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Increasingly, machine learning algorithms are being used in the field of autonomous driving.

Here, generative algorithms can be used to provide further data corresponding to driving situations.

This type of algorithm is based on probability distributions. As a consequence, appropriate similarity

measures can be used to validate them quantitatively. This paper answers the following scientific

question:

Which similarity measures are suitable for validating a generative algorithm in the context of
safety-critical driving scenarios of autonomous driving?
Keywords: Autonomous driving, safety-critical driving scenario, generative algorithm, probabil-

ity density function, similarity measure

I. Motivation
About 3700 people die in traffic accidents every day. Human error is the number one cause

of accidents. Autonomous driving can greatly reduce the occurrence of traffic accidents. To

release self-driving cars for road traffic, the system including software must be validated and tested

efficiently. However, due to their criticality, the amount of data corresponding to safety-critical

driving scenarios are limited. These driving scenes can be expressed as a time series. They represent

the corresponding movement of the vehicle, including time vector, position coordinates, speed and

acceleration. Such data can be provided on different ways. For example, in the form of a kinematic

model. Alternatively, artificial intelligence or machine learning methods can be used. They have

been widely used in the development of autonomous vehicles. For example, generative algorithms

can be used to generate such safety-critical driving data. However, the validation of generative

algorithms is a challenge in general. In most cases, their quality is assessed by means of expert

knowledge (qualitative). In order to achieve a higher degree of automation, a quantitative validation

approach is necessary. Generative algorithms are based on probability distributions or probability

density functions. Accordingly, similarity measures can be used to evaluate generative algorithms.

In this publication, such similarity measures are described and compared on the basis of defined

evaluation criteria. With respect to the use case mentioned, a recommended similarity measure is

implemented and validated for an example of a typical safety-critical driving scenario. [1] [2] [3]

[4] [5] [6] [7]
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II. Generative Algorithms
Generative algorithms belong to the field of machine learning and have gained significant attention

in recent years. This type of algorithm can be understood as the counterpart to discriminative

algorithms. They can, based on a probability distribution, generate new data. For this, information

about the characteristics of the features are needed. In this regard, the characteristics of the different

observations from the training data set are transformed into a probability model. In the course of a

stochastic process, the generative algorithm approximates the probability distribution of the training

data set. The training phase of the probability model can be considered complete as soon as new

observations hardly differ from the original data set. Classical generative algorithms do not require

labeled data sets (unsupervised learning). However, mixed forms also exist, which also depend on

labels (unsupervised and supervised learning). Different taxonomies of generative algorithms can

also be derived. [8]

III. Probability density functions
In everyday life, there are many processes whose results depend on probabilities. For those

processes, it is not possible to predict which result will occur. Such random experiments are

also referred to as non-deterministic processes. The individual elementary events of the random

experiment or the realizations of a random variable can be assigned to a result set. A random variable

is considered to be continuous if it can assume any real value at least in a certain interval. Since a

finite or infinite interval of real numbers is not constituted by a countably infinite number of values,

the probability that a continuous random variable takes one specific value is zero. Probability density

functions (PDF) can be used to specify the probability of occurrence of a particular realization of

the random variable. A PDF depends on the realization of the random variable 𝑋 and is defined as

follows:

𝑃(𝑎 < 𝑋 ≤ 𝑏) =
𝑏∫

𝑎

𝑓 (𝑥) 𝑑𝑥 ∧
+∞∫

−∞
𝑓 (𝑥) 𝑑𝑥 = 1, 𝑓 (𝑥) ≥ 0, 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏 (1)

The probability 𝑃 corresponds to the product 𝑓 (𝑥) 𝑑𝑥. This is the probability that the continuous

random variable 𝑋 takes a value in an arbitrarily small interval [𝑥, 𝑥 + 𝑑𝑥]. In practice, the PDF of

an underlying random variable is typically unknown. Accordingly, it is important, depending on

the use case considered, to estimate these not only qualitatively, but also quantitatively. There are

several methods to estimate appropriate PDFs. So-called kernel density estimators (KDE) can be

used. An alternative is the so-called histogram-spline approximation. [7] [9] [10]

IV. Similarity measures of probability density functions
Generative algorithms generate new data sets based on an original data set. These data sets are

subject to their corresponding PDFs. In addition to the qualitative consideration of both PDFs in the

form of expert knowledge, similarity measures can be used as a quantitative approach. This includes

the statistical distance between two PDFs. A distance (or dissimilarity) 𝑑 (𝑥, 𝑦) is a function that

maps a set 𝑋 to the set of real numbers, 𝑑 : 𝑋 × 𝑋 → R. Here 𝑥, 𝑦 ∈ 𝑋 are mapped by 𝑑 onto

the real numbers. Such a distance has to satisfy 𝑑 (𝑥, 𝑦) ≥ 0 (non-negativity), 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥)
(symmetry), and 𝑑 (𝑥, 𝑥) = 0 (reflexivity). Another way to determine the discrepancy of two density
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functions is with respect to similarity. Similar to a distance, this maps a quantity to the set of real

numbers, 𝑠 : 𝑋 × 𝑋 → R. Besides the properties of non-negativity and symmetry, a similarity

has to satisfy 𝑠(𝑥, 𝑦) ≤ 𝑠(𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 except for 𝑦 = 𝑥. Similarities 𝑠 and distances 𝑑 can

be transformed into each other by various transformations. For example, by 𝑑 = 1 − 𝑠, 𝑑 = 1−𝑠
𝑠 ,

𝑑 =
√

1 − 𝑠 or 𝑑 = − ln(𝑠). The more similar 𝑥 and 𝑦 are, the higher the value of the similarity 𝑠. In

contrast, the more similar 𝑥 and 𝑦 are, the lower is the distance 𝑑. In both cases, the corresponding

ratios can be normalized. Then 0 ≤ 𝑠(𝑥, 𝑦) ≤ 1 or 0 ≤ 𝑑 (𝑥, 𝑦) ≤ 1. The definition of a distance

can be extended to that of a semi-metric. For this, in addition to non-negativity, symmetry and

reflexivity, the triangle inequality 𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 must hold. A metric

is a semi-metric that additionally satisfies the identity 𝑑 (𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦. A set 𝑋 , including a

metric 𝑑, is called a metric space (𝑋, 𝑑). These evaluation techniques provide the framework to

compare density functions, in the context of generative algorithms. Distances that are asymmetric

can be transformed into symmetric ones. Some of these transformation possibilities are mentioned

in Table 1. [7] [11] [12]

Method Description
Addition 𝑑𝑠𝑦𝑚 (P,Q) = 𝑑𝑎𝑠𝑦𝑚 (P,Q) + 𝑑𝑎𝑠𝑦𝑚 (Q, P)
Maximum 𝑑𝑚𝑎𝑥−𝑠𝑦𝑚 (P,Q) = max

(
𝑑𝑎𝑠𝑦𝑚 (P,Q), 𝑑𝑎𝑠𝑦𝑚 (Q, P)

)
Minimum 𝑑𝑚𝑖𝑛−𝑠𝑦𝑚 (P,Q) = min

(
𝑑𝑎𝑠𝑦𝑚 (P,Q), 𝑑𝑎𝑠𝑦𝑚 (Q, P)

)
Average 𝑑𝑎𝑣𝑔−𝑠𝑦𝑚 (P,Q) = 𝑎𝑣𝑔

(
𝑑𝑎𝑠𝑦𝑚 (P,Q), 𝑑𝑎𝑠𝑦𝑚 (Q, P)

)
Table 1 Transformation approaches of symmetric and asymmetric distances

For comparing two PDFs, there are various similarity measures in the literature. Based on the

corresponding mathematical descriptions and the focus on generative algorithms, a corresponding

taxonomy can be derived. It is presented in Figure 1. [7]

Fig. 1 Taxonomy of evaluation techniques related to PDF comparisons

In preparation for the next chapter, the following information is described in [7] in more detail.

An essential group of similarity measures are given by the Integral Probability Metrics. The basic
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structure of these metrics is the difference of two probability measures P and Q. They are defined as

follows: [13]

𝛾𝐹 (P,Q) := sup
𝑓 ∈F

����
∫

𝑓 𝑑P −
∫

𝑓 𝑑Q

���� (2)

Here the function 𝑓 belongs to a class of real and bounded functions F . Examples of Integral

Probability Metrics are given by the Kolmogorov–Smirnov Distance [13] [14], Wasserstein Distance

[15] [16], Cramér Distance [17], Minkowski Metric [11] [17], Maximum Mean Discrepancy [13]

and Total Variation Metric [13]. Another important group of similarity measures is constituted by

the information theoretic measures. Here, the measure of the entropy should be mentioned as well.

This is a measure of the information content or uncertainty of a random variable 𝑋 and is defined as

follows: [18]

𝐻 (𝑋) = −
𝑁∑
𝑖=1

𝑥𝑖 · log2(𝑥𝑖), 𝑖 = 1, . . . , 𝑁 (3)

Many statistical distances are based on entropy. Divergences are also significant for comparing

density functions. It should be mentioned that many similarity measures (e.g. divergences) aren’t

metrics. However, this does not rule them out as suitable evaluation measures in general. Their

wide use in the literature shows the significance of these evaluation techniques for the underlying

use case also. One of the best known families of divergence measures is given by the 𝑓 -divergences.

They include a large number of the known statistical distances and are defined as follows:

𝑑 𝑓 (𝑝, 𝑞) =
∑
𝑥

𝑞(𝑥) 𝑓
(
𝑝(𝑥)
𝑞(𝑥)

)
(4)

Here, 𝑓 is any function that is convex over the domain of definition (0,∞) and for which 𝑓 (1) = 0.

Furthermore, 𝑓 -divergences are always non-negative, and zero only if the two PDFs 𝑝(𝑥) and

𝑞(𝑥) are equal. [19] Examples of 𝑓 -divergences are given by the Jensen–Shannon Divergence

[11] [13] [17], Kullback–Leibler Divergence [11], 𝜒2 Distance [11] and Hellinger Distance [13].

Another important group of similarity measures are the Bregman divergences. These measure the

discrepancy between two values of PDFs 𝑝(𝑥) and 𝑞(𝑥): [19]

𝑑𝜑 (𝑝, 𝑞) = 𝜑(𝑝) − 𝜑(𝑞) − (𝑝 − 𝑞)𝜑′(𝑞) (5)

The total discrepancy between the PDFs 𝑝(𝑥) and 𝑞(𝑥), can be described, using Bregman divergence,

as follows:

𝑑𝜑 (P,Q) =
∫

[𝜑(𝑝(𝑥)) − 𝜑(𝑞(𝑥)) − (𝑝(𝑥) − 𝑞(𝑥))𝜑′(𝑞(𝑥))] 𝑑𝑥 (6)

This calculation rule can also be discretized:

𝑑𝜑 (P,Q) =
𝑁∑
𝑖=1

[𝜑(𝑝𝑖) − 𝜑(𝑞𝑖) − (𝑝𝑖 − 𝑞𝑖)𝜑′(𝑞𝑖)] (7)

Here, the function 𝜑(𝑡) must be strictly convex and real. The term 𝜑′(Q) describes the derivative

with respect toQ. Bregman divergences also possess the property of non-negativity. Their symmetry,

however, depends on 𝜑(𝑡). Examples of Bregman divergences are given by the Mahalanobis Distance

[20] and the Itakura–Saito Distance [21].
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Similarity coefficients can also be used to compare two PDFs [11]. Here, the two PDFs 𝑃 and 𝑄
are compared by means of different operations. It should be mentioned that these do not include

exclusively measures based on a similarity. These also include measures based on the inner product,

such as the cosine distance. Other distances are based, for example, on the sum of the geometric

mean, such as the Bhattacharyya distance. Another similarity measure, which is based on the

absolute distance, is the Canberra distance. An alternative approach is given by similarity measures

from other use cases. These include the Dynamic Time Warp algorithm, used in the context of time

series [22], and the Structural Similarity Index, used in the context of image processing [23]. These

similarity measures can likewise be applied to vector data sets, such as two PDFs 𝑃 and 𝑄. [24]

A. Comparison based on evaluation criteria
In order to find a suitable similarity measure for the intended use case, these similarity measures

will be compared with each other. For this purpose, the following evaluation criteria are defined and

categorized in Table 2.

Effectiveness (E) The effectiveness of an evaluation technique is representative of the quality

or goodness of the underlying similarity measure. In the present context, this can be considered

the most important criterion. The quality depends, somewhat strongly, on the corresponding

data. Another aspect of great relevance is the development or the course of the similarity values.

These should deliver plausible values over the entire range of values.

Complexity (K) The complexity of an evaluation technique includes its time complexity. This

can be determined on the basis of the respective implementation. Here the ‘Big O notation’ –

also referred to as the Landau symbol O – is used. Especially, the complexity depends on the

number of data points. It also influences the runtime and efficiency of the algorithm applied.

Applicability (A) The applicability of an evaluation technique depends on how easily it can be

applied. It has to be considered whether the underlying implementation involves a high degree

of effort, e.g. in the form of optimization processes.

Transparency (T) Transparency is a measure of the clarity and scope of the evaluation technique,

in particular, whether there is enough in the literature describing this method in a well-founded

and detailed manner.

Robustness (R) The robustness of an evaluation technique describes how well it can handle

measurement inaccuracies, e.g. peaks, noise or outliers.

Parametrizability (P) The parametrizability indicates whether the evaluation technique con-

tains parameters and, if so, how easily they can be set, according to quality aspects. For example,

there are parameters that are typically determined via optimization processes or empirical

methods.

Interpretability (I) Interpretability indicates how well the data can be interpreted from the

results of the evaluation technique. In this regard, methods that are standardized, limited to a

range of values, or converge to a certain value have a high degree of interpretability. If this is

not the case, the results, based on expert knowledge or empirical values, can be evaluated.
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Effectiveness + Evaluation technique has a high quality.

o Evaluation technique has a moderate quality.

- Evaluation technique has a low quality.

Complexity + Evaluation technique has low time complexity and runtime.

o Evaluation technique has moderate time complexity and runtime.

- Evaluation technique has high time complexity and runtime.

Applicability + Evaluation technique is basically easy to implement or reference

implementations are available.

o Evaluation technique can only be implemented easily to a limited

extent. No reference implementations are available.

- Evaluation technique is fundamentally difficult to implement and

reference implementations are not available.

Transparency + Evaluation technique is transparently described and understandable.

o Evaluation technique is described rather moderately transparently

(e.g. mathematical description not fully documented).

- Evaluation technique requires in-depth mathematical knowledge or

its description is incomplete.

Robustness + Evaluation technique is robust against inaccuracies in the data (e.g.

measurement errors, noise or outliers).

o Evaluation technique is not completely robust against inaccuracies in

the data.

- Evaluation technique is not robust against inaccuracies in the data.

Parametrizability + Evaluation technique does not include parameters or includes only a

few parameters. If it does include parameters, then they are easily

adjustable.

o Evaluation technique includes several parameters. These are not all

easily adjustable.

- Evaluation technique includes several or many parameters. Most of

them are not easily adjustable.

Interpretability + The result of the evaluation is easy to interpret.

o The result of the evaluation is moderately interpretable.

- The result of the evaluation is difficult to interpret.

Table 2 Classification of the individual evaluation criteria
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In general, the sign + stands for a positive, the sign o for a neutral, and the sign - for a negative

characteristic. Based on the evaluation criteria and their classification, the similarity measures

mentioned can be compared, as seen in Table 3.

Similarity measure E K A T R P I
Kolmogorov–Smirnov Distance + + O(𝑛) o + - - +

Wasserstein Distance + o o - +

Cramér Distance o + O(𝑛) o + o + +

Minkowski Metric o + O(𝑛) + + o o +

Maximum Mean Discrepancy o o o + - +

Total Variation Metric + + O(𝑛) + + o + +

Kullback–Leibler Divergence + + O(𝑛) + + + + +

Jensen–Shannon Divergence + + O(𝑛) + + + + +

𝜒2 Distance + + O(𝑛) + + - + o

Hellinger Distance + + O(𝑛) + + o + +

Mahalanobis Distance o + + + + o o

Itakura–Saito Distance + + O(𝑛) + o o + o

Table 3 Evaluation of the individual similarity measures according to evaluation criteria

A few of the cells in Table 3 are coloured grey. For these cells, the classification depends on the

specific mathematical description of the underlying evaluation technique. Based on the assessment

and comparison of the evaluation techniques carried out in Table 3, three very important methods

emerge, namely, the Kullback–Leibler and Jensen–Shannon Divergence as well as the Hellinger

Distance. Each of these evaluation techniques has, with respect to the evaluation criteria mentioned,

positive classifications exclusively. In the case of such equality, it is best practice to make a final

decision based on citations in the literature. This points to the Kullback–Leibler divergence. For

this reason, the Kullback–Leibler divergence is recommended as an evaluation technique for the

present use case. The Kullback–Leibler divergence results from using 𝑓 (𝑡) = 𝑡 ln(𝑡) in Equation 4.

The discrete variant of the Kullback–Leibler divergence is given by [11]

𝑑𝐾𝐿 (P,Q) =
𝑁∑
𝑖=1

𝑝𝑖 ln

(
𝑝𝑖
𝑞𝑖

)
(8)

B. Implementation and validation of the recommended similarity measure
For validation, the recommended similarity measure, namely, the Kullback–Leibler divergence,

was implemented. Equation 8 is used as reference. Overall, the function prototype is defined as

follows:

[𝑦1, 𝑦2, 𝑦3] = 𝑓 (𝑃,𝑄), 𝑦1, 𝑦2, 𝑦3, 𝑃, 𝑄 ∈ R (9)
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Here, two parameters 𝑃 and 𝑄 are passed to the function. These correspond to the PDFs. The

return value 𝑦1 represents the actual Kullback–Leibler divergence. In addition to this, two further

key values are also provided for the validation. For this purpose, the Kullback–Leibler divergence is

calculated iteratively. The value 𝑦2 describes the maximum single value of the Kullback–Leibler

divergence between two points of the PDFs (maximum discrepancy). This is a measure of the

highest discrepancy of two values of the corresponding PDFs. The value 𝑦3, indicates the maximum

gradient of the respective individual values. The values 𝑦2 and 𝑦3 check whether 𝑃 and 𝑄 lie in

plausible ranges of values.

The implementation has been validated using suitable data. For this purpose, an overtaking

maneuver is used as a safety-critical driving scenario. Such an overtaking maneuver is described in

[6], in the form of a kinematic model. Based on the underlying model, a data set with 100 different

time series was created. Each time series has a length of 1602 data points. The corresponding

variation parameters 𝛾1 and 𝛾2 have values lying in a range of ±0.1 and a step size of 10−3. These

value ranges are plausible with respect to real drives and results in different motion curves of the

overtaking vehicle. The variations are particularly visible when the vehicle is turning into and out of

the lane. This simplifies the vehicle-related validation of the PDF in these driving periods. The

corresponding time series are shown in Figure 2 for the longitudinal and transverse directions. For a

transverse direction close to zero, the vehicle is in the original lane, and for a transverse direction

close to three meters, it is in the opposite lane. Such an overtaking process can also be represented

as a PDF. Here, the transverse direction is clearly more concise than the longitudinal direction of the

vehicle movement. Accordingly, Figure 3 shows the relative probabilities of the underlying data

across the transverse direction.

Fig. 2 Motion data of synthetically generated overtaking processes
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Fig. 3 PDFs of synthetically generated overtaking processes

The individual PDFs were determined using histogram spline approximations. Here, 13 bins

are used for the underlying histogram and a spline of 11th order. Overall, the variations in the

individual PDFs become apparent. These variations result from the different motion profiles as well

as the approximation to the PDF. In particular, the relative probabilities are relatively high when the

vehicle is turning into and out of the lane. In the opposite lane, however, the relative probabilities

are relatively low.

In general, the corresponding Kullback–Leibler distances are of interest. Here, the PDF without

variations is used as reference. Figure 4 shows the Kullback–Leibler distances of the remaining 99

samples. The result is always a value close to zero. Thus, these values indicate a high similarity

of the density functions. The Kullback–Leibler distances for each data point of the remaining 99

samples are visualized in Figure 5. Here, all values are close to zero as well. These values also

indicate a high similarity of the PDFs. The curves show a high variance when the vehicle is turning

into and out of the lane in particular. In between, there is an approximately linear course.
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Fig. 4 Kullback–Leibler distances for PDFs of synthetically generated overtaking processes

Fig. 5 Single values of Kullback–Leibler distances for PDFs of synthetically generated over-
taking processes
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