

Hans-Peter Beck (Herausgeber)

ReserveBatt - Momentanreserve mit Hochleistungsbatterien - Systemdienstleistungen für den stabilen und sicheren Betrieb des Energieversorgungssystems

Abschlussbericht

https://cuvillier.de/de/shop/publications/8840

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

1	Ül	Überblick Gesamtvorhaben			
2	Darstellung Aufgabenstellung, der Voraussetzungen, der Planung und des Ablaufs des und der Teilvorhaben				
	2.1	Auf	gabenstellung Gesamtsystem/Maschinenmodell – EFZN/TU Clausthal	5	
	2.	1.1	Voraussetzungen, unter denen das Vorhaben durchgeführt wurde	5	
	2.	1.2	Planung und Ablauf des Vorhabens	6	
	2.2	Auf	gabenstellung Batteriesystem – AKASOL	7	
	2.2.1		Ziele	7	
	2.2.2		Zusammenarbeit mit anderen Stellen	7	
	2.3	Auf	gabenstellung Batteriesicherheitstechnik – STÖBICH Technologies	8	
	2.	3.1	Ziele	8	
	2.	3.2	Anforderungen	8	
	2.4	Auf	gabenstellung Faseroptisches Sensorsystem– Fraunhofer HHI	9	
	2.5	Auf	gabenstellung Intelligentes Leistungsmodul – Infineon Technologies	10	
	2.	5.1	Voraussetzungen, unter denen das Vorhaben durchgeführt wurde	11	
	2.	5.2	Planung und Ablauf des Vorhabens	11	
	2.5.3		Stand der Technik, an den angeknüpft wurde	12	
	2.5.4		Zusammenarbeit mit anderen Stellen	12	
	2.6	Auf	gabenstellung Wechselrichtersystem – KEBA Industrial Automation Germany	13	
	2.	6.1	Aufgabenstellung	13	
	2.	6.2	Planung und Ablauf	15	
	2.6.3		Stand der Technik	18	
3	Er	gebnis	se Gesamtsystem/ Maschinenmodell – EFZN/ TU Clausthal	20	
	3.1	Kon	zeption Momentanreserve und Schlüsselkomponenten	20	
	AP 1.1		Lastenheft für das Gesamtsystem, Normen, TAB, Eckdaten	20	
	AP 1.4		Konzepterstellung für die Regelung und Steuerung	22	
	3.2	Mod	dellierung des Gesamtsystems	24	
	Al	P 2.1	Batteriemodell	24	
	AP 2.2		Leistungselektronik-Modell	40	
	Al	P 2.3	Maschinen- und Netzmodell	41	
	Al	P 2.4	Gesamtsimulation	46	
	2 2	Λιιf	nau der Komnonenten und des Gesamtsystems	47	

	AP 3.1		Aufbau der Komponenten nach AP1, Aufbau Gesamtsystem für die Laborumgebu 47	
			Aufbau der Komponenten nach AP1, Aufbau Gesamtsystem für die Feldumg	ebung 47
	3.4	Alt	erungsmodell für Lithium-lonen-Batterien für hochdynamische Belastungen	56
	,	AP 4.1	Physikalisch-chemisches Modell	56
	,	AP 4.2	Ereignisbasiertes Modell	58
	3.5	Lab	oruntersuchungen Batterien	68
	,	AP 5.1	Performanceuntersuchungen auf Zell-, Modul- und Batterieebene	68
	,	AP 5.2	Adaption Sensorik zum Strom-, Temperatur und Dehnungsmessung	83
	,	AP 5.3	Alterungsuntersuchungen auf Zell- und Modulebene	83
	,	AP 5.4	Test und Verifikation Sicherheitskonzept	90
	3.6	Lab	oruntersuchungen Gesamtsystem	91
	,	AP 6.1	Erstellung Anforderungskatalog für das Gesamtsystem und Testprozedur	91
	,	AP 6.2	Inbetriebnahme	91
	,	AP 6.3	Untersuchung der Komponenten und des Gesamtsystems in der Laborumge	bung91
	3.7	Fel	duntersuchungen Gesamtsystem	92
	,	AP 7.1	Integration in die NSHV des EnergieCampus	92
		AP 7.2	Untersuchung der Komponenten und des Gesamtsystems in der Feldur	
	Betriebs		optimierung	
	3.8	Bet	trachtung der Wirtschaftlichkeit, Geschäftsmodelle, Use-Cases	120
	1	AP. 8.1	Kosten-Nutzen-Analyse/Wirtschaftlichkeitsbetrachtung	
	AP 8.2		Use-Cases / Geschäftsmodelle	
4	E		sse Batteriesystem – AKASOL	
	4.1	Ent	wicklung des modularen Batteriesystems	130
	4.2	Op	timierungspotenzial des Batteriesystems	133
	4.3	Aus	slegung hinsichtlich Energieinhalt und Leistungsfähigkeit	134
	4.4	Sic	herheitsrelevante Sensorik / Schutzeinrichtungen	135
	4.5		ndschutzkonzept und Nachweis der Propagationsfestigkeit	
	4.6	Zus	sammenfassung und Fazit	140
5	E	Ergebnis	sse Batteriesicherheitstechnik– STÖBICH Technology	141
	5.1	Koı	nzeption Schlüsselkomponenten - Sicherheitskonzept	141
	5.1.1		Brandschutz auf Zellebene (Modulintern)	141
		5.1.2	Brandschutz auf Moduleben (Modulextern)	143
		5.1.3	Brandschutz auf Gesamtsystemebene (Außerhalb des Racks)	146
		5.1.4	Betrachtung des Kühlmittels aus Sicht des Brandschutzes	148

	5.1.5		5	Zusammenfassung Brandschutz- und Hochwasserkonzept	.149
		5.1.6	õ	Brandschutzvergussmasse	. 151
	5.2	2	Aufk	oau der Komponenten	. 155
	5.3	3	Test	und Verifikation Sicherheitskonzept	. 157
		5.3.1	L	Brandversuch >> Pouch-Zelle <<	. 157
		5.3.2	<u> </u>	Brandversuch >> Prismatische-Zelle << Versuchsplanung	. 162
		5.3.3	3	Entwicklung und Bau spezieller Infrastruktur / Equipment	.164
		5.3.4	ļ	Brandversuch >> Prismatische-Zelle << Versuchsaufbau	. 168
		5.3.5	5	Brandversuch ohne Brandschutz	. 170
		5.3.6	5	Brandversuch mit Brandschutz	. 183
		5.3.7	7	Vergleich der Brandversuche – Fazit	. 197
		5.3.8	3	Weiterentwicklung des Brandschutzkonzepts	.201
6		Erge	bniss	e Faseroptisches Sensorsystem – Fraunhofer HHI	. 202
	6.1	1	Einf	ührung	. 202
	6.2	2	Sens	sorik	. 203
		6.2.1	L	Optisch integrierter Stromsensor	. 203
		6.2.2	<u> </u>	Faseroptische Sensorik	. 222
	6.3	3	Mes	ssystem	. 224
		6.3.1	L	Funktionsweise	. 225
		6.3.2	<u>)</u>	Aufbau	. 226
		6.3.3	3	Vermessung	. 226
		6.3.4	ļ	Software	. 227
	6.4	4	Batt	erien und Sicherheit	. 228
		6.4.1	L	Integration	. 229
		6.4.2	<u>)</u>	Vorversuche	. 234
		6.4.3	3	Sicherheitsversuche	. 246
7		Erge	bniss	e Wechselrichtersystem - KEBA Industrial Automation Germany	. 254
	7.3	1	Ges	amtkonzept und Lastenheft des Wechselrichtersystems	. 254
	7.2	2	Ausl	egung des Wechselrichtersystems	. 256
		7.2.1	L	Hardwarekonzept und Design des leistungselektronischen Systems.	.256
		7.2.2	<u> </u>	Konzept für die Netzanbindung	. 257
		7.2.3	3	Konzept für das Kühlsystem	. 259
		7.2.4	ļ	Wirtschaftliche Betrachtung	. 260
	7.3	3	Prot	otypische Realisierung des Wechselrichtersystems: Pilot 1	.260
		7.3.1	L	Umsetzung und Integration	.260

	7.3.2	2 Anforderungskatalog und Testprozedur	. 262
	7.3.3	3 Qualifizierung und Messungen	. 263
	7.4	Prototypische Realisierung des Wechselrichtersystems: Pilot 2	.269
	7.4.	1 Änderungen zum Piloten 1	.269
	7.4.2	2 Umsetzung und Integration	.270
	7.4.3	3 Qualifizierung und Messungen	.274
8	Erge	bnisse Intelligentes Leistungsmodul – Infineon Technologies	. 280
	8.1	Intelligentes Leistungsmodul – Konzepte und Umsetzung	.280
	8.2	Simulationsmodell des intelligenten Leistungsmoduls	.286
	8.3	Laboruntersuchungen des intelligenten Leistungsmoduls	. 287
	8.4	Unterstützung bei der Integration in das Gesamtsystem	.292
9	Verv	vertbarkeit der Ergebnisse	. 295
10	Rele	vante Ergebnisse Dritter	. 296
	10.1	Praktische Ergebnisse	.296
	10.2	Forschungsergebnisse	296
11	Erfo	gte Veröffentlichungen	. 297
12	Liter	aturverzeichnis	298