Kapitel 1

Einleitung

1.1 Motivation

Die Eindämmung des Klimawandels durch eine Verringerung der Treibhausgasemissionen und die vermehrte Nutzung erneuerbarer Energien sind sowohl in der Politik als auch in der Wissenschaft aktuelle Themen. Im Pariser Abkommen aus dem Jahr 2015 wurde von fast 190 Staaten ein Zielwert für die Klimaerwärmung von 1,5 °C zur vorindustriellen Zeit festgelegt. Erfolgen soll dies durch ein möglichst schnelles Erreichen des weltweiten Scheitelpunkts der Emissionen mit einer anschließenden raschen Emissionssenkung. [1, 2]

Stand 2019 ist der Scheitelpunkt der Emissionen noch nicht erreicht. Nach Oliver und Peters [3] konnte die Zunahme von jährlichen 2,6 % zwischen dem Jahr 2000 und 2010 auf 1,1 % (Stand 2019) reduziert werden. Wichtigste Komponente der Treibhausgasemissionen stellt Kohlenstoffdioxid CO_2 dar. In Bild 1.1 wird die Entwicklung der globalen CO_2 -Emissionen abgebildet. Außerdem werden die im Jahr 2019 dokumentierten Emissionen einzelnen Sektoren zugeteilt. Nach Schleussner [2] ist das Ziel des Pariser Abkommens ohne sinkende CO_2 -Emissionen schwierig bis gar nicht realisierbar. Ausgehend von immer noch zunehmenden Emissionen und der Studie nach [2], sind immer noch zusätzliche Maßnahmen erforderlich.

Unter Betrachtung der Verteilung der CO₂-Emissionen wird deutlich, dass die Energiewende nicht nur eine Stromwende sein darf. Eine Verschränkung der verschiedenen Sektoren ist ein Ansatz, welcher immer größer an Bedeutung gewinnt. Diese Sektorkopplung wird nach Ausfelder [4] in mehrere Entwicklungsbereiche unterteilt.

Bild 1.1: Darstellung der Entwicklung der globalen CO_2 -Emissionen von den Jahren 1990 bis 2019 sowie Anteile der CO_2 -Quellen im Jahr 2019: Die CO_2 -Emissionen steigen über den ganzen Zeitraum an. Die Steigung ab 2010 ist aber geringer als davor. Die 38 Gt CO_2 im Jahr 2019 kommen zu 35, 8 % aus der Energie- und Wärmeerzeugung, zu 16, 7 % aus der Industrie, zu 15, 9 % aus dem Straßentransport, zu 8, 7 % aus dem Bausektor, zu 7, 9 % aus inländischer Kraftstoffverbrennung, zu 3, 6 % aus internationalem Transport (Luft und Wasser), zu 4, 1 % aus Zementwerken und zu 7 % aus sonstigen Quellen. Nach [3].

Der erste betrifft eine direkte Elektrifizierung unter Nutzung elektrischen Stroms zur Wärmeerzeugung und in Fahrzeugantrieben. Ein weiterer Entwicklungsbereich beschreibt die Umwandlung von elektrischem Strom in Wasserstoff H_2 sowie dessen Nutzung in allen Sektoren. Die Umwandlung des erzeugten H_2 in synthetische Gase sowie Brenn- und Kraftstoffe wird als weiterer großer Bereich genannt. Man spricht dabei von strombasierten Kraftstoffen, deren gesamter Erzeugungsvorgang unter Power to liquid bekannt ist. Als letzten Entwicklungsbereich wird eine verstärkte Energiegewinnung aus Biomasse sowie Solar- und Geothermie empfohlen. [4, 5]

Die Forschungsinitiative Energiewende im Verkehr (EiV) des Bundesministeriums für Wirtschaft und Energie (BMWI) beschäftigt sich mit der Nutzung strombasierter Kraftstoffe. Es werden über 100 Forschungsgruppen gefördert, welche sich mit alternativen Treibstoffen für große Transportvolumina und Entfernungen auseinandersetzen. Ergebnisse der Forschungsgruppen sollen die Kopplung des Strom- und Verkehrssektors vorantreiben und ein Sinken der Treibhausgasemissionen ermöglichen. Über die Begleitforschung Energiewende im Verkehr (BeniVer) des deutschen Zentrums für Luft- und Raumfahrt (DLR) werden die einzelnen Verbundvorhaben miteinander vernetzt. Der Fokus liegt dabei auf der Betrachtung von technischen, ökonomischen, ökologischen und gesellschaftlichen Auswirkungen. Für den Vergleich der einzelnen Verfahren der Kraftstofferzeugung wird eine standardisierte Methodik zur Bestimmung der Herstellungskosten herangezogen. [6]

Der in der EiV befindliche Projektverbund PlasmaFuel, welcher unter anderem aus dem Institut für Photovoltaik (IPV) der Universität Stuttgart besteht, beschäftigt sich mit der plasmainduzierten Herstellung von Kraftstoff für die Schifffahrt. In einem Power to liquid-Verfahren wird unter Nutzung von Strom aus erneuerbaren Energien eine plasmainduzierte CO₂-Spaltung mit der Krafstofferzeugung über die Fischer Tropsch Synthese verknüpft. [6]

Die Erzeugung von strombasierendem Schiffsdiesel ist aus mehreren Gründen ein wichtiger Entwicklungsbereich. Zum einen ist eine Elektrifizierung in der Schifffahrt nicht realisierbar. Gründe dafür sind hohe Kosten sowie zu hohe Massen der Batterieeinheiten basierend auf geringer Energiedichten, was in nicht schwimmfähigen Schiffen resultiert. Zum anderen setzt herkömmlicher Schiffstreibstoff bei der Verbrennung Schwefelemissionen frei. Um diese Emissionen zu verringern, werden von der Schifffahrtindustrie Weiterentwicklungen von Abgasreinigungssystemen sowie der Einsatz alternativer Kraftstoffe angestrebt. [7, 8]

Der jährliche Bedarf an Schiffstreibstoff liegt nach [7] über 400 Millionen Tonnen. Die Schifffahrt spielt in der Wirtschaft eine maßgebliche Rolle. Der Schiffsverkehr deckt mit einer Flotte von über 50000 Handelsschiffen einen geschätzten Anteil von 80 % des globalen Handels ab [9]. Der Seeweg stellt beim internationalen Handel, aus Emissionssicht, die effizienteste Transportart für große Ladungsmengen über weite Distanzen dar. Die spezfischen CO₂-Emissionen liegen bei 8 $\frac{g}{tkm}$, während der Transport über die Bahn bei 35 $\frac{g}{tkm}$, über Lastkraftwagen bei 110 $\frac{g}{tkm}$ und über Flugzeuge 665 $\frac{g}{tkm}$ beträgt. [8]

1.2 Ziel der Arbeit

In dieser Arbeit soll, im Rahmen von BeniVer und PlasmaFuel, die plasmainduzierte Herstellung von Kraftstoff in einem Power to Liquid - Prozess modelliert und techno-ökonomisch bewertet werden. Zielprodukt stellt schadstofffreier Schiffstreibstoff dar. Über Literaturrecherchen sollen Grundlagen zur Fischer Tropsch Synthese sowie zu den Bestandteilen einer Power to liquid-Prozesskette erarbeitet werden. Außerdem wird eine Einarbeitung in die techno-ökonomische Analyse von Prozessen angestrebt. Für die Kostenschätzungen sind Kostendaten üblicher Anlagenkomponenten aus der Literatur heranzuziehen. Für neue Komponenten durch Integration der plasmainduzierten CO_2 -Spaltung sind erste Annäherungen der Kosten zu treffen. Nach abgeschlossener Modellierung sollen über Parametervariationen für verschiedene Szenarien Konfigurationen zur Kostenminimierung festgelegt und auf Abhängigkeiten hingewiesen werden. Im finalen Kapitel sind die aus den einzelnen Untersuchungen gewonnenen Erkenntnisse zusammenzufassen. Außerdem soll über eine Schlussfolgerung das Potential des Prozesses eingeschätzt und Vorschläge zu möglichen Verbesserungen aufgezeigt werden.

Kapitel 2

Grundlagen

Dieses Kapitel beinhaltet Grundlagen der Kraftstofferzeugung über die Fischer-Tropsch Synthese sowie einen Einblick in X to liquid Prozesse. Zusätzlich werden Power to liquid spezifische Technologien der Elektrolyse und CO₂-Spaltung erläutert. Nach kurzem Einblick in die Charakteristik von Schiffstreibstoff wird der Begriff Plasma erklärt. Schließlich werden Aspekte der techno-ökonomischen Analyse aufgezeigt.

2.1 Kraftstofferzeugung über die Fischer-Tropsch Synthese

Die Fischer-Tropsch Synthese (FTS) wurde in den 1920 Jahren von Franz Fischer und Hans Tropsch am Kaiser-Wilhelm-Institut in Mühlheim für die Kohleverflüssigung entwickelt. Bei der FTS wird Synthesegas, bestehend aus Wasserstoff (H₂) und Kohlenstoffmonoxid (CO), in Kohlenwasserstoffe und Wasser (H₂O) umgewandelt. Diese Reaktion wird über die Grundgleichung

$$2 H_2(g) + CO(g) \rightleftharpoons [-CH_2-] + H_2O(g) | \Delta H^0 = \mp 165 \frac{\text{kJ}}{\text{mol}}$$
(2.1)

beschrieben. Dabei steht [-CH₂-] für alle entstehenden Kohlenwasserstoffe, welche in eine gasförmige Fraktion (C₁-C₄), Benzin (C₅-C₁₁), Diesel (C₉-C₂₂) und Wachse (C₂₀₊) unterteilt werden. [5, 10]

2.1.1 Chemische Reaktionen der Fischer-Tropsch Synthese

Bei Betrachtung der ablaufenden Reaktion der FTS wird zwischen der Bildung von Alkoholen durch

$$n CO + 2n H_2 \rightleftharpoons C_n H_{2n+1} OH + (n-1) H_2 O, \qquad (2.2)$$

der Bildung von Alkenen durch

$$n CO + 2n H_2 \rightleftharpoons C_n H_{2n} + n H_2 O \tag{2.3}$$

und der Bildung von Alkanen bzw. Paraffinen (langkettige n-Alkane) durch

$$n CO + (2n+1) H_2 \rightleftharpoons C_n H_{2n+2} + n H_2 O \tag{2.4}$$

unterschieden. Der Parameter n in (2.2), (2.3) und (2.4) gibt die Anzahl der Kohlenstoffatome an, welche an der Reaktion teilnehmen. Ausgehend von einer Adsorption des Synthesegases am Katalysator kommt es zunächst zur Bildung von Zwischenprodukten. Im darauf folgenden Schritt der Kettenpolymerisation werden diese zu langkettigen Verbindungen zusammengeschlossen und schließlich über eine Desorption in Form der Produkte ausgegeben. Entstehen bei der FT-Synthese vermehrt längere Ketten, so laufen mehr der genannten Reaktionen ((2.2),(2.3),(2.4)) mit hoher Kohlenstoffatom-Anzahl n ab. Wie viele kurzkettige und wie viele langkettige Kohlenwasserstoffe entstehen hängt vom Kettenwachstum k_1 und der Desorption k_2 ab. In Bild 2.1 werden k_1 und k_2 qualitativ dargestellt. [5]

Bild 2.1: Qualitative Darstellung von k_1 und k_2 bei der FTS: Kettenwachstum k_1 unter Aufnahme eines Ausgangsstoffs C_1 in vertikaler Richtung. Desorption k_2 von Kohlenwasserstoffen C_n in Form von Abzweigungen. Drei Abzweigungen, eine mit $R - C_{n-1}$, eine mit $R - C_n$ und eine mit $R - C_{n+1}$. Nach [5]. Unter k_1 wird Kohlenwasserstoff C_{n-1} durch einen Ausgangsstoff C_1 zu C_n erweitert und über k_2 ausgetrieben. Der Ausgangsstoff C_1 kann sowohl als reiner Kohlenstoff C, als auch in Verbindung mit Wasserstoff (H₂) oder Sauerstoff (O₂) oder in Form von Kohlenmonoxid (CO) vorhanden sein. Reiner Kohlenstoff C bindet sich durch eine Hydrierung mit H₂ und kann leicht polymerisiert werden. Enthält der Ausgangsstoff H₂ oder O₂, so läuft k_1 unter Abspaltung von H₂O-Molekülen ab. Handelt es sich beim Ausgangsstoff um CO, so bildet sich mit dem Katalysatormaterial R eine R - C-Verbindung. Die Kettenwachstumswahrscheinlichkeit

$$\alpha = \frac{k_1}{k_1 + k_2} \tag{2.5}$$

beschreibt die Häufigkeit von k_1 und stellt eine wichtige Größe bei der FTS dar. [5]

2.1.2 Produktzusammensetzung bei der FTS

Anderson-Schulz-Flory-Verteilung

Die Abhängigkeit der Produktzusammensetzung von der Kettenwachstumswahrscheinlichkeit α kann vereinfacht durch die Anderson-Schulz-Flory (ASF)- Verteilung dargestellt werden. In Bild 2.2 werden die Selektivitäten

$$S_{C_n} = \frac{\dot{n}_{C_n}}{\sum_{n=1}^{\infty} \dot{n}_{C_n}}$$
(2.6)

der bei der FTS gebildeten Kohlenwasserstoff-Untergruppen anhand der ASF-Verteilung über α aufgetragen [10]. Die gasförmige Fraktion (C₁-C₄) wird in der Abbildung sowohl summiert als auch in Form von gestrichelten Kurven in Methan (CH₄) und die restlichen Gase unterteilt. CH₄ kann dabei für $\alpha = 0$ eine Selektivität von 100 % annehmen. Untergruppe C₂-C₄ erreicht bei $\alpha = 0, 45$ ihren Maximalwert, C₅-C₁₁ bei $\alpha = 0, 75$, C₉-C₂₂ bei $\alpha \approx 0, 9$ und C₂₀₊ erreicht bei $\alpha = 1$ eine Selektivität von 100 %. Ausgehend von α sind die mathematischen Beschreibungen der einzelnen Stoffmengenanteile x_n durch

$$x_n(\alpha) = (1 - \alpha) \cdot \alpha^{n-1} \tag{2.7}$$

und der Massenanteile w_n durch

$$w_n(\alpha) = (1 - \alpha)^2 \cdot \alpha^{n-1} \cdot n \tag{2.8}$$

definiert. Die Stoffmengenanteile x_n und Massenanteile w_n sind für verschiedene α in Bild 2.3 aufgezeigt. [5, 11, 12]

Bild 2.2: ASF-Verteilung: Die C-Atom-Selektivität S_n ist über der Kettenwachstumswahrscheinlichkeit α aufgetragen. Kurve für C₁-C₄ (zusätzlich unterteilt in CH₄ und C₂-C₄) beginnen bei 1 und sinken mit zunehmender Steigung bei höheren α . Die C₅-C₁₁-Kurve besitzt mit Hochpunkt bei $\alpha \approx 0,75$, C₉-C₂₂ bei $\alpha \approx 0,85$. C₂₀₊ steigt exponentiell ab $\alpha > 0,7$. Nach [5, 10].

Bild 2.3: Stoffmengenanteile x_n (2.7) und Massenanteile w_n (2.8) der verschiedenen Kohlenwasserstoffe bei $\alpha = 0,75$, $\alpha = 0,85$, $\alpha = 0,9$ und $\alpha = 0,95$: Exponentiell sinkende Verläufe für x_n . Auftretende Hochpunkte in w_n -Verläufen mit anschließenden exponentiellen Abnahmen. Abflachung aller Kurven bei höheren Werten von α .

Der Graph von x_n weist exponentiell sinkende Funktionen auf. Verläufe von w_n hingegen zeigen auftretende Maxima zwischen n = 3 ($\alpha = 0, 7$) und n = 14 ($\alpha = 0, 95$). Mit steigendem n verhält sich w_n wie x_n exponentiell abnehmend. Höhere Werte von α bewirken bei x_n sowie bei w_n eine Abflachung der Kurve mit der Folge von größeren Anteilen an langkettigen Kohlenwasserstoffen.

Beeinflussung von α

Die durch α gesteuerte Produktzusammensetzung wird durch die Wahl verschiedener Verfahren festgelegt. Diese zeichnen sich durch verschiedene Temperaturen, Katalysator-Materialien sowie Reaktortypen (Anhang A.1 Bild A.1) aus. Der Katalysator befindet sich in Form von Festkörper-Granulat im Reaktor, dessen Basis besteht aus Übergangs-metallen wie Eisen, Cobalt, Nickel und Ruthenium. Allgemein führt eine Temperaturerhöhung und eine Drucksenkung zu einer gesteigerten Bildung von langkettigen Kohlenwasserstoffen. Industriell wird zwischen der Hochtemperatur-FTS und der Niedertemperatur-FTS unterschieden.[10, 13]

Hochtemperatur Fischer-Tropsch Synthese (HTFTS, engl. high temperature fischer tropsch synthesis): Die HTFTS läuft bei Temperaturen von $\vartheta = 300 - 350$ °C ab und erzielt aus $\alpha = 0, 7$ bis 0,75 resultierende Produktzusammensetzungen, siehe Bild 2.2 und Bild 2.3. Verwendet wird ein Eisenkatalysator und ein Wirbelschichtreaktor mit stationärer oder zirkulierender Wirbelschicht. Beim Wirbelschichtreaktor strömt das Synthesegas auf der unteren Seite des Reaktors ein. Dabei nimmt es in ihm befindliche Katalysator-Körner auf, welche nach abgeschlossenen Reaktionen durch eine mechanische Trennung wieder von den Produkten abgetrennt werden. Bei der HTFTS liegen aufgrund der hohen Temperaturen nur gasförmige Produkte und Edukte sowie der Festkörper-Katalysator vor. Das entstehende Produkt kann nach [11] als ein Gemisch aus ~ 60% Alkenen, ~ 20% Paraffinen, ~ 15% Oxygenaten und ~ 5% Aromaten betrachtet werden. Außerdem geht aus dem α -Wert hervor, dass es sich um eine hochselektive Erzeugung von kurzkettigen Kohlenwasserstoffen handelt. Zielprodukte der HTFTS sind Chemikalien oder Kraftstoffe aus der Benzin-Fraktion.[5, 10, 11, 13]

Niedertemperatur Fischer-Tropsch Synthese (LTFTS, engl. low temperature fischer tropsch synthesis): Die LTFTS wird bei Temperaturen von $\vartheta = 200 - 250 \,^{\circ}\text{C}$ betrieben und liefert eine aus $\alpha = 0,85$ bis 0,95 resultierende Produktzusammensetzung. Der Katalysator besteht üblicherweise aus Eisen oder Kobalt und es wer-

den Festbett- oder Blasensäulenreaktoren verwendet. In Festbettreaktoren strömt das Synthesegas durch vertikal angeordnete mit Katalysatoren gefüllte Rohrbündel. Eine Kühlung geschieht durch Dampferzeugung bei einer stattfindenden Wasserumströmung. Blasensäulenreaktoren verwenden suspendierte Katalysatorpartikel. Unter Verwendung eines Kobalt-Katalysators bei einer LTFTS werden hauptsächlich Alkane bzw. Paraffine synthetisiert. Bei der Produktzusammensetzung kann von ~ 90% n-Alkanen (n-Paraffine) und ~ 10% Oxygenaten ausgegangen werden. Bei niedrigen Temperaturen kann alternativ zum Eisen- oder Kobaltkatalysator auch Nickel oder Ruthenium verwendet werden. Nickel-Katalysatoren werden für eine erhöhte Methan-Selektivität verwendet und Ruthenium für erhöhte Selektivitäten von langkettigen Kohlenwasserstoffen. [5, 10, 11, 13, 14]

Wasserstoff-Kohlenstoffmonoxid-Verhältnis

Eine weitere Kenngröße bei der FTS stellt das Verhältnis

$$r_{FTS,H_2/CO} = \frac{\dot{n}_{FTS,ein,H_2}}{\dot{n}_{FTS,ein,CO}}$$
(2.9)

zwischen Wasserstoff H₂ und Kohlenstoffmonoxid CO am Eintritt des Reaktors dar. Durch die Variation dieser Größe wird sowohl die Produktzusammensetzung als auch die Menge von nicht umgesetzten Stoffen verändert. Bei Betrachtung der Reaktionsgleichungen lässt sich dieser durch die Fälle $\alpha = 0$ und $\alpha = 1$ einschränken. Im Fall $\alpha = 0$ handelt es sich um eine reine Methanerzeugung (siehe Bild 2.2), bei welcher durch die chemische Reaktion

$$CO + 3H_2 \rightleftharpoons CH_4 + H_2O$$
 (2.10)

der obere Grenzwert $r_{FTS,H_2/CO} = 3$ festgelegt wird. Bei $\alpha = 1$ wird angenommen, dass die Ränder der CH-Ketten vernachlässigt werden, wodurch bei Verwendung der Reaktionsgleichung

$$CO + 2H_2 \rightleftharpoons [-CH_2 -] + H_2O \tag{2.11}$$

der untere Grenzwert $r_{FTS,H_2/CO} = 2$ entsteht. In Untersuchungen der FTS werden auch abweichende Werte für $r_{FTS,H_2/CO}$ verwendet. Beispielsweise führt $r_{FTS,H_2/CO} < 2$ zu einer α -Erhöhung sowie zu einer verringerten Dampferzeugung [15].

Abweichungen von der ASF-Verteilung

In der Realität entspricht die Produktverteilung der FTS nicht exakt der ASF-Verteilung. Die Selektivität S_{C_1} von Methan weist die größte Abweichung auf und