM

2

The CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) is a versatile,
deterministic method of simulating fluid-solid flows due to its ability to represent both the
gaseous flow and the solid particles in their most natural frames of reference respectively.
An expansive overview of the range of applications it is used for can be found in Kieckhefen
et al. (2020), from which this chapter was derived.

In this chapter, a short description of the individual DEM and CFD methods are given,
followed by an overview of the details that must be considered when coupling these
methods.

2.1. Governing Equations of the Discrete Element Method

In the Discrete ElementMethod (DEM), as proposed by Cundall and Strack (1979), particle
motion is resolved by numerically integrating the Newtonian equations of motion:

𝐱̈𝑖 = 1𝑀𝑖
⎛⎜⎝
∑
𝑗 𝐅𝑗→𝑖 + 𝐅𝑖,ext⎞⎟⎠ (2.1)

𝝎̇𝑖 = 1𝐽𝑖 ⎛⎜⎝
∑
𝑗 𝐓𝑗→𝑖 + 𝑇𝑖,ext⎞⎟⎠ (2.2)

where 𝐱𝑖 is the position of a particle 𝑖,𝑀𝑖 refers to its mass and 𝐅𝑖,ext to the external forces
acting upon it, such as inter-phase drag and gravity. 𝝎𝑖 is the angular momentum, 𝐽𝑖 the
moment of inertia and 𝐓𝑗→𝑖 the torque acting on 𝑖 due to 𝑗. The inter-particle contact
force 𝐅𝑗→𝑖 = 𝐅n𝑗→𝑖 + 𝐅t𝑗→𝑖 of particle 𝑗 acting upon particle 𝑖 are composed of a normal
component 𝐅n𝑗→𝑖 and a tangential component 𝐅t𝑗→𝑖.
There are two different approaches to solving these equations of motion: the soft-sphere
and the hard-sphere model. The soft-sphere model uses a global time step and performs
time-integration over the sum of all forces acting upon the particles. Particles are allowed
to overlap and contact forces are modeled, for example, using the Hertz-Mindlin model,
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as illustrated in Fig. 2.1. These overlap-dependent force models take into account both
single-particle mechanical properties such as the coefficient of restitution, the elasticity
modulus and Poisson ratio, as well as frictional bulk properties. The maximum particle
overlap should be kept under a value of 0.3% of the particle radius (Lommen et al., 2014)
for numerical stability. This stability criterion restricts the global time step.

particle 𝑖

particle 𝑗
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Fig. 2.1.: Schematic of particle overlap in the soft-sphere Discrete ElementMethod (DEM).
Springs are indicated by the symbol for their coefficient 𝑘 and dashpots are
indicated by their viscous coefficient 𝛾.

The hard-spheremodel follows a localized approach to time stepping, where particle tracks
are assumed to be linear or linearly accelerated/dampened until a collision is detected.
Then, the coefficient of restitution is applied to the colliding elements, the deflection is
applied to the velocity vectors and calculation resumes. The operation is periodically
interrupted to recalculate non-contact forces.

While the effective timestep is much lower in soft-sphere models, hard-sphere models
are rarely chosen for bulk solids due to the high incidence of particle contacts and a
high collision frequency. As every collision requires an interruption of calculation, the
hard-sphere model is rarely used for these cases.

In soft-sphere simulations, contact forces are calculated according to the Hertz law in the
normal direction (Kloss et al., 2012):

𝐅n𝑗→𝑖 = 𝑘n 𝛿𝐧𝑖𝑗 − 𝛾n𝐮n
p,𝑖𝑗 (2.3)𝐅t𝑗→𝑖 = 𝑘t 𝛿𝐭𝑖𝑗 − 𝛾t𝐮t
p,𝑖𝑗 (2.4)
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where 𝑘 is the elastic coefficient, 𝛿𝐧𝑖𝑗 and 𝛿𝐭𝑖𝑗 are the normal and tangential overlaps, 𝛾 is
the damping coefficient and 𝐮p,𝑖𝑗 is the relative velocity.
These coefficients can be calculated from bulk solids parameters such as the particle mass𝑚𝑖, the radius 𝑅𝑖, the modulus of elasticity 𝑌𝑖 and the coefficient of restitution 𝑒 using the
model equations given in Tab. 2.1.

Tab. 2.1.: Hertz-Mindlin-Tsuji contact model quantities.

Quantitiy Expression

Spring stiffness
Normal 𝑘n = (4∕3)𝑌∗√𝑟∗𝛿𝑛𝑖𝑗
Tangential 𝑘t = 8𝐺∗√𝑟∗𝛿𝑛𝑖𝑗

Damping coefficient
Normal 𝛾n = −2√5∕6𝛽√𝑆n𝑚∗ ≥ 0
Tangential 𝛾t = −2√5∕6𝛽√𝑆t𝑚∗ ≥ 0

Stiffness
Normal 𝑆n = 2𝑌∗√𝑟∗𝛿𝑛𝑖𝑗
Tangential 𝑆t = 8𝐺∗√𝑟∗𝛿𝑛𝑖𝑗

Scaling parameter 𝛽 = ln(𝑒)∕√ln2(𝑒) + 𝜋2
Effective quantities

Young’s modulus 𝑌∗ = 1∕ ((1 − 𝜈21) ∕𝑌1 + (1 − 𝜈22) ∕𝑌2)
Shear modulus 𝐺∗ = 1∕ (2(2 − 𝜈1)(1 + 𝜈1)∕𝑌1 + 2(2 − 𝜈2)(1 + 𝜈2)∕𝑌2)
Radius 𝑟∗ = 1∕ (1∕𝑟1 + 1∕𝑟2)
Mass 𝑀∗ = 1∕ (1∕𝑀1 + 1∕𝑀2)
Thus, both elastic compressibility and inelastic energy dissipation are contained. Frictional
effects are included by enforcing the Coulomb criterion

𝐹t𝑗→𝑖 ≤ 𝜇fr𝐹n𝑗→𝑖 (2.5)

that truncates the tangential force exerted to a value relative to the normal force acting,
considering the static friction coefficient 𝜇fr.
The torque due to particle contact was considered using an elastic-plastic spring pot torque
model as formulated by Ai et al. (2011) that adds an elastic (superscript k) and a dissipative
(superscript d) term: 𝐓𝑗→𝑖 = 𝐓k𝑗→𝑖 + 𝐓d𝑗→𝑖 (2.6)
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The elastic term is given by

𝐓k𝑗→𝑖(𝑡 + Δ𝑡) = 𝐓k𝑗→𝑖(𝑡) − 𝑘rfrΔ𝜽 (2.7)

with 𝑘rfr being the rolling stiffness and Δ𝜽 the incremental relative rotation between the
particles in the shear plane. Δ𝜽 is limited using the coefficient of rolling friction, 𝜇rfr,
relative to the normal contact force component:

𝑇k𝑗→𝑖 ≤ 𝜇rfr𝑟∗𝐹n𝑗→𝑖. (2.8)

The rolling stiffness is related to the tangential stiffness 𝑘t by
𝑘rfr = 𝑘t(𝑟∗)2. (2.9)

In the applied variant of the elastic spring-dash pot model, the viscous damping contribu-
tion is deactivated.

The computational demand of DEM simulation lies in both the size of the time step Δ𝑡,
as well as the number of elements to be considered. General performance (number of
time steps per unit time) can be increased by artificially softening particles, leading to
longer collision times. Lommen et al. (2014) has shown that this simplification has little
influence on macroscopic system behavior. This accelerates simulations, but does not
allow the consideration of smaller particles or larger industrial systems containing more
than tens of millions of particles.

2.2. Governing Equations in Computational Fluid Dynamics

Fluid flow in CFD-DEM coupling is usually resolved by applying the finite volumemethod
to the Navier–Stokes equations to yield a velocity field 𝐮f and pressure field 𝑝 that are
discretized on a grid consisting of cells that constitute a number of interconnected control
volumes: 𝜕 (𝛼f𝜌f𝐮f)𝜕𝑡 + ∇ ⋅ 𝛼f𝜌f𝐮f𝐮f = −𝛼f∇𝑝 + 𝛼f∇ ⋅ 𝝉 + 𝛼f𝜌f𝐠 + 𝐒̇𝑢 (2.10)

𝛼f𝜕 (𝛼f𝜌f)𝜕𝑡 + ∇ ⋅ 𝛼f𝜌f𝐮f = 0. (2.11)

Here, 𝛼f denotes the volumetric phase fraction of the fluid phase, 𝜌f its density, 𝐮f its real
(interstitial) velocity, 𝐠 is the gravitational acceleration and 𝐒̇𝑢 is a momentum exchange
term.
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The pressure 𝑝 is not directly solved for using the continuity equation (2.11) but is instead
iterated using a pressure equation to enforce continuity. The shear stress tensor 𝝉 is given
using a Newtonian law of viscosity or a more sophisticated closure. A relation between
density, pressure, velocity and other state variables (most notably the temperature 𝑇f) is
required for the compressible case. Usually, the ideal gas equation 𝜌f = 𝑝∕ (𝑅f𝑇f) is used,
with 𝑅f being the mass-specific gas constant.
This formulation of the Navier-Stokes equations, referred to in literature (e.g. by Zhou
et al. (2010) and Zhu et al. (2008)) as model A, includes the fluid volume fraction 𝛼f and
the momentum exchange term 𝐒̇𝑢 that represent the presence of a Lagrangian phase, sum-
marized in Tab. 2.2. The other formulation, model B, considers pressure to be attributed
to the fluid phase, in contrast to model A, which assumes a shared pressure among both
phases. Consequently, the pressure gradient term in model B reads −∇𝑝, and the shear
stress term ∇ ⋅ 𝝉. This also causes the phase interaction forces to be summed up over
the total control cell volume 𝑉cell in model A and the fluid volume 𝛼f𝑉cell in model B,
respectively.

Tab. 2.2.: Attributions of different momentum contributions in model A and model B
formulations of CFD-DEM coupling.

Term Model A Model B

Shear stress 𝛼f∇ ⋅ 𝝉 ∇ ⋅ 𝝉
Pressure gradient 𝛼f∇𝑝 ∇𝑝
Momentum exchange control volume 𝑉cell 𝛼f𝑉cell

The forces involved include at least

• the drag force,

• the pressure gradient force, and

• the viscous force.

In liquid-solid systems,

• the virtual mass force and

• Basset force

are required in addition to the aforementioned ones to accurately depict the effects of
boundary layers (Nijssen et al., 2020).

2.2 Governing Equations in Computational Fluid Dynamics 9



When effects like particle rotation are to be considered,

• the Saffmann shear lift force and

• the Magnus force

contribute additional source terms that induce a torque into the fluid phase and have to be
treated with further numerical effort. Although all of these forces may be present in any
given physical system, their contribution might be negligible in modeling and selectively
ignored to reduce computational demand.

2.2.1. Turbulence Modeling

Starting from a given flow velocity, a viscous fluid will exhibit highly non-linear, chaotic
behavior due to energy dissipation in the form of vortices that form and break up on a
wide range of length scales. Describing this behavior in simulations requires the spatial
and temporal resolution of the range from very small length scales to large eddies in the
system. Thus, the accurate representation of turbulent flows requires turbulencemodeling
for all practical intents and purposes. A rigorous treatment of these models can be found
in the textbook by Wilcox (2006). For the fluid phase, turbulent viscosity/Reynolds-
averaged Navier–Stokes models like the 𝑘-𝜀 or 𝑘-𝜔models are used, which solve additional
differential equations for the generation, transport, and dissipation of the turbulent kinetic
energy and increase the viscosity depending on these quantities. As such, the effect
of turbulence on averaged flow is captured without resolving the small length scales.
Large eddy simulations, in which eddies larger than a filtering criterion are resolved, are
performed less frequently. In these, the effect of those eddies occurring on smaller length
scales is modeled using an isotropic model like 𝑘-𝜀. In both cases, the effect on particles
can be stochastically modeled by using the time spent in an eddy and the turbulent velocity
fluctuation, both of which depend on the turbulent kinetic energy.

2.3. Eulerian-Lagrangian Phase Coupling

As illustrated in Fig. 2.2, phase coupling is realized by introducing source-sink terms into
the mass and momentum, as well as heat and species balances on the CFD side, as well as
respective source-sink terms on the DEM side. The rate at which these are transferred
between the phases is described using closures that normally take the fluid-mechanical
and compositional situation into consideration. Algorithmically, the CFD and DEM part
of the simulation are alternated, with coupling steps in between. In the coupling steps, the
source-sink terms are recalculated based on the changed situation. Furthermore, mapping
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